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Abstract

In this mathematical literature project, we study and present the results of the
2011 article by Boutin and Cockburn [2], which defines and proves some fundamental
properties of geometric graph homomorphisms. The geochromatic number of a geometric
graph is related to both the chromatic number and the thickness; yet we consider an
infinite bipartite family of geometric graphs with thickness 2 that have arbitrarily high
geochromatic number. We also examine conditions for a graph to have geochromatic
number at most four.

1 Introduction

In abstract graph theory, a homomorphism is a structure-respecting map between two
graphs. The structure we want to preserve is simply the set of edges of the graph. We
often create drawings of abstract graphs because the visualization makes problems easier to
solve, but in reality we really only need two things to define a graph: the vertex set and the
edge set.

In geometric graph theory, by contrast, the particular drawing of a graph now matters.
Therefore, a structure-respecting map between geometric graphs must not only preserve
vertex adjacencies, but also edge crossings. This brings a unique set of tools and challenges
to the question of finding homomorphisms between geometric graphs. Inspired by the 2011
article by Debra Boutin and Sally Cockburn on geometric graph homomorphisms, this
mathematical literature project aims to provide a glimpse of the intricacies of geometric
graphs and the maps between them. In Section 2, we present some useful background on
(abstract) graph homomorphisms before introducing the notion of a geometric graph. Then
in Section 3, we develop a foundation and intuition for geometric graph homomorphisms so
that we have the machinery to explore the geochromatic number in Section 4.

2 Preliminaries

In this section we provide some background information to help transition smoothly to
the study of geometric graph homomorphisms and the geochromatic number. First we
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discuss graph homomorphisms in the case of abstract graphs, keeping in mind that all
necessary conditions for a function to be an abstract graph homomorphism must also hold
for a geometric graph homomorphism. Then we give an overview of geometric graphs, with
particular interest in edge crossings.

2.1 Graph homomorphisms

A homomorphism f from a graph G to a graph H is a vertex mapping that preserves
adjacencies. That is, for x, y ∈ V (G), x ∼ y in G implies f(x) ∼ f(y) in H. We write
G → H (and say G is homomorphic to H) if there exists a homomorphism f from G to
H. We will often refer to f : G → H as an abstract graph homomorphism to distinguish
from geometric homomorphisms later on. Since homomorphisms do not need to preserve
nonadjacencies, a bijective homomorphism is not necessarily a graph isomorphism. It is also
worth noting that G → H does not imply H → G. However, we do have transitivity: if
G1 → G2 and G2 → G3, then G1 → G3 (as the composition of homomorphisms is again a
homomorphism).

A proper vertex coloring of a graph G is an assignment of colors to the vertices so that no
two adjacent vertices have the same color. The chromatic number χ(G) of a graph G is the
minimum number of colors needed for a proper vertex coloring. Equivalently, χ(G) is the
smallest positive integer n such that G → Kn. Such a map may be viewed as a partition
of V (G) into independent sets. With this in mind, let f : G → H be any homomorphism.
Since f preserves adjacencies, the preimage of an independent set in H is an independent
set in G. Therefore, a proper vertex coloring of H corresponds to a proper vertex coloring
back in G. This tells us χ(G) ≤ χ(H). As we will see, the use of this result extends nicely
to geometric homomorphisms.

2.2 Geometric graphs

A geometric graph G is formed by drawing a simple graph G in the plane with vertices in
general position, where all edges are straight line segments between vertices [2]. A crossing
occurs in G when a pair of edges has a common interior point. We say G is a plane geometric
graph if it has no crossings.

The following definitions are also used throughout this paper:

1. An edge e in a geometric graph G is a crossing edge if it crosses another edge in G.
The set of all crossing edges in G is denoted E×.

2. A vertex v in a geometric graph G a crossing vertex if it is incident to a crossing edge.
The set of all crossing vertices in G is denoted V×.

Figure 1: Two geometric graphs realizing K5
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In Figure 1 we provide two geometric realizations of K5. As abstract graphs, they are
isomorphic. As geometric graphs, they are non-isomorphic since their crossing structures
differ. The first is a convex geometric graph: the vertices are in a position forming the vertex
set of a convex polygon [5]. We can see that every vertex is a crossing vertex, and the inner
five-cycle is made up of all the crossing edges. The second is a geometric realization with the
minimum number of crossings over all drawings of K5. Indeed, the crossing number of K5

is 1. In general, this is not always possible to achieve. If G is planar, Fáry’s theorem tells
us there is a plane drawing of G with straight-line segments. However, if G has crossing
number n > 0, there may or may not exist a geometric realization (which by definition
has straight-line edges) of G with n crossings. In fact there is a different parameter, the
rectilinear crossing number, which is the minimum number of crossings in a straight-line
drawing of G. This is an active area of graph theory research; for example, [1] gives a lower
bound on the rectilinear crossing number of Kn.

