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A. New Functions

• g.emphaz: This function replaces the function emphazplot intoduced on
page 45. It prints the empirical hazards values similar to the output at
bottom of page 45. It draws the empirical hazards plots, only nicer than
those in Figure 2.5 on page 46. The required arguments are:

data: a Surv object or a list of Surv objects
type: what should be drawn? “ht” for hitilde or “hhat” for hihat

Example: The AML data
Surv0<-Surv(aml$weeks[aml$group==0],aml$status[aml$group==0])
Surv1<-Surv(aml$weeks[aml$group==1],aml$status[aml$group==1])
data<-list(Surv1,Surv0)
g.emphaz(data=data,type="ht",main="hitilde",

legend=c("maintained","nonmaintained"))
g.emphaz(data=data,type="hhat",main="hihat",

legend=c("maintained","nonmaintained"))
#Figure 2.5 is printed below.

• extcox.twochange: Extends the extcox.1Et, page 193, to incorporate
two change points. That is, it determines three intervals over which we
hope the PH assumption is satisfied.

• optimal.change.point: See the description in B. Additional Material be-
low.

∗Copyright( c©) 2005 by Mara Tableman, all rights reserved. This text may be freely shared
among individuals, but it may not be republished in any medium without written consent from
the author and the publisher.
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• qq.reg.resid.s: (R users: qq.reg.resid.r): For parametric regression
models, this constructs a Q-Q plot of ordered residuals ei = (yi − ŷi)/σ̂
against the log-parametric standard quantiles zi of either the Weibull, log-
normal, or log-logistic distribution. See Errata Sheet, item p. 147, for a
detailed description and example.
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Figure 2.5: A comparison of empirical hazards. Left plot displays h̃(ti). Right
plot displays ĥ(t).
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B. Additional Material

3.4.1 Fitting data to the exponential model

Activity #1 : For the AML1 data fit to the exponential model, we
bootstrap the distribution of the MLE of the mean θ = 1/λ

Your task : Replicate my code below and bring output and graphs to class. We
will discuss the quality of confidence intervals and usefulness of transformations
that stabilize the variance as well as symmetrize the distribution of the point
estimate.

The S function survReg fits the log(data) to the extreme minimum value dis-
tribution and returns the the MLE for µ = − log(λ) = log(θ). R users: the
function is survreg.

#Fits AML1 data to the exponential.
> survReg(Surv(weeks, status)~1,dist="weib",scale=1,data=aml1)

Coefficients:
(Intercept)

4.101457 #muhat
Scale fixed at 1
Loglik(model)= -35.7 Loglik(intercept only)= -35.7 n= 11

The next line of code obtains just the MLE µ̂ = − log(λ̂) = log(θ̂), where θ̂ = the
estimated mean of the AML1 data fit to the exponential. Note that θ̂ = exp(µ̂)
is our statistic of interest.

> survReg(Surv(weeks,status)~1,dist="weib",scale=1,
data=aml1)$coeff

(Intercept)
4.101457 #muhat

The aml1 dataset has 11 subjects. A bootstrap sample consists of the data values
corresponding to 11 subjects selected with replacement with equal probability
from the original aml1 sample. We use the S function bootstrap to compute
1000 θ̂∗’s computed on 1000 bootstrapped samples. Some of the output has
been deleted or modified. R users: the function is boot.

> boot.thetahat<-bootstrap(aml1,exp(survReg(Surv(weeks,status)~1,
dist="weib",scale=1,data=aml1)$coeff),B=1000)

Forming replications 1 to 100
Forming replications 101 to 200
...
Forming replications 901 to 1000

> summary(boot.thetahat)

Number of Replications: 1000
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Summary Statistics:
Observed Bias Mean SE

(Intercept) 60.43 7.296 67.72 36.29

The Observed is the estimate computed on the original aml1 sample. The Mean
and SE are the usual sample average and sample standard deviation computed
on the 1000 θ̂∗’s. See expression (1).

Empirical Percentiles:
2.5% 5% 95% 97.5%

(Intercept) 25.6 28.11 133.5 164.7
> plot(boot.thetahat,xlab="thetahats",ylab="density",

main="Bootstrap Density of Estimated Means",
sub="AML1 data fit to exponential model")

#See Figure 1.(a).
#This may not work in R. Sorry:(

> qqnorm(boot.thetahat)
#Draws a Q-Q plot that checks to see if the bootstrapped
#distribution follows a normal distribution. See Figure 2.(a).

