
Dimensionality Reduction:

CS 445/545

Outline

• “Big data” and motives for dimensionality reduction

• LDA (linear discriminant analysis)

• PCA (principal component analysis)

• SVD (singular value decomposition)

Big Data/High-Dimensional Data

In the beginning…

Big Data/High-Dimensional Data

In the beginning…

There was small data…

Big Data/High-Dimensional Data

Big Data/High-Dimensional Data

Big Data/High-Dimensional Data

Big Data/High-Dimensional Data

Big Data/High-Dimensional Data

Big Data/High-Dimensional Data

Big Data/High-Dimensional Data

Big Data/High-Dimensional Data

Big Data/High-Dimensional Data

Big Data/High-Dimensional Data

Aside: Is the Basis of the Universe

Information?

• In the 1940s, “the father of the digital age,”

Claude Shannon, formalized the notion of information

through entropy.

• The theoretical physicist John Archibald Wheeler later stated that

The universe had (3) parts:

(1) Everything is particles

(2) Everything is fields

(3) Everything is information

logi i

i

H p p 

Aside: Is the Basis of the Universe

Information?

• A study in 2017 revealed substantial evidence that we live in a holographic

universe.

•In this view, we might be caught inside a giant hologram; the cosmos is

a projection, much like a 3D simulation.

•If the nature of reality is in fact reducible to information itself, that implies a

conscious mind on the receiving end, to interpret and comprehend it.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.041301

Aside: Is the Basis of the Universe

Information?
• Wheeler himself believed in a participatory universe, where consciousness holds a

central role.

• It is possible that information theory may in the future help bridge the gap

between general relativity and quantum mechanics, or aid in our understanding

of dark matter.

"The universe is a physical system that contains and processes information in a

systematic fashion and that can do everything a computer can do.“ – Seth Lloyd,

MIT

Susskind: “On the world as hologram” https://www.youtube.com/watch?v=2DIl3Hfh9tY

Aside: Is the Basis of the Universe

Information?
• Just for fun…here is a short conversation with Minsky on the question of

whether information is a basic building block of reality.

https://www.closertotruth.com/series/information-fundamental

Introduction

• Most traditional statistical techniques (e.g. regression/classification) were

developed in low-dimensional settings (i.e. n >> p where n is the data size and p

is the number of features).

• Over the last several decades, new technologies have drastically changed the

way that data are collected (see “big data age”). Consequently, it is now

commonplace to work with data with a very large number of features (i.e. p

>> n).

• While p can be extremely large, the number of observations n is often limited

due to cost, sample availability, or other considerations.

Introduction
• Data containing more features than observations are typically referred to as

high-dimensional.

• Issues pertaining to the bias-variance tradeoff and overfitting are commonly

exacerbated in high dimensions.

• With a large number of features, statistical models (e.g. regression) can

become too flexible and hence overfit the data.

• Recall the curse of dimensionality, which poses two fundamental, associated

problems: (1) “neighborhoods” become very large (this is problematic in

particular for kernel and clustering methods), (2) we need a much larger data

set to adequately “fill” the space for predictive modeling, etc.

Interpretability in High Dimensions
• In high-dimensional settings we need to be cautious about how we

interpret our results – that is to say if they can be reasonably interpreted at

all.

• Of course, it is oftentimes adequate, depending on the application, to treat a

machine learning model as a mere predictive “black box” (e.g. statistical

arbitrage, government work).

• Conversely, if we want to say that the features in our model directly impact

the outcomes we observe (note: in ML we almost never use the c-word – viz.,

variables caused observed effect) we need to be alert to multicollinearity.

• In high dimensions, it is very likely that some of our model variables are

mutually correlated. This means we can never know exactly which variables

(if any) are truly predictive of the outcome. Moreover, we can rarely identify

the optimal set of features for a given phenomenon of interest.

Interpretability in High Dimensions

• The “first rule” of data science and ML: one can always add more and

more features to achieve zero classification/predictive error, a perfect

correlation coefficient value, etc.

• In the end, however, this is a useless model. We always need to report

results on an independent test or validation set.

• In 2008, Hinton et al, developed a non-linear dimensionality technique known

as t-SNE (t-distributed stochastic neighbor embedding) that is particularly well-suited

for embedding high-dimensional data into 2 or 3 dimensions, which can be

visualized with a scatter plot.

