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Abstract

Let v > k > i be non-negative integers. The generalized Johnson graph, J(v, k, i), is the
graph whose vertices are the k-subsets of a v-set, where vertices A and B are adjacent whenever
|A ∩ B| = i. In this project, we present the results of the paper “On the girth and diameter
of generalized Johnson graphs,” by Agong, Amarra, Caughman, Herman, and Terada [1], along
with a number of related additional results. In particular, we derive general formulas for the
girth, diameter, and odd girth of J(v, k, i). Furthermore, we provide a formula for the distance
between any two vertices A and B in terms of the cardinality of their intersection. We close
with a number of possible future directions.
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1. Introduction

In this project, we present the results of the paper “On the girth and diameter of generalized
Johnson graphs,” by Agong, Amarra, Caughman, Herman, and Terada [1], along with a number of
related additional results.

Let v > k > i be non-negative integers. The generalized Johnson graph, X = J(v, k, i), is the
graph whose vertices are the k-subsets of a v-set, with adjacency defined by

A ∼ B ⇔ |A ∩B| = i. (1)

Generalized Johnson graphs were introduced by Chen and Lih in [4]. Special cases include the
Kneser graphs J(v, k, 0), the odd graphs J(2k+ 1, k, 0), and the Johnson graphs J(v, k, k− 1). The
Johnson graph J(v, k, k − 1) is well known to have diameter min{k, v − k}, and formulas for the
distance and diameter of Kneser graphs were proved by Valencia-Pabon and Vera in [8].

Generalized Johnson graphs have also been studied under the name uniform subset graphs, and
a result in [5] offers a general formula for the diameter of J(v, k, i). However, that formula gives
incorrect values when i > 2

3k, an important case that includes the Johnson graphs. In [1], we
corrected and extended these expressions for the diameter of generalized Johnson graphs, and we
present those results below.

In addition, we provide a formulas for the girth and odd girth of J(v, k, i). The general formula
for odd girth was proved by Denley in [6] for generalized Kneser graphs, which are defined similarly
to generalized Johnson graphs; with adjacency condition (1) replaced by A ∼ B ⇔ |A ∩ B| ≤ i.
However, the proofs in [6] imply that the same expression for odd girth also holds for generalized
Johnson graphs (although this is not stated explicitly). We give here a new proof of this result
aimed specifically at generalized Johnson graphs.

There are still a large number of open questions regarding generalized Johnson graphs. These
include general expressions for independence number and chromatic number. While both of these are
known for the special case of Kneser graphs, they are both unknown in the special (and well-studied)
case of Johnson graphs.

It is possible to extend the definition of X = J(v, k, i) to include v ≥ k ≥ i. However, X is an
empty graph when k = i or v = k. If v = 2k and i = 0, then X is isomorphic to the disjoint union of
copies of K2. Furthermore, by taking complements, the graphs J(v, k, i) and J(v, v − k, v − 2k + i)
are easily seen to be isomorphic (see [7, p.11]). For the remainder of this article, we will be concerned
with generalized Johnson graphs that are connected, so we make the following global definition.

Definition 1.1. Assume v > k > i are nonnegative integers, and let X = J(v, k, i) denote the
corresponding generalized Johnson graph. To avoid trivialities, further assume that v ≥ 2k, and
that (v, k, i) 6= (2k, k, 0).

2. Girth

In this section we derive an expression for the girth g(X) of a generalized Johnson graph, X. We
begin with a lemma that characterizes when two vertices have a common neighbor.
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Figure 1: Vertices with a common neighbor

Definition 2.1. The girth of a graph, G, is the length of the shortest cycle that is a (not necessarily
induced) subgraph of G.

Lemma 2.2. With reference to Definition 1.1, let A and B be vertices and let x = |A ∩ B|. Then
A and B have a common neighbor if and only if x ≥ max{−v + 3k − 2i, 2i− k}.

