51 Numerical Differentiation

We develop finite difference formulas for approximating derivatives.

8.1.1 Finite Difference Formulas

Recall from Calculus:

\[
 f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]

Using Taylor's Theorem (with "center" : \(x \)) we have:

\[
 f(x+h) = f(x) + hf'(x) + \frac{h^2}{2} f''(\xi)
\]

for some \(\xi \in (x, x+h) \). This equation implies the following:

Two-point forward-difference formula

\[
 f'(x) \approx \frac{f(x+h) - f(x)}{h} - \frac{h}{2} f''(\xi)
\]

where \(\xi \in (x, x+h) \).

(*Note: For small \(h \), this gives us a small error.

Quantity. We call the Two-point forward-difference formula a first-order method for approximating \(f'(x) \).

In general, we say a method is *an order* \(n \) if the error is \(O(h^n) \), for an approximation.

The idea here is that for first-order approximation, the error is proportional to \(h \) as \(h \to 0 \).
Ex. Use the Two-point forward-difference formula with \(h = 0.1 \) to approximate \(f'(x) \), where \(f(x) = \frac{1}{x} \) @ \(x = 2 \).

\[
f'(x) \approx \frac{f(x+h) - f(x)}{h} = \frac{\frac{1}{2.1} - \frac{1}{2}}{0.1} = \mathbf{2.387}
\]

True value: \(f'(x) = -\frac{1}{x^2} \) @ \(x = 2 \) \(\rightarrow \) error: \(2.387 - (-0.25) = 2.637 \)

Compare the error to the predicted error given by \(\frac{h^2}{2} f''(c) \text{ for } c \in (2, 2.1) \)

\[
f''(x) = \frac{2}{x^3} \rightarrow \text{error in b/w } (0.1)2^3 a. 0.0155 \text{ & } (0.1)(2.1)^3 a. 0.0138
\]

which is consistent with our result.

Next we consider a means to develop a second-order formula.

By Taylor's Theorem:

\[
f(x+h) = f(x) + hf'(x) + \frac{h^2}{2} f''(x) + \frac{h^3}{6} f'''(c_1)
\]

\[
f(x-h) = f(x) - hf'(x) + \frac{h^2}{2} f''(x) - \frac{h^3}{6} f'''(c_2)
\]

Solving for \(f'(x) \):

\[
f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{12} \left[f''(c_1) - f''(c_2) \right]
\]

Before arriving at a "nice" clean answer, we would like to first consolidate the error terms above. To do so, we use an extension of the IVP method called...
Theorem [Generalized Intermediate Value Theorem]

Let \(f \) be a continuous function on \([a, b]\). Let \(x_1, \ldots, x_n \) be points in \([a, b]\) with \(a < x_1 < \cdots < x_n > b \). Then there exists a number \(c \in (x_1, x_n) \) such that

\[
\sum_{i=1}^{n} a_i f(x_i) = \left(\sum_{i=1}^{n} a_i \right) f(c) = a_1 f(x_1) + \cdots + a_n f(x_n)
\]

Proof

Let \(f(x_i) \) be the minimum and \(f(x_j) \) be the maximum of \(f \) in each interval \([x_{i-1}, x_i]\). Then

\[
a_1 f(x_1) + \cdots + a_n f(x_n) \leq a_1 f(x_i) + \cdots + a_n f(x_j) \leq a_1 f(x_1) + \cdots + a_n f(x_n)
\]

which implies

\[
f(x_i) \leq \frac{a_1 f(x_1) + \cdots + a_n f(x_n)}{a_1 + \cdots + a_n} \leq f(x_j)
\]

By the IMVT, there exists a number \(c \in (x_i, x_j) \) such that

\[
f(c) = \frac{a_1 f(x_1) + \cdots + a_n f(x_n)}{a_1 + \cdots + a_n}
\]

Observe that the Generalized IMVT (above) indicates that we may consolidate the error terms from before, whereas:

Three-point centered difference formula

\[
f''(c) = \frac{f(x+h)-f(x-h)}{2h} \quad \text{and} \quad \frac{h^2}{6} f'''(c)
\]

Order Two approximation!
Ex. Use the three-point central difference formula with \(h = 0.1 \) to approximate \(f'(x) \) with \(f(x) = \frac{1}{x} \), \(x = 2 \).

\[
f'(x) \approx \frac{f(x+h) - f(x-h)}{2h} = \frac{\frac{1}{2.1} - \frac{1}{1.9}}{0.2} = -2.506
\]

The error here is \(0.006 \), a significant improvement on the two-point forward difference used previously.

Q: How do we numerically approximate higher derivatives?
A: Simply use Taylor series, as usual, and algebraically eliminate \(f''(x) \) terms, solve for \(f'''(x) \).

