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1 Overview

The Tower of Hanoi puzzle was created by French number theorist Édouard Lucas in 1883,
and consists of eight wooden discs of varying size, and three vertical pegs on a wooden base.
The legend of the origin of the puzzle may have been created by Lucas, or the legend may
have been his inspiration for creating the game.

As the legend goes, in the Kashi Vishvanath Temple in the Indian city of Varanasi,
beneath a dome that marks the center of the world, there rests a brass plate with three
diamond needles. At the beginning of the world, 64 gold discs were placed on one of the
needles, the largest resting on the brass plate and the others placed in order of decreasing
size from bottom to top. Brahmin priests have been moving the discs day and night since
the beginning of time. As the discs are fragile, the priests may not place any larger disc
atop any smaller disc. When they have moved all 64 discs to one of the other needles, the
temple will crumble to dust and the world will end in a clap of thunder. Because of this
legend, the puzzle is also known as the Tower of Brahma [3].

The optimal solution for the Tower of Hanoi puzzle with n discs on 3 pegs is known to
be 2n − 1 moves, so if the Brahmin priests moved one disc per second in the optimal way,
it would take 264 − 1 seconds, or about 585 billion years to complete their work.

As mentioned above, the optimal solution for the Tower of Hanoi puzzle with n discs
on 3 pegs is known to be 2n − 1 moves, and there is a recursive algorithm for solving the
puzzle in the minimum number of moves. Though there are many variations of the classic
Tower of Hanoi puzzle, a natural extension is to consider the Tower of Hanoi puzzle on more
than three pegs. However, increasing the number of pegs even by one drastically increases
the complexity of analyzing the optimal solutions of the puzzle. The puzzle on four discs,
known as the Reve’s puzzle, was first discussed in 1907 by H. E. Dudeney [5], and the
Frame-Stewart algorithm for solving the puzzle on four or more pegs was discovered in 1941
[3, p.46]. This is the supposed optimal solution to the puzzle, and the claim that the Frame-
Stewart algorithm gives the optimal solution is known as the Frame-Stewart Conjecture.
The optimal solution for four pegs was not proved until 2014 [1], and the conjecture for
more than four pegs is still an open problem.

A major component in the study of the Tower of Hanoi puzzle and its variations is
the study of the associated family of graphs, called Hanoi graphs. In this paper, we will
examine the results presented by Hinz and Parisse in their article “On the Planarity of
Hanoi Graphs” [2], settling the question of two basic properties of graphs with respect to
the Tower of Hanoi puzzle. In particular, we will see that these graphs are hamiltonian,
and that, with only a few exceptions, they are generally non-planar.

We begin by giving a precise mathematical description of the Tower of Hanoi puzzles.

1.1 The Tower of Hanoi Puzzles

A Tower of Hanoi puzzle consists of n discs arranged on 3 + m vertical pegs, where both
n and m are nonnegative integers. While the pegs of the puzzle are all identical, the discs
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each have a different size. A regular state of the puzzle is any state in which the discs
are distributed among the pegs such that if multiple discs are on the same peg, they are
arranged in decreasing size from bottom to top. A perfect state is a regular state in which
all of the discs are on the same peg. The object of the puzzle is to move from one perfect
state to another by moving one disc at a time from the topmost position on one peg to the
topmost position on another peg. The divine rule governing movement of the discs is that
no larger disc may be placed on top of any smaller disc. It can be shown that regular state
of the puzzle is reachable under this restriction. Indeed, we will see this as a consequence
of some of our work.

Figure 1.1: Regular and perfect states in the Tower of Hanoi puzzle with 5 discs and 3 pegs.

2 Preliminaries

In this section we present some definitions and concepts that will be used throughout the
paper. We begin with some basic definitions from graph theory, then discuss the ideas of
hamiltonicity and planarity of graphs in general, two concepts which are central to our
main results regarding Hanoi graphs. Finally, we will explain the construction of the Hanoi
graphs from the Tower of Hanoi puzzles and discuss some properties of these graphs.

2.1 Graphs

A graph G consists of a finite vertex set V (G) and an edge set E(G), consisting of unordered
pairs of elements of V (G). In particular, we will be dealing only with finite undirected graphs
with no loops or multiple edges. The elements of V (G) and E(G) are called the vertices
and edges of G, respectively. The two vertices of an edge are called endpoints. If a vertex x
is the endpoint of an edge e, we say that x and e are incident. The degree of a vertex is the
number of edges incident to it. Two vertices x and y are adjacent if they are the endpoints
of the same edge. In this case, we write x ∼ y and call the common edge xy. If x and y are
not adjacent, we write x � y.