> attributes(boot.thetahat)
$names:
[1] "call" "observed" "replicates" "estimate" "B"
[6] "n" "dim.obs" "group" "seed.start" "seed.end"

[11] "B.missing" "indices"

$class: [1] "bootstrap" "resamp"
> thetahat <- boot.thetahat$observed
#Stores the original observed estimate.

> thetahat
60.42828

> boot.thetahat$estimate
Bias Mean SE

7.295582 67.72386 36.29412
> boot.se <- boot.thetahat$estimate[3]
#Stores the SE of the bootstrapped distribution.

> boot.se
SE

(Intercept) 36.29412
> limits.emp(boot.thetahat) #Contains empirical percentiles.

2.5% 5% 95% 97.5%
25.59888 28.10538 133.4675 164.75

> L.025 <- limits.emp(boot.thetahat)[1]
> U.025 <- limits.emp(boot.thetahat)[4]
> L.025
[1] 25.59888
> U.025
[1] 164.75
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We now construct 95% Confidence Intervals for θ:

1. The usual form: point est. ± 1.96·se(point est.). Here we have

θ̂ ± 1.96 · se(θ̂∗), where se(θ̂∗) =

√∑B
i=1(θ̂

∗
i − θ̂∗)2

B − 1
(1)

with θ̂∗ =
∑B

i=1 θ̂∗i /B.

> conf.int.1 <- c(thetahat-1.96*boot.se,thetahat,
thetahat+1.96*boot.se)

> names(conf.int.1) <- c("L95%", "estimate", "U95%")
> conf.int.1

L95% estimate U95%
-10.7082 60.42828 131.5648

2. Based on the quantiles of the bootstrapped distribution: These have the
form (

2 · θ̂ − U.025.θ̂∗, 2 · θ̂ − L.025.θ̂∗
)
.

> conf.int.2 <- c(2*thetahat-U.025,thetahat,2*thetahat-L.025)
> names(conf.int.2) <- c("L95%", "estimate", "U95%")
> conf.int.2

L95% estimate U95%
-43.89344 60.42828 95.25768

We repeat the foregoing process to obtain a bootstrap distribution for the µ̂ =
log(θ̂) to compare. We obtain 1000 µ̂∗’s. Remember, we know the log-transform
frees up the variance’s dependency on the estimate. See expression (3.18) on
page 73. Furthermore, it should symmetrize the distribution.

> boot.muhat <- bootstrap(aml1, survReg(Surv(weeks, status) ~ 1,
dist = "weib", scale = 1, data = aml1)$coeff, B = 1000)

> summary(boot.muhat)
> plot(boot.muhat, xlab = "log(thetahat)’s", ylab = "density",

main = "Bootstrap Density of Estimated log(mean)",
sub = "AML1 data fit to exponential model")

#See Figure 1.(b).
> qqnorm(boot.muhat) #See Figure 2.(b).
> muhat <- boot.muhat$observed
> muhat
(Intercept)

4.101457
> boot.mu.se <- boot.muhat$estimate[3]
> boot.mu.se

SE
(Intercept) 0.4660176
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> limits.emp(boot.muhat)
2.5% 5% 95% 97.5%

(Intercept) 3.316103 3.388576 4.86497 5.144837
> L.025.mu <- limits.emp(boot.muhat)[1]
> U.025.mu <- limits.emp(boot.muhat)[4]
> L.025.mu
[1] 3.316103
> U.025.mu
[1] 5.144837

Again, construct 95% Confidence Intervals for θ: Remember to transform back
to original units by taking the exp of the endpoints as well as the estimate itself.

1. The usual form:
exp

(
µ̂± 1.96 · se(µ̂∗)). (2)

> conf.int.3 <- c(exp(muhat-1.96*boot.mu.se),exp(muhat),
exp(muhat+1.96*boot.mu.se))

> names(conf.int.3) <- c("L95%", "estimate", "U95%")
> conf.int.3

L95% estimate U95%
24.24142 60.42828 150.6338 #Width of C.I.=126.3924.
#The U95% limit is influenced by the right tail
#of the histogram.

