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Outline

“Big data” and motives for dimensionality reduction

I WAS, INTII BIG

LDA (linear discriminant analysis)

PCA (principal component analysis)

SVD (singular value decomposition)
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Global Information Storage Capacity
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Aside: Is the Basis of the Universe
Information?

* In the 1940s, “the father of the digital age,”

Claude Shannon, formalized the notion of znformation =

through entropy. H = _Z p. log p.

* The theoretical physicist John Archibald Wheeler later stated that

The universe had (3) parts: SSieAL L 3
(1) Everything is particles
(2) Everything is fields

(3) Everything is information




Aside: Is the Basis of the Universe
Information?

* A study in 2017 revealed substantial evidence that we live in a holographic
univetrse.

*In this view, we might be caught inside a giant hologram; the cosmos is
a projection, much like a 3D simulation.

holographic phase

microwave Seed formation of
background stars and galaxies
in late time lIniverse

It the nature of reality 1s in fact reducible to information itself, that implies a

conscious mind on the receiving end, to interpret and comprehend it.

https://journals.aps.org/ptl/abstract/10.1103/PhysRevLett.118.041301



Aside: Is the Basis of the Universe
Information?

* Wheeler himself believed in a participatory universe, where consciousness holds a
central role.

* It 1s possible that information theory may in the future help bridge the gap
between general relativity and quantum mechanics, or aid in our understanding
of dark matter. L eTR

"The universe is a physical system that contains and processes information in a

systematic fashion and that can do everything a computer can do.“ — Seth Lloyd
MIT

Susskind: “On the wotld as hologram” https://www.youtube.com/watch?v=2DII3Hfh9tY



Aside: Is the Basis of the Universe
Information?

* Just for fun...here is a short conversation with Minsky on the question of
whether information 1s a basic building block of reality.

https:/ /www.closertotruth.com/series/information-fundamental



Introduction

* Most traditional statistical techniques (e.g. regression/classification) were

developed in low-dimensional settings (1.e. » >> p where 7z 1s the data size and p
is the number of features).

* Opver the last several decades, new technologies have drastically changed the
way that data are collected (see “big data age”). Consequently, it 1s now

commonplace to work with data with a very large number of features (1.e. p
>> 7).

* While p can be extremely large, the number of observations 7 1s often limited
due to cost, sample availability, or other considerations.



Introduction

Data containing more features than observations are typically referred to as
high-dimensional

Issues pertaining to the bias-variance tradeoff and overfitting are commonly
exacerbated in high dimensions.

With a large number of features, statistical models (e.g. regression) can
become too flexible and hence overfit the data.

Recall the curse of dimensionality, which poses two fundamental, associated
problems: (1) “neighborhoods” become very large (this is problematic in
particular for kernel and clustering methods), (2) we need a much larger data
set to adequately “fill” the space for predictive modeling, etc.

00000000
1-=D o o

2-D - 3-D ® °




Interpretability in High Dimensions

In high-dimensional settings we need to be cautious about how we

interpret our results — that is to say if they can be reasonably interpreted at
all.

Of course, it is oftentimes adequate, depending on the application, to treat a
machine learning model as a mere predictive “black box™ (e.g. statistical
arbitrage, government work).

Conversely, if we want to say that the features in our model directly impact
the outcomes we observe (note: in ML, we almost never use the c-word — viz.,
variables caused observed effect) we need to be alert to multicollinearity.

In high dimensions, it 1s very likely that some of our model variables are
mutually correlated. This means we can never know exactly which variables
(if any) are truly predictive of the outcome. Moreover, we can rarely identify
the optimal set of features for a given phenomenon of interest.



Interpretability in High Dimensions

The “first rule” of data science and ML.: one can always add more and
more features to achieve zero classification/predictive error, a perfect
correlation coefficient value, etc.

In the end, however, this is a useless model We always need to report
results on an independent test or validation set.

