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ENUMERATING CYCLIC QUASIPLATONIC GROUPS FOR A

GIVEN SIGNATURE

ROBERT W. BENIM

Abstract. It is an open problem to find how many topologically distinct
ways that a Quasiplatonic group can act upon a surface X of genus g(X) > 2.
We use the classification of cyclic Quasiplatonic groups to solve this counting
problem in the case where the group in question is cyclic.

1. Introduction

A quasiplatonic surface is a compact Riemann surface, X , which admits a group
of automorphisms, G, (called a quasiplatonic group) such that the quotient space,
X/G, has genus 0 and the map πG : X → X/G is branched over three points.
Quasiplatonic groups acting on surfaces of genus 0 or 1 are well known. See, for
example, [2]. A complete classification of Abelian quasiplatonic groups was given
in [4] and [1]. It is not known, however, how many topologically distinct ways that
an Abelian Quasiplatonic group can act upon a surface. There is a counting tool
developed in [6] that we can use to answer this question for cyclic groups acting
on quasiplatonic surfaces of genera greater than or equal to 2. We will develop
formulae for each of the three cases of signatures for a cyclic group of order m,
namely (m, m, m), (n, m, m) and (n1, n2, n3).

2. Preliminaries

We begin with a section that contains the definition of a quasiplatonic surface as
well as the properties of these surfaces that are relevant to our classification, much
of which can be found in [5] or [6].

Definition 2.1. A finite group G is said to act topologically (in an orientation
preserving manner) on a surface S of genus at least 2 if there is an injection ε :
G →Homeo+(S) into the group of orientation preserving homeomorphisms. Two
actions ε1, ε2 are topologically equivalent if there is a homeomorphism h of S
and an automorphism ω of G such that

ε2(ω(g)) = h ◦ ε1(g) ◦ h−1.

We will identify G with its image, and refer to each of its elements as an automor-

phism of the surface. (Note: We will also refer to group automorphisms as well.
The context will make clear which we are referring to.)

For the remainder of this paper, unless otherwise states, all group actions on
surfaces will be topological.

1This research was completed as part of the requirements for the Master’s in Science in Mathe-
matics at Portland State University.
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Definition 2.2. Consider a space X and an automorphism group G acting on X .
The quotient space, X/G = {g(x)|g ∈ G}, is the set of orbits of X under the
action of G.

Definition 2.3. Let G be an automorphism group acting on a surface X . Let
πG : X → X/G be the function where every point in X is sent to its orbit. This
map is known as the natural quotient map.

Definition 2.4. Let G be an automorphism group acting on a surface X and let
πG : X → X/G be the natural quotient map. The point x ∈ X is a ramification

point of πG if there exists g ∈ G such that g 6= e and g(x) = x. (Note : We denote
the identity element of G as e.)

Definition 2.5. If x is a ramification point, its image πG(x) is called a branch

point of πG.

Now that we have developed the language for surfaces that we will be using, we
show an example that illustrates how these terms are used.

Example 2.6. Consider the surface of the sphere in R
3, that is,

S2 = {(x, y, w) ∈ R
3|x2 + y2 + w2 = 1}.

Let G = C2 = {e, g}, where for any (x, y, w) ∈ S2, e : (x, y, w) → (x, y, w) and
g : (x, y, w) → (−x,−y, w). By construction, G is an automorphism group acting
on S2, and all orbits not containing n = (0, 0, 1) and s = (0, 0,−1) are of the form
{(x, y, w), (−x,−y, w)}. For n and s, e(n) = g(n) = n and e(s) = g(s) = s. So the
orbits of n and s respectively are {n} and {s}. The set of all of these orbits is the
quotient space S2/G.

Clearly n and s are ramification points. It follows that the orbits {n} and {s}
are branch points of πG.

The most interesting aspect of the example above was the ramification points.
In the example, there was two of them. The cases we are interested in is when there
are exactly three ramification points. The most common examples of these types
of group actions are the platonic solids under their full automorphism groups. In
these cases, the ramification points are the vertices, the centers of the edges, and
the centers of the faces. These partition nicely to form the three branch points in
the quotient space. We now give formal definitions of quasiplatonic surfaces and
quasiplatonic groups.

Definition 2.7. Let X be a compact Riemann surface. We call X a quasiplatonic

surface if there exists a group G acting on X such that,

(i) X/G has genus 0, and
(ii) πG is branched over 3 points exactly, where πG is the natural quotient

map from X to X/G.

