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• Machine learning is a scientific paradigm that “gives computers the ability to learn 
without being explicitly programmed.”

• In the main, machine learning focuses on the task of pattern recognition in complex –
sometimes “big” – data settings. Typically, such algorithms “learn” to perform prediction
or classification through inference from many training examples. 

• *Please feel free to ask questions and interrupt me at any time, if any material requires 
further clarification. 

What is Machine Learning? 



• There are many contemporary, cutting-edge applications of machine learning, 
including: cancer detection (a classification problem), natural language processing, 
data security and anomaly detection (unsupervised learning), automated vehicles 
(reinforcement learning) and recent state-of-the-art AI, such as Watson, the alphaGO
project and automated Atari game-playing – to name but a few examples. 

•

What is Machine Learning? (cont’d)  

Google DeepDream

•

Google DeepMind Atari

•



• In our research we focus on a sub-field of A.I. known as computer vision. 

• Current work in computer vision commonly focuses on tasks/problems such as: 
object detection (e.g. is there a pedestrian in this image?), object localization (where is 
the pedestrian?), automated image captioning, situation and activity recognition, and 
video tracking. 

• The preeminent goal of computer vision/A.I. is to e an algorithm with true 
cognitive-visual intelligence. 

Computer Vision



Active Object Localization in Visual Situations

.

• Situate is a computer vision framework for active object localization is visual situations. 

• We define a ‘visual situation’, e.g. ‘dog-walking’, as an abstract concept whose image 
instantiations are linked more by their common spatial and semantic structure than by 
low-level visual similarity. 

• Our system combines given and learned knowledge of the structure of a particular 
situation, and adapts that knowledge to a new situation instance as it actively searches for 
objects. 



• Develop efficient algorithm employing an active search for target objects, using, possibly 
known “situational context”; results shown for pedestrian detection. 

• The quality of this search is generally determined by (2) criteria:

(1) How well does the proposal bounding-box match the ground truth (i.e. a tightly-
cropped box) for the target object? This measure is commonly reported as the “overlap” or 
IOU (intersection over union).

(2) How efficient is the search? E.g. How “long” 
does it take, how many proposals are required?

Project Objectives



• Research presented here draws from (4) papers:

(1) Rhodes, A. D., Witte, J., Mitchell, M., and Jedynak, B. Using Gaussian Processes and 
Context for Active Object Localization. (2017)

(2) Rhodes, A. D., Witte, J., Mitchell, M., and Jedynak, B. Bayesian Optimization for 
Refining Object Proposals. (2017)

(3) Rhodes, A. D., Quinn, M. H., and Mitchell, M. Fast On-Line Kernel Density Estimation 
for Active Object Localization. (2016)

(4) Quinn, M. H., Rhodes, A. D., and Mitchell, M. Active Object Localization in Visual 
Situations. (2016) 

Background 



• (I) We train a convolutional neural network (CNN) to score bounding-box proposals to approximate an 
offset distance from the target object. 

• (II) From training data, we develop context-situation model as a distribution of  location and size 
parameters for a target object bounding-box, given various location and size parameters for a particular 
visual situation. 

• (III) We apply a Gaussian Process (GP)to approximate this offset response signal over the (large) search 
space of  the target.

• (IV) A Bayesian active search is then used to achieve fine-grained localization of  the target. 

General Algorithm Pipeline 

(II) Context-Situation Model

(I) CNN (offset distance signal)
(III) Gaussian Process Regression (IV)  Bayesian Optimization



• We use a common architecture in machine learning know as a neural network (specifically: a 
CNN, a convolutional neural network) to extract features from an image patch that we then 
“score” in terms of the distance from an object of interest in an image. 

• Each neuron receives some inputs, performs a dot product and optionally follows it with a  
non-linearity (e.g. sigmoid/tanh).

• The whole point of this is that NNs/CCNs are often very effective at (automatically) learning 
complex patterns in data; NNs can serve as black box universal function approximators. 

(I). A Short Digression (CNNs) 



• Intuitively, the network will learn filters that activate when they see some type of visual feature 
such as an edge of some orientation or a blotch of some color. Now, we will have an entire set of 
filters in each CONV layer, and each of them will produce a separate 2-dimensional activations; 
these features are stacked along the depth dimension in the CNN and thus produce the output 
volume. 

• A nice way to interpret this model via a brain analogy is to consider each entry in the 3D output 
volume as an output of a neuron that looks at only a small region in the input and shares 
parameters with all neurons to the left and right spatially (since the same filter is used). 