3 Geometric graph homomorphisms

3.1 Definitions and properties

Let G and H be geometric graphs. A geometric homomorphism f : G → H is a vertex
mapping that preserves adjacencies and crossings [2]. Note that f is a homomorphism on
the underlying abstract graphs G and H with the added condition that if the edges uv and
xy are crossed in G, then the edges f(u)f(v) and f(x)f(y) are crossed in H.

There is also the notion of a geometric isomorphism φ : G→ H, which is an isomorphism
on the underlying abstract graphs G and H such that the edges uv and xy cross in G
if and only if the edges φ(u)φ(v) and φ(x)φ(y) cross in H. As is the case for abstract
graph homomorphisms, a bijective geometric homomorphism is not necessarily a geometric
isomorphism. In fact, different realizations of the same abstract graph may not even
have geometric homomorphisms to each other. For example, consider the two geometric
realizations of K4 given in Figure 2. Throughout this paper we refer to the plane realization
as K4 and the one-crossing realization as K̂4. Any bijection from V (K4) to V (K̂4) is a
geometric homomorphism since there are no crossings in K4 to be preserved. However,
there is no geometric homomorphism from K̂4 to K4 since there is no way to preserve the
single edge crossing.

Figure 2: K4 → K̂4 but K̂4 6→ K4

We can generalize the situation above. Suppose G is a plane geometric graph (with
underlying abstract graph G) and H is any graph such that G→ H. Then G→ H for any
geometric realization H of H. We make use of this fact to simplify the work in Section 4.
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3.1.1 Chromatic number and thickness

Since all geometric homomorphisms are also abstract graph homomorphisms, ifG→ H, then
χ(G) ≤ χ(H). The parameter we next define, the (geometric) thickness θ(G) of a geometric
graph, gives us another similar result. As in [2], we define a thickness edge coloring of G as
a coloring of the edges of G so that no two edges of the same color cross each other. Then
θ(G) is the minimum number of colors required for a thickness edge coloring. The purpose
of defining θ(G) in this manner is to emphasize its dependence on the particular geometric
realization of a graph. By contrast, the thickness of an abstract graph is the minimum of
this value over all (not necessarily geometric) realizations.

Note that a thickness edge coloring of a geometric graph is a partition of the edge set into
plane subgraphs. Moreover, if f : G→ H is a geometric homomorphism, then the preimage
of any plane subgraph in H is a plane subgraph in G. So any thickness edge coloring of H
corresponds to a thickness edge coloring back in G. Therefore, θ(G) ≤ θ(H).

Putting these results together, we get the following lemma:

Lemma 1. If G→ H, then

χ(G) ≤ χ(H) and θ(G) ≤ θ(H).

3.1.2 Lemmas: non-identifiable vertices

We end this subsection by compiling three results from [2] regarding vertices that cannot
be identified by any geometric homomorphism. We will use these lemmas in Section 4.

Lemma 2. Adjacent vertices cannot be identified by any geometric homomorphism.

This is true because any geometric homomorphism is an abstract graph homomorphism.

Lemma 3. Endpoints of edges that cross cannot be identified by any geometric homomorphism.

Proof. Let f : G→ H be a geometric homomorphism. Suppose edge uv crosses edge xy in
G. Since f preserves all crossings, and no pair of edges with a common endpoint can cross,
each of u, v, x, w must be mapped to a distinct vertex in H.

Lemma 4. Let P be an odd-length path in G. If there is a single edge crossing all the edges
in P , then the endpoints of P cannot be identified by any geometric homomorphism.

Proof. Let P = v1v2 . . . v2r be such a path in G, all edges of which are crossed by edge xy.
Let f : G → H be a geometric homomorphism. For i = 1, . . . , 2r − 1, since edge vivi+1

crosses edge xy, it follows that edge f(vi)f(vi+1) crosses edge f(x)f(y). This means the
vertices f(v1), f(v3), . . . , f(v2r−1) are on one side of the line in R2 containing edge f(x)f(y),
while vertices f(v2), f(v4), . . . , f(v2r) are on the other side. Therefore, f(v1) 6= f(v2r).