We call the group G a quasiplatonic group and πG a quasiplatonic map.

For the remainder of the paper, whether explicitly stated or not, all surfaces
considered will be quasiplatonic surfaces.

The following definition is a simplification of a classification tool for certain types
of group actions on surfaces. More can be found on Page 8 of [2]. We will use our
simplification to distinguish topologically distinct group actions of a quasiplatonic
group.
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Definition 2.8. Suppose G is a quasiplatonic group acting on a quasiplatonic
surface X such that X is branched over p1, p2, and p3. Suppose x1, x2, x3 ∈ X are
ramification points where πG(x1) = p1, πG(x2) = p2, and πG(x3) = p3. Let n1 =
| Stab(x1)|, n2 = | Stab(x2)|, and n3 = | Stab(x3)|, and without loss of generality
assume n1 6 n2 6 n3. Then, the signature of (G, πG) is the triple (n1, n2, n3).
We call the ni the periods of the signature.

There are a limited and known number of quasiplatonic groups that can act on
a surface of genus 1 or 0 quasiplatonically. A more detailed treatment of these can
be found on page 9 of [2]. They are as follows:

Group Signature Genus Group Signature Genus
Dn (2, 2, n) 0 C6 (2, 3, 6) 1
A4 (2, 3, 3) 0 C4 (2, 4, 4) 1
S4 (2, 3, 4) 0 C3 (3, 3, 3) 1
A5 (2, 3, 5) 0

Since the genus 1 and 0 cases are completely classified, we will only concern
ourselves with the g(X) > 2 case. The following theorem addresses this case specif-
ically. While not explicitly used in proving the results of this paper, is a useful and
common tool in this area of research. We have modified it slightly to fall in line
with the rest of our notation. Also, at any point in the remainder of the paper when
the genus of a surface is mentioned, note that it was found by using the formula
below.

Theorem 2.9. A group G is a quasiplatonic group for a surface X of genus g(X) >

2 with signature (n1, n2, n3) if and only if ni > 2, x and y generate G, |x| = n1,
|y| = n2, and |(xy)−1| = n3, and

g(X) = 1 − |G| +
|G|

2
(3 −

1

n1
−

1

n2
−

1

n3
).

(The last condition is known as the Riemann-Hurwitz formula.)

Proof. For details, see Chapter 1 of [2]. �

This Theorem motivates the following definition.

Definition 2.10. Suppose (n1, n2, n3) is a group signature. A triplet of group
elements (x, y, z) in a finite group G is called a Quasiplatonic generating vector

of G for signature (n1, n2, n2) if z = (xy)−1, and x, y and (xy)−1 satisfy the
conditions of Theorem 2.9.

We now look at an example of the previous theorem to show its application.

Example 2.11. Consider the group G = C15 × C5 where < x >= C15 and
< y >= C5. Note that G is generated by elements x3y and xy4. This is apparent
since their product is x4, which generates C15, and (x3y)(x12) = y, which gener-
ates C5. The orders of x3y, xy4, and ((x3)(xy4))−1 are 5, 15, and 15, respectively.
It follows from the above theorem that these elements generate G quasiplatoni-
cally with signature (5, 15, 15) and genus 26. Further, (x3y, xy4, ((x3)(xy4))−1) is
a Quasiplatonic generating vector for this signature.
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In theory, we could apply the same process to any group to find all signatures
for a given group. In the abelian case, there is a simpler classification which can
be found in [4] and [1]. Since this paper is concerned with the cyclic case only, we
will only make use of the following theorem.

Theorem 2.12. Fix a signature (n1, n2, n3) and let M = lcm(n1, n2, n3). There is
a quasiplatonic surface Xwith quasiplatonic cyclic group G and signature (n1, n2, n3)
if and only if the following conditions are met:

(i) |G| = M = lcm(n1, n2) = lcm(n1, n3) = lcm(n2, n3);
(ii) if M is even, then exactly 2 of the periods ni must be divisible by the

maximum power of 2 that divides |G|.

Proof. This is a specific case of Harvey’s Theorem, proved in [4]. �

We will now look at the counting tool from [6] that we will use heavily in proving
our result. We begin with a convenient definition.

Definition 2.13. Suppose (x, y, z) is a generating vector for a Quasiplatonic group
G. Then we define the following permutations:

• i1 : x → y, y → x, z → z
• i2 : x → x, y → z, z → y
• i3 : x → z, y → y, z → x
• j : x → y, y → z, z → x

For the remainder of the paper, when referring to i1, i2, i3 or j, we are referring
to the permutations above.