• Each neuron is accordingly connected to only a local region of the input volume; the spatial 
extent of this connectivity is a hyperparameter called the receptive field.

(I) A Short Digression (CNNs)



• For training to learn the surrogate function, we extracted features from a pre-trained CNN on 
~106 image patches per object category (e.g. human, dog), with 4096 features per patch, and 
performed ridge regression fitting and a multi-step data transformation to generate a workable 
function for object localization with GPR. 

• An ensemble of these classifiers constitutes our scoring function. 

(I). Offset-score Function



Recall: Algorithm Pipeline 

(II) Context-Situation Model

(I) CNN (offset distance signal)
(III) Gaussian Process Regression (IV)  Bayesian Optimization



• We define a context-situation model as a distribution of location and size parameters for a 
target object bounding-box, given various location and size parameters for a particular 
visual situation: 𝑝 𝑥𝑡𝑎𝑟𝑔𝑒𝑡, 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 𝑥𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑠𝑐𝑜𝑛𝑡𝑒𝑥𝑡 1:𝐶 . 

• More specifically, this learned model consists of a set of probability distributions modeling 
the joint locations and sizes of three relevant objects (i.e., pedestrian, dog and leash).

• These distributions capture the expected relationships among the three objects with respect 
to location and size/shape of bounding-boxes.

• For simplicity and as a general proof of concept, we model context-situation MVN (multi-
variate Normal) distributions. 

• We use the context-situation model to generate initial bounding-
box proposals for a pedestrian in a test image. 

*In prior work we additionally developed more flexible
context-situation models using kernel methods. 

(II). Context-Situation Model 



• Gaussian Process Regression (GPR) is a flexible (Bayesian) regression scheme that defines a 
probability density over function output values, according to previously observed data. 

• A Gaussian Process is uniquely defined by the choice of its mean and covariance functions, 
where the mean indicates the average function output and the covariance typically 
measures “similarity” between data values. 

• GPR method is consequently data-driven (i.e. non-parametric) method offering several distinct 
advantages over traditional regression/interpolation approaches. 

(III). Gaussian Process Regression 



• One can employ GPR in this framework as a probabilistic, generative function model.

• The figure on the left shows samples drawn from a GPR prior (i.e. without data); the image on 
the right depicts samples taken from the posterior distribution; note the instance of perfect 
interpolation achieved due to noise-free modeling. 

*Image credit: Rasmussen & Williams (2006)

(III). GPR



• Because it is computationally expensive to generate offset prediction values for a large 
number of bounding-box proposals (due to the CNN), we use GPR to approximate the offset 
prediction values over the target search space (i.e. a large grid of values). 

• Next, we actively search this space according to a Bayesian optimization scheme (IV) to find 
new proposals that are likely to capture the target object.

(III). GPR 



(IV). Active Learning Queries 

• Next we consider the task of efficiently querying the search space for a target object 
generated by the GPR procedure.

• In choosing new data points, we naturally want to collect the “best” data available at a 
minimum computational cost. 

• Why is this problem challenging? Because our search space is only an approximation to the 
true measure of the quality of a bounding-box proposals.

• The main undertaking in active learning is to make a decision as to which data points to 
query (formulating a query strategy); this decision is encapsulated formally through an 
acquisition function. 



(IV). Active Learning Queries 

• Next we consider the task of efficiently querying the search space for a target object 
generated by the GPR procedure.

• In choosing new data points, we naturally want to collect the “best” data available at a 
minimum computational cost. 

• Why is this problem challenging? Because our search space is only an approximation to the 
true measure of the quality of a bounding-box proposals.

• The main undertaking in active learning is to make a decision as to which data points to 
query (formulating a query strategy); this decision is encapsulated formally through an 
acquisition function. 

• Ideally, in addition to exploring regions of high uncertainty, we should also exploit, to some 
degree, “regions of promise”, respecting our target object.



(IV). Active Learning Queries 

• In the framework of Bayesian optimization, acquisition functions are used to guide the 
search for the optimum of the GPR approximation to the true objective function (whose 
maximum occurs, ideally, for a proposal that perfectly crops the pedestrian). 

• Intuitively, acquisition functions are defined in such a way that high acquisition indicates 
greater likelihood of an objective function maximum.

• Commonly used acquisition functions (we omit the details for brevity) in this setting include: 
probable improvement (PI) and expected improvement (EI). 