• Specifically, it models each high-dimensional object by a two- or three-dimensional

point in such a way that similar objects are modeled by nearby points and

dissimilar objects are modeled by distant points.

t-SNE: H-D Data Visualization

• First, t-SNE constructs a probability distribution over pairs of high-dimensional

objects in such a way that similar objects have a high probability of being picked,

whilst dissimilar points have an extremely small probability of being picked.

• Second, t-SNE defines a similar probability distribution over the points in the low-

dimensional map, and it minimizes the KL divergence (a standard measure of

“distance” between probability distributions) between the two distributions with

respect to the locations of the points in the map.

t-SNE for MNIST

t-SNE for Atari! (Deepmind)

Word2vec (2013)
• Word2vec is a group of related models (Google) that are used to produce

word embeddings.

• These models are shallow, two-layer neural network that are trained to

reconstruct linguistic contexts of words.

• Word2vec takes as its input a large corpus of text and produces a vector

space (usually of high dimensions), with each unique word in the corpus

being assigned a corresponding vector in the space.

• Word vectors are positioned in the vector space such that words that

share common contexts in the corpus are located in close proximity to

one another in the space.

t-SNE for word2vec

Dimensionality Reduction
• In general: the higher the number of dimensions we have, the more training data

we need.

• Additionally, computational cost is generally an explicit function of

dimensionality.

• Dimensionality reduction can also remove noise in a data set, which can, in

turn, significantly improve the results of a learning algorithm.

• These are perhaps the strongest reasons why dimensionality reduction is useful

(in addition to improving visualization/interpretability).

In general, there are (3) common ways to perform dimensionality reduction:

(1) Feature selection – determine whether the features available are actually useful,

i.e. are they correlated with the output variables.

(2) Feature derivation – means deriving new features from old ones, generally by

applying transforms to the data set that change the coordinate system axes (e.g.,

by moving or rotating); this is usually achieved through matrix multiplication.

(3) Clustering – group together similar data points to see whether this allows fewer

features to be used.

LDA
• We will consider linear discriminant analysis (LDA) in an unsupervised setting

(that is to say the data has no target label), due to Fisher (1936).

• Consider the case of two data classes; we can compute various summary

statistics for these data, including μ, the mean of the entire set, as well as μ1 and
μ2, the means of each class, respectively; and the covariance of each class:

*Note: We use the standard notation for column vectors, so that wTw is equivalent to the dot

product of w with itself, whereas wwT yields an nxn matrix, for n-dimensional w.

  
T

j j

j

x x  

LDA
• The principal insight of LDA is that the covariance matrix can tell us about the

scatter within a dataset, which is the amount of spread extant within the data.

• The way to find the scatter is to multiply the covariance by pc, the probability of

the given class (that is, the number of data points there are in the class divided

by the total number).

• Adding the values of this for all of the classes gives us a measure called the

within-class scatter of the data set:

  
T

W c j c j c

classes c j c

S p x x 


   

LDA
• Within-class scatter of the data set:

• If the data is easy to separate into classes, then this within-class scatter should

be small, so that each class is tightly clustered together.

• Conversely, in order to separate data, we also want the distance between

classes to be large. This quantity is known as the between-classes scatter:

  
T

W c j c j c

classes c j c

S p x x 


   

  
T

B c c

classes c

S      

LDA

  
T

W c j c j c

classes c j c

S p x x 


      
T

B c c

classes c

S      

LDA
• “Good separation” means SW should be small and SB should be large; accordingly

we wish to make the ratio: SB/SW as large as possible.

• Regarding dimensionality reduction: we want SB/SW to be large when we reduce

the number of dimensions of our data.

• Recall that the projection of a data point (i.e. a vector) x onto another vector w

can be written as z = wTx.

• So let’s consider the between and within scatter quantities projected onto some

vector w:

     

     

T
T T T

c j c j c W

classes c j c

TT T T

c c B

classes c

p w x w x w S w

w w w S w

 

   



  

  

 



why?

LDA
• Thus, the ratio of projected between-class and within-class scatter is:

How do we find the maximum value of this expression with respect to w?

T

B

T

W

w S w

w S w

LDA
• Thus, the ratio of projected between-class and within-class scatter is:

How do we find the maximum value of this expression with respect to w?

Take the derivative with respect to w and set it equal to zero (i.e. find the “critical

points”).

T

B

T

W

w S w

w S w

LDA
• Thus, the ratio of projected between-class and within-class scatter is:

How do we find the maximum value of this expression with respect to w?