Theorem 2.14. The number of topologically inequivalent Quasiplatonic generating
vectors T with signature (n1, n2, n3) on a quasiplatonic surface S can be calculated
as follows.

(i) If all the ni are distinct,

T =
|VG|

|Aut(G)|

where VG denotes the set of all quasiplatonic generating vectors of G with
the given signature.

(ii) If n2 = n3, but n1 is distinct, then

T =
|VG|

2|Aut(G)|
+

|VG,i|

|Aut(G)|

where VG denotes the set of quasiplatonic generating vectors of G with the
given signature for which the identification i2 does not extend to an auto-
morphism of G. VG,i denotes the set of quasiplatonic generating vectors of
G with the given signature for which i2 does extend to an automorphism
of G. (We observe that it follows from Theorem 2.12 that it cannot be the
case that n1 = n2 and are distinct from n3.)

(iii) If n1 = n2 = n3 then

T =
|VG|

6|Aut(G)|
+

|VG,i|

3 Aut(G)|
+

|VG,j |

2|Aut(G)|
+

|VG,i,j |

|Aut(G)|

where VG denotes the set of quasiplatonic generating vectors of G with the
given signature for which the permutations i1, i2, i3 and j do not extend to
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an automorphisms of G, VG,i denotes the set of quasiplatonic generating
vectors of G with the given signature for which i1, i2 or i3 does extend to
an automorphism of G but j does not, VG,j denotes the set of quasiplatonic
generating vectors of G with the given signature for which j does extend
to an automorphism of G but i1, i2 and i3 do not, and VG,i,j denotes the
set of quasiplatonic generating vectors of G with the given signature for
which i1, i2 or i3 and j do extend to automorphisms of G.

With this theorem, it is possible to find the number of inequivalent quasiplatonic
vectors for any given group. But, this theorem relies heavily on the structure of
the group in question. It is the aim of this paper to show that in the case of cyclic
groups, we can simplify these formulas so that we only need to know the order of
the group in question.

3. Enumerating Actions

We break our results into three cases based on the structure of the signature for
a given group G. We begin with the case where each period of the signature is
distinct. This case ends up having the nicest result due in large part to the fact
that i1, i2, i3 and j can never extend to automorphisms of G.

Theorem 3.1. Consider a cyclic group G of order m, and fix a signature (n1, n2, n3)
where all the ni are distinct. Let p1, p2, ..., pl be the distinct primes that divide m.
Write m and the periods in in terms of these primes:

m =

l
∏

i=1

pki

i , n1 =

l
∏

i=1

pri

i , n2 =

l
∏

i=1

psi

i , n3 =

l
∏

i=1

pti

i .

We can reorder the pi’s and find an integer w 6 l so that if 1 6 i 6 w, then ri, si,
and ti are all equal to ki, and if w < i 6 l, then exactly one of ri, si, and ti is less
than ki. In the latter case, let hi represent this smaller value. Then, the number of
inequivalent Quasiplatonic generating vectors T with signature (n1, n2, n3) is

T =

(

w
∏

i=1

pi − 2

pi − 1
ϕ(pki

i )

)(

l
∏

i=w+1

ϕ(phi

i )

)

,

where ϕ represents Euler’s phi-function.

Proof. The existence of w, the reordering of the pi’s and the existence of the hi’s is a

result of Theorem 2.12. By Theorem 2.14, we know that T = |VG|
|Aut(G)| . Since G is a

cyclic group, we know that |Aut(G)| = ϕ(m). So, we only need to find |VG| to find
T . This amounts to finding the number of valid Quasiplatonic generating vectors
for this signature. To find this number, we will construct a valid Quasiplatonic
generating vector for this signature. During each step in the process, we will count
the number of choices we have.

Recall that G has ϕ(m) generators. Choose one, and call it u. Observe that

G = C
p

k1

1

× C
p

k2

2

× · · · × C
p

kl
l

where C
p

ki
i

is the cyclic group of order pki

i . So, for

each i, there exists an element ui ∈ G such that u =
∏l

i=1 ui and ui generates C
p

ki
i

.