Figure 3: By Lemma 4, u and v cannot be identified.
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3.2 Examples

It is interesting to restrict our attention to a single isomorphism class of abstract graphs.
When we transition to viewing the various straight-line drawings of a graph as geometric
graphs, these drawings suddenly represent very distinct structures. One way to highlight
similarities and differences between these structures is to determine which pairs of graphs
have a geometric homomorphism between them.

In Figure 4 are five geometric realizations of the Petersen graph, with the number of
crossings ranging from 2 to 7. These graphs are labeled so that Pi has i crossings. In
addition to the different crossing numbers, these geometric graphs also have widely varying
numbers of crossing edges and crossing vertices. This information is provided in Table 1.
Note that an increase in the number of crossings does not necessarily imply an increase in
the number of crossing edges or crossing vertices.

Figure 4: Five geometric realizations of the Petersen graph

|E×| |V×|
P2 4 8

P3 6 9

P5 5 5

P6 6 10

P7 5 8

Table 1: Counting crossing edges and crossing vertices

In the typical case, the information provided in Table 1 would not be enough for us to
rule out the existence of a geometric homomorphism between graphs. However, in this case
we can use the fact that the Petersen graph P is a core. That is, any endomorphism of P is
actually an automorphism [4]. So if a geometric homomorphism f : Pi → Pj exists, then f
must be a bijection that preserves all adjacencies, non-adjacencies, and edge crossings. For
this reason, Pj must have at least as many crossings, crossing edges, and crossing vertices
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as Pi does. This observation alone allows us to rule out 14 of the 20 possible cases for a
geometric homomorphism between a pair of these graphs. For the remaining 6 cases, we
have to compare the crossing structures of the graphs.

For instance, each pair of crossed edges in P3 shares vertices with the other edge crossings.
Thus, P2 6→ P3 because it is impossible to preserve the two vertex-disjoint crossings of P2.
We can determine P3 6→ P6 because, while three vertices in P3 are each involved in multiple
edge-disjoint crossings, there is only one vertex in P6 that is incident to multiple crossing
edges. The fact that each of five crossing edges in P5 is involved in multiple crossings tells
us P5 6→ P6 and P5 6→ P7. Now there are two cases left. For these, we can prove P2 → P6

and P2 → P7 by giving geometric homomorphisms as shown in Figure 5. That is, among
these five geometric realizations of the Petersen graph, there are only two pairs where a
geometric homomorphism exists.

Figure 5: Geometric homomorphisms between realizations of the Petersen graph

Of course, in more general cases, a geometric homomorphism need not be injective.
For example, the 8-vertex cubic graph in Figure 6 has a geometric homomorphism to K̂4,
despite having more crossings, crossing vertices, and crossing edges. In Section 4, we examine
specific criteria for a graph to be geometrically homomorphic to K̂4.

Figure 6: A geometric homomorphism to K̂4
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4 Geochromatic number

4.1 Definitions and properties

Now that we have developed sufficient background on geometric homomorphisms, in this
section we explore the geochromatic number.

Let G be a geometric graph. As in [2], we say G is n-geocolorable if G → Kn for some
geometric realization of Kn. The geochromatic number of G, denoted X(G), is the smallest
positive integer n such that G is n-geocolorable.

For n = 1, 2, 3, there are simple conditions for a geometric graph to have geochromatic
number n:

• n = 1: Since K1 is just an isolated vertex, X(G) = 1 if and only if G is an empty
graph.

• n = 2: K2 consists of a single edge, so any geometric realization is a plane graph.
Thus, X(G) = 2 if and only if G a plane bipartite graph with at least one edge.

• n = 3: Here again, the only geometric realization of K3 is plane. Therefore, X(G) = 3
if and only if G is a plane graph such that χ(G) = 3.

As n increases, it quickly becomes more difficult to determine whether a given graph G
is n-geocolorable. For one thing, as n gets large there are increasingly many geometric
realizations of Kn to consider, and determining these realizations is a complicated problem
on its own. The bounds presented in Lemma 1 give a pair of necessary conditions: if G→ Kn

for some geometric realization of Kn, then χ(G) ≤ n and θ(G) ≤ θ(Kn).