In a graph G, a walk is an alternating list of vertices and edges, v0, e1, v1, e2, . . . , ek, vk,
such that edge ei has endpoints vi−1 and vi, for 1 ≤ i ≤ k. A path is a walk that does not
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repeat any edges or vertices. A cycle is a walk

v0, e1, v1, e2, . . . , ek, v0

where vi 6= vj and ei 6= ej for all i 6= j. The length of a path or cycle is the number of its
edges.

A subgraph H of a graph G is any graph that has a vertex set V (H) ⊂ V (G) and an
edge set E(H) ⊂ E(G). A spanning subgraph of G is a subgraph of G that has vertex set
V (G). A subgraph H is an induced subgraph of G if for any x, y ∈ V (H) we have x ∼ y in
H if and only if x ∼ y in G. If V (H) = S, we write G[S] for the subgraph of G induced by
the vertex set of H.

Two graphs G and H are isomorphic if there exists a bijection f : V (G)→ V (H) such
that, for any x, y ∈ V (G), x ∼ y in G if and only if f(x) ∼ f(y) in H. In this case, we
write G ∼= H, and we say f is an isomorphism. An isomorphism from a graph to itself
is an automorphism, and the group of all such functions is the automorphism group of G,
denoted Aut(G).

The complete graph Kn is the graph on n vertices with all possible edges. That is, x ∼ y
for every pair x, y ∈ V (Kn) such that x 6= y. K5 is shown in Figure 2.1.

Figure 2.1: The complete graph K5.

2.2 Hamiltonicity of Graphs

A hamiltonian path in a graph G is a spanning path, that is, a path in G whose vertex
set is V (G). A graph G is called hamiltonian if it contains a cycle that is a spanning
subgraph of G, that is, a cycle that goes through every vertex in V (G). Such a cycle is
called a hamiltonian cycle and necessarily has length equal to the size of the vertex set.
Although there are necessary and sufficient conditions for determining whether a graph
may be hamiltonian, a straightforward way to show that a graph is hamiltonian is simply
to identify a hamiltonian cycle contained in the graph. An example of a hamiltonian graph
is the dodecahedron; a hamiltonian cycle in this graph is illustrated in Figure 2.2.

Note that the complete graph Kn is hamiltonian for any n ∈ N. To see this, begin by
labeling the vertices of Kn as x1, x2, . . . , xn. Since xi ∼ xj for each i, j ∈ {1, . . . n} with
i 6= j, the graph Kn contains the spanning cycle x1, x2, . . . , xn, x1. This simple fact will be
useful in one of the main results of the paper.
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Figure 2.2: Hamiltonian cycle (solid edges) in the graph of the dodecahedron.

2.3 Planarity of Graphs

A graph can represented visually by a drawing in the plane, where vertices are dots and
edges are line segments. Such a drawing of a graph is by no means unique; the same
graph can be drawn in many different ways. A crossing in a drawing of a graph is a point
in the plane where two edges intersect that is not a common endpoint of the edges. A
graph is called planar if it can be drawn without crossings. Such a drawing is called a
planar embedding. The faces of a planar embedding are the polygonal regions of the plane
bounded by the edges of the graph, along with the one unbounded outer face. Note that if
a graph contains any subgraph that is non-planar, then the graph itself is non-planar.

Consider the complete graph K4, the complete graph on 4 vertices. This graph can be
drawn with or without crossings, as shown in Figure 2.3, where the faces of the planar
embedding are labeled 1-4, face 4 being the outer face. Since a planar embedding exists, K4

is planar. On the other hand, K5 cannot be drawn without crossings, and so is not planar.
This can be verified easily using a result in [6] that follows from Euler’s Formula and gives
an upper bound for the number of edges in a planar graph. In particular, if G is a planar
graph with at least 3 vertices, then |E(G)| ≤ 3|V (G)| − 6. We see that K5 violates this
bound, since 3|V (K5)| − 6 = 3(5)− 6 = 9 < |E(K5)| = 10, and thus is not planar.

Figure 2.3: K4 drawn with and without crossings, K5 cannot be drawn without crossings.
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2.4 The Hanoi Graphs

A Tower of Hanoi puzzle consists of n discs on 3 + m pegs, where both n and m are
nonnegative integers. The corresponding Hanoi graph Hn

m represents all regular states and
legal moves of the corresponding Hanoi puzzle by vertices and edges, respectively, and is
defined as follows. Label the pegs of the puzzle as 0, 1, . . . , (2 + m) from left to right. As
each disc is a different size, we define disc i to have radius i, for i = 1, 2, . . . n. Let xi be
the position (peg) of disc i. Then each regular state of the Tower of Hanoi puzzle with
n discs on 3 + m pegs can be uniquely represented as an n-tuple (x1, x2, . . . , xn), with
xi ∈ {0, 1, . . . , (2 + m)} for each i. These n-tuples make up the vertex set of the Hanoi
graph. That is,

V
(
Hn
m

)
=
{

(x1, x2, . . . , xn) | xi ∈ {0, 1, . . . , (2 +m)}
}
.