We will use these generators to construct our vector, (x, y, z). Each of x, y and z
will be a product of powers of the ui, and we will count the number of choices we
have for each i. Fix i.
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Suppose exactly one of ri, si, and ti is less than ki. Then, there are ϕ(phi

i )

choices of ai such that uai

i is an element in C
p

ki
i

of order phi

i . For any such choice

of ai, we know that u
−(ai+1)
i has order pki

i . Of the three elements ui, uai

i , and

u
−(ai+1)
i , let xi be one whose order is the maximal power of pi that divides n1, and

likewise for yi with n2 and zi with n3. The important thing to remember is that
there were ϕ(phi

i ) choices for ai, and therefore ϕ(phi

i ) choices for the elements xi,
yi, and zi.

The only other case to consider is when ri, si, and ti are all equal to ki. Now we

must choose ai such that both uai

i and u
−(ai+1)
i have order pki

i . So, pi cannot divide

ai or −(ai +1). There are pi−2
pi−1ϕ(pki

i ) such choices. Now, label ui, uai

i and u
−(ai+1)
i

as xi, yi, and zi, respectively. The important thing to remember is that there were
pi−2
pi−1ϕ(pki

i ) choices for ai, and therefore pi−2
pi−1ϕ(pki

i ) choices for the elements xi, yi,

and zi.
Now, let x =

∏l

i=1 xi, y =
∏l

i=1 yi, and z =
∏l

i=1 zi. By construction, (x, y, z)
is a valid generating vector. We also saw that the number of such vectors is

|VG| = ϕ(m)

(

w
∏

i=1

pi − 2

pi − 1
ϕ(pki

i )

)(

l
∏

i=w+1

ϕ(phi

i )

)

,

since there were ϕ(m) choices for our generator u of G, and because we also found
the number of choices for ai in each case. Thus,

T =

(

w
∏

i=1

pi − 2

pi − 1
ϕ(pki

i )

)(

l
∏

i=w+1

ϕ(phi

i )

)

since |Aut(G)| = ϕ(m).
�

We now illustrate this theorem with an example. We see that our newfound
equation provides a quicker means for determining T .

Example 3.2. Consider the cyclic group G of order 105 with signature (15, 21, 35)
acting on a surface of genus 46. If we have a quasiplatonic vector (xa, xb, x−(a+b)),
then there are ϕ(15) = 8 choices for a and ϕ(21) = 12 choices for b. We know 7 will
divide a. For a given choice of a, we need a b such that 5 divides b and 3 divides
a + b. If a ≡ 1 mod 3, then then there are 6 choices for b. Likewise, if a ≡ 2
mod 3, then then there are also 6 choices for b. So, |VG| = 8 × 6 = 48. We also
know that |Aut(G)| = ϕ(105) = 48. So, Thereom 2.14 tells us that

T =
|VG|

|Aut(G)|
=

48

48
= 1.

Likewise, Theorem 3.1 tells us that

T =

(

w
∏

i=1

pi − 2

pi − 1
ϕ(pki

i )

)(

l
∏

i=w+1

ϕ(phi

i )

)

= ϕ(1)3 = 1.

The following definitions will appear mysterious at the moment, but having these
functions defined will prove extremely useful in the cases where i2 or j extend to
automorphisms.
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Definition 3.3. We define τ1 : N × N → N where τ1(m, n) represents the number
of nonzero noncongruent solutions x to x2 + 2x ≡ 0 mod m where gcd(x, m) =
m
n

. Likewise, define τ2 : N → N where τ2(m) represents the number of nonzero

noncongruent solutions x to x2 + x + 1 ≡ 0 mod m.

We now look at the case where exactly two of the periods must be identical. By
Harvey’s Theorem, we know that the two identical periods must be equal to the
order of the group in question.

Theorem 3.4. Consider a cyclic group G of order m, and fix a signature (n, m, m)
where n 6= m. Let p1, p2, ..., pl be the distinct primes that divide m. Write m and
n in in terms of these primes:

m =

l
∏

i=1

pki

i , n =

l
∏

i=1

phi

i .

We can reorder the pi’s and find an integer w 6 l so that if 1 6 i 6 w, then hi = ki,
and if w < i 6 l, then hi < ki. Then, the number of inequivalent Quasiplatonic
generating vectors T with signature (n, m, m) is

T =
1

2

(

τ1(m, n) +

(

w
∏

i=1

pi − 2

pi − 1
ϕ(pki

i )

)(

l
∏

i=w+1

ϕ(phi

i )

))

.