2. Based on the quantiles of the bootstrapped distribution: These have the
form (

exp
(
2 · µ̂− U.025.µ̂∗

)
, exp

(
2 · µ̂− L.025.µ̂∗

))
. (3)

> conf.int.4 <- c(exp(2*muhat - U.025.mu),exp(muhat),
exp(2*muhat - L.025.mu))

> names(conf.int.4) <- c("L95%", "estimate", "U95%")
> conf.int.4

L95% estimate U95%
21.28659 60.42828 132.5303 #This seems to be best and
#closest to that reported in Table 3.2 on page 74. The
#right tail has less influence and the width = 111.2437.
#Recall that width of a C.I. is a measure of efficiency.
#The shorter the width, the more efficient.
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Figure 1: Bootstrapped density histograms.
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3.4.2 Fitting data to the Weibull and log-logistic models

Activity #2 : For the AML1 data fit to the log-logistic model, we boot-
strap the distribution of the MLE of the median t.5

Below is a newly written S function named pthquantile. R users remember to
use survreg in place of survReg. This function obtains any desired estimated
"uquantile" fit to any one of the three distributions "weibull", "lognormal",
and "loglogistic". We then can use it in the bootstrap function.
#The function begins just below here:

pthquantile<-function(time,status,p,type,dist){
##========================================================
##Purpose: to obtain estimated pth-quantile of the log(data)
## fit to either Weibull, log-normal, or log-logistic.
## Then we can bootstrap its distrbution.
##Arguments: time = survival time variable
## status = status variable; 1 = uncensored,
## 0 = censored
## p = the desired quantile; 0 < p < 1
## type = "qweibull", or "qnorm", or "qlogis"
## dist = "weibull", or "lognormal", or "loglogistic"
##Author: Mara Tableman 2.February 2005 Portland, OR, USA
##========================================================

if ( type == "qlogis"){
fit<-survReg(Surv(time,status)~1,dist=dist)
tp<-qlogis(p,fit$coeff,fit$scale)}
if ( type == "qnorm"){
fit<-survReg(Surv(time,status)~1,dist=dist)
tp<-qnorm(p,fit$coeff,fit$scale)}
if ( type == "qweibull"){
fit<-survReg(Surv(time,status)~1,dist=dist)
tp<-log(qweibull(p,1/fit$scale,exp(fit$coeff)))}
return(tp)
on.exit()
"pthquantile: done" }

#The functions ends just above with the bracket }. Be sure to include it.

In this activity do the following:

1. Study the # Log-logistic fit on page 79 of textbook.

2. Bootstrap the distribution of the log(estimated median) on the AML1
data fit to the “loglogistic” model.

3. Plot the density histogram.

4. Obtain the Q-Q plot.

5. Finally, compute confidence intervals of types 3 and 4, expressions (2)
and (3) in Activity #1, for the .5-quantile t.5 . Give the width of each
interval.
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6. Compare to the C.I. reported on page 79.

#Tips:

> pthquantile(aml1$weeks,aml1$status,.5,"qlogis","loglogistic")
#obtains the log(medhat), the statistic of interest.

> med.boot<-bootstrap(aml1,pthquantile(aml1$weeks,aml1$status,
.5,"qlogis","loglogistic"),B=1000)

My abridged S code follows:

> plot(med.boot,xlab="medianhat*’s",ylab="density",
main="Bootstrap Density of Estimated Median",

sub="AML1 data fit to loglogistic model",col=16)
#See Figure 1.(a).

> qqnorm(med.boot) #See Figure 1.(b).
> conf.int.5

L95% estimate U95%
15.51723 33.60127 72.76076

> width.C.I.5 <- conf.int.5[3] - conf.int.5[1]
> names(width.C.I.5) <- c("width")
> width.C.I.5

width
57.24353

> conf.int.6
L95% estimate U95%

12.29155 33.60127 59.80721
> width.C.I.6

width
47.51566

Of course, your answers and plots will “vary” from mine. See next page for
Figure 1.

10



3.0 3.5 4.0 4.5 5.0

0.
0

0.
5

1.
0

1.
5

Bootstrap Density of Estimated Median

AML1 data fit to loglogistic model
medianhat*’s

de
ns

ity

(a)

-2 0 2

Quantiles of Standard Normal

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Q
ua

nt
ile

s 
of

 R
ep

lic
at

es

Q-Q Plot of Bootstrapped Distribution of the Estmated Median

AML1 data fit to loglogistic model

(b)

Figure 1: Bootstrapped density histogram and Q-Q plot. AML1 data fit to log-
logistic model.
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7.1 Extended Cox Model

This is a continuation of Part IV: An extended Cox model analysis, which
begins on page 192. Kleinbaum visually chooses one year (365 days) to be the
change point as this is where the two survivor curves appear to begin to diverge.
One can also employ the profile log-likelihood approach to determine the optimal
change point. This approach was introduced in Chapter 6.3.8, where we used
the criterion of maximizing the profile log-likelihood to determine the cut point.
The function optimal.change.point computes the profile log-likelihoods for
values of t0 ranging over the default quantiles, seq(.1,.9,.01), of the uncen-
sored survival times. Figure 1 displays their graph.

