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Chapter 4

Regression Models

• The target variable T denotes failure time

• We let x = (x(1), . . . , x(m))′ represent a vector of
available covariates.

Also called regression variables, regressors, prognostic factors,
or explanatory variables.

• We are interested in modelling and determining the relation-
ship between T and x.

Often this is referred to as prognostic factor analysis.

• The primary question is: Do any subsets of the m covari-
ates help to explain survival time?

For example, does age at first treatment and/or gender in-
crease or decrease (relative) risk of survival? If so, how and
by what estimated quantity?

Does one treatment give a significant survival advantage over
the other treatment?
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Example 1. Let

• x(1) denotes the sex (x(1)
i = 1 for males and

x(1)
i = 0 for females),

• x(2) = Age at diagnosis,

• x(3) = x(1) · x(2) (interaction),

• x(4) denotes the treatment group (x(4)
i = 1 for the new treat-

ment under study and x(4)
i = 0 for the traditional treatment)

• T = survival time.

Since survreg by default transforms to log-land
we stay in log-land to begin.

We simply extend the AML two group model discussed

in the Prelude, where we now allow for m available

covariates.
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Let Z denote either a standard extreme value, standard logistic, or
standard normal random variable. That is, each has location µ = 0
and scale σ = 1. For a given vector x,

Y = log(T )

= µ̃ + σZ

= β∗0 + x′β∗ + σZ

• There are only two major differences from an ordinary linear
regression model for the log-transformed target variable T,
Y = log(T ).

1. The distribution of the errors Z are extreme value or lo-
gistic as well as normal.

Therefore, least-squares methods are not adequate.

2. Our models deal with censored values, which is rarely
discussed for ordinary linear regression. Recall, we obtain
the MLE’s by maximizing the likelihood that incorporates
the censoring:

L(β∗0, β∗, σ) =

n∏
i=1

(
f(yi)

)δi ·
(
Sf(yi)

)1−δi
.

• We approach the regression problem just the same as we
would in ordinary least squares or even in logistic regression.

We model the location parameter µ as a function of x, linear
in the β∗ = (β∗1, · · · , β∗m) ′, an m× 1 vector of coefficients.

In the log-normal and log-logistic cases, the location is the
mean.

In the Weibull case, the location is just location.

In all three cases, we assume the scale σ is the same
(constant) for all values of the covariates.
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• The µ̃ = β∗0 + x′β∗ is called the linear predictor,

and σ is the scale parameter.

• In the target variable T distribution,

λ̃ = exp(−µ̃ ) and α = 1/σ .

• The S/R function survreg estimates β∗0, β∗, and σ.

The predict function provides estimates of µ̃ at specified
values of the covariates.

For example, return to the AML data, where we have one
covariate “group” with two values 0 or 1. To estimate the
linear predictor (lp) for both groups, use

>predict(fit,type="lp",newdata=list(group=c(0,1)),se.fit=T)

• The set of covariate values xi, i = 1, . . . , n are known; that is,
fixed constants.
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> fit<-survreg(Surv(weeks,status)~group,data=aml,
dist="weib")

> summary(fit)

Value Std. Error z p
(Intercept) 3.180 0.241 13.22 6.89e-040

group 0.929 0.383 2.43 1.51e-002
Log(scale) -0.235 0.178 -1.32 1.88e-001

Scale= 0.791

> predict(fit,type="lp",newdata=list(group=c(0,1)),
se.fit=T)

$fit: [1] 3.179714 4.109055

$se.fit: [1] 0.2405564 0.2998896

===================================================

The following command outputs the variance-covariance
matrix V̂ of the estimates:

> fit$var
(Intercept) group Log(scale)

(Intercept) 0.057867370 -0.057120613 -0.005618566
group -0.057120613 0.146307634 0.001396857

Log(scale) -0.005618566 0.001396857 0.031763966

But, internally it computes and uses Σ̂, the var-cov ma-

trix of β̂∗0, β̂∗1, and σ̂.
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• The estimated linear predictor:

̂̃µ = β̂∗0 + β̂∗1group =

{
β̂∗0, if group = 0
β̂∗0 + β̂∗1, if group = 1.

• The variances of the linear predictors:

var( ̂̃µ ) =

{
var( β̂∗0 ), if group = 0
var( β̂∗0 + β̂∗1 ), if group = 1.

Then,

s.e.( ̂̃µ(0) ) = s.e.( β̂∗0 ) =
√

(0.057867370) = 0.2405564

and

var( ̂̃µ(1) ) = var( β̂∗0 + β̂∗1 )

= var( β̂∗0 )+var( β̂∗1 )+2·cov( β̂∗0 , β̂∗1 )

= 0.057867370+0.146307634+2×(−0.057120613)

= .08993378

and

s.e.( ̂̃µ(1) ) =
√

.08993378 = .2998896
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• Back in Weibull-land; the T distribution:

̂̃λ = exp(−̂̃µ )

= exp(−β̂∗0 − β̂∗1group)

=

{
exp(−β̂∗0), if group = 0
exp(−β̂∗0 − β̂∗1), if group = 1.