(IV). Bayesian Optimization 

• In the figure we display a Gaussian process showing the region of probable improvement. The 
maximum observation is at x+. 

• The darkly-shaded area in the superimposed Gaussian above the dashed line can be used as 
a measure of improvement. The model predicts almost no possibility of improvement by 
observing at x1 or x2, while sampling at x3 is more likely to improve on f(x+).

•



(IV). Bayesian Optimization
• Below are example iterations of both PI and EI-based active queries with GPR.

• In the current work, we use a variant of EI that is fine-tuned to our problem parameters.



GP-CL Algorithm 
 

 

Algorithm: Gaussian Process Context Localization 

(GP-CL)  

 

Input: Image I, a set of C context objects, trained model y 

giving response signals, learned context-situation model 

𝑝 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑠𝑡𝑎𝑟𝑔𝑒𝑡  · , n0 initial bounding-box proposals for 

target object generated by the context-situation model,  and 

corresponding response signal values: 𝐷𝑛0
=

  𝑥𝑖 ,𝑠𝑖 , 𝑦 𝑥𝑖 ,𝑠𝑖  𝑖=1

𝑛0
, GP hyperparameters θ, size of GP 

realization space M, dynamic design parameter for 

Bayesian active search 𝜉, size of GP memory GPmem (as 

number of generations used), batch size n, number of 

iterations T, current set of bounding-box proposals and 

response signals 𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
 𝑡 . 

 

1:Compute n0 initial bounding box proposals: 

  𝑥𝑖 ,𝑠𝑖  𝑖=1

𝑛0
~𝑝 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑠𝑡𝑎𝑟𝑔𝑒𝑡  ·   

2: 𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
 0 ⟵  𝐷𝑛0

 

3:for t = 1 to T do 

4:   Compute 𝜇 𝑥  𝑡  and σ 𝑥  𝑡  for the GP realization    

        𝑓𝑀
 𝑡 

  of  𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
 𝑡−1 

 over grid of M points  (Equation 4) 

5:   for i = 1 to n do 

6:     𝑧𝑖 = argmax
𝑥

𝑎𝐶𝐸𝐼  𝑓𝑀
 𝑡  \ 𝑧𝑗  𝑗=1

𝑗=𝑖−1
, 𝜉  (Equation 5) 

7:      𝑠𝑎𝑚𝑝𝑙𝑒: 𝑠𝑖~𝑝 ∙ 𝑠  
8:      𝑝𝑖 =  𝑧𝑖 , 𝑠𝑖  
9:   end for 

10:  𝐷 𝑡 ⟵   𝑥𝑖 ,𝑠𝑖 , 𝑦 𝑥𝑖 ,𝑠𝑖  𝑖=1

𝑛
 

11:  𝐷𝑝𝑟𝑜𝑝𝑜𝑠 𝑎𝑙
 𝑡 ⟵  𝐷 𝑗  𝑡

𝑗=𝑡−𝐺𝑃𝑚𝑒𝑚
 

12: end for 

13: Return argmax
𝑥

𝜇 𝑥  𝑇   

Step 1: Sample initial target proposals from context-

situation model  

Step 2: Score these proposals using the offset-prediction 

model (CNN) 

Step 3: Compute GPR values over search space 

Step 4: Using Bayesian optimization procedure, return 

proposals in search space with maximum acquisition  

Step 5: Return to Step 3 (loop)  



GP-CL Example Runs
• Examples of runs on two test images with the GP-CL algorithm. In each row the test image is 

shown on the far-left; the “search IOU history” is displayed in the second column, with the 
algorithm iteration number on the horizontal axis and IOU with the ground-truth target 
bounding box on the vertical axis. 



Experimental Results
• Graph of BB-R (0.6), BB-R (0.1) and GP-CL localization results for test images. The horizontal 

axis indicates the median IOU for the initial proposal bounding boxes, while the vertical axis 
designates the final IOU with the target object ground truth. The line depicted indicates 
“break-even” results. 

 
Method IOU 

Difference 

Median 

(SE) 

Median 

Relative IOU 

Improvement 

% of Test 

Set with IOU 

Improvement 

% of Test 

Set  

Localized 

BB-R 

(0.6) 

.0614 

(.0035) 

34.62% 90.1% 12.3% 

BB-R 

(0.1)  

.1866 

(.0077) 

92.91% 90.0% 33.2% 

GP-CL .4742 

(.012) 
194.02% 89.3% 75.2% 

 



Thanks for listening, questions and comments are welcome.