Take the derivative with respect to w and set it equal to zero (i.e. find the “critical

points”).

• This yields:

   

 
2

0

T T

B W W B

T

W

S w w S w S w w S w

w S w




T

B

T

W

w S w

w S w

Why?

LDA
• Thus, the ratio of projected between-class and within-class scatter is:

How do we find the maximum value of this expression with respect to w?

Take the derivative with respect to w and set it equal to zero (i.e. find the “critical

points”).

• This yields:

FYI: Matrices have analogous “derivative” rules (see Matrix Calculus):

, etc.

   

 
2

0

T T

B W W B

T

W

S w w S w S w w S w

w S w




T

B

T

W

w S w

w S w

Why?

Calculus!

 T T TA A A

    
x x x

x

LDA
• After some simplification and solving a sub-problem known as the generalized

eigenvalue problem, we arrive at Fisher’s solution in the 2-class case:

Let’s recap the LDA framework and what w* represents, now that we have the

solution:

(*) LDA seeks to reduce dimensionality while preserving as much of the class

discriminatory information as possible.

(*) We seek to obtain a scalar y by projecting each datum x onto a line: y = wTx.

(*) Of all possible lines, w* represents the one that maximizes the separability of the

scalars.

 1

1 2* arg max
T

B
WT

W

w S w
w S

w S w
  

   
 

FIGURE 6.5 Plot of the iris data showing the three classes left: before and right:

after LDA has been applied.

LDA
(*) In the figure: the two classes A and B appear overlapped along both X1 and X2

directions.

(*) However, they are perfectly separated along the discriminant function w*.

(*) Projecting the data onto this discriminant function renders a perfect separation of

the two classes.

* Note that there are a variety of different forms of LDA, including the use of Bayes’

theorem for posterior classification, and QDA (quadratic discriminant analysis), where

the discriminant function is parabolic.

 1

1 2* arg max
T

B
WT

W

w S w
w S

w S w
  

   
 

PCA
• Like LDA, principal component analysis (PCA) amounts to

computing a transformation of a data set in order to identify a (useful)

lower-dimensional set of axes.

Essential idea: PCA generates a particular set of coordinate axes (usually in

fewer dimensions than the original data) that capture the maximum

variability in the data; furthermore, these new coordinate axes are

orthogonal (which is to say they are uncorrelated).

PCA: (Aside) Gram-Schmidt

• One of the quintessential results in Linear Algebra is the Gram-Schmidt algorithm (NB:

this is the same Gram per the “Gram matrix”).

The G-S algorithm takes a basis for, say, an inner product space (viz., a vector

space equipped with an inner product, such as the Euclidean space Rn) and returns

an orthonormal basis for the same space.

Gram

PCA: (Aside) Gram-Schmidt

• One of the quintessential results in Linear Algebra is the Gram-Schmidt algorithm (NB:

this is the same Gram per the “Gram matrix”).

The G-S algorithm takes a basis for, say, an inner product space (viz., a vector

space equipped with an inner product, such as the Euclidean space Rn) and returns

an orthonormal basis for the same space.

(*) Given a basis set, each step of the G-S algorithm amounts to iteratively subtracting off the

orthogonal projection of the current vector from each of the previous vectors in the process.

(*) In the diagram, the set {v1, v2} is the original basis set;

(1) Normalize v1: 𝑒1 = 𝑣1/ 𝑣1
(2) Project v2 onto v1

(3) Define u2 as the difference of v2 and the projection of v2 onto v1

(4) Normalize u2: 𝑒2 = 𝑢2/ 𝑢2 (5) the set {e1, e2} is an orthonormal basis.

Gram

PCA: (Aside) Gram-Schmidt

The G-S algorithm takes a basis for, say, an inner product space (viz., a vector

space equipped with an inner product, such as the Euclidean space Rn) and returns

an orthonormal basis for the same space.

PCA: (Aside) Gram-Schmidt

The G-S algorithm takes a basis for, say, an inner product space (viz., a vector

space equipped with an inner product, such as the Euclidean space Rn) and returns

an orthonormal basis for the same space.

(*) How is this useful? G-S algorithm is used to render the QR factorization

of a matrix.

(*) PCA employs a similar strategy to generate the “principal components”

of a data set.

PCA: (Aside) Gram-Schmidt

PCA
PCA generates a particular set of coordinate axes that capture the maximum

variability in the data; furthermore, these new coordinate axes are orthogonal.