Proof. By Theorem 2.14, we know that T = |VG|
2|Aut(G)| +

|VG,i|
|Aut(G)| . Since G is a cyclic

group, we know that |Aut(G)| = ϕ(m). So, we only need to find |VG| and |VG,i|
to find T . We note that i1 and i3 cannot be extended to automorphisms. Let us
examine the cases when i2 is and is not an automorphism of G. Choose a generator
x ∈ G and suppose we choose a such that we have a quasiplatonic generating vector
(xa, x−(a+1), x). Further, let us suppose that i2 does extend to an automorphism.
That is, the map that sends x → x−(a+1), x−(a+1) → x, and xa → xa extends to
an automorphism. Observe that

xa = i2(x
a) = (i1(x))a = (x−(a+1))a = x−a2−a

which tells us that

a2 + 2a ≡ 0 mod m.

Recall that τ1(m, n) is the number of noncongruent solutions x to x2 + 2x ≡ 0
mod m where gcd(x, m) = m

n
. i2 extends to an automorphism if and only if a is

such a solution. So, |VG,i| = ϕ(m)τ1(m, n). We also know by an argument similar
to Theorem 3.1 that we can reorder the pi’s and find an integer w 6 l so that if
1 6 i 6 w, then ki = hi, and if w < i 6 l, then hi < ki, and that

|VG| + |VG,i| = ϕ(m)

w
∏

i=1

pi − 2

pi − 1
ϕ(pki

i )

l
∏

i=w+1

ϕ(phi

i ).

So,

|VG| = ϕ(m)
w
∏

i=1

pi − 2

pi − 1
ϕ(pki

i )
l
∏

i=w+1

ϕ(phi

i ) − ϕ(m)τ1(m, n).

Thus,

T =
|VG|

2|Aut(G)|
+

|VG,i|

|Aut(G)|
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=
ϕ(m)

∏w

i=1
pi−2
pi−1ϕ(pki

i )
∏l

i=w+1 ϕ(phi

i ) − ϕ(m)τ1(m, n)

2ϕ(m)
+

ϕ(m)τ1(m, n)

ϕ(m)

=
1

2

(

τ1(m, n) +

(

w
∏

i=1

pi − 2

pi − 1
ϕ(pki

i )

)(

l
∏

i=w+1

ϕ(phi

i )

))

.

�

We again use an example to show the usefulness of our result.

Example 3.5. Consider the cyclic group G of order 120 with signature (12, 120, 120)
acting on a surface of genus 55. There are ϕ(120) choices for a generator x of G. If
we have a quasiplatonic vector (xa, x−(a+1), x), then there are ϕ(12) = 4 choices for
a. These choices are 10, 50, 70 and 110. But, if a = 50 or 100, then −(a + 1) = 69
or 9, respectively, which would contradict |x−(a+1)| = 120. So, the only possible
values of a are 10 or 70 which gives vector of (x10, x109, x) and (x70, x49, x). i2
extends to an automorphism for both of these vectors, so Thereom 2.14 tells us
that

T =
|VG|

2|Aut(G)|
+

|VG,i|

|Aut(G)|

= 0 +
2ϕ(120)

ϕ(120)
= 2.

The only solutions to x2 + 2x ≡ 0 mod 15 where gcd(x, 120) = 120
12 = 10 are 10

and 70. So, τ1(120, 12) = 2. By Theorem 3.4, we see that

T =
1

2

(

τ1(m, n) +

(

w
∏

i=1

pi − 2

pi − 1
ϕ(pki

i )

)(

l
∏

i=w+1

ϕ(phi

i )

))

=
1

2

(

2 +

(

3 − 2

3 − 1
ϕ(3)

)

ϕ(22)ϕ(50)

)

= 2.

The following corollary is a special case of Theorem 3.4 where our counting tool
can be simplified by removing the τ1 function. We need only make an observation
about the prime factorization of n.

Corollary 3.6. Consider a cyclic group G of order m, and fix a signature (n, m, m)
where n 6= m. Let p1, p2, ..., pl be the distinct primes that divide m. Write m and
n in in terms of these primes:

m =

l
∏

i=1

pki

i , n =

l
∏

i=1

phi

i .

