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Chapter 1

Rationale for Survival Analysis

• Time-to-event data have as principal end-

point the length of time until an event

occurs. The event is commonly referred

to as a failure.

• Censoring: A failure time is not completely

observed.

• Survival Analysis: The collection of sta-

tistical procedures that accommodate time-

to-event censored data.
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Example: AML study

Below are preliminary results (1977) from a clinical trial

to evaluate the efficacy of maintenance chemotherapy

for acute myelogenous leukemia (AML). After reaching

a status of remission through treatment by chemother-

apy, the patients who entered the study were assigned

randomly to two groups. The first group received main-

tenance chemotherapy; the second, or control, group

did not. The objective of the trial was to see if

maintenance chemotherapy prolonged the time un-

til relapse.

Group Length of complete remission (in weeks)
Maintained 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+
Nonmaintained 5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45

The + indicates a censored value.
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• Serious bias in estimated quantities, which

lowers the efficacy of the study.

a. Throw out censored observations.

b. Treat censored observations as exact.

c. Account for the censoring.
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Basic Definitions & Identities

The r.v. T denotes failure time
with cdf F (·) and pdf f(·).
cdf F (·):

F (t) = P (T ≤ t) =

∫ t

0
f(x)dx and

dF (t)

dt
= f(t)

That is, by definition of derivative,

f(t) = lim
∆t→0+

F (t + ∆t)− F (t)

∆t
= lim

∆t→0+

P (t < T ≤ t + ∆t)

∆t

Survivor function S(·):

S(t) = P (T > t) = 1− F (t) =

∫ ∞

t

f(x)dx

At t = 0, S(t) = 1 and decreases to 0 as t increases to ∞.

We thus can express the pdf as

f(t) = −dS(t)

dt
.
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Hazard function h(·):

h(t) = lim
∆t→0+

P (t < T ≤ t + ∆t |T > t)

∆t
=

f(t)

S(t)

= −dS(t)/dt

S(t)
= −d log (S(t))

dt

Of course, h(t) ≥ 0 at all times t.

Cumulative hazard function H(·):

H(t) =

∫ t

0
h(u)du = −log(S(t))

At t = 0, H(t) = 0 and increases to ∞ as t increases to ∞.

Hence, the relationship

S(t) = exp (−H(t)).
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The hazard function h(t) ≥ 0

• specifies the instantaneous rate of failure

at T = t given that the individual survived

up to time t. It measures the potential

of failure in an instant at time t given the

individual’s survival time reaches t.

• is the slope of the tangent line to

H(t) = − log (S(t)) at T = t

• specifies the distribution of T
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pth-quantile: The value tp such that

F (tp) = P (T ≤ tp) = p.

That is, tp = F−1(p).

Also called the 100 × pth percentile.

Mean Lifetime E(T ): For random variable T ≥ 0,

E(T ) =

∫ ∞

0
t · f(t)dt

=

∫ ∞

0
S(t)dt.

total area under the survivor curve
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Three Censoring Models

Let T1, T2, . . . , Tn be independent and identically distributed
(iid) with distribution function (d.f.) F .

Type I censoring:

• In engineering applications, we test lifetimes of tran-
sistors, tubes, chips, etc.

• Put them all on test at time t = 0 and record their
times to failure. Some items may take a long time
to “burn out” and we do not want to wait that long
to terminate the experiment.

• Terminate the experiment at a prespecified time
tc.

• The number of observed failure times is random. If
n is the number of items put on test, then we could
observe 0,1,2, . . . , n failure times.
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The following illustrates a possible trial:

The tc is a fixed censoring time.

• We do not observe the Ti, but do observe Y1, Y2, . . . , Yn

where

Yi = min(Ti, tc) =

{
Ti if Ti ≤ tc
tc if tc < Ti.

• It is useful to introduce a binary random variable
δ which indicates if a failure time is observed or
censored,

δ =

{
1 if T ≤ tc
0 if tc < T .

We then observe the iid random pairs (Yi, δi).

10



Type II censoring:

• In similar engineering applications as above, the ex-
periment is run until a prespecified fraction r/n
of the n items has failed.

• Let T(1), T(2), . . . , T(n) denote the ordered values of
the random sample T1, . . . , Tn.

By plan, the experiment is terminated after the rth
failure occurs. We only observe the r smallest ob-
servations in a random sample of n items.

• For example, let n = 25 and take r = 15. When
we observe 15 burn out times, we terminate the
experiment.

• The following illustrates a possible trial:

Here the last 10 observations are assigned the value

of T(15). Hence, we have 10 censored observations.
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• Notice that we could wait an arbitrarily long time
to observe the 15th failure time as T(15) is random;
or, we could see all 15 very early on.

• More formally, we observe the following full sample.

Y(1) = T(1)

Y(2) = T(2)
... ... ...
Y(r) = T(r)

Y(r+1) = T(r)
... ... ...
Y(n) = T(r).

The data consist of the r smallest lifetimes T(1), . . . , T(r)
out of the n iid lifetimes T1, . . . , Tn with continuous
p.d.f f(t) and survivor function S(t).
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Random Right Censoring:

Random censoring occurs frequently in medical studies.
In clinical trials, patients typically enter a study at dif-
ferent times. Then each is treated with one of several
possible therapies. We want to observe their ”failure”
time but censoring can occur in one of the following
ways:

1. Loss to Follow-up. Patient moves away. We never
see him again. We only know he has survived from
entry date until he left. So his survival time is ≥
the observed value.

2. Drop Out. Bad side effects forces termination of
treatment. Or patient refuses to continue treat-
ment for whatever reasons.

3. Termination of Study. Patient is still “alive” at end
of study.

The following illustrates a possible trial:
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The AML study contain randomly right-censored data.

Formally: Let T denote a lifetime with d.f. F and sur-
vivor function Sf and C denote a random censor time
with d.f. G, p.d.f. g, and survivor function Sg. Each in-
dividual has a lifetime Ti and a censor time Ci. On each
of n individuals we observe the pair (Yi, δi) where

Yi = min(Ti, Ci) and δi =

{
1 if Ti ≤ Ci

0 if Ci < Ti .

