
30.August 2010

Parts of Chapters 5 & 7

Stratified and Piecewise Cox Ph Models

Example 1: Recall the Kleinbaum crossing
hazards figure:
In this study that compares surgery to no surgery,
we might expect to see hazard functions for
each group as follows:

h(t|E)

E=1 (no surgery)
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Before 2 days, HR(1|0) < 1, whereas later,
HR(1|0) > 1.
The PH assumption is violated, since HR must
be constant over the follow-up time.

1



Example 2: Crossing survivor curves:
VA Cooperative Trial No. 345
This was a prospective randomized study conducted be-
tween March 1992 and August 1994. Patients were
randomly assigned to either unsupplemented general
anesthesia and postoperative analgesia (USGA) or epidu-
ral plus light general anesthesia and postoperative epidu-
ral morphine (ESGA). procedures.

A researcher began a retrospective look ca. June 2003

• It is well established that the epidural protects cer-
tain aspects of the immune function, and to block
the stress response to surgical trauma.

• The epidural protocol has been common practice.

• Therefore, it was hypothesized that cancer surgery
patients should benefit from ESGA. The research
hypothesis is depicted in the following graph:
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In this example we study the subset of patients in the
VA trial who had had surgery for colon cancer. Of
the 247 patients identified in that study, we have sur-
vival data on 246:

ESGA USGA
METAST 42 48 90
NO MET 79 77 156

121 125 246
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What time reveals for the No MET group:
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p-value = 0.0448

Return to the 3.5-year mark:
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p-value = 0.761

.0822-year

3.5 years follow-up
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The Cox PH structure imposes restrictions on the
behavior of survivor curves.

• With just one exposure variable x = 0,1, the rela-
tionship is

h(t|1) = h(t|0) · exp(β).

• Let TRT = 0 if ESGA, 1 if USGA. Then

S(t|1) = (S(t|0))exp(β).

Cannot possibly model the crossing curves.

• Consider the results from the Cox PH fit to No Met
Data only

> coxph(Surv(TIME,CENSOR)~TRT
coef exp(coef) se(coef) z p

TRT -0.42 0.657 0.211 -1.99 0.046
Likelihood ratio test=4.03 on 1 df, p=0.0447 n=156
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Scaled Schoenfeld residual plot, and the Grambsch-Therneau
(1994) test for PH assumption. The residual plot clearly
displays that TRT varies with time.

> PH.test
rho chisq p

TRT -0.174 2.86 0.0906
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Example 3: Divergent survivor curves
Australian study of heroin addicts, Caplehorn, et
al. (1991)

• two methadone treatment clinics

• T = days remaining in treatment
( = days until drop out of clinic)

• clinics differ in overall treatment policies

• 238 patients in the study

Description of ADDICTS data set

Data set: ADDICTS
Column 1: Subject ID
Column 2: Clinic (1 or 2) ← exposure variable
Column 3: Survival status

0 = censored
1 = departed clinic

Column 4: Survival time in days
Column 5: Prison record ← covariate

0 = none, 1 = any
Column 6: Maximum methadone dose (mg/day)← covariate
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Part I: The following is R code, along with modified
output, that fits two K-M curves not adjusted for
any covariates to the survival data.

> addict.fit <- survfit(Surv(Days.survival,Status)~Clinic,
data = ADDICTS)

> addict.fit
n events mean se(mean) median 0.95LCL 0.95UCL

Clinic=1 163 122 432 22.4 428 348 514
Clinic=2 75 28 732 50.5 NA 661 NA
> survdiff(Surv(Days.survival,Status)~Clinic,data = ADDICTS)

N Observed Expected (O-E)^2/E (O-E)^2/V
Clinic=1 163 122 90.9 10.6 27.9
Clinic=2 75 28 59.1 16.4 27.9
Chisq= 27.9 on 1 degrees of freedom, p= 1.28e-007
> plot(addict.fit, lwd = 3,col = 1,type = "l",lty=c(1, 3),

cex=2,lab=c(10,10,7),...)
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Figure 1. K-M curves for ADDICTS not adjusted for
covariates.
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Results:

• The log-rank test is highly significant with p -value=
1.28× 10−7.