Proof. Vertices A and B have a common neighbor C if and only if there exists a nonnegative
integer s, such that every region in the above diagram (Figure. 1) has nonnegative size.

By simplifying the resulting inequalities, we find that A and B have a common neighbor if and only
if there exists s ∈ Z, such that

max{0, i+ x− k, 2i− k} ≤ s ≤ min{x, i, v − 3k + 2i+ x}.

Such an integer s exists if and only if the expression on the left-hand side above does not exceed
the expression on the right-hand side. Under our global assumptions, this is equivalent to x ≥
max{−v + 3k − 2i, 2i− k}. �

Lemma 2.3. With reference to Definition 1.1, the girth g(X) = 3 if and only if v ≥ 3(k − i).

Proof. The graph X contains a 3-cycle if and only if there exist adjacent vertices A and B that
have a common neighbor. By Lemma 2.2, this occurs if and only if i ≥ max{−v + 3k − 2i, 2i− k}.
Since i ≥ 2i− k holds in all J(v, k, i) graphs, this condition is equivalent to v ≥ 3(k − i). �

A sufficient condition for the girth to be at most 4 is the existence of a 4-cycle.

Lemma 2.4. With reference to Definition 1.1, if (v, k, i) 6= (2k + 1, k, 0) then g(X) ≤ 4.

Proof. We proceed in two cases.
Case 1: i ≥ 2 or v > 2k + 1. In this case we get that v ≥ 2k − i + 2. So we can find

disjoint sets, A1, A2, A3, A4, and B1, B2, and C such that |A1| = |A2| = |A3| = |A4| = 1, and
|B1| = |B2| = k − i− 1, and |C| = i. Then

A1 ∪B1 ∪ C, A2 ∪B2 ∪ C, A3 ∪B1 ∪ C, A4 ∪B2 ∪ C

is a 4-cycle in X.
Case 2: i = 1. In this case, since v ≥ 2k, we can find disjoint sets A1, A2, A3, A4 and B1, B2

such that |A1| = |A2| = |A3| = |A4| = 1 and |B1| = |B2| = k − 2. Then

A1 ∪A2 ∪B1, A2 ∪A3 ∪B2, A3 ∪A4 ∪B1, A4 ∪A1 ∪B2
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is a 4-cycle in X. �

Combining the above lemmas, we obtain a general expression for the girth.

Theorem 2.5. With reference to Definition 1.1, the girth of X is given by

g(X) =


3 if v ≥ 3(k − i);
4 if v < 3(k − i) and (v, k, i) 6= (2k + 1, k, 0);
5 if (v, k, i) = (5, 2, 0);
6 if (v, k, i) = (2k + 1, k, 0) and k > 2.

Proof. The first two cases follow from Lemmas 2.3 and 2.4. The remaining cases are odd graphs,
for which the girth is well-known. (See, for example, [2, p.58].) �

3. Distance

In this section we derive a general expression for the distance between two vertices in terms of
the size their intersection, Theorem 3.5.

Lemma 3.1. With reference to Definition 1.1, let A and B be vertices and let x = |A∩B|. Suppose
x < i. If x < −v + 3k − 2i, then

dist(A,B) = 3.

Proof. Since x < i, dist(A,B) ≥ 2. By Lemma 2.2, dist(A,B) > 2. Let A′ ⊆ A \ B, such that
|A′| = i−x. Let B′ ⊆ B \A, such that |B′| = k− i. Let C = A∩B, and let D = C ∪A′ ∪B′. Then
|D| = x+(i−x)+(k−i) = k, and |A∩D| = x+(i−x) = i, so D is a vertex adjacent to A. Note that
|D∩B| = k− i+x ≥ −v+3k−2i. Also, since x < −v+3k−2i, we have 2i−k < −(v−2k)−x ≤ 0,
so |D ∩B| ≥ 2i− k. Hence by Lemma 2.2, dist(D,B) ≤ 2. Hence dist(A,B) = 3. �

Together with the previous lemma, the next result characterizes the distance between vertices
whose intersection is less than i.