Use S/R to easily compute the Weibull parameters:

> fit.mu<-predict(fit,type="lp",
newdata=list(group=c(0,1)))

> lambda.fit <- exp(-fit.mu)
> fit.mu
[1] 3.179714 4.109055
> lambda.fit
[1] 0.04159756 0.01642328
> alpha.hat <- 1/fit$scale
> alpha.hat
[1] 1.264296

We now have completely described both groups’
distributions.

• The recipe is same for log-normal and log-
logistic models.
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Cox proportional hazards (PH) model

The hazard function:

h(t|x) = h0(t) · exp(x′β) ,

where h0(t) is an unspecified baseline hazard function
free of the covariates x.

• The covariates act multiplicatively on the hazard.

The hazards ratio (HR):

At two different points x1, x2, HR is the proportion

h(t|x1)

h(t|x2)
=

exp(x′1β)

exp(x′2β)
= exp ((x′1 − x′2)β),

which is constant over follow-up time t.

• This defines the proportional hazards property.

• Inherent in this PH property then, is the covariates x
do not vary with time t.

• The exponential and Weibull are special cases when
we specify the baseline hazard functions.

1. If we specify h0(t) = λ for all t, then this exponential.

2. If we specify h0(t) = αλαtα−1, then this is Weibull.
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Remarks:

1. A statistical goal of a survival analysis is to obtain some
measure of effect that will describe the relationship between
a predictor variable of interest and time to failure, after ad-
justing for the other variables we have identified in the study
and included in the model.

• In linear regression modelling, the measure of effect is usually the
regression coefficient β, the change in mean response per 1 unit
change in x.

• In logistic regression, the measure of effect is an odds ratio, the
log of which is β for a change of 1 unit in x.

• In survival analysis, the measure of effect is the hazards ratio
(HR). In the Cox PH model, this ratio is also expressed in terms
of an exponential of the regression coefficient in the model.

For example, let β1 denote the coefficient of the group covariate
with group = 1 if received treatment and group = 0 if received
placebo. Put treatment group in the numerator of HR.

A HR of 1 means that there is no effect.

A HR of 10, on the other hand, means that the treatment group
has ten times the hazard of the placebo group.

Similarly, a HR of 1/10 implies that the treatment group has one-
tenth the risk of failure than that of the placebo group.

2. The Weibull regression model is the only log-linear model that

has the PH property.
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Log-logistic Regression

The model: This log-linear model is expressed by

Y = log(T )

= β∗0 + x′β∗ + σZ

where the error term Z ∼ standard logistic.

The survivor function:

S(t|x) =
1

1 + (exp(y − β∗0 − x′β∗))
1
σ

,

where y = log(t) and α = 1/σ.

The odds of survival beyond time t:

S(t|x)
1− S(t|x) =

(
exp(y − β∗0 − x′β∗)

)−1
σ .

The (p × 100)th percentile of the survival distribution:

tp(x) =
(
p/(1− p)

)σ
exp(β∗0 + x′β∗).

The odds-ratio (OR) of survival beyond time t evaluated at
x1 and x2:

OR(t|x = x2, x = x1) =
(
exp

(
(x2 − x1)

′β∗
))1

σ =
(
TR

)1
σ ,

where TR is the times-ratio. OR is constant over follow-up time
t. This model enjoys the proportional odds property; or equiva-
lently, the proportional times property

• The reciprocal of the OR has the same functional form as the
HR in the Weibull model with respect to β∗ and σ.

• The log-logistic regression model is the only log-linear model that
has the proportional odds property. Of course, we again assume
the covariates x do not vary with t.
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Summary

Let Z denote either a standard extreme value, standard logistic, or
standard normal random variable. That is, each has location µ = 0
and scale σ = 1.

Y = log(T ) = µ̃ + σZ = β∗0 + x′β∗ + σZ

accelerated failure time model
log-linear model

↗↙ ↑↓ ↘↖
T T T
Weibull log-logistic log-normal

↓ ↓
PH property proportional

odds property
l

proportional
times property

• For the Weibull model, the relationship between the coefficients
in the log-linear model and coefficients in modelling the hazard
function is

β = −σ−1β∗ and λ = exp(−β∗0) .

• The S/R function survreg estimates β∗0, β∗, and σ.

• Fitting data to a Cox PH model is presented in detail in Chapter 5.

The Cox procedure estimates the β coefficients directly.
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Model Building

Strategy: Use a variable selection procedure and then use the LRT
for further model reduction.

1. If models are heirarchical (nested), that is, the covariates in
the reduced model are a subset of the set of covariates in the full
model, fit the full and reduced models via survreg and then use
the anova function.

> anova(fit.reduced,fit.full,test="Chisq")

The LRT value is the value reported under Deviance (which should
be labeled partial deviance. See Chapter 6.)

2. Akaike’s information criterion statistic for variable selec-
tion:

AIC = −2× log(maximum likelihood) + 2× (a + b),

where a is the number of parameters in the specified model and b
is the number of one-dimensional covariates.

• The smaller the value of this statistic, the better the model.

• This statistic trades off goodness of fit (measured by the maxi-
mized log likelihood) against model complexity (measured by a+b).