• We observe n iid random pairs (Yi, δi).

• The times Ti and Ci are usually assumed to be in-
dependent.

• This is a strong assumption. If a patient drops out
because of complications with the treatment (case
2 above), it is clearly offended.
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Remarks:

• If the distribution of C does not involve any parame-
ters of interest, then the form of the observed likeli-
hood function is the same for these three censoring
models.

L =
n∏

i=1

(f(yi))
δi · (Sf(yi))

1−δi.

Thus, regardless of which of the three types of censoring
is present, the maximization process yields the same
estimated quantities.

• Here we see how censoring is incorporated to adjust
the estimates. Each observed value is (yi, δi). An indi-
vidual’s contribution is either it pdf f(yi); or Sf(yi) =
P (T > yi), the probability of survival beyond its ob-
served censored time yi. In the complete data setting,
all δi = 1; that is, there is no censoring. The likelihood
then has the usual form

L =
n∏

i=1

f(yi) .
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Major Goals

Goal 1. To estimate and interpret survivor and/or hazard functions

from survival data.
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Goal 3. To assess the relationship of explanatory variables to

survival time, especially through the use of formal mathematical
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Chapter 2

Kaplan-Meier Estimator of Survivor Function

I1 I2 · · · Ii−1 Ii · · ·
|————|—————|————|———|——–|——
0 y(1) y(2) y(i−1) y(i)

The y(i): ith distinct ordered censored or uncensored
observation and right endpoint of the interval Ii, i =
1,2, . . . , n′ ≤ n.

• death is the generic word for the event of interest.
In the AML study, a “relapse” (end of remission
period) = “death”

• Cohort is a group of people who are followed through-
out the course of the study.

• People at risk at the beginning of the interval Ii

are those people who survived (not dead, lost, or
withdrawn) the previous interval Ii−1 .

Let R(t) denote the risk set just before time t
and let
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ni = #inR(y(i))
= #alive (andnot censored) just before y(i)

di = #diedat time y(i)

pi = P (surviving through Ii |alive at beginning Ii)
= P (T > y(i) |T > y(i−1))

qi = 1− pi = P (die in Ii |alive at beginning Ii).

General multiplication rule for joint events A1 and A2:

P (A1 ∩A2) = P (A2 | A1)P (A1).

From repeated application of this product rule, the sur-
vivor function is now expressed as

S(t) = P (T > t) =
∏

y(i)≤t

pi.

Estimates of pi and qi:

q̂i =
di

ni
and p̂i = 1− q̂i = 1− di

ni
=

(
ni − di

ni

)
.

K-M estimator of survivor function (1958):

Ŝ(t) =
∏

y(i)≤t

p̂i =
∏

y(i)≤t

(
ni − di

ni

)
.
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For AML maintained group:

|———|—–|–|—–|——|—|—–|—–|———–|—|—————|
0 9 13 13+18 23 28+31 34 45+ 48 161+

Ŝ(0) = 1
Ŝ(9) = Ŝ(0)× 11−1

11
= .91

Ŝ(13) = Ŝ(9)× 10−1
10

= .82

Ŝ(13+) = Ŝ(13)× 9−0
9

= Ŝ(13) = .82

Ŝ(18) = Ŝ(13)× 8−1
8

= .72

Ŝ(23) = Ŝ(18)× 7−1
7

= .61

Ŝ(28+) = Ŝ(23)× 6−0
6

= Ŝ(23) = .61

Ŝ(31) = Ŝ(23)× 5−1
5

= .49

Ŝ(34) = Ŝ(31)× 4−1
4

= .37

Ŝ(45+) = Ŝ(34)× 3−0
3

= Ŝ(34) = .37

Ŝ(48) = Ŝ(34)× 2−1
2

= .18

Ŝ(161+) = Ŝ(48)× 1−0
1

= Ŝ(48) = .18

The K-M curve is a right continuous step function,
which steps down only at an uncensored observa-
tion.

• Here Ŝ(t) is a defective survival function as it does

not jump down to zero. We cannot estimate S(t) be-

yond t = 48.
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Estimate of Variance of Ŝ(t)

Greenwood’s formula (1926):

v̂ar
(
Ŝ(t)

)
= Ŝ2(t)

∑

y(i)≤t

di

ni(ni − di)

Example with the AML data:

v̂ar
(
Ŝ(13)

)
= (.82)2

(
1

11(11− 1)
+

1

10(10− 1)

)
= .0136

s.e.
(
Ŝ(13)

)
=

√
.0136 = .1166

• Theory tells us, for each fixed value t,

Ŝ(t)
a∼ normal

(
S(t), v̂ar

(
Ŝ(t)

))
.

• At time t, an approximate (1− α)× 100% confidence
interval for the probability of survival, S(t) = P (T > t),
is given by

Ŝ(t)± zα

2
× s.e.

(
Ŝ(t)

)
.
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S/R Application

survfit function:

> library(survival) # For R users only
> km.fit <- survfit(Surv(weeks,status)~group,data=aml)
> plot(km.fit,conf.int=F,xlab="time until relapse (in weeks)",

ylab="proportion without relapse")
> summary(km.fit) # This displays the survival probabilities

# for each group.

group=0
time n.risk n.event survival std.err lower 95% CI upper 95% CI

5 12 2 0.8333 0.1076 0.6470 1.000
8 10 2 0.6667 0.1361 0.4468 0.995

12 8 1 0.5833 0.1423 0.3616 0.941
23 6 1 0.4861 0.1481 0.2675 0.883
27 5 1 0.3889 0.1470 0.1854 0.816
30 4 1 0.2917 0.1387 0.1148 0.741
33 3 1 0.1944 0.1219 0.0569 0.664
43 2 1 0.0972 0.0919 0.0153 0.620
45 1 1 0.0000 NA NA NA

group=1
time n.risk n.event survival std.err lower 95% CI upper 95% CI

9 11 1 0.909 0.0867 0.7541 1.000
13 10 1 0.818 0.1163 0.6192 1.000
18 8 1 0.716 0.1397 0.4884 1.000
23 7 1 0.614 0.1526 0.3769 0.999
31 5 1 0.491 0.1642 0.2549 0.946
34 4 1 0.368 0.1627 0.1549 0.875
48 2 1 0.184 0.1535 0.0359 0.944
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Plot of the Kaplan-Meier survivor curves
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Remarks:

• survfit fits each group to its own K-M curve.