(Note that we will sometimes represent an n-tuple (x1, x2, . . . , xn) as x1x2 . . . xn, in cases
where each xi is a single digit number and no confusion will arise.) It follows that Hn

m has
(3 +m)n vertices when n > 0. When n = 0, we have the Tower of Hanoi puzzle with 3 +m
pegs and no discs. The corresponding Hanoi graph is the null graph, the graph with no
vertices and no edges. The null graph is trivial with regard to our main results, and for this
reason we will consider only cases where n is strictly positive.

An edge in the Hanoi graph represents a legal move of a single disc, so two vertices are
adjacent if the corresponding regular states can be achieved from one another through a
legal move of exactly one disc. In particular, adjacent vertices differ in exactly one entry of
their n-tuples. We summarize formally with the following definition.

Definition 2.1. The Hanoi graph Hn
m is the graph with vertex set V

(
Hn
m

)
given by

V
(
Hn
m

)
=
{

(x1, x2, . . . , xn) | xi ∈ {0, 1, . . . , (2 +m)}
}

and where
(x1, x2, . . . , xn) ∼ (y1, y2, . . . , yn)⇒

∣∣{i | xi 6= yi}
∣∣ = 1.

�

To illustrate, in Figure 2.4 we have the Tower of Hanoi puzzle H5
m with five discs and

3 + m pegs. The first image shows a regular state that has all five discs on peg 1, and
corresponds to the vertex (1, 1, 1, 1, 1) in the graph H5

m. If we move the smallest disc to
peg 0, we have the state that corresponds to vertex (0, 1, 1, 1, 1), depicted in the second
image of Figure 2.4. Since we can achieve the second state from the first by moving exactly
one disc, and vice versa, we have (1, 1, 1, 1, 1) ∼ (0, 1, 1, 1, 1). If we now move the second
smallest disc to peg 2 +m, we have the state that corresponds to vertex (0, 2 +m, 1, 1, 1),
depicted in the third image of Figure 2.4. This third state can be achieved from the second
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via a single legal move, but not from the first, so, in the graph H5
m,

(0, 2 +m, 1, 1, 1) ∼ (0, 1, 1, 1, 1) and (0, 2 +m, 1, 1, 1) � (1, 1, 1, 1, 1).

Figure 2.4: Three states of the Tower of Hanoi puzzle with 5 discs and 3 +m pegs, and their
corresponding vertices in H5

m.

Before moving on to some properties of Hanoi graphs, in Figure 2.5 we provide illustra-
tions of the Hanoi graphs H1

0 , H2
0 , and H3

0 ; these are the Hanoi graphs corresponding to 1,
2, and 3 discs, respectively, on 3 pegs. Note that these three graphs are planar, since they
can be drawn without crossings, as shown.

Figure 2.5: Hanoi graphs H1
0 , H2

0 , and H3
0 .



9

2.5 Basic Properties of Hanoi Graphs

To analyze the properties of Hanoi graphs more closely, we give an alternate characterization
of adjacency.

Lemma 2.2. Let x, y ∈ V (Hn
m), with

x = (x1, x2, . . . , xi, . . . , xn) and y = (y1, y2, . . . , yi, . . . , yn).

Then x ∼ y if and only if there exists i (1 ≤ i ≤ n) such that

{j|xj = yj} = {j|j 6= i} and {xi, yi} ∩ {x1, . . . , xi−1} = ∅.

Proof. (⇒) Suppose x ∼ y. Then only one disc can switch pegs between states x and y, so
there exists an i (1 ≤ i ≤ n) such that xj = yj if and only if j 6= i for all j (1 ≤ j ≤ n). Also,
in the regular state represented by vertex x it is possible to move disc i from peg xi, so disc
i is the topmost disc and peg xi does not have any discs of radius less than i. Then none
of discs 1, . . . , i − 1 are on peg xi, so xi /∈ {x1, . . . , xi−1}. Moreover, it is possible to move
disc i to peg yi, so peg yi cannot already have any discs with radius less than i. Then none
of discs 1, . . . , i− 1 are on peg yi, so yi /∈ {x1, . . . , xi−1}. Thus {xi, yi}∩ {x1, . . . , xi−1} = ∅.