• Can compare possible models which need not necessarily be

nested nor have the same error distribution
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In S/R the following sequence of code should work and is given in
your Chaper 5 of the course notes:

> library(MASS) # Calls in a collection of library
# functions provided by Venables
# and Ripley

> attach(your data.frame)
> fit.start<-survreg(Surv(time,status)~X1+X2+ +Xm,

dist=" ")
# This is the initial model and has only main
# effects, no interaction terms.

> fit.model1<- stepAIC(fit.start,~.^2)
# Does stepwise up to two-way interaction.

> fit.model1$anova
# Shows the stepwise model path with the
# initial and final models

> fit.model1
# Prints out the final model.
# From here you try to reduce model by LRT and/or
# one-at-a-time variable reduction by eliminating
# the variable with the largest
# p-value for a coefficient among those which are
# not significant.
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Motorette data example:

Hours to failure of motorettes are given as a function of operat-
ing temperatures 1500C, 1700C, 1900C, or 2200C. There is severe
(Type I) censoring, with only 17 out of 40 motorettes failing. Note
that the stress (temperature) is constant for any particular mo-
torette over time.

Temperature Times
1500C All 10 motorettes without failure at 8064 hours
1700C 1764, 2772, 3444, 3542, 3780, 4860, 5196

3 motorettes without failure at 5448 hours
1900C 408, 408, 1344, 1344, 1440

5 motorettes without failure at 1680 hours
2200C 408, 408, 504, 504, 504

5 motorettes without failure at 528 hours
n = 40, nu = no. of uncensored times = 17

The primary purpose of the experiment was to estimate certain
percentiles of the failure time distribution at a design temperature
of 1300C.

This is an accelerated process. The experiment is conducted at
higher temperatures to speed up failure time. Then they make
predictions at a lower temperature that would have taken them
much longer to observe.

To compare our results with Nelson & Hahn and Kalbfleisch &
Prentice we use the single regressor variable
x = 1000/(273.2+Temperature). They also omit all ten data
points at temperature level of 1500C. We entered the data into
a data frame called motorette. It contains

time status temp x
hours 1 if uncensored 0C 1000/(273.2+0C)

0 if censored

The design x = 2.480159.

14



intercept only: y = log(t) = β∗0 + σZ

both: y = log(t) = β∗0 + β∗1 + σZ,

where the distributions of Z are standard extreme (minimum) value,
standard logistic, and standard normal, respectively.

Results of fitting parametric models to the Motorette data:

Model log-likelihood AIC
exponential intercept only -155.875 311.750 + 2(1) = 313.750

both -151.803 303.606 + 2(1 + 1) = 307.606
Weibull intercept only -155.681 311.363 + 2(2) = 315.363

both -144.345 288.690 + 2(2 + 1) = 294.690
log-logistic intercept only -155.732 311.464 + 2(2) = 315.464

both -144.838 289.676 + 2(2 + 1) = 295.676
log-normal intercept only -155.018 310.036 + 2(2) = 314.036

both -145.867 291.735 + 2(2 + 1) = 297.735

The S/R code for computing the AIC:

> attach(motorette)
# Weibull fit

> weib.fit <- survreg(Surv(time,status)~x,dist="weibull")
> weib.fit$loglik # the first component for intercept only and

# the second for both
[1] -155.6817 -144.3449
> -2*weib.fit$loglik # -2 times maximum log-likelihood
[1] 311.3634 288.6898

Nelson & Hahn applied a log-normal model, and Kalbfleisch & Pren-
tice applied a Weibull model. Kalbfleisch & Prentice state that the
Weibull model is to some extent preferable to the log-normal on
account of the larger maximized log likelihood. From table, we
find that the Weibull distribution provides the best fit to this data,
the log-logistic distribution is a close second, and the log-normal
distribution is the third.
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Estimation and testing: fitting the Weibull model

Let β̂∗0, β̂∗′, and σ̂ denote the MLE’s of the parameters. Recall that
the theory tells us MLE’s are approximately normally distributed
when the sample size n is large.

To test H0 : β∗j = β∗0j , j = 1, . . . , m, use

β̂∗j − β∗0j

s.e.(β̂∗j )

a∼ N(0,1) under H0.

An approximate (1 − α)× 100% confidence interval for β∗j is given
by

β̂∗j ± zα
2
s.e.(β̂∗j ),

where zα
2

is taken from the N(0,1) table.

At the point x = x0, the MLE of the (p× 100)th percentile of the
distribution of Y = log(T ) is

Ŷp = β̂∗0 + x′0β̂
∗ + σ̂zp = (1, x′0, zp)

(
β̂∗0
β̂∗

σ̂

)
,

where zp is the (p×100)th percentile of the error distribution, which,
in this case, is standard extreme value.

This is a linear combination of the estimates. Need to consider the

covariances when computing the variance of Ŷp. Internally, survreg

computes Σ̂, the estimated variance-covariance matrix of β̂∗0, β̂∗1,

and σ̂.
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An approximate (1−α)×100% confidence interval for the (p×100)th
percentile of the log-failure time distribution is given by

Ŷp ± zα
2
s.e.(Ŷp),

where zα
2

is taken from the N(0,1) table.

The MLE of tp is exp(Ŷp). To obtain confidence limits for tp, take
the exponential of the endpoints of the above confidence interval.