The figure shows two versions of the same data set.

• In the first image, the data are arranged in an ellipse that runs at 45◦ axes; while in the

second, the axes have been moved so that the data now runs along the x-axis and is

centered on the origin.

• Key idea: the potential for dimensionality reduction rests in the fact that the y dimension

now does not demonstrate much variability – and so it might be possible to ignore it and

simply use the x axis values alone for learning, etc.

(*) In fact, applying this dimensionality reduction often has the nice effect of removing some

of the noise in the data.

PCA
Q: How do we choose the new axes?

A: With PCA, the principal component is the direction in the data with the largest variation.

• The algorithm first centers the data (by subtracting off the mean), and then chooses the

direction with the largest variation and places an axis in that direction.

• For subsequent steps, the algorithm then looks at the variation that remains and finds

another axis that is orthogonal to the first and covers as much of the remaining

variation as possible.

Rinse and repeat…







PCA
Q: How do we choose the new axes?

A: With PCA, the principal component is the direction in the data with the largest variation.

• The algorithm first centers the data (by subtracting off the mean), and then chooses the

direction with the largest variation and places an axis in that direction.

• For subsequent steps, the algorithm then looks at the variation that remains and finds

another axis that is orthogonal to the first and covers as much of the remaining

variation as possible.

Rinse and repeat…

(*) The end result is that all the variation is along the axes of the coordinate set, and so the

covariance matrix of the transformed data is diagonal (since each new variable is

uncorrelated with every variable except itself).

(*) Because some of the axes generated in this process have very little variation, we can

typically remove them without drastically affecting the variability in the data (note the

implicit assumption: variation in data features equates to useful information for

classification/inference).







PCA
Let’s formally work out the PCA algorithm.

• Suppose we have a data matrix X of dimension n by m (n is the number of training

instances, m is the dimension of each datum).

Goal for PCA: rotate the data so that we render a coordinate

system so the new axes are uncorrelated (i.e. orthogonal) and

can be ranked according to maximum variation.

PCA
Let’s formally work out the PCA algorithm.

• Suppose we have a data matrix X of dimension n by d (n is the number of training

instances, d is the dimension of each datum).

Goal for PCA: rotate the data so that we render a coordinate

system so the new axes are uncorrelated (i.e. orthogonal) and

can be ranked according to maximum variation.

Using standard techniques from linear algebra, we can express

the rotation of the data matrix X as:

Where P is a “rotation matrix” with the natural

property that PT = P-1 (why?).

TY P X

Simple rotation

matrix example

PCA

• Recall that for PCA, we want the covariance of the transformed matrix Y to be diagonal.

• That is to say, we want to find a matrix P where:

TY P X

1

2

0 0

0 0
cov() cov()

0 0 0

T

N

Y P X







 
 
  
 
 
 

PCA

• Recall that for PCA, we want the covariance of the transformed matrix Y to be diagonal.

• That is to say, we want to find a matrix P where:

• Let’s relate cov(Y) and cov(X), so that we can more easily solve for P.

TY P X

1

2

0 0

0 0
cov() cov()

0 0 0

T

N

Y P X







 
 
  
 
 
 

cov() TY E YY   
(By definition of covariance;

recall the data is centered)

PCA

• Recall that for PCA, we want the covariance of the transformed matrix Y to be diagonal.

• That is to say, we want to find a matrix P where:

• Let’s relate cov(Y) and cov(X), so that we can more easily solve for P.

TY P X

1

2

0 0

0 0
cov() cov()

0 0 0

T

N

Y P X







 
 
  
 
 
 

  

cov() T

T
T T

Y E YY

E P X P X

   

 
  

PCA

• Recall that for PCA, we want the covariance of the transformed matrix Y to be diagonal.

• That is to say, we want to find a matrix P where:

• Let’s relate cov(Y) and cov(X), so that we can more easily solve for P.

TY P X

1

2

0 0

0 0
cov() cov()

0 0 0

T

N

Y P X







 
 
  
 
 
 

  

  

cov() T

T
T T

T T

Y E YY

E P X P X

E P X X P

   

 
  

 
  Why?

PCA

• Recall that for PCA, we want the covariance of the transformed matrix Y to be diagonal.

• That is to say, we want to find a matrix P where:

• Let’s relate cov(Y) and cov(X), so that we can more easily solve for P.

