
Brian Delgado

Nelson Ijih

Taibat Onaolapo Morakinyo

August 10, 2009

http://web.pdx.edu/~bdelgado/dnascout/

http://dnascout.codeplex.com (Subversion repository)

http://web.pdx.edu/~bdelgado/dnascout/
http://dnascout.codeplex.com/
http://dnascout.codeplex.com/
http://dnascout.codeplex.com/

 Project Overview

 Considerations

 Project Details

 Building the Tree

 Tree Node Re-use

 Sulfolobus Data Findings

 Partial Match

 Parallel Search

 Conclusion

2

 Extension of CS 510 Multi-core programming project, under Dr.
Karavanic, summer 2008.

 The goal of this project is to provide biological researchers with a tool to
quickly search huge genome files for exact or partial pattern matches and
report basic statistics regarding the matches.

 Potential uses:

 Searching for common DNA patterns (“motifs”) between related
organisms. Motifs are subsequences that “have not mutated much
over the course of evolution.”

 Motifs help the understanding of DNA since functional DNA evolves more
slowly than non-functional DNA so motifs can help illustrate which parts of
DNA are functional or non-functional.

 Searching for repeating DNA patterns in an organism and reporting
how far apart in the sequence these matches are.

 We are in contact with a BioInformatics researcher at OHSU who
would like to see the output of this project. 3

Aside: We share DNA with rats?

•Getting the input data ready takes some manipulations
• DNA = interleaved helix of two strands
•The NCBI database only has one strand of the DNA.

•“CATATCTTAACGCGATTAATAAATACTCCGTATTTAAGAACT
C…”
•However, we can derive the second strand from the first strand
using simple rules.
•A <-> T
•C <-> G
•Also, need to flip both strands.
•Total of four genome representations to search:

•Strand 1 forward, e.g. “CAT”
•Strand 1 reversed, e.g. “TAC”
•Strand 2 forward, e.g. “GTA”
•Strand 2 reversed, e.g. “ATG”

•Memory Optimization: Instead of storing the four representations, we
just manipulate the queries and store one representation.

•Parallel code can help greatly. With a quad core system, we could search the
four representations concurrently.
•Data structure efficiency is extremely important. The inputs are so large that
we need to be careful how we store the DNA input

4

 DNA Scout supported features:
 1. Create all sub-strings of length N from DNA file,

store into memory search tree along with their
location in the file.

 2. Exact match search (command line argument and
text file input)

 3. Search for partial matches of sub-strings in the
data-set.

 4. Parallel searches for multi-core systems.

 5. Statistics generated for each input file (distance
between matching sub-strings, string frequency – i.e.
how often does string X occur in the DNA file?)

5

Read N characters from input file

Add N characters to Tree

End of file?
No

Read user entered target

search string

Compute other DNA strand forms from

original search string

Yes

Search for all 4 forms of

target string

Exact Search

Partial Search

Parallel Search
Print search results and stats

Input: ACTGACATACTATT
Assume exact match length = 4

ACTGACATACTATT

Start at first spot and take 4 characters (ACTG)
- Add to tree and note starting position (0) in tree
- Increment file pointer by 1 from starting location

Take next four characters (CTGA)
- Add to tree and note starting position (1) in tree
- Increment file pointer by 1 from starting location

Repeat until file is read into the tree

7

C

Root

A GC

C

A

T

T

G

A C

A

G

T

This tree stores: {ACAC, ACAT, CAGT, TGCA, TGCC, TGCG, TGCT}
Null pointers are not shown, except for top-most G node.
The starting location of the string match is noted in the bottom-most node (e.g.
X,Y,Z, etc)

G T

C

X ZY … … … …

8

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

%
 o

f
N

o
d

e
s

R
e

-u
se

d

At Depth

9

1. For Sulfolobus and a pattern match sizes of length 30, there are few
redundant strings.

98.81% of all strings of length 30 are unique
1.19% of all strings of length 30 are redundant

2. Of the redundant strings, most of these matched twice in the genome
although nine strings matched in nine different places.

3. Interesting, one long string (720 characters) matched in six places in
the file.

10

•Partial match searches are useful to researchers since DNA files may contain
transcription errors or perhaps only differ in a few characters which would
allow a partial match to be made.

• To search a partial DNA string from the original search string, e.g. from string
“ACTATACGTAT”, can we find partial matches of the first N characters or
between an arbitrary range.

• Needed to rebuild another search tree built from the tree built for original
string

• Made the routine that builds tree modular and scalable to support partial
search

• Added code to the build tree function to make sure it includes all characters
from input file name to make sure partial searches results to hit if exist in tree

• Wrote a simple routine to get sub string from original search string

• Reported the position of the location in tree where sub search string is found.

 Useful in DNA Research

 Enhanced Searched Performance

 Example:
 Given “ACTGCTGTAC” and want to find its permutation

 Original string, reversed string, flipped string and flippedreversed
will be handled by different threads

 Added master function that invoked search function

 Added code that split the search among threads

 Added a function that get the thread identification and
report the position of the location in the tree where the
permutation of the string is found

 Future work:

 More advanced partial match searches

 Match strings which differ in N characters

 Enhanced output, suitable for graphing in Excel or
auto-generated graphs

 Imprecise match searching, e.g. find matches which
only differ by N characters

13

 Team Responsibilities
 Brian Delgado: tree implementation, exact match search, file

I/O, search permutations, stats and instrumentation
 Nelson Ijih: partial match search, extensions to build tree
 Taibat Onaolapo Morakinyo: parallel search, makefile

 Acknowledgements
 Dr. Karavanic, Greg Shauger, Dave Revell, John

Ochsner for data structure discussions in Summer 08
 Dr. Bart Massey (Portland State Univ) for giving us the

freedom to work on this project.
 DNA Image source:

http://www.csb.yale.edu/userguides/graphics/ribbo
ns/help/dna_rgb.gif

14

http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif
http://www.csb.yale.edu/userguides/graphics/ribbons/help/dna_rgb.gif

 What are A,C,T,G?

 Adenine, Cytosine, Guanine, and Thymine

 They are a nucleobase / DNA base. (parts of
DNA/RNA that may be involved in pairing.)

15

// A node for a linked list of matches found in the DNA file for a
given sub-string

struct matchList_str {
int matchposition;
matchList_str *next;

};

// Node in tree (i.e. the rectangle in the previous slide.)
struct node {
struct node *anext;
struct node *cnext;
struct node *gnext;
struct node *tnext;
struct matchList_str *matchList;

};

16