Recall, the function predict, a companion function to survreg, con-

veniently reports both the quantiles in time and the uquantiles in

log(time) along with their respective s.e.’s.
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Doing the analysis using S/R:

> fit.weib <- survreg(Surv(time,status)~x,data=motorette)
> summary(fit.weib)

Value Std. Error z p
(Intercept) -11.89 1.966 -6.05 1.45e-009

x 9.04 0.906 9.98 1.94e-023
Log(scale) -1.02 0.220 -4.63 3.72e-006

Scale= 0.361

> predict(fit.weib,type="uquantile",newdata=list(x = 2.480159),
se.fit=T,p=c(0.15, 0.5, 0.85))

$fit: [1] 9.868867 10.392887 10.756643

$se.fit: [1] 0.3444804 0.3026464 0.2973887

> predict(fit.weib,type="quantile",newdata=list(x=2.480159),
se.fit = T, p = c(0.15, 0.5, 0.85))

$fit: [1] 19319.44 32626.72 46940.83

$se.fit: [1] 6655.168 9874.361 13959.673

> mutilde.hat <- predict(fit.weib,type="lp",newdata=list(x=2.480159),
se.fit=T)

> lambdatilde.hat <- exp(-mutilde.hat$fit)
> mutilde.hat
$fit: [1] 10.5253

$se.fit: [1] 0.2982668

> lambdatilde.hat
[1] 0.00002684848
> fit.weib$scale
[1] 0.3612814
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> alpha.hat <- 1/fit.weib$scale
> alpha.hat
[1] 2.767925
> pweibull(25000,alpha.hat,1/lambdatilde.hat)

# Computes the
# estimated probability that a motorette failure time
# is less than or equal to 25,000 hours.

[1] 0.2783054 # estimated probability

> Shatq <- 1 - 0.2783054
# survival probability at 25,000
# hours. About 72% of motorettes are still working
# after 25,000 hours at x=2.480159; i.e., the design
# temperature of 130 degrees Celsius.
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Summary of some results:

• From summary(weib.fit), we learn that σ̂ = .36128, and ̂̃µ =

− log(̂̃λ) = β̂∗0 + β̂∗1x = −11.89 + 9.04x.

The α̂ = 1/.36128 = 2.768 and ̂̃λ = exp(11.89 − 9.04 ×
2.480159) = 0.0000268 at x = 2.480159.

Note also that both the intercept and covariate x are highly
significant with p -values 1.45×10−9 and 1.94×10−23, respec-
tively.
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• The estimated hazard function is

ĥ(t|x) =
1

σ̂
· t1

σ̂
−1 · (exp(−̂̃µ))

1
σ̂

and the estimated survivor function is

Ŝ(t|x) = exp
{
−

(
exp(−̂̃µ)t

)1
σ̂
}

.

• The point estimate of β1, β̂1, is −σ̂−1β̂∗1. A 95% C.I. for β1

based on the delta method is given by [−37.84342,−12.29594].
Whereas the one based on the common approach is given by

[−σ̂−1(10.82),−σ̂−1(7.26)] = [−29.92,−20.09],

where σ̂ = .3605949 and the 95% C.I. for β∗1 is [7.26,10.81] =
[9.04 − 1.96 × .906, 9.04 + 1.96 × .906]. It is clear that the
latter interval is much shorter than the former as it ignores
the variability of σ̂.

• At x = 2.480159, the design temperature of 1300C, the es-
timated 15th, 50th, and 85th percentiles in log(hours) and
hours, respectively based on uquantile and quantile, along
with their corresponding 90% C.I.’s in hours are reported in
the following table.

type percentile Estimate Std.Err 90% LCL 90% UCL
uquantile 15 9.8689 0.3445 10962.07 34048.36

50 10.3929 0.3026 19831.64 53677.02
85 10.7566 0.2974 28780.08 76561.33

quantile 15 19319.44 6655.168 9937.17 37560.17
50 32626.76 9874.36 19668.76 54121.65
85 46940.83 13959.67 28636.93 76944.21

The 90% C.I.’s based on uquantile, exp(estimate ± 1.645 ×
std.err), are shorter than those based on quantile at each x
value.
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• At the design temperature 1300C, by 25,000 hours about 28%
of the motorettes have failed. That is, after 25,000 hours,
about 72% are still working.

• As α̂ = 1
σ̂

= 1
.3605949

= 2.773195, then for fixed x the hazard
function increases as time increases.

• The estimated coefficient β̂1 = − 1
σ̂
β̂∗1 = − 1

.3605949
(9.04) =

−25.06968 < 0. Thus, for time fixed, as x increases, the
hazard decreases and survival increases.

• For x1 < x2,

h(t|x2)

h(t|x1)
= exp((x2 − x1)(−25.06968)).

For example, for x = 2.1 and 2.2,

h(t|2.2)

h(t|2.1)
= exp(.1(−25.06968)) = .08151502.

For .1 unit increase in x, the hazard becomes about 8.2%
of the hazard before the increase. In terms of Celsius tem-
perature, for 21.645 degree decrease from 202.99050C to
181.34550C, the hazard becomes about 8.2% of the hazard
before the decrease.