Recall:
\[
f(x+h) = f(x) + hf'(x) + \frac{h^2}{2} f''(x) + \frac{h^3}{6} f'''(x) + \frac{h^4}{24} f^{(4)}(c_1)
\]
\[
f(x-h) = f(x) - hf'(x) + \frac{h^2}{2} f''(x) - \frac{h^3}{6} f'''(x) + \frac{h^4}{24} f^{(4)}(c_2)
\]

\[
f(x+h) + f(x-h) = 2f(x) = h^2 f''(x) + \frac{h^3}{3!} \left[f'''(c_1) + f'''(c_2) \right]
\]

One again we need the Generalized T dovT...

Three-Point Central-Difference Formula for Second Derivative

\[
f''(x) = \frac{f(x-h) - 2f(x) + f(x+h)}{h^2} - \frac{h^2}{12} f^{(4)}(c)
\]

where \(c \in (x-h, x+h) \).
A caveat for numerical differentiation

Each of the previous methods in §5.1 relies, fundamentally, on subtracting/adding nearly equal quantities. Unfortunately, when using floating point arithmetic (i.e., performing computations on a computer with a finite

\[E_{\text{mach}} \]

such computation can lead to significant deterioration in the quality of approximations due to loss of significance. We illustrate this phenomenon with an example.

Example: Approximate \(f'(x) \) when \(f(x) = e^x \) as \(x \to 0 \).

Two-point formula:

\[f'(x) \approx \frac{e^{x+h} - e^x}{h} \]

Three-point:

\[f'(x) \approx \frac{e^{x+h} - e^{x-h}}{2h} \]

(set \(h = 0.1 \))

<table>
<thead>
<tr>
<th>(n)</th>
<th>error for 2-point</th>
<th>error for 3-point</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}</td>
<td>-0.0517...</td>
<td>-0.001664</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>-0.00501</td>
<td>-0.0001666</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>-0.0000524</td>
<td>-0.000001666</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>-0.00000524</td>
<td>-0.0000001666</td>
</tr>
</tbody>
</table>

Why does this happen? Consider 3-point error:

\[f'(x) - f'(p) = f'(x) - \frac{f(x+h) - f(x) + f(x-h)}{2h} = \cdots \]

\[= f''(x) + \frac{h^2 E_2 - E_1}{2h} \]

Error: when \(h \) becomes too small

error can actually increase!
Extrapolation

Assume that we have an \(n \)-order formula \(F(n) \) for approximately

The quantity \(Q \). This tells us that:

\[
Q = F(n) + Kh^n + \text{error}
\]

where \(K \) is roughly constant over

The range of \(h \). \((x) \)

As before, we would like to algebraically manipulate this formula of order \(n \) so as to produce a higher order approximation. The key insight here is: that we use \(\frac{h}{2} \) instead of \(h \), as this should reduce the error from a constant times \(h^n \) to a constant times \((\frac{1}{2})^n \); i.e. we reduce the error by a factor of \(2^n \).

That is to say, we expect:

\[
Q - F(\frac{h}{2}) \approx \frac{1}{2^n} \left[Q - F(n) \right]
\]

Solve for \(Q \)...

Extrapolation for order- \(n \) formula (Richardson Extrapolation)

\[
Q \approx \frac{2^n F(n/2) - F(n)}{2^n - 1}
\]

\[
Q = \frac{F_n(h) + Kh^n + O(h^{n+1})}{n\text{-order formula}}
\]
Now we cut \(h \) in half.

\[
Q = F_n \left(\frac{h}{2} \right) + k \left(\frac{h^m}{2^n} \right) + o \left(h^{n+1} \right)
\]

4. The extrapolated version which we call \(F_{\text{extr}}(h) \) satisfies

\[
F_{\text{extr}}(h) = \frac{2^n F_n \left(\frac{h}{2} \right) - F_n(h)}{2^n - 1}
\]

\[
= \frac{2^n \left(Q - Kh^n/2^n - o(h^{n+1}) \right) - \left(Q - Kh^n - o(h^{n+1}) \right)}{2^n - 1}
\]

\[
= Q - \frac{Kh^n + o(h^{n+1})}{2^n - 1} = Q + o(h^{n+1})
\]

This shows that \(F_{\text{extr}}(h) \) is at least an order \(n+1 \) formula for approximating the quantity \(Q \).

Exercise: Apply the extrapolation formula for second order central difference

\[
F_2(h) = \frac{2 F_n \left(\frac{h}{2} \right) - F_n(h)}{2^2 - 1}
\]

\[
= \left[\frac{f(x + h/2) - 2 f(x) + f(x - h/2)}{h^2/4} \right]^{1/3}
\]

\[
= \left[\frac{-f(x-h) - 8 f(x-h/2) + 8 f(x+h/2) - f(x+h)}{64} \right]^{1/3}
\]

\[
\rightarrow \text{A five-point central difference formula!}
\]

(This is an order \(n+1 \) formula.