In order to use the function optimal.change.point pick any time point within
the scope of your data to start. We pick 100 days.

Caution: Be sure the exposure variable is in column 2, the status variable is
in column 3, and the time variable is in column 4 of your data frame.

> attach(ADDICTS)
> out <- extcox.1Et(ADDICTS,100) # Puts in Andersen-Gill counting

# process form.
> temp.ext <- coxph(Surv(Start,Stop,Status)~Prison+Dose+ET1+ET2,

data=out) # temp.ext is the coxph object that
# gives the necessary formula within the function
# optimal.change.point.

> best <- optimal.change.point(data=ADDICTS,time=Days.survival,
status=Status,object=temp.ext)

> cbind(best$t0+.00001,best$loglik) # Prints out the values.
> plot(best$t0+.0001,best$loglik,type="l",xlab="change point",

ylab="profile log-likelihood",lwd=2) # Figure 1
> out <- extcox.1Et(ADDICTS,464) # Optimal change point is 464

# days.
> fit4 <- coxph(Surv(Start,Stop,Status) ~Prison+Dose+ET1+ET2,

data=out)

Some selected output follows:

> best <- optimal.change.point(data=ADDICTS,time=Days.survival,
status=Status, object = temp.ext)

69%
464.05 # The optimal change point in days

> fit4
Call: coxph(formula=Surv(Start,Stop,Status)~Prison+Dose+ET1+ET2,

data=out)

coef exp(coef) se(coef) z p
Prison 0.3890 1.476 0.16859 2.31 2.1e-002

Dose -0.0354 0.965 0.00645 -5.48 4.3e-008
ET1 0.4887 1.630 0.23396 2.09 3.7e-002
ET2 2.3970 10.990 0.52996 4.52 6.1e-006
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Figure 1: Profile log-likelihoods for the change point t0.

Likelihood ratio test=79 on 4 df, p=3.33e-016 n= 337

The following S code provides a plot of the projected survival probabilities,
which here is the projected percent retention in each clinic. The output has
been modified. Figure 2 displays the plot.

> fit.1 <- survfit(fit4, data.frame(Start = c(0,464),
Stop = c(464,1100), Status = c(0,1), ET1 = c(1,0),
ET2 = c(0,1),Prison =c(0.4663866,0.4663866),Dose =

c(60.39916, 60.39916)), individual=T)
> fit.2 <- survfit(fit4, data.frame(Start = c(0,464),

Stop = c(464,1100), Status = c(0,1), ET1 = c(0,0),
ET2 = c(0,0), Prison = c(0.4663866,0.4663866), Dose =
c(60.39916,60.39916)), individual=T)

> fit.1
n events mean se(mean) median 0.95LCL 0.95UCL

236 150 434 16 450 358 518
> fit.2

n events mean se(mean) median 0.95LCL 0.95UCL
236 150 632 31.9 878 612 NA

> plot(fit.1,type="l",lty=1,lwd=3,lab=c(10,10,7),
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Figure 2: K-M curves adjusted for Prison and Dose effects in the extended Cox
model.

xlab="Retention time (days) in methadone treatment",ylab=
"Projected percent retained", yscale=100, conf.int=F)

> lines(fit.2,lty=3,lwd=3)
> abline(v=464,lty=2,lwd=2)
> mtext("Extended Cox Model: piecewise PH",3,line=1)
> mtext("optimal change point at t=464 days",3,line=-1)
> mtext("Prison mean=.4663866,Dose mean=60.39916 mg/day",3,

line=-2) # Figure 2

Results:

• The difference here is that now the clinic effect is significant over both
intervals of time. The ĤR = 1.63 with p -value = 0.037 for the effect of
clinic when time t < 464 days. For t ≥ 464, ĤR = 10.99 with p -value
= 6.1× 10−6. Clinic 2 is always doing significantly better in retention of
patients than Clinic 1.