• The Q-Q plots show that the Weibull fit looks slightly better
than the log-logistic fit at the temperature 1700C, but overall
they are the same. On the other hand, the Weibull fit looks
noticeably better than the log-normal fit at the temperature
1700C and is about the same at the other two temperatures.
This result coincides with our finding from AIC; that is, among
these three accelerated failure time models, the Weibull best
describes the motorette data.
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Chapter 5

A Prognostic Factor Analysis based on Cox PH Model

Example: CNS lymphoma data

The data result from an observational clinical study conducted at
Oregon Health Sciences University (OHSU). Fifty-eight non-AIDS
patients with central nervous system (CNS) lymphoma were treated
at OHSU from January 1982 through March of 1992. Group 1 pa-
tients (n=19) received cranial radiation prior to referral for blood-
brain barrier disruption (BBBD) chemotherapy treatment; Group 0
(n=39) received, as their initial treatment, the BBBD chemother-
apy treatment. Radiographic tumor response and survival were
evaluated.

The primary endpoint of interest here is survival time (in years) from
first BBBD to death (B3TODEATH). Some questions of interest
are:

1. Is there a difference in survival between the two groups?

2. Do any subsets of available covariates help explain this sur-
vival time? For example, does age at time of first treat-
ment and/or gender increase or decrease the hazard of death;
hence, decrease or increase the probability of survival; and
hence, decrease or increase mean or median survival time?

3. Is there a dependence of the difference in survival between
the groups on any subset of the available covariates?
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> cns2.fit0 <- survfit(Surv(B3TODEATH,STATUS)~GROUP,data=cns2,
type="kaplan-meier")

> plot(cns2.fit0,type="l",....)

> survdiff(Surv(B3TODEATH,STATUS)~GROUP,data=cns2)
N Observed Expected (O-E)^2/E (O-E)^2/V

GROUP=0 39 19 26.91 2.32 9.52
GROUP=1 19 17 9.09 6.87 9.52
Chisq= 9.5 on 1 degrees of freedom, p= 0.00203

> cns2.fit0

n events mean se(mean) median 0.95LCL 0.95UCL
GROUP=0 39 19 5.33 0.973 3.917 1.917 NA
GROUP=1 19 17 1.57 0.513 0.729 0.604 2.48
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In the Cox PH model, recall the HR at two different points x1 and
x2, is the proportion

h(t|x1)

h(t|x2)
=

exp(x′1β)

exp(x′2β)

=
exp

(
β1x

(1)
1

)
× exp

(
β2x

(2)
1

)
× · · · × exp

(
βmx(m)

1

)

exp
(
β1x

(1)
2

)
× exp

(
β2x

(2)
2

)
× · · · × exp

(
βmx(m)

2

)

which is constant over follow-up time t.

Through the partial likelihood we obtain estimates of the coeffi-
cients β without regard to the baseline hazard h0(t). The partial
likelihood is presented in Chapter 6.

Note that in the parametric regression setting of Chapter 4, we
specify the form of this function since we must specify a distribution
for the target variable T .

Remember the hazard function completely specifies the distribution
of T ; but the power of the PH model is that it provides a fairly
wide family of distributions by allowing the baseline hazard h0(t) to
be arbitrary.

The S/R function coxph implements Cox’s partial likelihood func-

tion.
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AIC procedure for variable selection

AIC = −2× log(maximum likelihood) + 2× b,

where b is the number of β coefficients in each model under consid-
eration. The maximum likelihood is replaced by the maximum
partial likelihood. The smaller the AIC value the better the model
is.

We apply an automated model selection procedure via an S function
stepAIC included in MASS, a collection of functions and data sets
from Modern Applied Statistics with S by Venables and Ripley
(2002). Otherwise, it would be too tedious because of many steps
involved.

We illustrate how to use stepAIC together with LRT to select a
best model.

The estimates from fitting a Cox PH model are interpreted
as follows:

• A positive coefficient increases the risk and thus decreases
the expected (average) survival time.

• A negative coefficient decreases the risk and thus increases
the expected survival time.

• The ratio of the estimated risk functions for the two groups
can be used to examine the likelihood of Group 0’s (no prior
radiation) survival time being longer than Group 1’s (with
prior radiation).
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Step I: stepAIC to select the best model according to AIC
statistic

> library(MASS) # Call in a collection of library functions
# provided by Venables and Ripley

> attach(cns2)
> cns2.coxint<-coxph(Surv(B3TODEATH,STATUS)~KPS.PRE.+GROUP+SEX+

AGE60+LESSING+LESDEEP+factor(LESSUP)+factor(PROC)+CHEMOPRIOR)
# Initial model

> cns2.coxint1 <- stepAIC(cns2.coxint,~.^2)
# Up to two-way interaction

> cns2.coxint1$anova # Shows stepwise model path with the
# initial and final models

Stepwise model path for two-way interaction model on the
CNS lymphoma data

Step Df AIC
246.0864

+ SEX:AGE60 1 239.3337
- factor(PROC) 2 236.7472

- LESDEEP 1 234.7764
- factor(LESSUP) 2 233.1464

+ AGE60:LESSING 1 232.8460
+ GROUP:AGE60 1 232.6511
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Step II: LRT to further reduce