We can reorder the pi’s and find an integer w 6 l so that if 1 6 i 6 w, then ki = hi,
and if w < i 6 l, then hi < ki. If there is a prime pi 6= 2 such that pi divides n
but pki

i does not divide n, then τ1(m, n) = 0. Further, the number of inequivalent
Quasiplatonic generating vectors T with signature (n, m, m) is

T =
1

2

(

w
∏

i=1

pi − 2

pi − 1
ϕ(pki

i )

)(

l
∏

i=w+1

ϕ(phi

i )

)

.
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Proof. Suppose we have a generating vector (x, y, z) of G with signature (n, m, m).
Observe that x is a generator of G. So, there exists an integer a such that z = xa

and y = x−(a+1). Suppose there is a prime pi 6= 2 such that pi divides n but pki

i

does not divide n. It follows that pi divides a but pki

i does not divide a. Recall from
the proof of Theorem 3.4 that if i2 extends to an automorphism that a2 + 2a ≡ 0
mod m, which means a2 + 2a ≡ 0 mod pki

i . Since pi divides a and pi 6= 2, pi

cannot divide a + 2. So, since pki

i divides a2 + 2a = a(a + 2), then it follows that

pki

i divides a, which is a contradiction. Thus, τ1(m, n) = 0. �

Example 3.7. Consider the cyclic group G of order pk for some prime p 6= 2 with
signature (ph, pk, pk) where 1 6 h < k, acting on a surface of genus 1

2 (pk − pk−h).

There are ϕ(pk) choices for a generator x of G. If we have a quasiplatonic vector
(xa, x−(a+1), x), then are ϕ(ph) choices for a. So, the total number of quasiplatonic
generating vectors of G is |VG| + |VG,i| = ϕ(pk)ϕ(ph). But for any choice of a,
a2 + 2a is not equivalent to 0 mod pk, so |VG,i| = 0. Thereom 2.14 tells us that

T =
|VG|

2|Aut(G)|
+

|VG,i|

Aut(G)|

=
ϕ(pk)ϕ(ph)

2ϕ(pk)
+ 0 =

1

2
ϕ(pk).

Likewise, Corollary 3.6 tells us that

T =
1

2

(

w
∏

i=1

pi − 2

pi − 1
ϕ(pki

i )

)(

l
∏

i=w+1

ϕ(phi

i )

)

=
1

2
ϕ(pk).

The last case to consider is the case where all of the periods are equal. It follows
from Harvey’s Theorem that the periods must all be the order of the group.

Theorem 3.8. Consider a cyclic group G of order m, and fix a signature (m, m, m).
Write m in its prime factorization:

m =
l
∏

i=1

pki

i .

The number of inequivalent Quasiplatonic generating vectors T with signature (m, m, m)
is

T =
3 + 2τ2(m) + ϕ(m)

∏l

i=1
pi−2
pi−1

6
where ϕ represents Euler’s phi-function.

Proof. By Theorem 2.14, we know that T = |VG|
6|Aut(G)| +

|VG,i|
3 Aut(G)| +

|VG,j |
2|Aut(G)| +

|VG,i,j |
|Aut(G)| . Since G is a cyclic group, we know that |Aut(G)| = ϕ(m). We only need

to find |VG|, |VG,i|, |VG,j| and |VG,i,j | to find T . We begin by finding when i1, i2, or
i3 is an automorphism. Since a vector where i2 or i3 extends to an automorphism is
equivalent to a vector where i1 extends to an automorphism, we will only concern
ourselves with i1. Choose a generator x ∈ G and suppose we choose a such that
we have a quasiplatonic generating vector (x, x−(a+1), xa). Further, let us suppose
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that i1 does extend to an automorphism. That is, the map that sends x → x−(a+1),
x−(a+1) → x, and xa → xa extends to an automorphism. Observe that

xa = i1(x
a) = (i1(x))a = (x−(a+1))a = x−a2−a

which tells us that

a2 + 2a ≡ 0 mod m,

and further that for all pi,

a2 + 2a ≡ 0 mod pki

i .

We know that gcd(a, m) = 1 since |xa| = m. So, m cannot divide a, which means
that m must divide a+2 since m divides a2 +2a. Thus, a ≡ −2 mod m. Thus, the
vector in question is (x, x, x−2). Note that j cannot extend to an automorphism.
So, |VG,i| = 3ϕ(m) and |VG,i,j | = 0.

We now ask ourselves when j can extend to an automorphism. Choose a gener-
ator x ∈ G and suppose we choose a such that we have a quasiplatonic generating
vector (x, x−(a+1), xa). Further, let us suppose that j does extend to an automor-
phism. That is, the map that sends x → xa, xa → x−(a+1), and x−(a+1) → x
extends to an automorphism. Observe that

x−(a+1) = j(xa) = (j(x))a = (xa)a = xa2

,

which tells us that

a2 + a + 1 ≡ 0 mod m.