(⇐) Suppose there exists i (1 ≤ i ≤ n) such that {j|xj = yj} = {j|j 6= i} and
{xi, yi} ∩ {x1, . . . , xi−1} = ∅. Then neither peg xi or yi contains any discs of radius less
than i, so disc i is free to move between pegs xi and yi. Thus x ∼ y. �

Note that H2
0 is a subgraph of H3

0 , and that H1
0 is a subgraph of both H2

0 and H3
0 . We

can see that this should be true by considering the corresponding Tower of Hanoi puzzles.
For each of H1

0 , H2
0 , and H3

0 , the puzzle occurs on 3 pegs. In the puzzle for H1
0 , there is

one disc and it can move freely between each peg. In the puzzle for H2
0 , there are two discs.

By holding the largest disc fixed on any one peg, the smaller disc is free to move among all
the pegs, reducing the puzzle to 1 disc on 3 pegs; H1

0 . So we see that there is one copy of
H1

0 in H2
0 for each peg. That is, for each possible position of the largest disc. Similarly, H3

0

corresponds to 3 discs on 3 pegs. By holding the largest disc fixed on any one peg, the two
smaller discs can move exactly as if the largest disc were not there, reducing the puzzle to
2 discs on 3 pegs. So H3

0 contains one copy of H2
0 for each peg.

The same argument can be used to show that Hn
0 contains Hk

0 as a subgraph for any
k < n. Indeed, if the discs with radii k+1, . . . , n are all on the same peg, then the k smaller
discs can move exactly as they would if the larger discs were not there. We generalize this
for all Hanoi graphs in the following lemma.

Lemma 2.3. Fix anym,n ∈ N and any k ∈ N such that k < n. Fix any l ∈ {0, 1, . . . , 2+m}.
Let S = {(x1, x2, . . . , xn)|xk+1 = xk+2 = . . . = xn = l}. Then the subgraph of Hn

m induced
by S is isomorphic to Hk

m. That is,

Hn
m[S] ∼= Hk

m.
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Proof. Define the function f : S → V (Hk
m) by

f
(
(x1, x2, . . . , xk, xk+1, . . . , xn)

)
= (x1, x2, . . . , xk).

Then f is clearly a bijection. Moreover, fix any x, y ∈ S, with x = (x1, x2, . . . , xk, l, . . . l)
and y = (y1, y2, . . . , yk, l, . . . l). Then f(x) = (x1, x2, . . . , xk) and f(y) = (y1, y2, . . . , yk).

Suppose x ∼ y in Hn
m[S]. Then by Lemma 2.2, there is i ∈ {1, 2, . . . , n} such that

xi 6= yi, where xj = yj for all i 6= j, and satisfying {xi, yi} ∩ {x1, . . . xi−1} = ∅. Since
x, y ∈ S, we must have i ≤ k. Hence (x1, . . . , xk) ∼ (y1, . . . , yk) in Hk

m.
Conversely, suppose f(x) ∼ f(y) in Hk

m. Then by Lemma 2.2, there is i ∈ {1, 2, . . . , k}
such that xi 6= yi, where xj = yj for all i 6= j, and satisfying {xi, yi} ∩ {x1, . . . xi−1} = ∅.
Hence (x1, . . . , xk, l, . . . , l) ∼ (y1, . . . , yk, l, . . . , l) in Hn

m[S].
We conclude that x ∼ y in Hn

m[S] if and only if f(x) ∼ f(y) in Hk
m, thus Hn

m[S] ∼= Hk
m.
�

3 Hamiltonicity of Hanoi Graphs

In this section we will prove the first of the main results of the paper by Hinz and Parisse.
First, we present a lemma.

Lemma 3.1. Given any perfect states s1, s2, s3, and s4 in Hn
m, with s1 6= s2 and s3 6= s4,

there exists an automorphism f ∈ Aut(Hn
m) such that f(s1) = s3 and f(s2) = s4.

Proof. Fix any permutation π in the symmetric group Sym(2 + m) and define fπ :
Hn
m → Hn

m by
fπ
(
(x1, x2, . . . , xn)

)
=
(
π(x1), π(x2), . . . , π(xn)

)
.