> cns2.coxint1 # Check which variable has a
# moderately large p-value

coef exp(coef) se(coef) z p
KPS.PRE. -0.0471 0.9540 0.014 -3.362 0.00077

GROUP 2.0139 7.4924 0.707 2.850 0.00440
SEX -3.3088 0.0366 0.886 -3.735 0.00019

AGE60 -0.4037 0.6679 0.686 -0.588 0.56000
LESSING 1.6470 5.1916 0.670 2.456 0.01400

CHEMOPRIOR 1.0101 2.7460 0.539 1.876 0.06100
SEX:AGE60 2.8667 17.5789 0.921 3.113 0.00190

AGE60:LESSING -1.5860 0.2048 0.838 -1.891 0.05900
GROUP:AGE60 -1.2575 0.2844 0.838 -1.500 0.13000

In statistical modelling, an important principle is that an interaction
term should only be included in a model when the corresponding
main effects are also present.

We now see if we can eliminate the variable AGE60 and its inter-
action terms with other variables.

Here the LRT is constructed on the partial likelihood function
rather than the full likelihood function.

> cns2.coxint2 <- coxph(Surv(B3TODEATH,STATUS)~KPS.PRE.+GROUP
+SEX+LESSING+CHEMOPRIOR) # Without AGE60 and its

# interaction terms
> -2*cns2.coxint2$loglik[2] + 2*cns2.coxint1$loglik[2]
[1] 13.42442
> 1 - pchisq(13.42442,4)
[1] 0.009377846 # Retain the model selected by stepAIC
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Now begin the process of one variable at a time reduction.

• The variable GROUP:AGE60 has a moderately large
p -value = .130. Delete it.

> cns2.coxint3 # Check which variable has a
# moderately large p-value

coef exp(coef) se(coef) z p
KPS.PRE. -0.0436 0.9573 0.0134 -3.25 0.0011

GROUP 1.1276 3.0884 0.4351 2.59 0.0096
SEX -2.7520 0.0638 0.7613 -3.61 0.0003

AGE60 -0.9209 0.3982 0.5991 -1.54 0.1200
LESSING 1.3609 3.8998 0.6333 2.15 0.0320

CHEMOPRIOR 0.8670 2.3797 0.5260 1.65 0.0990
SEX:AGE60 2.4562 11.6607 0.8788 2.79 0.0052

AGE60:LESSING -1.2310 0.2920 0.8059 -1.53 0.1300

• As AGE60:LESSING has a moderately large
p -value = .130, we remove it.

> cns2.coxint4 # Check which variable has a
# moderately large p-value

coef exp(coef) se(coef) z p
KPS.PRE. -0.0371 0.9636 0.0124 -3.00 0.00270

GROUP 1.1524 3.1658 0.4331 2.66 0.00780
SEX -2.5965 0.0745 0.7648 -3.40 0.00069

AGE60 -1.3799 0.2516 0.5129 -2.69 0.00710
LESSING 0.5709 1.7699 0.4037 1.41 0.16000

CHEMOPRIOR 0.8555 2.3526 0.5179 1.65 0.09900
SEX:AGE60 2.3480 10.4643 0.8765 2.68 0.00740

• We delete the term LESSING as it has a moderately large
p -value = .160.
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> cns2.coxint5 # Check which variable has a
# moderately large p-value

coef exp(coef) se(coef) z p
KPS.PRE. -0.0402 0.9606 0.0121 -3.31 0.00093

GROUP 0.9695 2.6366 0.4091 2.37 0.01800
SEX -2.4742 0.0842 0.7676 -3.22 0.00130

AGE60 -1.1109 0.3293 0.4729 -2.35 0.01900
CHEMOPRIOR 0.7953 2.2152 0.5105 1.56 0.12000
SEX:AGE60 2.1844 8.8856 0.8713 2.51 0.01200

• We eliminate the variable CHEMOPRIOR as it has a
moderately large p -value = .120.

> cns2.coxint6 # Check which variable has a
# moderately large p-value

coef exp(coef) se(coef) z p
KPS.PRE. -0.0307 0.970 0.0102 -2.99 0.0028

GROUP 1.1592 3.187 0.3794 3.06 0.0022
SEX -2.1113 0.121 0.7011 -3.01 0.0026

AGE60 -1.0538 0.349 0.4572 -2.30 0.0210
SEX:AGE60 2.1400 8.500 0.8540 2.51 0.0120

• We finally stop here and retain these five variables: KPS.PRE.,
GROUP, SEX, AGE60, and SEX:AGE60.

• However, it is important to compare this model to the model
chosen by stepAIC in Step I as we have not compared them.

> -2*cns2.coxint6$loglik[2] + 2*cns2.coxint1$loglik[2]
[1] 8.843838
> 1 - pchisq(8.843838,4)
[1] 0.06512354 # Selects the reduced model
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• The p -value based on LRT is between .05 and .1. So we select
the reduced model with caution.

• The following output is based on the model with KPS.PRE.,
GROUP, SEX, AGE60, and SEX:AGE60. It shows that the three
tests – LRT, Wald, and efficient score test – indicate there is an
overall significant relationship between this set of covariates and
survival time. That is, they are explaining a significant portion of
the variation.