• Within the first 464 days, Clinic 2 is 1.63 times more likely to retain pa-
tients longer than Clinic 1. After 464 days, Clinic 2 is nearly 11 times more
likely to retain patients longer than Clinic 1. Equivalently, Clinic 2 has
1
11 ≈ 9% the risk of Clinic 1 of patients leaving its methadone treatment
program.
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• The risks, the rates at which patients leave the two clinics’ treatment
programs, are visually represented in Figure 2 by the slopes of the survivor
curves at any time point. The slope of the Clinic 1 curve appears constant,
whereas the slope of the Clinic 2 curve significantly slows after t0 = 464.
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C. New Material

7.2 Competing risks: cumulative incidence estimator

The following example was cleverly formulated by Peter Sparks, a former stu-
dent in our master’s program. To the best of our knowledge, Peter’s competing
risks analysis of the Case K employment data is novel.

Case K employment data example:

The dataset CaseK chosen to illustrate a competing risk analysis is in the
datasets archive statLib located at http://lib.stat.cmu.edu/datasets un-
der “employment”. It was originally used by Kadane and Woodworth (2004)
in their paper “Hierarchical Models for Employment Decisions” to investigate a
claim of age biased firing (terminated involuntarily) by a company we shall refer
to as company K. Individuals 40 years or older are federally protected against
age discrimination in employment decisions concerning hiring, firing, and pro-
motion. The methods Kadane and Woodworth used are not discussed in this
example. Their conclusion, however, was that the data supported the claim.

For a sample of 416 company K employees followed over time, birth dates, hire
dates, end of employment dates, and termination indicators were recorded. The
dates were of the form MM/DD/YYYY. The table below is a partial list of the
original data. The variables are defined as follows:

mob = month of birth
dob = day of birth
yob = year of birth
moh = month of hire
doh = day of hire
yoh = year of hire
mox = end of employment month

(= 99 if still employed at the end of the study)
dox = end of employment day

(= 99 if still employed at the end of the study)
yox = end of employment year

(= 1999 if still employed at the end of the study)
t = 1 if involuntary termination; 0 if not

obs mob dob yob moh doh yoh mox dox yox t
1 11 24 1972 2 11 1991 99 99 1999 0
2 3 22 1955 3 4 1985 99 99 1999 0
3 11 13 1941 2 4 1991 10 2 1992 0
...

...
...

...
...

...
...

...
...

...
...

15 4 16 1930 12 28 1990 1 24 1992 1
...

...
...

...
...

...
...

...
...

...
...
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Competing risks with right censored data formulation

The failure time of interest is “time from hired to fired”. We use “terminated”
as a euphemism for “fired”. Failures from a competing risk, such as quit or
retired, are referred to as “other”. Censored individuals (those still with the
company at the end of the study period) had for their end of employment dates
99/99/1999. For example, the employees corresponding to observations 1 and
2 are censored. Four employees’ birth dates are missing. The following newly
created variables are stored in the data frame CaseK:

CaseK data frame variables
ftime(in days) = hire time minus end of employment time

(or end of study if censored)
fstatus = 0 if censored, 1 if fired, 2 if other (quit, retired, died, etc.)
age = age (in years) at end of employment or end of study if censored
age40 = 0 if age less than 40, 1 if age greater or equal to 40
f1status = 0 if not fired, 1 if fired

As the actual date of end of study was not available at the time of this writing,
the last uncensored end of employment date, 01/27/1995, was used in its place.
Thus, the original data are transformed into a set of variables which fit into the
framework of competing risks with right censored data.

cmprsk Library

The cmprsk library, downloadable from biowww.dfci.harvard.edu/~ gray/,
contains a number of S functions for use in analysis of competing risks data.
Below is a brief description of functions in the library. Recall the cumulative
incidence (CI) function defined in expression (7.6) is a subdistribution
function since it increases to P (T1 < T2), a quantity less than 1.

• cuminc() computes the CI estimator (7.7) and its variance estimates,
and performs a nonparametric test for equality of subdistributions across
groups.

• crr() fits the proportional subdistribution hazards regression
model described in Fine and Gray (1999). The residuals returned are
analogous to the scaled Schoenfeld residuals (page 164) in ordinary survival
models.

• The functions print.cuminc(), plot.cuminc(), and timepoints() are
titled descriptively and illustrated with examples.