Lemma 3.2. With reference to Definition 1.1, let A and B be vertices and let x = |A∩B|. Suppose
x < i. If x ≥ −v + 3k − 2i, then

dist(A,B) =

⌈
k − x
k − i

⌉
.

Proof. We proceed in two cases.
Case 1: x ≥ 2i− k. Since x < i, we know dist(A,B) ≥ 2. Since x ≥ 2i− k, Lemma 2.2 implies

that dist(A,B) = 2. Note that the above inequalities imply k − i < k − x ≤ 2(k − i). Hence
dk−xk−i e = 2.

Case 2: x < 2i − k. In this case, k − x > 2(k − i). Therefore, there exist positive integers q,m
such that k− x = (q+ 1)(k− i) +m with 0 < m ≤ k− i. Let C = A∩B. Then we can write A and
B as disjoint unions

A = A1 ∪ · · · ∪Aq+2 ∪ C and B = B1 ∪ · · · ∪Bq+2 ∪ C,

where |Aj | = |Bj | = k − i for j ∈ {1, . . . , q + 1} and |Aq+2| = |Bq+2| = m. Define

Xj = (B1 ∪ · · · ∪Bj) ∪ (Aj+1 ∪ · · · ∪Aq+2) ∪ C

for each j ∈ {1, . . . , q}. Then A,X1, . . . , Xq is a path of length q. Note that |Xq∩B| = x+q(k− i) =
i − m, so 2i − k ≤ |Xq ∩ B| < i and therefore Case 1 applies. Thus, dist(Xq, B) = 2 and so
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dist(A,B) ≤ q + 2 = dk−xk−i e. On the other hand, since adjacent vertices differ by k − i elements,

dist(A,B) ≥ dk−xk−i e. �

We now address the case where the intersection between A and B is greater than i. The following
lemma adapts Lemmas 1 and 2 in [9] to generalized Johnson graphs.

Lemma 3.3. With reference to Definition 1.1, let A and B be vertices and let x = |A∩B|. Suppose
x > i and assume there is an AB-path of length d.

(i) If d = 2p, then

p ≥
⌈

k − x
v − 2k + 2i

⌉
.

(ii) If d = 2p+ 1, then

p ≥
⌈

x− i
v − 2k + 2i

⌉
.

Proof. For brevity, let ∆ = v − 2k + 2i. If d = 0, then A = B so, x = k and p = 0 ≥ dk−x∆ e. If

d = 1, then x = i, so p = 0 ≥ dx−i∆ e. If d = 2, then by Lemma 2.2, x ≥ −v + 3k − 2i, which implies

k − x ≤ ∆. Hence, p = 1 ≥ dk−x∆ e. Assume d ≥ 3 and that the claim holds for all paths of length
less than d. We proceed in two cases.

Case 1: d = 2p. We can find a vertex C such that dist(A,C) = 2(p− 1) and dist(C,B) = 2. By
the inductive hypothesis, k− |A∩C| ≤ (p− 1)∆ and k− |C ∩B| ≤ ∆. Therefore, k− x = |A \B| ≤
|A \ C|+ |C \B| = (k − |A ∩ C|) + (k − |C ∩B|) ≤ p∆. Hence p ≥ dk−x∆ e.

Case 2: d = 2p + 1. We can find a vertex C adjacent to B and such that dist(A,C) = 2p. By
the inductive hypothesis, |A \C| ≤ p∆. Therefore, x− i = |A∩B| − i ≤ |A \C|+ |B ∩C| − i ≤ p∆.
Hence p ≥ dx−i∆ e. �

The previous lemma implies a lower bound on the distance. The next result will show that this
bound is sharp.