> summary(cns2.coxint6)

Likelihood ratio test= 27.6 on 5 df, p=0.0000431
Wald test = 24.6 on 5 df, p=0.000164
Score (logrank) test = 28.5 on 5 df, p=0.0000296

Remarks:

1. The model selection procedure may well depend on the pur-
pose of the study. In some studies there may be a few variables
of special interest. In this case, we can still use Step I and
Step II. In Step I we select the best set of variables accord-
ing to the smallest AIC statistic. If this set includes all the
variables of special interest, then in Step II we have only to
see if we can further reduce the model. Otherwise, add to
the selected model the unselected variables of special interest
and go through Step II.

2. It is important to include interaction terms in model selection
procedures unless researchers have compelling reasons why
they do not need them. We could end up with a quite different
model when only main effects models are considered.

31



Discussion

• KPS.PRE., GROUP, SEX, AGE60, and SEX:AGE60 appear
to have a significant effect on survival duration. Here it is con-
firmed again that there is a significant difference between the
two groups’ (0=no prior radiation,1=prior radiation) survival
curves.

• The estimated coefficient for KPS.PRE. is −.0307 with p -
value 0.0028. Hence, fixing other covariates, patients with
high KPS.PRE. scores have a decreased hazard, and, hence,
have longer expected survival time than those with low KPS.PRE.
scores.

• The estimated coefficient for GROUP is 1.1592 with p -value
0.0022. Hence, with other covariates fixed, patients with
radiation prior to first BBBD have an increased hazard, and,
hence, have shorter expected survival time than those in Group
0.

• Fixing other covariates, the hazard ratio between Group 1 and
Group 0 is

exp(1.1592)

exp(0)
= 3.187.

This means that, with other covariates fixed, patients with
radiation prior to first BBBD are 3.187 times more likely than
those without to have shorter survival.
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• Fixing other covariates, if a patient in Group 1 has 10 units
larger KPS.PRE. score than a patient in Group 0, the ratio
of hazard functions is

exp(1.1592) exp(−0.0307× (k + 10))

exp(0) exp(−.0307× k)
=

exp(1.1592) exp(−0.0307× 10)

exp(0)
= 3.187× 0.7357 = 2.345,

where k is an arbitrary number. This means that fixing other
covariates, a patient in Group 1 with 10 units larger KPS.PRE.
score than a patient in Group 0 is 2.34 times more likely to
have shorter survival.

In summary, fixing other covariates, whether a patient gets
radiation therapy prior to first BBBD is more important than
how large his/her KPS.PRE. score is.

• There is significant interaction between AGE60 and SEX. The
estimated coefficient for SEX:AGE60 is 2.1400 with p -value
0.0120. Fixing other covariates, a male patient who is younger
than 60 years old has 34.86% the risk a male older than 60
years old has of succumbing to the disease, where

exp(−2.113× 0− 1.0538× 1 + 2.14× 0)

exp(−2.113× 0− 1.0538× 0 + 2.14× 0)
= exp(−1.0538) = .3486.

Whereas, fixing other covariates, a female patient who is
younger than 60 years old has 2.963 times the risk a female
older than 60 years old has of succumbing to the disease,
where

exp(−2.113× 1− 1.0538× 1 + 2.14× 1)

exp(−2.113× 1− 1.0538× 0 + 2.14× 0)
= exp(1.0862) = 2.963.
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We plot the interaction between SEX and AGE60 based on the
means computed using survfit for the response and AGE60, fixing
female and male separately. It shows a clear pattern of interac-
tion, which supports the prior numeric results using Cox model
cns2.coxint6.

Interaction between SEX and AGE60

M

F

To produce the panel figure, we first fit the data to the model

> cox.fit <- coxph(Surv(B3TODEATH,STATUS)~KPS.PRE.+GROUP+
strata(factor(SEX),factor(AGE60)))

which adjusts for the GROUP and KPS.PRE. effects. We then
set GROUP = 1, KPS.PRE. = 80 and obtain the summary of the
adjusted quantiles and means using survfit as follows:

> survfit(cox.fit,data.frame(GROUP=1,KPS.PRE.=80))
> summary(survfit(cox.fit,data.frame(GROUP=1,KPS.PRE.=80)))
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The panel displays both ordinal and disordinal interactions. The
survival curve for females who are older than 60 years never steps
down below 0.50. In order to produce the median plot, we set
the median survival time since 1st BBBD for this stratum at 1.375
years, which is the .368-quantile.

Interaction between SEX and AGE60 adjusted for KPS.PRE.

and GROUP via coxph and then evaluated at GROUP = 1

and KPS.PRE. = 80
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Crossing Hazards? What does one do?

Example: Extracted from Kleinbaum (1996).

A study in which cancer patients are randomized to either surgery or
radiation therapy without surgery is considered. We have a (0,1)
exposure variable E denoting surgery status, with 0 if a patient
receives surgery and 1 if not (i.e., receives radiation). Suppose
further that this exposure variable is the only variable of interest.

Is the Cox PH model appropriate? To answer this note that
when a patient undergoes serious surgery, as when removing a
cancerous tumor, there is usually a high risk for complications from
surgery or perhaps even death early in the recovery process, and
once the patient gets past this early critical period, the benefits of
surgery, if any, can be observed.