• Default std.err is Greenwood’s.

• To obtain C.I.’s for Ŝ(t) using Greenwood’s for-
mula, specify conf.type = "plain" in survfit func-
tion.

• Default 95% C.I.’s in survfit are called "log" and
the formula is

exp
(
log (Ŝ(t))± 1.96 s.e.

(
Ĥ(t)

))
,

where Ĥ(t) is the estimated cumulative hazard func-
tion (to be defined).

• Sometimes, both of these intervals give limits out-
side the interval [0,1]. This is not so appealing as
S(t) is a probability! Kalbfleisch & Prentice (1980)
suggest using the transformation W = log(− log(Ŝ(t)))
to estimate the log cumulative hazard parameter
log(− log(S(t))), and to then transform back. These
intervals will always have limits within the interval
[0,1]. Specify conf.type="log-log" in the survfit
function.
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Estimate of quantiles:

As K-M is a step function, the inverse is not unique.
The estimate is the first observed failure time where
K-M steps below 1− p. That is,

t̂p = min{ti : Ŝ(ti) ≤ 1− p}.

AML maintained group: median t̂.5 = 31 weeks.

• The function quantile.km computes an estimated pth-
quantile, its s.e., and an approximate (1 − α) × 100%
C.I.

> quantile.km(km.fit,.25,.05,1.96) # the .25th-quantile
[1] "summary"

qp se.S.qp f.qp se.qp LCL UCL
1 18 0.1397 0.0205 6.8281 4.617 31.383 # in weeks

Truncated mean survival time:

The estimated mean is taken to be

m̂ean =

∫ y(n)

0
Ŝ(t) dt ,

where y(n) = max(yi).

• survfit function provides the estimates.

> km.fit
n events mean se(mean) median 0.95LCL 0.95UCL
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group=0 12 11 22.7 4.18 23 8 NA
group=1 11 7 52.6 19.83 31 18 NA

• Median is the preferred descriptive measure of typical survival

time because it is more resistant to presence of extreme values.

One large survival time can grossly inflate the mean.



Comparison of Two Survivor Curves

Test: H0 : S1(·) = S0(·) against HA : S1(·) 6= S0(·)
Log-rank test:

Use S function survdiff.

> survdiff(Surv(week,status)~group,data=aml)

N Observed Expected (O-E)^2/E (O-E)^2/V
group=1 11 7 10.69 1.27 3.4
group=2 12 11 7.31 1.86 3.4

Chisq= 3.4 on 1 degrees of freedom, p= 0.0653

At 5% level of significance, there is insufficient evidence

to conclude maintenance chemo effects remission time.
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Remarks:

1. log-rank stat = MH2,

where MH = the Mantel-Haenszel statistic (1959).

• Under H0, MH
a∼ N(0,1).

• Use MH =
√

log− rank to test HA : S1(·) > S0(·).

MH =
√

3.4 = 1.844

with p-value = .0653/2 = .033.

There is mild evidence to suggest that maintenance
chemotherapy prolongs the remission period, since
the one-sided test is appropriate.

2. The survdiff function contains a rho parameter.

• Default, rho = 0, conducts log-rank test.

• When rho = 1, conducts Peto test .
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Empirical Estimates of Hazard

Estimates of hazard (risk):

1. Estimate at a distinct ordered death time ti:

h̃(ti) =
di

ni
.

2. Estimate of hazard in the interval ti ≤ t < ti+1:

ĥ(t) =
di

ni(ti+1 − ti)
.

This is referred to as the K-M type estimate. It
estimates the rate of death per unit time in the
interval [ti, ti+1).

3. Examples with the AML data:

h̃(23) =
1

7
= .143

ĥ(26) = ĥ(23) =
1

7 · (31− 23)
= .018
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Estimates of H(·), cumulative hazard to time t :

1. Constructed with K-M:

Ĥ(t) = − log (Ŝ(t)) = − log
∏

y(i)≤t

(
ni − di

ni

)
,

v̂ar
(
Ĥ(t)

)
=

∑

y(i)≤t

di

ni(ni − di)
.

2. Nelson-Aalen estimate (1972, 1978):

H̃(t) =
∑

y(i)≤t

di

ni
,

v̂ar
(
H̃(t)

)
=

∑

y(i)≤t

di

n2
i

.

The Nelson-Aalen estimate is the cumulative sum
of estimated conditional probabilities of death from
I1 through Ik where tk ≤ t < tk+1. This estimate
is the first order Taylor approximation to the first
estimate. To see this let x = di/ni and expand
log(1− x) about x = 0.

3. Examples with the AML data:

Ĥ(26) = − log (Ŝ(26)) = − log(.614) = .488

H̃(26) =
1

11
+

1

10
+

1

8
+

1

7
= .4588
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• The function hazard.km takes a survfit object for its

argument.

For the maintained group:

> hazard.km(km.fit)
time ni di hihat hitilde Hhat se.Hhat Htilde se.Htilde

1 9 11 1 0.0227 0.0909 0.0953 0.0953 0.0909 0.0909
2 13 10 1 0.0200 0.1000 0.2007 0.1421 0.1909 0.1351
3 18 8 1 0.0250 0.1250 0.3342 0.1951 0.3159 0.1841
4 23 7 1 0.0179 0.1429 0.4884 0.2487 0.4588 0.2330
5 31 5 1 0.0667 0.2000 0.7115 0.3345 0.6588 0.3071
6 34 4 1 0.0179 0.2500 0.9992 0.4418 0.9088 0.3960
7 48 2 1 NA 0.5000 1.6923 0.8338 1.4088 0.6378
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Hazard Ratio

For two treatment groups, say 0 and 1, their hazard
ratio (HR) is

HR(t|1,0) =
h(t|1)

h(t|0)
.