We claim that fπ ∈ Aut(Hn
m). To see this, let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

We must show that x ∼ y if and only if fπ(x) ∼ fπ(y).
(⇒) Suppose x ∼ y. Then there is i ∈ {1, 2, . . . , n} such that xi 6= yi, where xj = yj for

all j 6= i, and satisfying {xi, yi}∩{x1, . . . , xi−1} = ∅. Consider fπ(x) =
(
π(x1), π(x2), . . . , π(xn)

)
and fπ(y) =

(
π(y1), π(y2), . . . , π(yn)

)
. Since xi 6= yi, we have π(xi) 6= π(yi). Also, since

xi 6= xj for all j < i, we have π(xi) 6= π(xj) for all j < i. Finally, since xj = yj for all j 6= i,
we have π(xj) = π(yj) for all j 6= i. It follows from Lemma 2.2 that fπ(x) ∼ fπ(y).

(⇐) Suppose fπ(x) ∼ fπ(y) and consider π−1 ∈ Sym(2 +m):

fπ−1

(
fπ(x)

)
=
(
π−1(π(x1)), π

−1(π(x2)), . . . , π
−1(π(xn))

)
= (x1, x2, . . . , xn) = x.

Similarly, fπ−1

(
fπ(y)

)
= y. From the argument above, we have that fπ(x) ∼ fπ(y) implies

fπ−1

(
fπ(x)

)
∼ fπ−1

(
fπ(y)

)
. It follows that x ∼ y.

We conclude that x ∼ y if and only if fπ(x) ∼ fπ(y), so fπ is an automorphism on Hn
m.

Finally, let si = (ai, ai, . . . , ai) be a perfect state in Hn
m for i = 1, 2, 3, 4, where each

ai ∈ {0, 1, . . . , 2 + m} and where a1 6= a2 and a3 6= a4. Let π be any permutation in
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Sym(2 +m) such that π(a1) = a3 and π(a2) = a4. Then fπ ∈ Aut(Hn
m) and we have

fπ(si) =
(
π(ai), π(ai), . . . , π(ai)

)
for each i, so that f(s1) = s3 and f(s2) = s4 as desired. �

We will use the previous lemma to aid in an inductive proof of the hamiltonicity of
Hanoi graphs.

Theorem 3.2. Every Hanoi graph is hamiltonian.

Proof. Fix any m ∈ N. Our proof consists of two parts. In (i) we will show by induction on
n ∈ N that, for any n, there is a hamiltonian path in Hn

m starting and ending with vertices
that correspond to distinct perfect states. This fact will then be used in (ii) to construct a
hamiltonian cycle in Hn+1

m .

(i) By induction on n ∈ N, we will show that, for any n, there is a hamiltonian path in
Hn
m starting and ending with vertices that correspond to distinct perfect states.

Base Case. Since the case n = 0 is trivial, let n = 1. The graph H1
m corresponds to the

Tower of Hanoi puzzle with 1 disc on 3 +m pegs. Since there is only one disc, it can move
freely among the pegs. So every state is a perfect state and any state can be reached from
any other state in exactly one move of the disc. Therefore H1

m is the complete graph on
3 +m vertices, K3+m. The complete graph Kn is hamiltonian for any n ∈ N, so H1

m has a
hamiltonian path. Since every state is a perfect state, such a hamiltonian path begins and
ends in distinct perfect states.

Induction Hypothesis. Fix any n ≥ 1 and suppose that Hn
m has a hamiltonian path

beginning and ending in distinct perfect states. Consider Hn+1
m , which corresponds to the

puzzle with n + 1 discs on m pegs, obtained by adding a disc with radius n + 1 to Hn
m.

Without loss of generality, suppose that all discs begin on peg 0, a perfect state. Then discs
1 through n form an n-tower sitting atop disc n + 1 on peg 0. We can move disc n + 1
stepwise through every peg from 0 to m + 2, in order, in the following way. The reader
may follow along with Figure 3.1. By the induction hypothesis, there is a hamiltonian path
between distinct perfect states in Hn

m, and by Lemma 3.1, perfect states are isomorphic, so
there is a hamiltonian path between any two distinct perfect states. Therefore, before each
step moving disc n+1, we can perform a hamiltonian path transferring the n-tower of discs
1 through n to a peg allowing disc n+ 1 to move. Because there are always at least 3 pegs,
this n-tower can be moved to a peg that is neither the same as the current peg of disc n+1,
nor the same as where we would like to move disc n + 1. To be concrete, let us say that
each time we wish to move disc n+ 1 from peg i to peg i+ 1, we first move the n-tower to
peg i+ 2(mod 3 +m). After the last move of disc n+ 1 to peg 2 +m, the n-tower can be
transferred to peg 2 +m as well, again on a hamiltonian path through Hn

m.
Now disc n + 1 has been moved 2 + m times, stepwise through each of the 3 + m
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Figure 3.1: Part (i):Moving the n-tower and disc n+ 1 through a hamiltonian path between
distinct perfect states.

pegs. Before each move of disc n + 1, the n-tower completes a hamiltonian path between
two distinct perfect states. During each such path, the n smaller discs move through every
possible state for that position of disc n + 1. In this way, every possible state of all n + 1
discs is achieved exactly once, completing a hamiltonian path in Hn+1

m . Thus there is a
hamiltonian path in Hn

m between vertices corresponding to distinct perfect states for any
n ∈ N.