The following definitions will be used this section:

1. The crossing subgraph G× is the geometric subgraph of G with vertex set V× and edge
set E×.

2. The crossing components of G, denoted C1, C2, . . . Cm, are the connected components
of G×.

3. The crossing component graph of G is the abstract graph denoted C× whose vertices
correspond to the crossing components of G, with an edge between vertices Ci and Cj

if an edge of Ci crosses an edge of Cj in G.

4. The induced crossing subgraph G[V×] is the geometric subgraph of G induced by V×.

Examples of these definitions are provided in Figures 7 and 8. Note that G,G×, and G[V×]
may not all be distinct for a given geometric graph. For example, the induced crossing
subgraph of P6 is the same as P6 itself since all vertices are crossing vertices. P5 has
the same crossing subgraph and induced crossing subgraph, since the only edges between
crossing vertices are crossing edges. In most of the examples in this paper, the crossing
component graph is a simple graph. However, C× has a loop if G has a crossing component
that is not plane. This the case for P5, which has a single crossing component which is not
plane. Therefore, its crossing component graph consists of a single vertex with a loop.
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Figure 7: Crossing subgraph and induced crossing subgraph

Figure 8: Crossing subgraph and crossing component graph

Using these definitions, we can provide another set of necessary conditions for G→ H.

Lemma 5. If G→ H, then

1. G× → H×,

2. G[V×]→ H[V×],

3. C×(G) → C×(H). That is, there is an (abstract) homomorphism from the crossing
component graph of G to the crossing component graph of H.

Proof. Let f : G→ H be a geometric homomorphism. Since f preserves crossing edges and
crossing vertices, we can obtain homomorphisms for (1) and (2) by appropriate restrictions
of f . For (3), we define a homomorphism by mapping each crossing component Ci of G to
its image f(Ci) in H. First we show this map is well-defined. Let x, y ∈ Ci be vertices in
the same crossing component of G. This means there is a path from x to y in G consisting
only of crossing edges. Since f preserves adjacencies and crossing edges, there is a path of
equal or shorter length from f(x) to f(y) in H consisting only of crossing edges. Therefore,
f(x) and f(y) are in the same crossing component of H. Now we verify this map is indeed
a homomorphism. Suppose Ci ∼ Cj in C×(G). This means an edge of Ci crosses an edge
of Cj in G. Since f preserves crossings, it follows that an edge of f(Ci) crosses an edge of
f(Cj) in H. But this means f(Ci) ∼ f(Cj) in C×(H), as needed.

Figure 9 gives an example to show that the conditions in Theorem 5 are not sufficient for
G → H. Here G is the Petersen graph, which we have noted is a core, and so it does not
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retract to a proper subgraph. Even though G and H have the same crossing subgraph and
induced crossing subgraph, we see G 6→ H.

Figure 9: G 6→ H even though G× → H×.

4.2 Geochromatic number at most four

In this section we examine conditions for a geometric graph to be 4-geocolorable. First
we note that any geometric graph homomorphic to K4 (the plane realization) is also

homomorphic to K̂4 (the one-crossing realization). Therefore, we only need to study criteria

for G→ K̂4. As in Figure 6, K̂4 has vertex set {1, 2, 3, 4} with edge 13 crossing edge 24.

First we provide a definition:

For any subset of vertices Y = {Ci1 , . . . , Cir} of the crossing component graph C×, Let GY

denote the subgraph of G induced by the vertices in Ci1 ∪ . . .∪Cir . Note that GY contains
any non-crossing edges among the vertices in Ci1 ∪ . . .∪Cir , so GY is a subgraph of G[V×].

Now we present a set of necessary conditions for G to have geochromatic number at most
four.

Theorem 1. [2] If G is 4-geocolorable, then

1. Each crossing component Ci is a bipartite plane subgraph of G.

2. There is a proper bipartition (U, V ) of V (C×) so that GU and GV are bipartite plane
subgraphs of G.

Proof. If G is 4-geocolorable, then there exists a geometric homomorphism f : G → K̂4.
By Lemma 5, we can restrict f to get a homomorphism from the crossing subgraph G×
to the crossing subgraph (K̂4)×. Note that (K̂4)× consists of the disjoint edges 13 and
24. Therefore, each crossing component Ci of G× is mapped to either edge 13 or edge 24.
This proves each Ci is bipartite. Further, the preimage of a plane graph under a geometric
homomorphism is a plane graph; this proves each Ci is plane.