Lemma 3.4. With reference to Definition 1.1, let A and B be vertices and let x = |A∩B|. Suppose
x > i. Then

dist(A,B) = min

{
2

⌈
k − x

v − 2k + 2i

⌉
, 2

⌈
x− i

v − 2k + 2i

⌉
+ 1

}
.

Proof. For brevity, let ∆ = v − 2k + 2i. When x = k the result is trivial, so assume x < k. Let
C = A ∩B and D = A ∪B; it follows that |C| = x and |D| = v − 2k + x. There exist non-negative
integers q,m such that k− x = q∆ +m, with 0 < m ≤ ∆. We can write A and B as disjoint unions
A = C ∪ {a1, . . . , ak−x} and B = C ∪ {b1, . . . , bk−x}. If q = 0, then k − x = m ≤ ∆, which implies
x ≥ −v + 3k − 2i. Since x > i, we also have x > 2i − k. Hence, by Lemma 2.2, dist(A,B) = 2 as
needed. Now, assume q ≥ 1. For j ∈ {1, . . . , q}, let

Aj = {a1, . . . , a(j−1)∆+i} and A′j = {aj∆+1, . . . , ak−x},

Bj = {b1, . . . , bj∆} and B′j = {bj∆−i+1, . . . , bk−x},

and define
X2j−1 = D ∪Aj ∪B′j and X2j = C ∪Bj ∪A′j .

Then A,X1, . . . , X2q is a path of length 2q (see Figure. 2). Note that |X2q ∩B| = k−m ≥ k−∆ =
−v + 3k − 2i. Also, since m ≤ k − x, we have |X2q ∩ B| = k − m ≥ x > i ≥ 2i − k. Hence
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Figure 2: Start of path from A

dist(X2q, B) = 2, by Lemma 2.2. Thus, there is an AB-path of length 2(q+ 1) = 2d(k− x)/∆e from
A to B.

Now, let D′ ⊆ D, C ′ ⊆ C be such that |D′| = |C ′| = x − i. Let A′ = (B \ C ′) ∪ D′. Then
A′ is a vertex adjacent to A. Further, |A′ ∩ B| = k − x + i > i. By applying the previous

argument to A′ and B, there is an A′B-path of length 2dk−(k−x+i)
∆ e = 2dx−i∆ e. By Lemma 3.3,

dist(A,B) = min{2d k−x
v−2k+2ie, 2d

x−i
v−2k+2ie+ 1}. �

From the above results, we obtain a general formula for the distance between two vertices.

Theorem 3.5. With reference to Definition 1.1, let A and B be vertices and let x = |A∩B|. Then

dist(A,B) =


3 if x < min{i,−v + 3k − 2i};
dk−xk−i e if − v + 3k − 2i ≤ x < i;

min{2d k−x
v−2k+2ie, 2d

x−i
v−2k+2ie+ 1} if x ≥ i.

Proof. Apply Lemmas 3.1, 3.2, and 3.4. Note that when x = i, we have dist(A,B) = 1 =
min{2d k−x

v−2k+2ie, 2d
x−i

v−2k+2ie+ 1}. �

4. Diameter

In this section, we will use Theorem 3.5 to derive a general expression for the diameter of
generalized Johnson graphs. The following lemma determines the maximum value of the expression
in Lemma 3.4.

Definition 4.1. The diameter of a graph is the maximum distance between any pair of vertices.

7



Lemma 4.2. Assume k > i+ 1 and let f(x) = min
{

2
⌈

k−x
v−2k+2i

⌉
, 2
⌈

x−i
v−2k+2i

⌉
+ 1
}

. Then

max
x∈I

f(x) =

⌈
k − i− 1

v − 2k + 2i

⌉
+ 1,

where I = {i+ 1, . . . , k}.

Proof. For brevity, let ∆ = v − 2k + 2i and let x ∈ I. There exist ε ∈ {0, 1} and non-negative
integers q,m such that k−i−1 = (2q+ε)∆+m and 0 < m ≤ ∆. We prove maxx∈I f(x) = 2q+ε+2.