(ii) We shall now construct a hamiltonian cycle on Hn+1
m , where n ∈ N. The reader may

follow along with Figure 3.2. Without loss of generality, let the initial vertex in the cycle
be (1, 1, . . . , 1, 0) ∈ V (Hn+1

m ), corresponding to the state where the n-tower of discs with
radius at most n is on peg 1 and disc n+ 1 is on peg 0. By (i), we can transfer the n-tower
of smaller discs through a hamiltonian path from peg 1 to peg 2, followed by moving disc
n + 1 to peg 1. In this step we have gone through every vertex in Hn+1

m that has a zero
in the last entry, ending on vertex (2, 2, . . . , 2, 1). Continuing in this way, we can transfer
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the n-tower of smaller discs through a hamiltonian path from peg i + 1 to peg i + 2 for
each i ∈ {0, 1, . . . , 2 + m}, following each complete transfer by a single move of disc n + 1
from peg i to peg i + 1. In each step we go through every vertex with an i in the last
entry exactly once. Consider the steps modulo 3 + m, so that when the n-tower is on peg
2 +m the next step will transfer it to peg 0. The process terminates when we transfer the
n-tower back onto peg 1, followed by moving disc n+1 onto peg 0. Now we have completed
a path in Hn+1

m that goes through every vertex exactly once and ends on the initial vertex,
completing a hamiltonian cycle in Hn+1

m .
Therefore every Hanoi graph is hamiltonian. �

Figure 3.2: Part (ii): Moving the n-tower and disc n+ 1 through all possible states in Hn+1
m

exactly once.

4 Planarity of Hanoi Graphs

Our second main result specifies for which values of m and n the Hanoi graph Hn
m is planar.

As we have seen by the planar embeddings illustrated in Figure 2.5, the graphs H1
0 , H2

0 ,
and H3

0 are planar. Before presenting the main result, we provide planar embeddings of
two more Hanoi graphs, followed by a lemma characterizing planarity for the Hanoi graphs
Hn

0 .
First we consider the Hanoi graph H1

1 , which corresponds to the Tower of Hanoi puzzle
with 1 disc on 4 pegs. Since there is only one disc, it can move freely between the pegs.
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Since any peg is reachable from any other peg through exactly one move of the disc, every
pair of vertices is adjacent in the Hanoi graph. Thus H1

1 is isomorphic to the complete
graph K4 and is therefore planar. A planar embedding of H1

1 is shown in Figure 4.1.

Figure 4.1: Two embeddings of the Hanoi graph H1
1 .

Next we consider the Hanoi graph H2
1 , which corresponds to the Tower of Hanoi puzzle

with 2 discs on 4 pegs. A planar embedding of H2
1 is shown in Figure 4.2. Note that H2

1

is 3-connected [3, p.194], meaning that there is no pair of vertices whose deletion results
in a disconnected graph. Every 3-connected planar graph has essentially only one planar
embedding [6, p.376], so this planar embedding of H2

1 is essentially unique.

Figure 4.2: Planar embedding of the Hanoi graph H2
1 .
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Lemma 4.1. The Hanoi graph Hn
0 is planar for all n ∈ N.

Proof. We will show by induction on n that Hn
0 allows a planar embedding, whose

infinite face is the complement of an equilateral triangle with side length 2n − 1 and whose
corners are the perfect states.

Base Case. Since the case n = 0 is trivial, let n = 1. The graph H1
0 corresponds to the

Tower of Hanoi puzzle with 1 disc on 3 pegs. The disc can move freely between between
the pegs in any order, and every state is a perfect state. So H1

0 is isomorphic to the com-
plete graph K3, which can be drawn as an equilateral triangle, as shown in Figure 2.5. Thus
the infinite face is the complement of an equilateral triangle and its side length is 1 = 21−1.