• The HR is a numeric measure that describes
the treatment effect on survival over time.

• We say their hazards are proportional (PH) when

HR(t|1,0) = k > 0, constant over follow-up time.

• Crossing hazard curves ⇒ hazards are not PH.

• The function g.emphaz produces two plots, one for
each of the two types of hazard estimates.
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> Surv0 <- Surv(aml$weeks[aml$group==0],
aml$status[aml$group==0])

> Surv1 <- Surv(aml$weeks[aml$group==1],
aml$status[aml$group==1])

> data <- list(Surv1,Surv0)
> g.emphaz(data,text="ht",main="hitilde",

legend=c("maintained","nonmaintained"))
> g.emphaz(data,text="ht",main="hihat",

legend=c("maintained","nonmaintained"))

[[1]]: maintained [[2]]: nonmaintained
time ht hhat time ht hhat

1 9 0.091 0.023 1 5 0.167 0.056
2 13 0.100 0.020 2 8 0.200 0.050
3 18 0.125 0.025 3 12 0.125 0.011
4 23 0.143 0.018 4 23 0.167 0.042
5 31 0.200 0.067 5 27 0.200 0.067
6 34 0.250 0.018 6 30 0.250 0.083
7 48 0.500 0.018 7 33 0.333 0.033

8 43 0.500 0.250
9 45 1.000 0.250

ĥnm(15)

ĥm(15)
=

.011

.020
= .55 and

ĥnm(25)

ĥm(25)
=

.042

.018
= 2.33 .

The nonmaintained group has 55% of the risk of those

maintained of relapsing at 15 weeks. However, on the

average, those nonmaintained have 2.33 times the risk

of those maintained of relapsing at 25 weeks.
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With larger datasets these plots will be chaotic. A far
more useful picture is provided by:

The kernel estimator of h(t) is given by

h̃kernel(t) =
1

b

n′∑

i=1

K
(

t− y(i)

b

)
di

ni
.

The kernel function K is a bounded function which van-

ishes outside [−1,1] and has integral 1. The bandwidth

or window size b is a positive parameter. It smoothes

the increments di/ni of the Nelson-Aalen estimator H̃(t).

One frequently used kernel is the Epanechnikov kernel

K(t) = 0.75(1 − t2), |t| ≤ 1. Another is the biweight

kernel K(t) = (15/16)(1− t2)2, |t| ≤ 1.
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The essential pieces of R code follow: Let g = 0,1.

> fit.g <- summary(survfit(Surv(weeks,status),
subset=group==g,conf.type="n",data=aml),censor=T)

> u.g <- fit.g$time
> weight.g <- fit.g$n.event/fit.g$n.risk
> smooth.g <- density(u.g,kernel="epanechnikov",

weights=weight.g,n=50,from=0,to=50)
> plot(smooth.g$x,smooth.g$y,type="l",...)
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Smoothed estimates, h̃kernel
g (t), g = 0,1, of hazards. The

Epanechnikov kernel K(t) = 0.75(1 − t2), |t| ≤ 1 was

used.
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Ratio of Smoothed Hazards: AML data

At 15 weeks we estimate the maintained group has
about 66% of the risk of those nonmaintained of re-
lapsing; or, those nonmaintained have 1.52 times the
risk of those maintained of relapsing at 15 weeks. At
25 weeks the risk is slightly higher.

The plot is only an illustration of how to visualize and

interpret HR’s. Statistical accuracy (confidence bands)

should be incorporated as these comments may not be

statistically significant. Pointwise 95% bootstrap confi-

dence limits for the log-HR are commonly reported.
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Stratifying on a covariate:

• Stratifying on a particular covariate is one method
that can account for its possible confounding and/or
interaction effects with the treatment of interest on
the response.

• Such effects can mask the “true” effects of the
treatment of interest.

Thus, stratification can provide us with stronger (or
weaker) evidence, or more importantly, reverse the
sign of the effect. That is, it is possible for the
aggregated data to suggest treatment is favorable
when in fact, in every subgroup, it is highly unfavor-
able; and vice versa. This is known as Simpson’s
paradox (Simpson, 1951).

Suppose we knew the gender of the patients in the AML
study. We could stratify to see if there is a masked
effect.

> attach(aml)
> survfit(Surv(weeks,status)~group+strata(gender))

# Gives four separate survival probability tables.
# plot(....) produces four K-M curves on the same plot.

> survdiff(Surv(weeks,status)~group+strata(gender))
# Conducts the log-rank test pooled over the two strata.

> detach()
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Chapter 3

Parametric Models and Methods

Models:

• Weibull ( includes the exponential model)

• log-normal

• log-logistic

• gamma

Remark:

Except for the gamma distribution, these lifetime dis-

tributions have the property that the distribution of the

log-transform log(T ) is a member of the location and

scale family of distributions.
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Summary:

The common features are:

• The time T distributions have two parameters −
scale = λ > 0 and shape = α > 0 .

• In log-time, Y = log(T ), the distributions have two
parameters −

location = µ = − log(λ) and scale = σ =
1

α
.

• Each can be expressed in the form

Y = log(T ) = µ + σZ ,

where Z is the standard member; that is,

µ = 0 (λ = 1) and σ = 1 (α = 1) .

• They are log-linear models.

The three distributions are summarized as follows:

T ⇐⇒ Y = log(T )
Weibull ⇐⇒ extreme minimum value
log-normal ⇐⇒ normal
log-logistic ⇐⇒ logistic

37



yp = log(tp) = µ + σzp ,

tp quantile yp = log(tp) quantile form of standard quantile zp

Weibull extreme value log(− log(S(tp)))

= log(H(tp))

= log(− log(1− p))

log-normal normal Φ−1(p), where Φ denotes the

standard normal d.f.

log-logistic logistic − log

(
S(tp)

1− S(tp)

)

= − log(odds)

= − log
(

1−p
p

)
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Weibull Distribution

p.d.f. f(t) survivor S(t) hazard h(t)

λα(λt)α−1× exp (−(λt)α) λα(λt)α−1

exp (−(λt)α)
mean E(T ) variance V ar(T ) pth -quantile tp

λ−1Γ(1 + 1
α
) λ−2Γ(1 + 2

α
) λ−1 (− log(1− p))

1

α

−λ−2(Γ(1 + 1
α
))2 λ > 0 and α > 0

Γ(k) =
∫∞
0 uk−1e−udu, k > 0.