Let x0 = (q + ε)∆ + i. If x > x0, then 2dk−x∆ e ≤ 2dk−(x0+1)
∆ e = 2(q + 1) ≤ 2q + ε+ 2. If x ≤ x0,

then 2dx−i∆ e+ 1 ≤ 2dx0−i
∆ e+ 1 = 2(q + ε) + 1 ≤ 2q + ε+ 2. Hence, f(x) ≤ 2q + ε+ 2.

Let x1 = q∆ + i + 1 + ε(m − 1) ∈ I. It follows that dk−x1

∆ e = q + ε + 1 and dx1−i
∆ e = q + 1.

Therefore, f(x1) = min{2(q+ ε+ 1), 2q+ 3} = 2q+ ε+ 2. It follows that maxx∈I f(x) = 2q+ ε+ 2.
�

We now present our main result, which extends and corrects the diameter expression in [5].

Theorem 4.3. With reference to Definition 1.1, we have

diam(X) =


d k−i−1
v−2k+2ie+ 1 if v < 3(k − i)− 1 or i = 0;

3 if 3(k − i)− 1 ≤ v < 3k − 2i and i 6= 0;
d k
k−ie if v ≥ 3k − 2i and i 6= 0.

Proof. We will use the distance expression from Theorem 3.5. We proceed in three cases.
Case 1 : v < 3(k − i)− 1 or i = 0. If i = 0, the result is proved in [8]. Assume v < 3(k − i)− 1.

In this case d k−i−1
v−2k+2ie + 1 ≥ 3. Also, 2k ≤ v < 3(k − i), so d k

k−ie ≤ d
3
2e = 2. Hence, d k

k−ie ≤ 3 ≤
d k−i−1
v−2k+2ie + 1. Since 0 ≤ i < k < v < 3(k − i) − 1 by Definition 1.1, it follows that k > i + 1. By

Lemma 4.2, there exist vertices A and B such that dist(A,B) = d k−i−1
v−2k+2ie+ 1. From Theorem 3.5,

it follows that diam(X) = d k−i−1
v−2k+2ie+ 1

Case 2 : 3(k − i) − 1 ≤ v < 3k − 2i and i 6= 0. Since v ≥ 3(k − i), we have d k−i−1
v−2k+2ie + 1 ≤ 2.

Since 2k ≤ v < 3k − 2i, we have d k
k−ie ≤ 2. By Theorem 3.5, if A and B are disjoint vertices,

dist(A,B) = 3; hence diam(X) = 3.
Case 3 : v ≥ 3k − 2i and i 6= 0. In this case d k−i−1

v−2k+2ie + 1 ≤ 2. Since v ≥ 3k − 2i, we have

−v + 3k − 2i ≤ 0, so the first case in Theorem 3.5 does not occur. Since i 6= 0, we have d k
k−ie ≥ 2.

If A and B are disjoint vertices, dist(A,B) = d k
k−ie, by Theorem 3.5. Hence diam(X) = d k

k−ie. �

5 Odd Girth

Definition 5.1. The odd girth of a graph is the length of its shortest odd cycle.

We now derive an expression for the odd girth of X = J(v, k, i), denoted og(X). In the case
that g(X) is odd, it is immediate that g(X) = og(X). Therefore, the girth formula for generalized
Johnson graphs, given above, also gives the odd girth for the cases g(X) = 3 and g(X) = 5. Below,
we will work out the remaining cases g(X) = 4 and g(X) = 6. It is quite surprising that, while the
girth formula (and distance and diameter formulas) given above all require at least 3 cases, a single
formula is sufficient to give the odd girth for all generalized Johnson graphs!