Note that any solution to this congruence will be a value that is coprime to m, that
is any such a will satisfy |xa| = m. Recall that the number of solutions for a is
τ2(m). So, |VG,j | = ϕ(m)τ2(m).

By an argument similar to Theorem 3.1, we know that |VG| + |VG,i| + |VG,j | +

|VG,i,j | = ϕ(m)
∏l

i=1
pi−2
pi−1ϕ(pki

i ) = ϕ(m)2
∏l

i=1
pi−2
pi−1 . Solving for |VG|, we get that

|VG| = −3ϕ(m) − ϕ(m)τ2(m) + ϕ(m)2
l
∏

i=1

pi − 2

pi − 1
.

We now put all of the pieces together to see

T =
|VG|

6|Aut(G)|
+

|VG,i|

3 Aut(G)|
+

|VG,j |

2|Aut(G)|
+

|VG,i,j |

|Aut(G)|

=
−3ϕ(m) − ϕ(m)τ2(m) + ϕ(m)2

∏l

i=1
pi−2
pi−1

6ϕ(m)
+

3ϕ(m)

3ϕ(m)
+

ϕ(m)τ2(m)

2ϕ(m)
+

0

ϕ(m)

=
−3 − τ2(m) + ϕ(m)

∏l

i=1
pi−2
pi−1

6
+

6

6
+

3τ2(m)

6

=
3 + 2τ2(m) + ϕ(m)

∏l

i=1
pi−2
pi−1

6
.

�

We now look at a couple of examples to illustrate the usefulness of our results.
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Example 3.9. Consider the cyclic group G of order 21 with signature (21, 21, 21)
acting on a surface of genus 10. There are ϕ(21) choices for a generator x of G. If
we have a quasiplatonic vector (x, xa, x−(a+1)), then our choices for a are 1, 4, 10,
16, and 19. If we choose 1, 10 or 19, then i1 or i2 extends to an automorphism. If
we choose 4 or 16, then j extends to an automorphism. Then, Thereom 2.14 tells
us that

T =
|VG|

6|Aut(G)|
+

|VG,i|

3 Aut(G)|
+

|VG,j |

2|Aut(G)|
+

|VG,i,j |

|Aut(G)|

= 0 +
3ϕ(21)

3ϕ(21)
+

2ϕ(21)

2ϕ(21)
+ 0 = 2.

Likewise, Theorem 3.8 tells us that

T =
3 + 2τ2(m) + ϕ(m)

∏l

i=1
pi−2
pi−1

6

=
3 + 4 + 12 × 5

12

6
= 2.

This was a somewhat simplistic example where in each generating vector, either
i1, i2 or j extended to an automorphism. This need not be the case. In fact, it is
possible that neither i1, i2 nor j will extend to automorphisms for the vast majority
of generating vectors. The following examples illustrates this.

Example 3.10. Consider the cyclic group G of order 91 with signature (91, 91, 91)
acting on a surface of genus 45. There are ϕ(91) choices for a generator x of G. If
we have a quasiplatonic vector (x, xa, x−(a+1)), then there are a total of 55 choices
for a. If we choose 1, 45 or 89, then i1 or i2 extends to an automorphism. If we
choose 9, 16, 74 or 81, then j extends to an automorphism. For the other possible
values of a, neither j, i1, i2 nor i3 extends to an automorphism of G. So, Thereom
2.14 tells us that

T =
|VG|

6|Aut(G)|
+

|VG,i|

3 Aut(G)|
+

|VG,j |

2|Aut(G)|
+

|VG,i,j |

|Aut(G)|

=
48ϕ(91)

6ϕ(91)
+

3ϕ(91)

3ϕ(91)
+

4ϕ(91)

2ϕ(91)
+ 0 = 8 + 1 + 2 = 11.

Likewise, Theorem 3.8 tells us that

T =
3 + 2τ2(m) + ϕ(m)

∏l

i=1
pi−2
pi−1

6

=
3 + 8 + 72 × 55

72

6
= 11.