The form of the survivor function S(t) gives us

log(t) = − log(λ) + σ log (− log(S(t)))

= − log(λ) + σ log (H(t)) ,

where σ = 1/α.

• When α = 1, the Weibull is just the exponential

distribution.
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Density and hazard curves for Weibull model with λ = 1.

Exponential curves correspond to α = 1.
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Remarks:

• h(t) is monotone increasing when α > 1, decreasing
when α < 1, and constant for α = 1. The parameter
α is called the shape parameter as the shape of the
p.d.f., and hence the other functions, depends on
the value of α.

• The λ is a scale parameter in that the effect of
different values of λ is just to change the scale on
the horizontal (t) axis, not the basic shape of the
graph.

• An increasing Weibull hazard may be useful for mod-
elling survival times of leukemia patients not re-
sponding to treatment, where the event of interest
is death. As survival time increases for such a pa-
tient, and as the prognosis accordingly worsens, the
patient’s potential for dying of the disease also in-
creases.

• A decreasing Weibull hazard may well model the
death times of patients recovering from surgery.
The potential for dying after surgery usually de-
creases as the time post-surgery increases, at least
for a while.

• Plot of log-time against the log-cumulative hazard
is a straight line with slope σ = 1/α and y-intercept
µ = − log(λ). Use for a graphical check.
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Q-Q plot − diagnostic tool for model adequacy

Recall: yp = log(tp) = µ + σzp

• ti, i = 1, . . . , r ≤ n, denote the ordered uncensored
observed failure times.

• Use K-M to get estimated failure probabilities. That
is, get

p̂i = 1− Ŝ(ti)

for each yi = log(ti).

• Get the parametric standard quantile zi by

F0,1(zi) = P (Z ≤ zi) = p̂i,

where F0,1 is the d.f. of the standard parametric
model (µ = 0, σ = 1) under consideration.

• Plot the points (zi, yi). If the proposed model is
adequate, points should lie close to a straight line
with slope σ and y-intercept µ.

• An appropriate line to compare the plot pattern to
is one with the maximum likelihood estimates σ̂ and
µ̂ − the MLE line; that is, ŷp = µ̂ + σ̂zp.
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• Equivalently, we can plot the points (zi, ei) where
the ei is the ith ordered residual

ei =
yi − µ̂

σ̂

and zi is the corresponding log-parametric standard
quantile of either the Weibull, log-normal, or log-
logistic distribution. If the model under study is
appropriate, the points (zi, ei) should lie very close
to the 45o-line through the origin.

The function qq.reg.resid.r draws this plot. This
function is also useful for checking adequacy of a
regression model.

Example: AML maintained group

• The R function qweibull(p,α,λ−1) computes quan-
tiles for the Weibull. Take log to get the extreme value
quantiles.

ti yi K-M(ti) p̂i zi

log(ti) log(qweibull(p̂i,1,1))

9 2.197 .909 .091 −2.35

13 2.565 .818 .182 −1.605

Plot the points (2.197,−2.35), (2.565,−1.605), etc.
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Maximum Likelihood Estimation (MLE)

• A generic likelihood function:

L(θ) = L(θ|t1, · · · , tn) =
n∏

i=1

f(ti|θ)

• maximum likelihood estimator (MLE), denoted by
θ̂, is the value of θ in Ω that maximizes L(θ) or, equiv-
alently, maximizes the log-likelihood

logL(θ) =
n∑

i=1

logf(ti|θ).

• MLE’s possess the invariance property; that is,

τ̂(θ) = τ(θ̂ ).
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• Fisher information matrix I(θ):

Let θ be a d× 1 vector parameter.

I(θ) =

((
−E(

∂2

∂θj∂θk

logL(θ))

))
,

where E denotes expectation. I(θ) is a d× d matrix.

• The MLE θ̂ has the following large sample distribu-
tion:

θ̂
a∼ MVN(θ, I−1(θ)),

where MVN denotes multivariate normal and
a∼ is read

“is asymptotically distributed.”

• When θ is a scalar,

vara(θ̂ ) =
1

I(θ)
,

where I(θ) = −E(∂2 logL(θ)/∂θ2).
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• observed information matrix i(θ):

i(θ) =

((
− ∂2

∂θj∂θk

logL(θ)

))

evaluated at the MLE θ̂ approximates I(θ)

• For the univariate case,

i(θ) = − ∂2 logL(θ)

∂θ2
.

• Hence, vara(θ̂ ) is approximated by (i(θ̂ ))−1.
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The delta method is useful for
1. obtaining limiting distributions of smooth functions
of an MLE.
2. removing the parameter of interest from the variance
of an estimator. This removes this source of variation
which can yield more efficient estimators; i.e., narrower
confidence intervals.This is called variance-stabilization.

We describe it for the univariate case.

Delta method:

Suppose a random variable Z has a mean µ and variance
σ2 and suppose we want to approximate the distribution
of some function g(Z). Take a first order Taylor expan-
sion of g(Z) about µ and ignore the higher order terms
to get

g(Z) ≈ g(µ) + (Z − µ)g′(µ).

Then the mean(g(Z)) ≈ g(µ) and the var(g(Z)) ≈ (g′(µ))2 σ2.

Furthermore, if

Z
a∼ normal(µ, σ2),

then

g(Z)
a∼ normal(g(µ),

(
g′(µ)

)2
σ2).
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Confidence Intervals and Tests

An approximate (1 − α) × 100% confidence interval for
the parameter θ is given by

θ̂ ± zα

2
s.e.(θ̂ ) ,

where zα

2
is the upper α

2
quantile of the standard normal

distribution and

s.e.(θ̂ ) =
√

vara(θ̂ ) ≈
√
− (

∂2logL(θ)/∂θ2
)−1

=

√
(i(θ̂ ))−1.