The odd girth is of particular interest when studying graph homomorphisms, since G → H
implies that og(H) ≤ og(G). This is because the homomorphic image of an odd cycle must contain
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an odd cycle of no greater length. There are several well known results regarding the homomorphism
structure of Kneser graphs (e.g. [7]), but less is known about the homomorphism structure of
generalized Johnson graphs. The results below contribute to the understanding of this structure by
precluding the existence of homomorphisms between certain pairs of generalized Johnson graphs.

Theorem 5.2. With reference to Definition 1.1, the odd girth of X is given by

og(X) = 2

⌈
k − i

∆

⌉
+ 1. (2)

Theorem 2.5 tells us that the girth of X satisfies 3 ≤ g(X) ≤ 6.

5.3 Girth 3 or 5

When g(X) = 3 or 5, the odd girth equals the girth, so og(X) = 3 or 5, respectively.

5.4 Girth 6

When g(X) = 6, Theorem 2.5 tells us that X is an odd graph, with (v, k, i) = (2k + 1, k, 0). In this
case, the odd girth is given by the following well-known result.

Lemma 5.5. Let X = J(2k + 1, k, 0) where k > 2. Then og(X) = 2k + 1.

Proof. Suppose O is any odd cycle in X with length 2t + 1. We aim to show that t ≥ k. Fix
any three consecutive vertices A,B,C along O. By Theorem 2.5, the girth of X is 6, so A 6∼ C.
Therefore, dist(A,C) = 2 and, by Theorem 3.5, we know |A ∩C| = k − 1. Along O, there exists an
AC-path of length 2t− 1. By Lemma 3.3, we have t ≥ k as desired.

Next we show that a closed walk of length 2k+ 1 exists. If k is even, let k = 2d and consider the
vertices A = [2d], B = [3d]\[d], and C = [4d]\B. If k is odd, let k = 2d+1 and consider A = [2d+1],
B = [3d+ 2] \ [d+ 1], and C = [4d+ 3] \ (B ∪ {1}). In either case, dist(A,B) = dist(A,C) = k, and
B ∼ C by Theorem 3.5, as desired. �

5.6 Girth 4

It remains to consider the case when g(X) = 4. For brevity, we will again abbreviate ∆ = v−2k+2i.

Lemma 5.7. With reference to Definition 1.1, assume g(X) = 4. Fix any vertices A,B and let
r = dk−i∆ e. Then the following hold.

(i) 1 < ∆ < k − i.

(ii) If r is odd and |A ∩B| = bk+i−∆
2 c or dk+i−∆

2 e, then dist(A,B) = r.

(iii) If r is even and |A ∩B| = bk+i
2 c or dk+i

2 e, then dist(A,B) = r.

Proof. (i). Note that ∆ = 0 iff (v, k, i) = (2k, k, 0) which is excluded by our hypotheses. Also,
∆ = 1 iff (v, k, i) = (2k+ 1, k, 0). Therefore, by Theorem 2.5, and since g(X) = 4, we have ∆ < k− i
and ∆ 6= 1, as desired.

(ii). Let x = |A ∩ B| and dk−i∆ e = 2d+ 1. Then ∆ ≥ 2 implies that 2d− 1 + 2
∆ < k−i

∆ ≤ 2d+ 1. It

follows, by our assumptions, that ∆(d− 1) + 1 + i ≤ x ≤ ∆d+ i. This implies both dk−i∆ e = d and
x > i. Note that ⌈

k − x
∆

⌉
+

⌈
x− i

∆

⌉
≥ (k − x) + (x− i)

∆
=
k − i

∆
> 2d,

so dk−x∆ e ≥ d+ 1. Now, by Theorem 3.5, we have dist(A,B) = 2d+ 1 as desired.
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(iii). Similar to (ii). �

Lemma 5.8. With reference to Definition 1.1, assume g(X) = 4. Fix any r ≥ 1 and suppose that
og(X) ≥ 2r + 1 and k−i

∆ > r − 1. Then

og(X) = 2r + 1 if and only if
k − i

∆
≤ r.