• The graph in Figure 1 glaringly confirms this differ-
ence.

• This graph shows curve for clinic 2 is always above
curve for clinic 1.

• Curves diverge, with clinic 2 being dramatically bet-
ter after about one year in retention of patients in
its treatment program.

• Lastly, this suggests the PH assumption is not sat-
isfied.
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Part II: The Cox PH model We now fit a Cox PH
model which adjusts for the three predictor variables.
This hazard model is

h(t|x) = h0 exp(β1Clinic + β2Prison + β3Dose).

A summary of the R output is:

> fit1 <- coxph(Surv(Days.survival,Status) ~ Clinic+Prison+
Dose,data = ADDICTS,x = T) # Fits a Cox PH model

> fit1
coef exp(coef) se(coef) z p

Clinic -1.0098 0.364 0.21488 -4.70 2.6e-006
Prison 0.3265 1.386 0.16722 1.95 5.1e-002
Dose -0.0354 0.965 0.00638 -5.54 2.9e-008

Likelihood ratio test=64.6 on 3 df, p=6.23e-014 n= 238
> testph <- cox.zph(fit1) # Tests the proportional

# hazards assumption
> print(testph) # Prints the results

rho chisq p
Clinic -0.2578 11.19 0.000824
Prison -0.0382 0.22 0.639324
Dose 0.0724 0.70 0.402755
GLOBAL NA 12.62 0.005546
> par(mfrow = c(2, 2))
> plot(testph) # Plots the scaled Schoenfeld residuals.
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Figure 2. Diagnostic plots of the constancy of the coef-
ficients in the fit1 model. Each plot is of a component of
β̂(t) against ordered time. A spline smoother is shown,
together with ±2 standard deviation bands.
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Results:

• The GLOBAL test (a LRT) for non-PH is highly sta-
tistically significant with p -value = 0.005546.

• The p -values for Prison and Dose are very large,
supporting that these variables are time-independent.

• The Grambsch-Therneau test has a p -value = 0.000824
for Clinic. This provides strong evidence that the
variable Clinic violates the PH assumption and con-
firms what the graph in Figure 1 suggests.

• The plot of β̂1(t), the coefficient for Clinic, against
ordered time in Figure 2 provides further supporting
evidence of this violation.

• We recommend finding a function g(t) to multiply
Clinic by; that is, create a defined time-dependent
variable, and then fit an extended Cox model.
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Since the Cox PH model is inappropriate, the following
strategies are employed:

• analyze by stratifying on the exposure variable;
that is, do not fit any regression model, and, in-
stead obtain the Kaplan-Meier curve for each group
separately;

• to adjust for other significant factor effects, use
Cox model stratified on exposure variable E.

> coxph(Surv(time,status)~ X1+X2+· · ·+strata(E))

• fit a Cox PH model that includes a time-dependent
variable which measures the interaction of exposure
with time. This model is called an extended Cox
model. We try to find the point in time t0 where
the hazard rates change. Then fit a piecewise Cox
Ph model over these two time intervals.
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Part III: Stratified Cox model

Suppose we have j = 1,2, . . . , s, i.e., s strata. For each
stratum we assume the Cox PH model:

hj(t|x) = h0j(t) exp(x
′
β), j = 1, . . . , s.

The regression coefficients are assumed to be the same
in each stratum although the baseline hazard functions
may ne different and completely unrelated. Then using
only the data for those subjects in the jth stratum,
we have:

Let t(1j), . . . , t(rj) denote the r ≤ nj ordered (uncensored)
death times, so that t(kj) is the kth ordered death time.
Let x(kj) denote the vector of covariates associated with
the individual who dies at t(kj).

Cox’s partial likelihood function for the jth stratum:

Lcj(β) =
r∏

kj=1

exp(x′(kj)β)
∑

l∈R(t(kj))
exp(x′lβ)

.