Likelihood ratio test:

To test H0 : θ ∈ Ω0 (reduced model) against HA : θ ∈ Ωc
0

(full model), use

r(x) =
supΩ0

L(θ)

supΩ L(θ)
.

Note that r(x) ≤ 1.

• This handles hypotheses with nuisance parameters.
Suppose θ = (θ1, θ2, θ3).

For example H0 : (θ1 = 0, θ2, θ3) against HA : (θ1 6=
0, θ2, θ3). Here θ2 and θ3 are nuisance parameters.

• Most often, finding the sup amounts to finding the
MLE’s and then evaluating L(θ) at the MLE.

• Reject H0 for small values. Or, equivalently, we reject
H0 for large values of

r∗(x) = −2 log r(x).

• r∗(x) a∼ χ2
(df).
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One-Sample Problem

Fitting data to the exponential model:

Let u, c, and nu denote uncensored, censored, and number of un-
censored observations, respectively. The n observed values are
now represented by the vectors y and δ, where y′ = (y1, . . . , yn) and

δ′ = (δ1, . . . , δn). Then

• Likelihood:

L(λ) =
∏

u

f(yi|λ) ·
∏

c

Sf(yi|λ)

=
∏

u

λ exp(−λyi)
∏

c

exp(−λyi)

= λnu exp
(
− λ

∑
u

yi

)
exp

(
− λ

∑
c

yi

)

= λnu exp
(
− λ

n∑
i=1

yi

)

• Log-likelihood:

logL(λ) = nu log(λ)− λ

n∑
i=1

yi

The MLE λ̂ solves
∂ logL(λ)

∂λ
=

nu

λ
−

n∑
i=1

yi = 0

∂2 logL(λ)

∂λ2
= −nu

λ2
= −i(λ)
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• MLE:

λ̂ =
nu∑n

i=1
yi

and vara(λ̂ ) =
(
−E

(
−nu

λ2

))−1

=
λ2

E(nu)
,

where E(nu) = n · P (T ≤ C).

λ̂− λ√
λ2/E(nu)

a∼ N(0,1).

Since E(nu) depends on G, use the observed information
i(λ) evaluated at λ̂ for the variance.

vara(λ̂) ≈ 1

i(λ̂)
=

λ̂2

nu
,

where i(λ) = nu/λ2.

By invariance property, the MLE for the mean θ = 1/λ is
θ̂ = 1/λ̂ =

∑n

i=1
yi/nu.

On the AML data, nu = 7,

λ̂ =
7

423
= 0.0165, and vara(λ̂) ≈ λ̂2

7
=

0.01652

7
.

• A 95% C.I. for λ is given by

λ̂±z0.025·se(λ̂) =: 0.0165±1.96·0.0165√
7

=: [0.004277 , 0.0287].
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• Let’s use the delta method. Take g(λ) = log(λ). Then
g ′(λ) = 1/λ. The delta method tells us

vara(log(λ̂ )) = (g ′(λ))2 × vara(λ̂ )

≈ 1

λ2
× 1

i(λ)

=
1

λ2
× λ2

nu

=
1

nu
, which is free of λ .

and

log(λ̂)
a∼ N

(
log(λ),

1

nu

)
.

A 95% C.I. for log(λ) is given by

log(λ̂)± 1.96 · 1√
nu

log
(

7

423

)
± 1.96 · 1√

7

[−4.84,−3.36].

Transform back by taking exp(endpoints). This second 95%
C.I. for λ is

[.0079, .0347],

which is slightly wider than the previous interval for λ.

Invert and reverse endpoints to obtain a 95% C.I. for the
mean θ. This yields [28.81,126.76] weeks.
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Analogously,

log(θ̂)
a∼ N

(
log(θ),

1

nu

)

log(t̂p)
a∼ N

(
log(tp),

1

nu

)
.

Analogously, we first construct C.I.’s for the log(parameter), then
take exp(endpoints) to obtain C.I.’s for the parameter.

Most statisticians prefer this approach.

Using the AML data, 95% C.I.’s are summarized:

parameter point estimate log(parameter) parameter

mean 60.43 weeks [3.361, 4.84] [28.82,126.76] weeks

median 41.88 weeks [2.994, 4.4756] [19.965,87.85] weeks

The S/R functions we use compute these preferred intervals.
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• The likelihood ratio test:

Test H0 : θ = 1/λ = 30 against HA : θ = 1/λ 6= 30:

r∗(y) = −2 logL(λ0) + 2 logL(λ̂)

= −2nu log(λ0) + 2λ0

n∑
i=1

yi + 2nu log
( nu∑n

i=1
yi

)
− 2nu

= −2 · 7 · log(
1

30
) +

2

30
· 423 + 2 · 7 · log

( 7

423

)
− 2 · 7

= 4.396.

The tail area under the χ2
(1)

density curve approximates the

p-value. The p -value = P (r∗(y) ≥ 4.396) ≈ 0.036. Therefore,

here we reject H0 : θ = 1/λ = 30 and conclude that mean
survival is > 30 weeks.

In S/R, use the following code to obtain the p -value:
> 1-pchisq(4.396,1)
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S/R Application

The S/R function survreg fits parametric models with the MLE
approach.

• By default survreg uses a log link function which transforms the
problem into estimating location µ = − log(λ) and scale σ = 1/α.

• In the output, µ̂ is the intercept value and Scale = σ̂.

• Once the parameters are estimated via survreg, we can use S/R
functions to compute estimated survival probabilities and quantiles.
These functions are summarized below:

Weibull logistic (Y = log(T )) normal (Y = log(T ))

F (t) pweibull(q, α, λ−1) plogis(q, µ, σ) pnorm(q, µ, σ)

tp qweibull(p, α, λ−1 ) qlogis(p, µ, σ) qnorm(p, µ, σ)
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# Weibull fit

> aml1 <- aml[group==1, ]
> attach(aml1)
> weib.fit <- survreg(Surv(weeks,status)~1,dist="weib")
> summary(weib.fit)

Value Std. Error z p
(Intercept) 4.0997 0.366 11.187 4.74e-029
Log(scale) -0.0314 0.277 -0.113 9.10e-001

Scale= 0.969

# λ̂ = exp(−µ̂) = exp(−4.0997) = .0166.
# α̂ = 1/σ̂ = 1/(.969) = 1.032.
# Estimated median along with a 95% C.I. (in weeks).