Proof. Case r = 2d+1: (⇐) Assume k−i
∆ ≤ r, so that dk−i∆ e = r. Let x = bk+i−∆

2 c, y = dk+i−∆
2 e.

It follows from 2k ≤ v < 3(k − i) that 0 ≤ x, y ≤ k − i. Fix any adjacent vertices A ∼ B. Choose
A0 ⊆ A\B and B0 ⊆ B\A with |A0| = x and |B0| = y. Let C0 = [v]\(A∪B), and C = A0∪B0∪C0.
Then |C| = x+y+(v−2k+i) = k, so C ∈ V (X). Also, |A∩C| = x and |B∩C| = y. By Lemma 5.7(ii),
dist(A,C) = dist(B,C) = r and X has a closed walk of length 2r + 1.

(⇒) Assume og(X) = 2r + 1 and fix adjacent vertices A,B on a (2r + 1)-cycle. Let C be the
opposite vertex on that cycle, so that dist(A,C) = dist(B,C) = r. Now |A ∩ C|, |B ∩ C| ≤ ∆d+ i
by Theorem 3.5. Therefore, v − 2k + i ≥ |C \ (A ∪B)| ≥ k − 2(∆d+ i), which implies k−i

∆ ≤ r.

Case r = 2d: (⇐) Assume k−i
∆ ≤ r, so that dk−i∆ e = r. Let x = bk+i

2 c, y = dk+i
2 e and notice that

0 ≤ x− i, y − i ≤ k− i. Fix any adjacent vertices A ∼ B. Choose A0 ⊆ A \B and B0 ⊆ B \A with
|A0| = x− i and |B0| = y− i. Let C0 = A∩B, and C = A0 ∪B0 ∪C0. Then |C| = k, so C ∈ V (X).
Also, |A ∩ C| = x and |B ∩ C| = y. By Lemma 5.7(iii), dist(A,C) = dist(B,C) = r and X has a
closed walk of length 2r + 1.

(⇒) Assume og(X) = 2r + 1 and fix adjacent vertices A,B on a (2r + 1)-cycle. Let C be the
opposite vertex on that cycle, so that dist(A,C) = dist(B,C) = r. Now |A ∩ C|, |B ∩ C| ≥ k −∆d
by Theorem 3.5. So k = |C| ≥ |A ∩ C|+ |B ∩ C| − |A ∩B| ≥ 2(k −∆d)− i, and thus k−i

∆ ≤ r. �

Theorem 5.9. With reference to Definition 1.1, the odd girth of X is given by

og(X) = 2

⌈
k − i

∆

⌉
+ 1. (3)

With all of the possible cases for the girth of X having been considered, we are now ready to
put the pieces together.

Proof. By Theorem 2.5 and Lemma 5.5, equation (3) holds whenever g(X) 6= 4. Now assume
g(X) = 4 and let r = dk−i∆ e. We have r ≥ 1 and dk−i∆ e ≥ r − 1. By way of contradiction, suppose

og(X) < 2r+ 1. Then og(X) = 2r̂+ 1 for some 1 ≤ r̂ < r, and clearly dk−i∆ e > r̂− 1, so Lemma 5.8

applies to r̂, giving k−i
∆ ≤ r̂ ≤ r−1, which is a contradiction. Hence og(X) ≥ 2r+1. Now Lemma 5.8

applies to r, yielding og(X) = 2r + 1, as desired. �

6 Future Directions: Independence Number

Definition 6.1. The independence number, α(X ), of a graph, X, is the size of the largest set of
vertices that induces an empty graph.