TY P X

1

2

0 0

0 0
cov() cov()

0 0 0

T

N

Y P X







 
 
  
 
 
 

Why?

  

  

 

cov()

cov

T

T
T T

T T

T T

T

Y E YY

E P X P X

E P X X P

P E XX P

P X P

   

 
  

 
 

   



PCA

• In summary:

• This tells us that:

Why?

 cov() covTY P X P

   cov() cov covTP Y PP X P X P 

PCA

• In summary:

• This tells us that:

(*) Remember that cov(Y) is a diagonal matrix; if we write the matrix P as a set of column

vectors: , then we have:

 cov() covTY P X P

   cov() cov covTP Y PP X P X P 

1TP P

 , ,...,P 
1 2 N

p p p

   

1

2

1 2

0 0

0 0
cov() , ,..., , ,...,

0 0 0

N

N

P Y




  



 
 
  
 
 
 

1 2 N 1 2 Np p p p p p

PCA

• In summary: and

(*) If we write , we then arrive at the fundamental

equation:

 cov() covTY P X P

   

1

2

1 2

0 0

0 0
cov() , ,..., , ,...,

0 0 0

N

N

P Y




  



 
 
  
 
 
 

1 2 N 1 2 Np p p p p p

   1 2, ,..., cov
T

N and   λ Z X

PCA

• In summary: and

(*) If we write , we then arrive at the fundamental

equation:

 cov() covTY P X P

   

1

2

1 2

0 0

0 0
cov() , ,..., , ,...,

0 0 0

N

N

P Y




  



 
 
  
 
 
 

1 2 N 1 2 Np p p p p p

for each
i i i

λp Zp p

   1 2, ,..., cov
T

N and   λ Z X

cov() cov()P Y X P

PCA

• In summary: and

(*) If we write , we then arrive at the fundamental

equation:

 cov() covTY P X P

   

1

2

1 2

0 0

0 0
cov() , ,..., , ,...,

0 0 0

N

N

P Y




  



 
 
  
 
 
 

1 2 N 1 2 Np p p p p p

for each
i i i

λp Zp p

   1 2, ,..., cov
T

N and   λ Z X

This is the ith column of Pcov(Y)

This is the ith column of cov(X)P

PCA

• In summary: and

(*) If we write , we then arrive at the fundamental

equation:

(*) Do you recognize anything “special” about the structure of these vectors?

 cov() covTY P X P

   

1

2

1 2

0 0

0 0
cov() , ,..., , ,...,

0 0 0

N

N

P Y




  



 
 
  
 
 
 

1 2 N 1 2 Np p p p p p

for each
i i i

λp Zp p

   1 2, ,..., cov
T

N and   λ Z X

This is the ith column of Pcov(Y)

This is the ith column of cov(X)P

PCA

• In summary: and

(*) If we write , we then arrive at the fundamental

equation:

The pi vectors are eigenvectors of Z=cov(X)!

 cov() covTY P X P

   

1

2

1 2

0 0

0 0
cov() , ,..., , ,...,

0 0 0

N

N

P Y




  



 
 
  
 
 
 

1 2 N 1 2 Np p p p p p

for each
i i i

λp Zp p

   1 2, ,..., cov
T

N and   λ Z X

PCA

• In summary: we need to solve , where each pi vector is an

eigenvector of Z=cov(X).

(*) Useful fact (1): all eigenvectors of a square symmetric matrix A are orthogonal to each

other.

for each
i i i

λp Zp p

PCA

• In summary: we need to solve , where each pi vector is an

eigenvector of Z=cov(X).

(*) Useful fact (1): all eigenvectors of a square symmetric matrix A are orthogonal to each

other.

(*) Useful fact (2): Z=cov(X) is a square symmetric matrix (as is true for any covariance

matrix).

for each
i i i

λp Zp p

PCA

• In summary: we need to solve , where each pi vector is an

eigenvector of Z=cov(X).

(*) Useful fact (1): all eigenvectors of a square symmetric matrix A are orthogonal to each

other.

(*) Useful fact (2): Z=cov(X) is a square symmetric matrix (as is true for any covariance

matrix).

(*) If we put (1) and (2) together, this means that the solution to the PCA problem (i.e.

solving for the matrix P) boils down to determining the eigendecomposition (also called

the spectral decomposition) – which is guaranteed to exist – of cov(X).