Induction Hypothesis. Fix k ∈ N and suppose Hn
0 has a planar embedding of the desired

form for all 1 ≤ n ≤ k. In particular, Hk
0 can be drawn without crossings such that its

infinite face is the complement of an equilateral triangle with side length 2k − 1 and the
corners are the perfect states. We will construct a drawing of Hk+1

0 as follows. Since
the disc with radius k + 1 is the largest disc, every state of the other k discs is possible,
regardless of the position of disc k + 1. So we take three copies of the planar graph Hk

0 ,
one for each possible position (peg 0, 1, and 2) of the disc with radius k + 1. The vertices
of these are relabeled with (k+ 1)-tuples ending in 0, 1, and 2, respectively. Since adjacent
vertices in Hn

m differ in exactly one entry of their n-tuples, we add three edges to connect
the three copies of Hk

0 . Namely, if we denote the perfect states in Hk
0 by ([0]), ([1]), ([2]),

where ([0]) is the k-tuple consisting of only zeros, then we add edges to form the adjacencies
([0], 1) ∼ ([0], 2), ([1], 0) ∼ ([1], 2), and ([2], 0) ∼ ([2], 1). This is illustrated in Figure 4.3.

Figure 4.3: Construction of Hk+1
0 from three copies of Hk

0 .

We claim that no other edges are added to form Hk+1
0 . Indeed, we cannot add an edge

within a single copy of Hk
0 , otherwise we would have two states that can be reached from

each other in a single move in Hk+1
0 , but not in Hk

0 . This is a contradiction, since it would
mean the states can be reached through a single move when the largest disc k + 1 has
fixed position, but not when disc k + 1 is not present. We also cannot add any other edge
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between two copies of Hk
0 . If we did, the vertices would have to have the first k entries of

their (k + 1)-tuples the same as each other, since their last entries differ. But the first k
entries do not all have the same value, otherwise they would have been perfect states in
Hk

0 . So one of the first k entries has to have the same value as the last entry of one of the
vertices, violating the adjacency relationship of Lemma 2.2.

That exactly three edges are added to connect the three copies of Hk
0 and form Hk+1

0

can also be verified using the edge count formula [4]

|Enm| =
(3 +m)(2 +m)

4

(
(3 +m)n − (1 +m)n

)
,

which gives the number of edges in the Hanoi graph Hn
m. We get the following edge counts

for Hk
0 and Hk+1

0 .

|Ek0 | =
(3 + 0)(2 + 0)

4

(
(3 + 0)k − (1 + 0)k

)
=

3

2

(
3k − 1

)
|Ek+1

0 | = (3 + 0)(2 + 0)

4

(
(3 + 0)k+1 − (1 + 0)k+1

)
=

3

2

(
3k+1 − 1

)
=

9

2
· 3k − 3

2

=
9

2

(
3k − 1

)
+

6

2

= 3
(3

2

(
3k − 1

))
+ 3

= 3|Ek0 |+ 3.

Since each of the three copies of Hk
0 is an equilateral triangle, through flips we can

arrange them so that each of the three edges added are the middle edges of the sides of a
new equilateral triangle with side length 2

(
2k − 1

)
+ 1 = 2k+1 − 1. As each of the three

copies of Hk
0 is planar, and the edges added to connect them do not create any crossings,

then Hk+1
0 is planar as well.

Thus Hn
0 is planar for all n ∈ N. �

We now prove the second main result of the paper.

Theorem 4.2. The only planar Hanoi graphs are Hn
0 , H1

1 , and H2
1 .

Proof. We have shown that H1
1 and H2

1 are planar by constructing planar embeddings
of their graphs, and we have shown in Lemma 4.1 that Hn

0 is planar for all n ∈ N, so it
remains to show that all other Hanoi graphs are non-planar.

The Hanoi graph H1
2 corresponds to the Tower of Hanoi puzzle with 1 disc on 5 pegs.
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As was the case with H1
1 , since there is only one disc, it can move freely between the pegs.

Since any peg is reachable from any other peg through exactly one move of the disc, every
pair of vertices is adjacent in H1

2 . Thus H1
2 is isomorphic to the complete graph K5. Hence

H1
2 is non-planar since K5 is non-planar.

Note that whenever m ≥ 2 and n ≥ 1, the Tower of Hanoi puzzle has at least 5 pegs. In
any regular state of the puzzle, the smallest disc can move freely between pegs. In particular,
it can move freely between any set of 5 pegs, so K5 is a subgraph of the corresponding Hanoi
graph. It follows that Hn

m is non-planar for all m ≥ 2 and n ≥ 1.
We summarize the planarity results we have obtained so far in a table:

m\n 1 2 3 4 5 . . .

0 Y Y Y Y Y . . .

1 Y Y ? ? ? . . .

2 ⇓N⇒ N N N N . . .

3 N N N N N . . .

4 N N N N N . . .

5 N N N N N . . .
...

...
...

...
...