> medhat <- predict(weib.fit,type="uquantile",p=0.5,se.fit=T)
> medhat1 <- medhat$fit[1]
> medhat1.se <- medhat$se.fit[1]
> exp(medhat1)
[1] 42.28842
> C.I.median1 <- c(exp(medhat1),exp(medhat1-1.96*medhat1.se),

exp(medhat1+1.96*medhat1.se))
> names(C.I.median1) <- c("median1","LCL","UCL")
> C.I.median1

median1 LCL UCL
42.28842 20.22064 88.43986

> qq.reg.resid.r(aml1,weeks,status,weib.fit,"qweibull",
"standard extreme value quantile") #Draws a Q-Q plot
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# Log-logistic fit

> loglogis.fit<-survreg(Surv(weeks,status)~1,dist="loglogistic")
> summary(loglogis.fit)

Value Std. Error z p
(Intercept) 3.515 0.306 11.48 1.65e-030
Log(scale) -0.612 0.318 -1.93 5.39e-002

Scale= 0.542

# Estimated median along with a 95% C.I. (in weeks).

> medhat <- predict(loglogis.fit,type="uquantile",p=0.5,se.fit=T)
> medhat1 <- medhat$fit[1]
> medhat1.se <- medhat$se.fit[1]
> exp(medhat1)
[1] 33.60127
> C.I.median1 <- c(exp(medhat1),exp(medhat1-1.96*medhat1.se),

exp(medhat1+1.96*medhat1.se))
> names(C.I.median1) <- c("median1","LCL","UCL")
> C.I.median1

median1 LCL UCL
33.60127 18.44077 61.22549

> qq.reg.resid.r(aml1,weeks,status,loglogis.fit,"qlogis",
"standard logistic quantile") #Draws a Q-Q plot

> detach()
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data.
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Discussion

Summary table:

MLE’s fit to AML1 data at the models:

model µ̂ median1 95% C.I. σ̂

exponential 4.1 41.88 [19.97, 87.86] weeks 1

Weibull 4.1 42.29 [20.22, 88.44] weeks .969

log-logistic 3.52 33.60 [18.44, 61.23] weeks .542

The log-logistic gives the narrowest C.I. among the three. Its esti-
mated median of 33.60 weeks is the smallest and very close to the
K-M estimated median of 31 weeks.

The Q-Q plots are useful for distributional assessment. It
“appears” that a log-logistic model fits adequately.

The estimated log-logistic survival curve is overlayed on the K-M
curve for the AML1 data in the last figure.
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Two-Sample Problem

We compare two survival curves from the same parametric family.

• Focus on comparing scale parameters λ1 and λ2.

• In the log-transformed problem, this compares the two locations,

µ1 = − log(λ1) and µ2 = − log(λ2).

Extreme Value Densities

 

µ2 µ1β∗

We explore if any of the log-transform distributions, which belong
to the location and scale family, fit this data adequately.

• The full model can be expressed as a log-linear model as follows:

Y = log(T )

= µ̃ + error

= θ + β∗group + error

=

{
θ + β∗ + error if group = 1 (maintained)

θ + error if group = 0 (nonmaintained).

The µ̃ is called the linear predictor. In this two groups model, it

has two values µ1 = θ + β∗ and µ2 = θ.
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• We know µ̃ = − log(λ̃), where λ̃ denotes the scale parameter
values of the distribution of the target variable T .

• Then λ̃ = exp(−θ − β∗group).

The two values are

λ1 = exp(−θ − β∗) and λ2 = exp(−θ)

.

The null hypothesis is:

H0 : λ1 = λ2 if and only if µ1 = µ2 if and only if β∗ = 0 .

Recall that the scale parameter in the log-transform model is the
reciprocal of the shape parameter in the original model; that is,
σ = 1/α.

We test H0 under each of the following cases:

Case 1: Assume equal shapes (α); that is, we assume equal
scales σ1 = σ2 = σ. Hence, error = σZ, where the random
variable Z has either the standard extreme value, standard lo-
gistic, or the standard normal distribution. Recall by standard,
we mean µ = 0 and σ = 1.

Case 2: Assume different shapes; that is, σ1 6= σ2.
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S/R Application

# Weibull fit:

Model 1: Data come from same distribution. The Null Model is
Y = log(T ) = θ +σZ, where Z is a standard extreme value random
variable.

> attach(aml)
> weib.fit0 <- survreg(Surv(weeks,status) ~ 1,dist="weib")
> summary(weib.fit0)

Value Std. Error z p
(Intercept) 3.6425 0.217 16.780 3.43e-063
Scale= 0.912
Loglik(model)= -83.2 Loglik(intercept only)= -83.2

Model 2: Case 1: With different locations and equal scales σ, we
express this model by

Y = log(T ) = θ + β∗group + σZ.

> weib.fit1 <- survreg(Surv(weeks,status) ~ group,dist="weib")
> summary(weib.fit1)

Value Std. Error z p
(Intercept) 3.180 0.241 13.22 6.89e-040

group 0.929 0.383 2.43 1.51e-002
Scale= 0.791
Loglik(model)= -80.5 Loglik(intercept only)= -83.2

Chisq= 5.31 on 1 degrees of freedom, p= 0.021

> weib.fit1$linear.predictors # Extracts the estimated mutildes.

4.1091 4.1091 4.1091 4.1091 4.1091 4.1091 4.1091 4.1091
4.1091 4.1091 4.1091 3.1797 3.1797 3.1797 3.1797 3.1797
3.1797 3.1797 3.1797 3.1797 3.1797 3.1797 3.1797

# muhat1=4.109 and muhat2=3.18 for maintained and
# nonmaintained groups respectively.
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Model 3: Case 2: Y = log(T ) = θ + β∗group + error, different
locations, different scales.