S code and analysis

> library(cmprsk)
> xx <- cuminc(CaseK$ftime,CaseK$fstatus)
> xx # Estimates and Variances:
$est:

2000 4000 6000 8000 10000 12000 14000
1 1 0.1944 0.2444 0.2747 0.3121 0.3578 0.4008 0.4331
1 2 0.2572 0.2946 0.3102 0.3479 0.3731 0.3731 0.3731
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$var:
2000 4000 6000 8000 10000 12000

1 1 0.00045 0.00066 0.00082 0.00105 0.00155 0.00216
1 2 0.00053 0.00067 0.00076 0.00101 0.00123 0.00123

14000
1 1 0.00282
1 2 0.00123

> plot.cuminc(xx,main="Cumulative Incidence for Termination and
Other",curvlab=c("Termination","Other"),xlab="Days employed",

lty=1:2) # Figure 1
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Figure 1: Estimated cumulative incidence curves for the two competing risks
“termination” and “other”.

In Figure 1 we observe the curve for “other” lies above the one for “termination”
until about 11000 days (about 30 years). Then the curves cross. This suggests
the presence of an age based discrimination in firing practices of company K.

We can obtain estimates of CI along with variance estimates at survival times
of our choice using the timepoints function. For example,

> timepoints(xx,c(1826,3625,7304,10950,14600))
# CI evaluated at 5, 10, 20, 30,and 40 years

$est:
1826 3625 7304 10950 14600

1 1 0.1902 0.2314 0.3121 0.3757 0.4816
1 2 0.2572 0.2946 0.3479 0.3731 0.4215
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$var:
1826 3625 7304 10950 14600

1 1 0.00043 0.00059 0.00105 0.00175 0.00455
1 2 0.00053 0.00067 0.00101 0.00123 0.00349

We now illustrate the error introduced when we treat failures from a competing
risk as censored observations. The function plot.cuminc.f1 is a modification
of plot.cuminc that only plots the curve for failure of type 1.

> ww <- cuminc(CaseK$ftime, CaseK$fstatus)
> xx <- cuminc(CaseK$ftime, CaseK$f1status)
> plot.cuminc.f1(xx,main="CI for Termination: Other as a Com.

Risk and Other as Censored",curvlab=c(""),xlab="Days employed",
lty=2)

> lines(ww$"1 1"$time,ww$"1 1"$est, type="s",lty=1)
> legend(0,.9,c("other treated as censored","other as com.risk"),

lty=2:1) # Figure 2

As expected, when we treat a competing risk failure as censored, we overestimate
cumulative incidence of the failure type of interest. This is clearly observed in
Figure 2.
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Figure 2: Estimated cumulative incidence curve for “termination” is the solid
line. The dotted line represents the 1-KM curve for “termination” since the
competing risk failures are treated as censored.

Stratifying on age40 to test for age biased firing

We now run cuminc while stratifying on the variable age40. When stratifying on
levels of a group, cuminc conducts tests comparing the subdistrbution functions
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across groups for each failure type. For our example this means that we test the
alternative hypotheses: 1) the “termination” subdistributions for the younger
and older groups are not equal and 2) the “other” subdistributions for the
younger and older groups are not equal. The test statistics are described in Gray
(1988). cuminc also gives estimates of CI at certain times in the range of failure
times and corresponding variance estimates for each combination of failure type
and group. As print.cuminc (see below) also reports these estimates, we omit
them under cuminc and include them under print.cuminc.

> CaseK.bday <- na.exclude(CaseK)
# omits subjects with missing birthdates

> ci.to <- cuminc(CaseK.bday$ftime,CaseK.bday$fstatus,
group=CaseK.bday$age40,na.action=na.exclude)

> ci.to
Tests:

stat pv df
1 12.10549 0.0005 1
2 12.12225 0.0005 1

The first p-value indicates there is a significant difference between the “termi-
nation” sudistribution for those 40 or older and the subdistribution for those
younger than 40. The function print.cuminc yields much of the same infor-
mation as the output of cuminc. The number of estimates is a function of ntp
(number of time points).

> print.cuminc(ci.to,ntp=3)
Tests:

stat pv df
1 12.10549 0.0005 1
2 12.12225 0.0005 1

Estimates and Variances: $est:
5000 10000 15000

0 1 0.1604 NA NA
1 1 0.3245 0.4268 0.6030
0 2 0.4118 NA NA
1 2 0.2249 0.2979 0.3474

$var:
5000 10000 15000

0 1 0.0023 NA NA
1 1 0.0012 0.0019 0.0058
0 2 0.0029 NA NA
1 2 0.0009 0.0015 0.0038

The following command plots the CI for each combination of age40 and failure
type. These curves are displayed in Figure 3.