Where D is the diagonal matrix of eigenvalues for Z, and E is the corresponding (orthogonal)

matrix of eigenvectors.

for each
i i i

λp Zp p

 cov T Z X EDE

PCA

• Note: In the eigendecomposition for cov(X), the dimensions with large eigenvalues have

lots of variation and are therefore useful dimensions.

• In order to perform a dimensionality reduction on our data set, we can therefore throw

away dimensions for which the eigenvalues are very small (usually smaller than some

chosen parameter).

 cov T Z X EDE

PCA
• Here is the PCA algorithm:

(1) Write N data points xi=(x1i,x2i,…,xMi) as row vectors.

(2) Put these vectors into the data matrix X (of size N x M).

(3) Center the data by subtracting off the mean of each column, place into matrix B.

(4) Computer the covariance matrix:

(5) Computer the eigenvalues and eigenvectors of C, so:

where D is the diagonal matrix of eigenvalues; V is the matrix of corresponding eigenvectors.

(6) Sort of the columns of D into order of decreasing eigenvalues, and apply the same order to the

columns of V.

(7) Reject those with eigenvalues less than some given threshold, leaving L dimensions in the data.

TC VDV

1 T

N
C BB

PCA for MNIST

PCA vs. LDA

Extending PCA

Q: What strong assumptions did we make about the surface for the directions of maximum

variation with PCA?

Extending PCA

Q: What strong assumptions did we make about the surface for the directions of maximum

variation with PCA?

A: We assumed these surfaces of maximum variation are straight lines (this is a strong

assumption!)

Q: How can are “break” the linear restriction for PCA?

Extending PCA

Q: What strong assumptions did we make about the surface for the directions of maximum

variation with PCA?

A: We assumed these surfaces of maximum variation are straight lines (this is a strong

assumption!)

Q: How can are break the linear restriction for PCA?

A: “Kernelize” PCA!

Kernel PCA
(*) All we have to do is express the covariance matrix C (recall this was the covariance of the

data matrix X after centering) in terms of a kernel transformation:

(*) Next we compute the eigendecomposition of C and use the eigenvectors with the largest

associated eigenvalues for PCA.

(*) Recall (from SVM lecture) that by using a kernel function we implicitly perform a dot

product in a larger dimensional feature space (this is the crux of the kernel trick), with

the upshot of enhanced expressiveness.

   
1

1 N
T

n n

i

x x
N 

  C

PCA & Auto-encoders
• Note that PCA is intimately connected with MLPs.

(*) An MLP can perform (non-linear) PCA using what is called an auto-associator (more

commonly: auto-encoder).

(*) If we train the MLP where the output equals the input, we are asking the network to

learn a data “reconstruction” process; we therefore train to minimize the reconstruction error.

(*) Usually the hidden layers are smaller in dimension than the output/input layers so that

they form a compression “bottleneck”.

(*) The activations at the hidden layers (i.e. the feature vectors) encode

a dimensionality reduction of the data.

PCA & Auto-encoders: Image

Denoising

SVD
• Of the vast array of different matrix factorizations used in applied math, the singular

value decomposition (SVD) is one of the most common and useful (we show its

conceptual connection with PCA in the subsequent slides).

• Recall that a symmetric matrix A admits of an eigendecomposition. Notably, if A is not

symmetric, then there is no guarantee that it has an eigendecomposition – so not every

matrix can be factored in this way.

When it came to our previous discussion of PCA, we had A=XXT .

Now, is A symmetric?

SVD
• Of the vast array of different matrix factorizations used in applied math, the singular

value decomposition (SVD) is one of the most common and useful (we show its

conceptual connection with PCA in the subsequent slides).

• Recall that a symmetric matrix A admits of an eigendecomposition. Notably, if A is not

symmetric, then there is no guarantee that it has an eigendecomposition – so not every

matrix can be factored in this way.

When it came to our previous discussion of PCA, we had A=XXT .

Now, is A symmetric? Yes: AT=(XXT)T=(XT)TXT=XXT=A.

The PCA algorithm was crucially reliant on the fact that A was symmetric and thus it has an

eigendecomposition.

SVD
• Conversely, every matrix has a singular value decomposition!