Fit each group separately. On each group run a survreg to fit the
data. This gives the MLE’s of the two locations µ1 and µ2, and
the two scales σ1 and σ2.

> weib.fit20 <- survreg(Surv(weeks,status) ~ 1,
data=aml[group==0, ],dist="weib")

> weib.fit21 <- survreg(Surv(weeks,status) ~ 1,
data=aml[group==1, ],dist="weib")

> summary(weib.fit20)
Value Std.Error z p

(Intercept) 3.222 0.198 16.25 2.31e-059
Scale=0.635

> summary(weib.fit21)
Value Std.Error z p

(Intercept) 4.1 0.366 11.19 4.74e-029
Scale=0.969

To test the reduced model against the full Model 2, we use the
LRT. The anova function is appropriate for hierarchical models.

> anova(weib.fit0,weib.fit1,test="Chisq")
Analysis of Deviance Table Response: Surv(weeks, status)

Terms Resid. Df -2*LL Test Df Deviance Pr(Chi)
1 1 21 166.3573
2 group 20 161.0433 1 5.314048 0.02115415

# Model 2 is a significant improvement over the null
# model (Model 1).
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To construct the appropriate likelihood function for Model 3 to be
used in the LRT:

> loglik3 <- weib.fit20$loglik[2]+weib.fit21$loglik[2]
> loglik3
[1] -79.84817

> lrt23 <- -2*(weib.fit1$loglik[2]-loglik3)
> lrt23
[1] 1.346954

> 1 - pchisq(lrt23,1)
[1] 0.2458114 # Retain Model 2.

The following table summarizes the three models weib.fit0, 1,
and 2:

Model Calculated Parameters The Picture
1 (0) θ, σ same location, same scale
2 (1) θ, β∗, σ ≡ µ1, µ2, σ different locations, same scale
3 (2) µ1, µ2, σ1, σ2 different locations, different scales
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We now use the log-logistic and log-normal distribution to estimate
Model 2. The form of the log-linear model is the same. The
distribution of error terms is what changes.

Y = log(T ) = θ + β∗group + σZ,

where Z ∼ standard logistic or standard normal.

> loglogis.fit1 <- survreg(Surv(weeks,status) ~ group,
dist="loglogistic")

> summary(loglogis.fit1)

Value Std. Error z p
(Intercept) 2.899 0.267 10.84 2.11e-027

group 0.604 0.393 1.54 1.24e-001
Scale= 0.513

Loglik(model)= -79.4 Loglik(intercept only)= -80.6

Chisq= 2.41 on 1 degrees of freedom, p= 0.12 # p-value of LRT.

# The LRT is test for overall model adequacy. It is not
# significant.

> lognorm.fit1 <- survreg(Surv(weeks,status) ~ group,
dist="lognormal")

> summary(lognorm.fit1)

Value Std. Error z p
(Intercept) 2.854 0.254 11.242 2.55e-029

group 0.724 0.380 1.905 5.68e-002
Scale= 0.865

Loglik(model)= -78.9 Loglik(intercept only)= -80.7

Chisq= 3.49 on 1 degrees of freedom, p= 0.062 # p-value of LRT.

# Here there is mild evidence of the model adequacy.
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Summary:

Summary of the distributional fits to Model 2:

distribution max. log-likeli p -value for p -value for

L(θ̂, β̂∗) model θ̂ β̂∗ group effect
adequacy

Weibull −80.5 0.021 3.180 0.929 0.0151

log-logistic −79.4 0.12 2.899 0.604 0.124

log-normal −78.9 0.062 2.854 0.724 0.0568

# The Q-Q plots are next.
> t.s0 <- Surv(weeks[group==0],status[group==0])
> t.s1 <- Surv(weeks[group==1],status[group==1])
> qq.weibreg(list(t.s0,t.s1),weib.fit1)
> qq.loglogisreg(list(t.s0,t.s1),loglogis.fit1)
> qq.lognormreg(list(t.s0,t.s1),lognorm.fit1)
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Model 2: ŷp = θ̂ + β̂∗group + σ̂Zp.
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Prelude to Parametric Regression Models

Let’s explore Model 2 under the assumption that T ∼ Weibull.

Y = log(T )

= θ + β∗group + σZ

= µ̃ + σZ ,

where Z is a standard extreme minimum value random variable.

• The linear predictor µ̃ = − log(λ̃)

• σ = 1/α.

• The hazard function for the Weibull in this context is expressed
as

h(t|group) = αλ̃αtα−1

= αλαtα−1 exp(βgroup)

= h0(t) exp(βgroup) ,

when we set λ = exp(−θ) and β = −β∗/σ. WHY!

• h0(t) denotes the baseline hazard, which is free of the covariate
group.

The hazard ratio (HR) of group 1 to group 0 is

HR =
h(t|1)

h(t|0)
=

exp(β)

exp(0)
= exp(β) .

If we believe the Weibull model is appropriate, the HR is constant

over follow-up time t; that is, the graph of HR is a horizontal line

with height exp(β). We say the Weibull enjoys the proportional

hazards property.
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On the AML data,

β̂ =
−β̂∗

σ̂
=
−0.929

0.791
= −1.1745 .

Therefore, the estimated HR is

ĤR =
ĥ(t|1)

ĥ(t|0)
= exp(−1.1745) ≈ 0.31 .

The maintained group has 31% of the risk of the control group’s
risk of relapse. Or, the control group has (1/0.31)=3.23 times the
risk of the maintained group of relapse at any given time t.

The HR is a measure of effect that describes the relationship be-
tween time to relapse and group.

If we consider the ratio of the estimated survival probabilities, say

at t = 31 weeks, since ̂̃λ = exp(−̂̃µ ), we obtain

Ŝ(31|1)

Ŝ(31|0)
=

0.652

0.252
≈ 2.59 .

The maintained group is 2.59 times more likely to stay in remission

at least 31 weeks.
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