Then estimation and testing methods are as before,
where the partial log likelihood to be maximized is given
by

LLc(β) =
s∑

j=1

LLcj(β).
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We now stratify on the exposure variable Clinic and fit
a Cox PH model to adjust for the two time-independent
covariates Prison and Dose. Modified R output and a
plot of the two adjusted K-M survival curves follow.

> fit2 <- coxph(Surv(Days.survival,Status) ~ strata(Clinic)+
Prison+Dose,data=ADDICTS)

> fit2
coef exp(coef) se(coef) z p

Prison 0.3896 1.476 0.16893 2.31 2.1e-002
Dose -0.0351 0.965 0.00646 -5.43 5.6e-008

Likelihood ratio test=33.9 on 2 df, p=4.32e-008 n= 238
> survfit(fit2)

n events mean se(mean) median .95LCL .95UCL
Clinic=1 162 122 434 22.0 434 358 517
Clinic=2 74 28 624 38.1 878 661 NA

# Note that each stratum has one less observation.
# This tells us that the shortest observed retention
# time in each clinic is censored.
> plot(survfit(fit2),lwd=3,col=1,type="l",lty=c(1,3),

cex=2,lab=c(10,10,7),...)
> abline(v = 366,lty=3,lwd=2)
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Figure 3. K-M curves adjusted for covariates Prison and
Dose, stratified by Clinic.

Results:

• Figure 3 provides same pictorial evidence as Fig-
ure 1; that is, curve for clinic 2 is always above clinic
1’s curve, with clinic 2 being dramatically better in
retention of patients in its treatment program after
about one year.

• The estimated coefficients for Prison and Dose do
not change much. This gives good evidence that
the stratified model does satisfy the PH assumtion;
hence, this analysis is valid.

• Figure 3 provides a picture of the effect of Clinic on
retention of patients. But by stratifying on Clinic,
we get no estimate of its effect; i.e., no estimated
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β1 coefficient. Hence, we cannot obtain a hazard
ratio for Clinic.

• The exposure variable Clinic must be in the model
in order to obtain a hazard for it. For this reason,
we look now to the extended Cox model.



Part IV: A Piecewise Cox PH model analysis

Here we use a model that contains two heavyside func-
tions, g1(t) and g2(t), with t0, the change point, to be
determined. The hazard model is

h(t|x(t)) = h0(t) exp (β1Prison + β2Dose + γ1(Clinic× g1(t))
+ γ2(Clinic× g2(t)))

where

g1(t) =

{
1 if t < t0
0 if t ≥ t0

g2(t) =

{
1 if t ≥ t0
0 if t < t0

and

Clinic =

{
1 if Clinic=1
0 if Clinic=2.

(1)

The hazard ratio for the exposure variable Clinic now
varies with time. It assumes two distinct values de-
pending whether time < t0 days or time ≥ t0 days. The
form of the HR is

t < t0 : HR = exp(γ1)
t ≥ t0 : HR = exp(γ2) .

Time-dependent covariates effect the rate for upcoming
events. In order to implement an extended Cox model
properly in R using the coxph function, one must use
the Anderson-Gill (1982) formulation of the proportional
hazards model as a counting process. They treat
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each subject as a very slow Poisson process. A censored
subject is not viewed as incomplete, but as one whose
event count is still zero. For a brief introduction to the
counting process approach, see Appendix 2 of Hosmer
& Lemeshow (1999) and the online manual S-PLUS
2000, Guide to Statistics, Vol 2, Chapter 10. Klein &
Moeschberger (1997, pages 70−79) discuss this count-
ing process formulation. They devote their Chapter 9 to
the topic of modelling time-dependent covariates. For
a more advanced and thorough treatment of counting
processes in survival analysis, see Fleming and Harring-
ton (1991).

The ADDICTS data set must be reformulated to match
the Anderson-Gill notation. To illustrate this, consider
the following cases: In both cases the t denotes the pa-
tient’s recorded survival time, whether censored or not.