Definition: For an m x n matrix A, the singular values of A are the square roots of the

eigenvalues of ATA. They are denoted:

It is conventional to arrange the singular values in decreasing order, whence:

Example:

has eigenvalues λ1=3 and λ2=1. Consequently, the singular values of A are:

1,..., n 

1 2 ... n    

1 1

1 0

0 1

1 1
1 1 0 2 1

1 0
1 0 1 1 2

0 1

T

A

A A

 
 


 
  

 
    

     
     

1 1

2 2

3

1

 

 

 

 

SVD
• Definition: Let A be an m x n matrix with singular values, σ1 ≥ σ2 ≥…≥ σ𝑟 > 0 and

σ𝑟 + 1 =
σ𝑟 + 2 = ⋯ =

σ𝑛 = 0. Then there exist an m x n orthogonal matrix U, and n x n

orthogonal matrix V, and an m x n diagonal matrix Σ of the form:

Note: the columns of U are called left singular vectors of A, and the columns of V are called

right singular vectors of A. The matrices U and V are not uniquely determined by A.

(*) NB: rank(A) = r.

TA U V 

SVD

Example:

TA U V 
1 1 0

0 0 1

1 0 1 1 0
1 1 0

1 0 1 1 0
0 0 1

0 1 0 0 1

T

A

A A

 
  
 

   
    

     
       

SVD

Example:

TA U V 

  1 2 3: 2, 1, 0Teigenvalues A A     

1 1 0

0 0 1

1 0 1 1 0
1 1 0

1 0 1 1 0
0 0 1

0 1 0 0 1

T

A

A A

 
  
 

   
    

     
       

SVD

Example:

These vectors are orthogonal, so now we normalize them:

TA U V 

  1 2 3: 2, 1, 0Teigenvalues A A       
1 0 1

: 1 , 0 , 1

0 1 0

Teigenvectors A A

     
     
     
          

1/ 2 0 1/ 2 2 0 0

1/ 2 0 1/ 2 , 0 1 0

0 1 0 0 0 0

V

   
   

     
   
    

1 1 0

0 0 1

1 0 1 1 0
1 1 0

1 0 1 1 0
0 0 1

0 1 0 0 1

T

A

A A

 
  
 

   
    

     
       

SVD

Example:

To find U we compute:

TA U V 

  1 2 3: 2, 1, 0Teigenvalues A A     

 
1 0 1

: 1 , 0 , 1

0 1 0

Teigenvectors A A

     
     
     
          

1/ 2 0 1/ 2 2 0 0

1/ 2 0 1/ 2 , 0 1 0

0 1 0 0 0 0

V

   
   

     
   
    

1 1 2 2

1 2

1/ 2 0
1 1 0 1 1 1 0 01 1 1 1

1/ 2 , 0
0 0 1 0 0 0 1 112

0 1

u Av u Av
 

   
         

              
             

1 1 0

0 0 1
A

 
  
 

SVD

Example:

TA U V 

2 0 0 1/ 2 1/ 2 0
1 1 0 1 0 0

0 1 0 0 0 1
0 0 1 0 1 0

0 0 0 1/ 2 1/ 2 0

TA U V

   
      

         
       

   

SVD

TA U V 

Geometric Interpretation: In general, Σ can be regarded as a scaling matrix, and U, V can

be viewed as rotation matrices.

Thus the expression UΣV can be intuitively interpreted as a composition of three

successive geometrical transformations: a rotation or reflection, a scaling and another

rotation or reflection.

As shown in the figure, the singular values can be interpreted as the semiaxes of an

ellipse in 2D. This concept can be generalized to n-dimensional Euclidean space, with the

singular values of any n × n square matrix being viewed as the semiaxes of an n-

dimensional ellipsoid.

As in PCA, these coordinate axes provide a natural framework for determining a

dimensionality reduction scheme that captures maximal variation.

SVD: Outer Product Form

• SVD factorization yields a useful method for “low rank” approximations/dimensionality

reduction of data.

Theorem: For a given SVD decomposition of an m x n matrix A, we can express A in the

so-called outer product form:

Where σ1 ≥ σ2 ≥…≥ σ𝑟 > 0 denote the singular values of A; u and v are the

corresponding left singular and right singular vectors.

(*) Note that the condition number of a matrix A is defined as the ratio of the largest and

the smallest singular values of A. Matrices with large condition numbers are called ill-

conditioned (this has a significant impact on the stability of many different kinds of

numerical algorithms in linear algebra).