In this study that compares surgery to no surgery, we might expect

to see hazard functions for each group as follows:

h(t|E)

E=1 (no surgery)

E=1

hazards cross

0 1 2 3 4 5 6
days

0.
0

0.
2

0.
4

0.
6

0.
8

 

 

         E=0  (surgery)

Before 2 years, HR(1|0) < 1, whereas later, HR(1|0) > 1.

The PH assumption is violated, since HR must be constant over

the follow-up time.
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If the Cox PH model is inappropriate, there are several options
available for the analysis:

• analyze by stratifying on the exposure variable; that is, do
not fit any regression model, and, instead obtain the Kaplan-
Meier curve for each group separately;

• to adjust for other significant factor effects, use Cox model
stratified on exposure variable E.

> coxph(Surv(time,status)~ X1+X2+· · ·+strata(E))

• start the analysis at three days, and use a Cox PH model on
three-day survivors;

• fit a Cox PH model for less than three days and a different
Cox PH model for greater than three days to get two different
hazard ratio estimates, one for each of these two time periods;

• fit a Cox PH model that includes a time-dependent variable
which measures the interaction of exposure with time. This
model is called an extended Cox model and is presented in
Chapter 7 of our book.

• use the censored regression quantile approach, presented in
Chapter 8 of our book, which allows crossover effects. This
approach is nonparametric and is free of the PH assumption
for its validity.
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Chapter 6

Model Checking: Data Diagnostics

A very brief summary for the Cox PH model

Let t(1), . . . , t(r) denote the r ≤ n ordered (uncensored) death times,
so that t(j) is the jth ordered death time. Let x(j) denote the vector
of covariates associated with the individual who dies at t(j).

The Cox partial likelihood for this j-th individual is given by

Lj(β) = P{individual with x(j) dies at t(j)|one death in R(t(j)) at t(j)}

=
exp(x′

(j)
β)∑

l∈R(t(j))
exp(x′lβ)

.

Do you see the connection here with the form of HR?

Cox’s partial likelihood function:

Lc(β) =

r∏
j=1

Lj(β) =

r∏
j=1

exp(x′
(j)

β)∑
l∈R(t(j))

exp(x′lβ)
.

An equivalent expression for the partial likelihood function in terms
of all n observed times:

Lc(β) =

n∏
i=1

(
exp(x′iβ)∑

l∈R(yi)
exp(x′lβ)

)δi

.
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Remarks:

1. Cox’s estimates maximize the log-partial likelihood.

2. To analyze the effect of covariates, there is no need to esti-
mate the nuisance parameter h0(t), the baseline hazard func-
tion.

3. Cox argues that most of the relevant information about the
coefficients β for regression with censored data is contained
in this partial likelihood.

4. This partial likelihood is not a true likelihood in that it does
not integrate out to 1 over {0,1}n ×<+

n.

5. Censored individuals do not contribute to the numerator of
each factor. But they do enter into the summation over the
risk sets at death times that occur before a censored time.

6. This partial likelihood depends only on the ranking of the
death times, since this determines the risk set at each death
time. So, the estimates are a function of the rank order of the
death times only. This is why we say this is a nonparametric
method.

Ranks are distribution free.
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An heuristic derivation of Cox’s partial likelihood function:

Let t∗ denote a time at which a death has occurred. Let R(t∗) be
the risk set at time t∗; that is, the indices of individuals who are
alive and not censored just before t∗. First,

P{one death in [t∗, t∗ +4t∗) | R(t∗)}
=

∑
l∈R(t∗)

P{Tl ∈ [t∗, t∗ +4t∗) | Tl ≥ t∗}

≈
∑

l∈R(t∗)

h(t∗|xl)4t∗

=
∑

l∈R(t∗)

h0(t
∗) · exp(x′lβ)4t∗.

Thus, if we let P{one death at t∗ | R(t∗)} denote the
∑

l∈R(t∗)

P (Tl = t∗|Tl ≥ t∗) ,

then we have

P{one death at t∗ | R(t∗)} =
∑

l∈R(t∗)

h0(t
∗) · exp(x′lβ).
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Now, let t(1), . . . , t(r) denote the r ≤ n ordered (uncensored) death
times, so that t(j) is the jth ordered death time. Let x(j) denote
the vector of covariates associated with the individual who dies at
t(j). Then, for each j, we have

Lj(β) = P{individual with x(j) dies at t(j) | one death in R(t(j)) at t(j)}

=
P{individual with x(j) dies at t(j) | individual in R(t(j))}

P{one death at t(j) | R(t(j))}

=
h0(t(j)) · exp(x′

(j)
β)∑

l∈R(t(j))
h0(t(j)) · exp(x′lβ)

=
exp(x′

(j)
β)∑

l∈R(t(j))
exp(x′lβ)

.
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Six most popular residual plots to examine:

1. Cox-Snell residuals for assessing the overall fit of a PH model

2. Martingale residuals for identifying the best functional form
of a covariate

3. Deviance residuals to detect possible outliers

4. Schoenfeld residuals to examine fit and detect outlying co-
variate values

• also called partial residuals and score residuals

5. Scaled Schoenfeld residuals and Grambsch and Therneau’s
test for PH assumption

6. dfbetas to assess influence of each observation
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