4. In-depth Examples

Lastly, we will illustrate the full usefulness of our results by looking at two
groups, and enumerating all the ways in which they can act quasiplatonically for
each valid signature. The first example makes use of all four of the formulas that
have been developed, while the second only uses the first three. This is because
when the group has order m and m is even, the signature (m, m, m) is not possible.
While the calculations are omitted, the author would like to assure the reader that
using these formulas was far simpler than making use of Theorem 2.14.
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Example 4.1. In the table below, we completely list the ways in which the cyclic
group of order 315 can act quasiplatonically. That is, we list each valid signature,
along with the appropriate genus and value of T .

Signature Genus T Signature Genus T
(315, 315, 315) 157 8 (45, 105, 315) 153 6
(105, 315, 315) 156 15 (9, 105, 315) 139 2
(63, 315, 315) 155 8 (45, 63, 315) 152 1
(45, 315, 315) 154 5 (15, 63, 315) 145 2
(35, 315, 315) 153 8 (5, 63, 315) 124 1
(21, 315, 315) 150 5 (35, 45, 315) 150 3
(15, 315, 315) 147 3 (21, 45, 315) 147 2
(9, 315, 315) 140 2 (7, 45, 315) 132 1
(7, 315, 315) 135 3 (9, 35, 315) 136 1
(5, 315, 315) 126 2 (15, 21, 315) 140 2
(3, 315, 315) 105 1 (45, 63, 105) 151 2
(63, 105, 315) 154 10 (35, 45, 63) 148 1

Example 4.2. We now do the same for the cyclic group of order 360.
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Signature Genus T Signature Genus T
(180, 360, 360) 179 10 (18, 120, 360) 169 2
(90, 360, 360) 178 5 (9, 120, 360) 159 2
(60, 360, 360) 177 6 (72, 90, 360) 176 1
(45, 360, 360) 176 5 (40, 90, 360) 174 3
(36, 360, 360) 175 4 (24, 90, 360) 171 2
(30, 360, 360) 174 6 (8, 90, 360) 156 1
(20, 360, 360) 171 4 (60, 72, 360) 175 2
(18, 360, 360) 170 2 (45, 72, 360) 174 3
(15, 360, 360) 168 3 (30, 72, 360) 172 2
(12, 360, 360) 165 2 (20, 72, 360) 169 2
(10, 360, 360) 162 2 (15, 72, 360) 166 2
(9, 360, 360) 160 2 (10, 72, 360) 160 1
(6, 360, 360) 150 1 (5, 72, 360) 142 1
(5, 360, 360) 144 2 (40, 45, 360) 172 3
(4, 360, 360) 135 2 (24, 45, 360) 169 2
(3, 360, 360) 120 1 (8, 45, 360) 154 1
(2, 360, 360) 90 1 (36, 40, 360) 171 2

(120, 180, 360) 178 12 (18, 40, 360) 166 1
(72, 180, 360) 177 6 (9, 40, 360) 156 1
(40, 180, 360) 175 6 (72, 120, 180) 176 12
(24, 180, 360) 172 4 (40, 72, 180) 173 2
(8, 180, 360) 157 2 (45, 72, 120) 173 1
(90, 120, 360) 177 6 (40, 72, 90) 172 1
(45, 120, 360) 175 6 (40, 45, 72) 170 1
(36, 120, 360) 174 4

The one glaring inefficiency to the formulas we have developed is the τ1 and
τ2 functions. Ideally, we would like to have these functions written in terms of m
or m’s prime factorization, where m is the order of the group in question. This
would be a potential area for further research. Another unanswered question is
the number of ways in which a group (particularly a cyclic group) can act upon a
surface of a particular genus, regardless of the signature. This is a natural extension
of the work provided in this paper.

References

[1] Benim, R. W. Classification of Quasplatonic Abelian Groups and Signatures. The Rose-
Hulman Undergraduate Mathematics Journal (2008) Vol. 9, Issue 1.

[2] Breuer, T. Characters and Automorphism Groups of Compact Riemann Surfaces. Cambridge
University Press (2001).

[3] Dummit, D. S., Foote, R. M. Abstract Algebra. John Wiley and Sons, Inc. (2004).
[4] Harvey, W. J. Cyclic groups of automorphisms of a compact Riemann surface. Quarterly

Journal of Mathematics, Oxford Press (1966).
[5] Miranda, R. Algebraic Curves and Riemann Surfaces. American Mathematical Society

(1995).
[6] Wootton, A. Extending Topological Group Actions To Conformal Group Actions. Albanian

Journal of Mathematics (2007) Vol. 1, Number 3, 133-143.