1 1 1 ...T T

r r r   A u v u v

max

min

()cond A





SVD: Outer Product Form

1 1 1 ...T T

r r r   A u v u v

Example:

 
1 1 0 1 0

2 1/ 2 1/ 2 0 1 0 0 1
0 0 1 0 1

A
     

         
     

2 0 0 1/ 2 1/ 2 0
1 1 0 1 0 0

0 1 0 0 0 1
0 0 1 0 1 0

0 0 0 1/ 2 1/ 2 0

TA U V

   
      

         
       

   

SVD: Outer Product Form for

Image Compression
• Consider the task of compressing a grayscale image of dimension 340 x 280; each pixel

is in the range [0, 255].

• We can store this image in a 340 x 280 dimension matrix, but transmitting and

manipulating these 95,200 numbers is very expensive.

• Let’s use SVD for efficient image compression. Recall that the small singular values in

the SVD of a matrix correspond with “less informative” data features.

SVD: Outer Product Form for

Image Compression
• Suppose we have the SVD of A expressed in outer product form:

• For the original 340 x 280 image shown, we have r = 280 (why?).

• Define:

as the k-rank approximation to A.

1 1 1 ...T T

r r r   A u v u v

1 1 1 ... ,T T

k k k k k r    A u v u v

SVD: Outer Product Form for

Image Compression
• Suppose we have the SVD of A expressed in outer product form:

• For the original 340 x 280 image shown, we have r = 280 (why?).

• Define:

as the k-rank approximation to A.

(*) If for example, we use a k = 20 rank approximation for

A (i.e. we use the largest 20 singular values), the storage/

computational overhead is reduced from 95,200 numbers

to 12,420!

1 1 1 ...T T

r r r   A u v u v

1 1 1 ... ,T T

k k k k k r    A u v u v

SVD: Outer Product Form for

Image Compression

1 1 1 ... , 32T T

k k k k k    A u v u v

(*) Here, using the SVD-based, low-

rank approximation to A, the fidelity

of the image is very strong – even

after discarding roughly 85% of the

image data!

SVD: Audio Denoising & the

“cocktail party problem”
• The cocktail party effect is the phenomenon of the brain's ability to focus one's

auditory attention (an effect of selective attention in the brain) on a particular

stimulus while filtering out a range of other stimuli.

• Listeners have the ability to both segregate different stimuli into different streams, and

subsequently decide which streams are most pertinent to them. Thus, it has been

proposed that one’s sensory memory subconsciously siphons through all stimuli, and

when an important word or phrase with high meaning appears, it stands out to the

listener.

• This effect is what allows most people to "tune into" a single voice and "tune out" all

others.

SVD: Audio Denoising & the

“cocktail party problem”

(*) Recent research with DNNs

claims to have solved the problem.

(*) Another approach: use SVD to

separate signal from noise!

PCA & SVD

Q: How do PCA and SVD relate?

• In fact, we can use SVD to perform PCA.

• Given a data matrix X, perform the SVD decomposition:

TX U V 

PCA & SVD

Q: How do PCA and SVD relate?

• In fact, we can use SVD to perform PCA.

• Given a data matrix X, perform the SVD decomposition:

• Next, we compute the covariance C of X (where the data is assumed centered):

TX U V 

 
T

T T T T T TC XX U V U V U V V U      

PCA & SVD
• Given a data matrix X, perform the SVD decomposition:

• Next, we compute the covariance C of X (where the data is assumed centered):

TX U V 

 
T

T T T T T TC XX U V U V U V V U      

    2T T T T TU V V U U V V U U U       

Why?

PCA & SVD
• Given a data matrix X, perform the SVD decomposition:

• Next, we compute the covariance C of X (where the data is assumed centered):

TX U V 

 
T

T T T T T TC XX U V U V U V V U      

    2T T T T TU V V U U V V U U U       

Why?

PCA & SVD
• Given a data matrix X, perform the SVD decomposition:

• Next, we compute the covariance C of X (where the data is assumed centered):

TX U V 

 
T

T T T T T TC XX U V U V U V V U      

Why?

PCA & SVD
• Given a data matrix X, perform the SVD decomposition:

• Next, we compute the covariance C of X (where the data is assumed centered):

TX U V 

 
T

T T T T T TC XX U V U V U V V U      

    2T T T T TU V V U U V V U U U       

(*) Recall that with the PCA eigendecomposition

algorithm we generate the of C.

(*) This is precisely what we’ve done here,

where: D=Σ2, which confirms that the

singular values of X are indeed equivalent to

the square root of the eigenvalues of XXT.

Fin