To prove (2), partition V (C×) by setting U = {Ci|f(Ci) = 13} and V = {Ci|f(Ci) = 24}.
Without loss of generality, if ei ∈ Ci crosses ej ∈ Cj in G×, then f(ei) = 13 and f(ej) = 24.
In C×, this shows that Ci ∼ Cj if and only if Ci and Cj are in different cells of the bipartition.
This proves C× is bipartite. Now consider the subgraph GU of G. Since GU is induced by
the set of vertices in the crossing components that all get mapped to edge 13, we see that
GU is homomorphic to the edge 13. The same argument shows GV is homomorphic to the
edge 24. Therefore, GU and GV are bipartite and plane.
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The geometric graph G in Figure 10 shows that the conditions in Theorem 1 are not sufficient
for the existence of a 4-geocoloring. Since each of two crossing components in G× is a single
edge, conditions 1 and 2 are satisfied. Now observe that one of the crossing edges needs to
be mapped to 13 while the other crossing edge is mapped to 24. But then the fifth vertex
would need a fifth color since it is adjacent to each of the other four vertices. This proves
X(G) > 4. Since there is only one crossing, it is easy to create a homomorphism from G to
a geometric realization of K5. Thus, X(G) = 5.

Figure 10: [2] The conditions in Theorem 1 are not sufficient for G→ K̂4.

Although the conditions in Theorem 1 are not sufficient for X(G) = 4, the next theorem
shows that any geometric graph satisfying those conditions has geochromatic number at
most 8.

Theorem 2. If G satisfies conditions 1 and 2 in Theorem 1, then X(G) ≤ 8.

Proof. First we show that G[V×] is 4-geocolorable. Let U, V be the cells of the bipartition of
the crossing component graph of G as in condition 2. Since GU is biparite, we can properly
color it using colors 1 and 3. Similarly, we can properly color GV using colors 2 and 4. Since
GU and GV are plane, any pair of crossed edges in G must have one edge in GU and the
other edge in GV (thus, they are colored 13 and 24). Note that there may be edges in G[V×]
that are not in GU or GV . However, any such edge is a non-crossing edge with one vertex
in each subgraph, and so its endpoints are different colors. Therefore, we have defined a
4-geocoloring of G[V×]. Now, the subgraph induced by the non-crossing vertices is plane, so
by the Four color theorem we can properly color it using colors 5,6,7,8. This gives a proper
8-coloring of G where all pairs of crossed edges are colored 13 and 24. Thus, G→ K̂8, where
K̂8 is the convex realization shown in Figure 11. This proves X(G) ≤ 8.

Figure 11: Convex realization of K8
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It turns out the two conditions in Theorem 1 are both necessary and sufficient for a 4-
geocoloring if G is bipartite. This brings us to the next theorem.

Theorem 3. Let G be a bipartite geometric graph. Then G is 4-geocolorable if and only
if both conditions of Theorem 1 are satisfied.

Proof. If G is 4-geocolorable, then Theorem 1 completes this direction of the proof.
Now assume G meets both conditions of Theorem 1. Since G is bipartite, we can properly

2-color the vertices of G using colors 1 and 2. Now in GU , re-color all vertices colored 1
with color 4; in GV , re-color all vertices colored 2 with color 3. Note that all vertices in GU

are colored 2 or 4, all vertices in GV are colored 1 or 3, and all non-crossing vertices are
still colored 1 or 2. Since GU and GV are both plane subgraphs of G, each pair of crossing
edges has one edge in GU and the other in GV . This means every pair of crossing edges
in G gets mapped to the pair of crossing edges in K̂4. So, this proper 4-coloring preserves
crossings and is in fact a 4-geocoloring of G.

Figure 6 provides an example of a 4-geocolorable bipartite graph. In this case, each of the
four crossing components is a single edge that crosses two other crossing components. Thus,
the crossing component graph C× is a 4-cycle. The two graphs GU and GV induced by a
proper bipartition of C× are both plane 4-cycles in G.

4.3 Unbounded geochromatic number

We end this section by presenting a family of bipartite, thickness-2 geometric graphs with
arbitrarily high geochromatic number. This highlights the fact that we really need more
information than just the chromatic number and thickness of a geometric graph in order to
determine its geochromatic number. As we have seen in previous examples, it really comes
down to the adjacency and crossing structures.

Figure 12: [2] A bipartite, thickness 2 geometric graph with X(G) = 2k.

Theorem 4. The geochromatic number of a bipartite, thickness-2 geometric graph is arbitrarily
large. In particular, the construction of G given in Figure 12 yields a geometric graph with
geochromatic number 2k.