> plot.cuminc(ci.to,main="CI for the Four Combinations of Group
and Failure",curvlab=c("age40=0, terminated", "age40=1,
terminated","age40=0,other","age40=1,other"),
xlab="Days employed") # Figure 3
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Figure 3: Estimated cumulative incidence curves for “termination”. “Other” is
the competing risk.

The curve for cumulative incidence of “termination” for the age40 = 1 group lies
entirely above the one for age40 = 0. Thus, older individuals at hire experience
more chances to be fired. This supports the claim of age based discrimination in
termination practices of company K. Also, within older individuals at hire, there
is a greater incidence of “fires” than the “others”. On the other hand, within
younger individuals at hire, there is a greater incidence of “others” than “fires”
perhaps because younger individuals move more often due to job opportunities,
kids’ education, etc.

Regression analysis

Gray’s cmprsk library also includes functions to fit a proportional subdistri-
bution hazards regression model, compute and store scaled Schoenfeld type
residuals for such a model, compute CI estimates and estimator variance esti-
mates, plot the CI estimates, and conduct statistical tests for this model. The
function crr fits the data to a proportional subdistribution hazards regression
model. crr returns estimated coefficients along with their standard errors (se)
so one can compute point and confidence interval estimates of the sudistribu-
tion hazards ratio (SDHR). The default computes the subdistribution hazard
function for the type 1 failure “termination”.

> CaseK.reg <- crr(CaseK$ftime,CaseK$fstatus,CaseK$age40)
# The default computes results for the type 1 failure.

4 cases omitted due to missing values
> CaseK.reg
convergence: TRUE
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coefficients:
[1] 1.097
standard errors:
[1] 0.2677
two-sided p-values:
[1] 0.000042

For this model the coefficient of age40 is significantly different from zero with
p-value = 0.000042. It is significantly greater than zero as the null reference
distribution is approximately normal so that the p-value for the one-sided test
is 0.000021. The estimated SDHR is exp(coef) = exp(1.097) = 3.00. This
value means that employees 40 or older have an estimated 3.00 times the risk
or hazard of being terminated as those younger than 40 at any time during
their period of employment. The general form of a 95% confidence interval
for the SDHR is exp(coef ± 1.96 × se(coef)). Then from the S output we have
exp(1.097±.2677) which yields a 95% confidence interval estimate of [1.77, 5.06].

The functions predict.crr and plot.predict.crr are now illustrated in the
following code.

> z <- predict.crr(CaseK.reg,c(0,1))
# Computes predictions of CI at levels of age40

> plot.predict.crr(z,main="Regression Curves for Termination:
age40=0,age40=1",xlab="Days employed",ylab="Probability")

> legend(0,.6,legend=c("age40=0","age40=1"),lty=2:1,bty="n")
# Figure 4
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Figure 4: Predicted cumulative incidence curves for “termination”. “Other” is
the competing risk.
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In Figure 4, the CI curve for those 40 or older lies entirely above that of the
younger than 40 group, which again supports the claim of age based discrimi-
nation in firing practices. The curves exhibit the same pattern as that observed
between the two “terminated” curves in Figure 3.

We now plot the scaled Schoenfeld type residuals versus the unique failure times.

> scatter.smooth(CaseK.reg$uftime,CaseK.reg$res,type="p",
main="Residuals for age40 vs. Unique Failure Times to
Assess PH Fit", xlab="Days employed",ylab="Residual")

# Figure 5
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Figure 5: Scaled Schoenfeld type residuals to assess the fitted subdistribution
hazards regression model for “termination” with respect to the PH assumption.
A spline smoother is used.

Fine and Gray (1999) write “The residuals should locally have mean 0 across
time, and patterns other than a constant local average indicate lack of fit.” The
plot in Figure 5 indicates the proportional subdistribution hazards model ade-
quately fits the data.

Gray’s crr function also allows for time dependent hazard ratios. Another
model for this data could then, for example, be one which is piecewise PH. We
let the reader investigate this and other models.
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D. Coming Attractions

1. An example of crossing survival curves: data from a colon cancer study
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