As mentioned in the introduction, no general expression is known for the independence number
of the generalized Johnson graphs (or even the Johnson graphs). While the independence number for
Kneser graphs is given by the well-known Erdos-Ko-Rado theorem; even the specific case of Johnson
graphs is still not known. For specific values of v, k and i, there are interesting techniques known
for constructing large independent sets. Below we outline one such case whose method comes from
chapter 11, theorem 1 of [3].
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Lemma 6.2. Let F be the field of order q; S, T ⊂ F . Let fS(z) = Πs∈S(z − s) and define S =j T
to mean that the first j power sums of the elements of S and T are equal. Let A,B,C ⊂ F be
pairwise disjoint with |A| = |B| = k and |A \B| = |B \A| = j. The following are equivalent.

(i) fA = fB

(ii) fA\B = fB\A

(iii) A \B =j B \A

(iv) A =j B

Proof. Let C = A ∩ B. Then fA = fA\BfC and fB = fB\AfC . Therefore, (i) ⇔ (ii) follows from
the fact that F [z] is a domain. Since (iii) ⇔ (iv) is trivial, it is sufficient to show (ii) ⇔ (iii).

For S ⊂ F , let pm(S) and em(S) denote the mth power sum of S and the mth symmetric
polynomial in |S| variables evaluated at S, respectively. Then (ii) holds if and only if em(A \B) =
em(B \ A) for m = 1, . . . , j; and (iii) holds if and only if pm(A \ B) = pm(B \ A) for m = 1, . . . , j.
It follows from Newton’s identities that pm(S) is a polynomial in e1(S), . . . , em(S); and m!em(S)
is a polynomial in p1(S), . . . , pm(S). Since j < q, we get that m! 6= 0 for m = 1, . . . , j. It follows
immediately that (ii) ⇔ (iii). �

Corollary 6.3. Let F be the field of order q. Let A,B ⊂ F with A 6= B and |A| = |B| = k. If
A =k−i B then |A ∩B| < i.

Proof. Let j = |A∩B|. Using 6.2 and unique factorization, we get A 6= B ⇒ fA 6= fB ⇒ A 6=k−j B.
It follows that k − i < k − j, or equivalently j < i. �

Corollary 6.4. Let F be the field of order q. Let p : P(F )→ F k−i be defined by p(X)j = Σx∈Xx
j

for j = 1, . . . , k − i. Then, identifying F with [q], the fibres of p �
(
F
k

)
are independent sets in

J(q, k, i). Hence, by the PHP, J(q, k, i) has an independent set of size
(
q
k

)
/qk−i

Proof. Let A and B be adjacent vertices in J(q, k, i). Suppose, towards a contradiction, that A
and B are in the same fibre of p. Let C = A \ B, D = B \ A. Then C and D are disjoint sets of
cardinality k − i and p(C) = p(D). Let f(z) = Πc∈C(z − c) and g(z) = Πd∈D(z − d). Then, for
j = 0, . . . , k − i − 1, the coefficient in f (resp. g) of zj is ek−i−j(C) (resp. ek−i−j(D)). Since the
first k− i power sums of C and D are equal, Newton’s identities (over F ) imply that ej(C) = ej(D)
for j = 1, . . . , k − i. Hence f = g, so f and g must have the same roots in F ; thus C = D, a
contradiction. �

Theorem 6.5. Fix k and i, and let h(v) = α(J(v, k, i)) for all v ≥ 2k. Then h(v) ∈ Ω(vmax(k−i−1,i)).

Proof. Let A be an (i + 1)-subset of [v]. Then, the set of all k-subsets of [v] containing A is an
independent set in J(v, k, i) with size

(
v−i−1
k−i−1

)
. Hence h(v) ≥

(
v−i−1
k−i−1

)
∈ Ω(vk−i−1).

By Bertrand’s postulate, there is a prime, q, between bv/2c and v. Let F be the field with q
elements. By 6.4, J(q, k, i) has an independent set of size

(
q
k

)
/qk−i ∈ Ω(qi). Since, q ≥ bv/2c,

α(J(v, k, i)) ≥ α(J(q, k, i)) ∈ Ω(vi). �
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