...
. . .

It remains to cover the case of Hn
1 when n ≥ 3. By Lemma 2.3, H3

1 is a subgraph of
Hn

1 for all n > 3. So if H3
1 is non-planar, then so is Hn

1 for every n > 3. We will present
two arguments to show that H3

1 is non-planar; one is a direct proof using Kuratowski’s
Theorem, and the other is an argument by contradiction made by Hinz and Parisse.

Kuratowski’s Theorem states that if a graph contains a subgraph that is a K5 or K3,3

subdivision, then the graph is non-planar [6, p.246]. We will demonstrate that H3
1 does

contain a K5 subdivision. In Figure 4.4, we have constructed H3
1 by taking four copies

of H2
1 , one for each position of the largest disc, and added 24 edges corresponding to legal

moves of the largest disc. We can verify that this is the correct number of edges by applying
the edge count formula again [4]:

|E2
1 | =

(3 + 1)(2 + 1)

4

(
(3 + 1)2 − (1 + 1)2

)
= 36

|E3
1 | =

(3 + 1)(2 + 1)

4

(
(3 + 1)3 − (1 + 1)3

)
= 168

= 4|E2
1 |+ 24.

In Figure 4.5 we have left as solid lines only those edges that will be used in the K5

subdivision. In Figure 4.6, we have a subgraph of H3
1 that is a K5 subdivision, which has

been rearranged for clarity. Thus H3
1 is non-planar by Kuratowski’s Theorem.
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Figure 4.4: The Hanoi graph H3
1 .

Figure 4.5: The Hanoi graph H3
1 , with K5 subdivision shown by solid edges.
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Figure 4.6: K5 subdivision subgraph of H3
1 .

Now, following the argument made by Hinz and Parisse, suppose by way of contradiction
that we have a planar embedding of H3

1 . As discussed previously, this consists of four copies
of H2

1 , one for each position of the largest disc, interconnected by 24 additional edges. Since
the planar embedding of H2

1 in Figure 4.2 is essentially unique, we see that the faces of H2
1

all have either three or four vertices in their boundary. In particular, the infinite face has
either three or four vertices in its boundary.

Suppose the infinite face of one of the copies of H2
1 has three vertices. Then these three

vertices each have at least degree 3 in H2
1 , since the minimum degree in H2

1 is 3. Note that
there are 12 edges going out of each copy of H2

1 , as can be seen be inspection of Figure 4.4.
We can also see this by a combinatorial consideration of the possible moves of the largest

disc: If the largest disc is able to move, there are either 1 or 2 empty pegs. If there is 1
empty peg, then there are

(
3
2

)
= 3 choices for which two pegs have the smallest two discs,

and 2 ways for these smallest two discs to be positioned on those pegs, giving 6 vertices,
each with one edge outward. If there are 2 empty pegs, there are 3 choices of peg for both
of the smaller discs to be on, and for each there are 2 choices of peg to move the largest
disc to, giving 3 vertices, each with 2 edges outward, for a total of another 6 edges.

Now, in order for the embedding of this copy of H2
1 to remain planar, these 12 edges

must be incident to the three vertices on the outer face. Then by the pigeonhole principle,
at least one of these vertices gets another 4 edges added to its degree. So there is some
vertex in H3

1 with degree at least 7. In any regular state of the Tower of Hanoi puzzle with
3 discs and 4 pegs, the disc 1 is able to move to three different pegs, disc 2 is able to move
to zero or two pegs, and disc 3 is able to move to zero, one, or two pegs. However, the disc
3 is able to move to two different pegs only if disc 2 cannot move at all. So from any regular
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state, there are at most six moves possible, so the corresponding vertex in the Hanoi graph
has degree at most 6, a contradiction.

Now suppose the infinite face of one of the copies of H2
1 has four vertices. By inspection

of the planar embedding of H2
1 in Figure 4.2, we see that every such vertex has degree 5.

Similarly to the previous case, at least one of these vertices has to get at least three of the
additional 12 edges. Then there is a vertex in H3

1 with degree at least 8, a contradiction,
since we have already shown that the degree of any vertex can be no more than 6.

Thus H3
1 cannot be planar.

Now we have shown that the only planar Hanoi graphs are Hn
0 , H1

1 , and H2
1 , as sum-

marized in the table below, and the proof is complete. �

m\n 1 2 3 4 5 . . .

0 Y Y Y Y Y . . .

1 Y Y N⇒ N N . . .

2 ⇓N⇒ N N N N . . .

3 N N N N N . . .

4 N N N N N . . .

5 N N N N N . . .
...

...
...

...
...

...
. . .
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