Proof. We construct G on 2k vertices as in Figure 12. Position k white vertices labeled
1, . . . , k in a row, and k black vertices labeled k + 1, . . . , 2k in another row below them. If
the vertices are to be in general position, we cannot have three vertices on the same line.
However, we can skew the rows slightly without affecting the construction or the proof.

First connect 1 to k + 2 with a solid edge. Then for i = 2, . . . , k − 1, connect i to k + i
and k+ i+ 1 with a solid edge. Observe that none of the solid edges cross each other. Now
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connect k+1 to each of 2, . . . , k with a dashed edge and connect k to each of k+2, . . . , 2k−1
with a dashed edge. Observe that none of the dashed edges cross each other. Therefore, we
have two plane layers and so G is a thickness-2 bipartite graph.

Next we prove that X(G) ≥ 2k. We can do this by showing that no two vertices in
G can be identified by any geometric homomorphism. This implies that any geometric
homomorphism f : G→ Kn must be injective, and so n ≥ 2k. We consider two cases:

Vertex i and vertex j are in the same cell of the bipartition: First suppose that
i and j are both white vertices. Without loss of generality, assume i < j. Note that i
and j are involved in a common crossing since the dashed edge from j to k + 1 crosses the
solid edge from i to k + i+ 1. By Lemma 3, i and j cannot be identified by any geometric
homomorphism. By the symmetry of the construction, a similar argument holds if i and j
are both black vertices.

Vertex i and vertex j are in opposite cells of the bipartition: Suppose i is a white
vertex and j is a black vertex. First consider i = k and j = k+1. Then i and j are adjacent
and cannot be identified by Lemma 2. Next consider the case where i 6= k and j 6= k + 1.
Then i and j are joined by an odd-length path of solid edges, all of which are crossed by
the edge k(k+ 1). By Lemma 4, i and j cannot be identified. Now let j = k+ 1 with i 6= k.
Then edge k(k+ 1) crosses edge i(i+ k+ 1) and so by Lemma 3, i and j = k+ 1 cannot be
identified. Similarly, i = k cannot be identified with j 6= k + 1.

We have exhausted all possibilities, so we get X(G) ≥ 2k. But by adding all the missing
edges to G until we have a complete graph, we get a geometric realization K2k such that
G → K2k. Therefore, X(G) = 2k. If we want an odd geochromatic number, we can delete
vertex 2k and all arguments are the same.

5 Further study

A natural continuation of this study of the geochromatic number might be to examine
conditions for X(G) ≤ 5. To begin, we first should find all geometric realizations of K5.
Then to simplify the work as we did in Section 4, it is useful to find which of these realizations
are homomorphic to other realizations. This type of problem is addressed in another paper
by Boutin and Cockburn [3], where they use geometric homomorphisms to define a partial
order on the set of geometric realizations of a given abstract graph. To ensure the relation is
antisymmetric, the following definition is used: G � H if there is a geometric homomorphism
f : G → H that induces an isomorphism on the underlying abstract graphs. For example,
the poset for K4 is a single chain of two elements as we have seen in Figure 2. The poset
for K5 consists of a single chain of three elements as shown in Figure 13 below. Therefore,
to check if a given geometric graph G is 5-geocolorable, it is sufficient to check if there
is a geometric homomorphism from G to the five-crossing realization of K5 (the maximal
element of the chain).

Things become considerably more complicated for K6. In [3], the Hasse diagram for
the poset of K6 realizations is provided. There are a total of 15 non-isomorphic geometric
realizations, with the number of edge crossings ranging from 3 to 15 (but no realizations
with 13 or 14 crossings). The poset has three maximal elements. Therefore, checking if G
is 6-geocolorable requires checking if G has a geometric homomorphism to at least one of
these three maximal realizations of K6.
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Figure 13: Poset of geometric realizations of K5

Other questions for continued study of geocolorings are presented in [2]. For example,
we know that any geometric graph satisfying the conditions in Theorem 1 has geochromatic
number at most 8. But what is the largest geochromatic number possible in a geometric
graph that meets those conditions? Figure 10 gives such an example where X(G) = 5.

Geometric graphs have not been studied nearly as extensively as abstract graphs, so
there is still plenty of territory that is yet to be explored. Boutin and Cockburn’s 2011
article was the first work in the literature to extend the theory of graph homomorphisms
to geometric graphs. Any question that is interesting for abstract graphs is bound to be
interesting for geometric graphs, most likely with additional intricacies to consider.
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