Case 1: For t < t0, g1(t) = 1 and g2(t) = 0. Here a
patient’s data record is just one row and looks like this:

Start Stop Status Dose Prison Clinicg1t Clinicg2t
0 t same same same Clinic 0

Case 2: For t ≥ t0, g1(t) = 0 and g2(t) = 1. Here a
patient’s data record is formulated into two rows and
looks like this:
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Start Stop Status Dose Prison Clinicg1t Clinicg2t
0 t0 0 same same Clinic 0
t0 t same same same 0 Clinic

The following R program puts the ADDICTS data set
into the counting process form, finds the optimal change
point t0; i.e., the time which maximizes the profile log
partial likelihood. We then fit the model and report
results.

> ADDICTS<-read.table("C://ADDICTS.txt",header=T)
> ADDICTS$Clinic[ADDICTS$Clinic==2]<-0
> names(ADDICTS)
[1] "ID" "Clinic" "Status" "Days.survival"
[5] "Prison" "Dose"
> attach(ADDICTS)
> library(survival)
> optimal.change.point(ADDICTS,Days.survival,Status,Clinic)

changepoint loglik
119 461 -683.2117
> #Thus, in the survSplit function, let cut = 461.
> #Use the function extcox.1Et to obtain the dataset in the
> #Andersen-Gill counting process format
> AG<-extcox.1Et(ADDICTS,Days.survival,Status,Clinic,461)
> names(AG)
[1] "ID" "Clinic" "Status" "Days.survival"
[5] "Prison" "Dose" "end" "status"
[9] "trt" "start" "ET1" "ET2"
> fit4<-coxph(Surv(start,end,status)~Prison+Dose+ET1+ET2,

data=AG)
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> fit4
Call: coxph(formula = Surv(start, end, status) ~ Prison +

Dose + ET1 + ET2, data = AG)

coef exp(coef) se(coef) z p
Prison 0.3890 1.476 0.16859 2.31 2.1e-02
Dose -0.0354 0.965 0.00645 -5.48 4.3e-08
ET1 0.4887 1.630 0.23396 2.09 3.7e-02
ET2 2.3971 10.991 0.52998 4.52 6.1e-06

Likelihood ratio test=79 on 4 df, p=3.33e-16 n= 337
> temp<-cox.zph(fit4)
> temp

rho chisq p
Prison -0.0176 0.0465 0.829
Dose 0.0829 0.9305 0.335
ET1 0.0264 0.1059 0.745
ET2 -0.0089 0.0117 0.914
GLOBAL NA 1.0595 0.901
> windows()
> par(mfrow=c(2,2))
> plot(temp)
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This graph is automatically outputted from the

optimal.change.point function.
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95% C.I.’s for the Clinic’s HR’s
t < 461: [1.03,2.58]

t ≥ 461: [3.89,31.06]
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Results:

• The output shows a significant ĤR = 1.63 with p -
value = 0.037 for the effect of Clinic when time
< 461 days. For t ≥ 461, the ĤR = 10.99 is highly
significant with p -value = 6.1× 10−6.

• The table reports confidence intervals for the two
HR’s. The general form of these 95% C.I.’s is
exp(coef ± 1.96 × se(coef)). The 95% C.I. for the
HR when t precedes 461 is a bit above 1 and is
narrow. This supports a significant effect due to
clinic during the first year and has good precision.
The 95% C.I. for the HR when t ≥ 461 lies above
1 and is very wide showing a lack of precision.

• These findings support what was displayed in Fig-
ure 3. But now it is quantified. There is strong
statistical evidence of a large difference in clinic sur-
vival times after 461 days in contrast to a small and
but still significant difference in clinic survival times
prior to 461 days, with clinic 2 always doing bet-
ter in retention of patients than clinic 1. After 461
days, clinic 2 is nearly 11 times more likely to re-
tain a patient longer than clinic 1. Also, clinic 2 has
1
11
≈ 10% the risk of clinic 1 of a patient leaving its

methadone treatment program.
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• See Kleinbaum (1996, Chapter 6) for further anal-
ysis of this data.

• An alternative regression quantile analysis as pre-
sented in Chapter 8 may be appropriate when the
PH assumption