In 2008, Hinton ef a/, developed a non-linear dimensionality technique known
as t-SINE (t-distributed stochastic neighbor embedding) that 1s particularly well-suited
for embedding high-dimensional data into 2 or 3 dimensions, which can be
visualized with a scatter plot.

Specifically, it models each high-dimensional object by a two- or three-dimensional
point in such a way that similar objects are modeled by nearby points and
dissimilar objects are modeled by distant points.



t-SNE: H-D Data Visualization

First, t-SNE constructs a probability distribution over paits of high-dimensional
objects in such a way that similar objects have a high probability of being picked,
whilst dissimilar points have an extremely small probability of being picked.

Second, t-SNE defines a similar probability distribution over the points in the low-
dimensional map, and it minimizes the KL divergence (a standard measure of
“distance” between probability distributions) between the two distributions with
respect to the locations of the points in the map.

~—~ P(1)
Dy (P|Q) = P(1)In —=
KL ¢ L 0G)

D, (PO)

L4

DiiL(PlQ) = S _plx)logg(z) + . plx)logp(x)
H(P,Q) H(P)



S~ oI D IS 0N
[ ] [ ] [ ] ® L]

t-SNE for MNIST
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Word2vec (2013)

* Word2vec is a group of related models (Google) that are used to produce
word embeddings.

* These models are shallow, two-layer neural network that are trained to
reconstruct linguistic contexts of words.

* Word2vec takes as its input a large corpus of text and produces a vector
space (usually of high dimensions), with each unique word in the corpus
being assigned a corresponding vector in the space.

* Word vectors are positioned 1n the vector space such that words that
share common contexts in the corpus are located in close proximity to
one another in the space.

Country and Capital Vectors Projected by PCA
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t-SNE for word2vec

Relations Learned by Word2vec

Word2vec model computed from 6 billion word corpus of news articles

Type of relationship Word Pair 1 Word Pair 2
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Dimensionality Reduction

* In general: the higher the number of dimensions we have, the more training data
we need.

e Additionally, computational cost is generally an explicit function of
dimensionality.

* Dimensionality reduction can also remove noise in a data set, which can, in
turn, significantly improve the results of a learning algorithm.

These are perhaps the strongest reasons why dimensionality reduction is useful
(in addition to improving visualization/interpretability).

In general, there are (3) common ways to perform dimensionality reduction:

(1) Feature selection — determine whether the features available are actually useful,
1.e. are they correlated with the output variables.

(2) Feature derivation — means deriving new features from old ones, generally by
applying transforms to the data set that change the coordinate system axes (e.g.,
by moving or rotating); this is usually achieved through matrix multiplication.

(3) Clustering — group together similar data points to see whether this allows fewer
features to be used.



LDA

* We will consider linear discriminant analysis (LDA) in an unsupervised setting
(that 1s to say the data has no target label), due to Fisher (19306).

* Consider the case of two data classes; we can compute various summary

statistics for these data, including p, the mean of the entire set, as well as p, and

=
W,, the means of each class, respectively; and the covariance of each class: Z(Xj —ﬂ)(xj —/1)
j

*Note: We use the standard notation for column vectors, so that wiw is equivalent to the dot
product of w with itself, whereas ww! yields an nxn matrix, for n-dimensional w.




LLDA

* The principal insight of LDA i1s that the covariance matrix can tell us about the
scatter within a dataset, which is the amount of spread extant within the data.

* The way to find the scatter is to multiply the covariance by p, the probability of
the given class (that is, the number of data points there are in the class divided
by the total number).

* Adding the values of this for all of the classes gives us a measure called the
within-class scatter of the data set:

Sw= 2 2 P(X ) (x, _“C)T

classes ¢ jec



LDA

* Within-class scatter of the data set: S, = Z Z P (X i — M )(X i — M )T

classes ¢ jec

* If the data is easy to separate into classes, then this within-class scatter should
be small, so that each class 1s tightly clustered together.

* Conversely, in order to separate data, we also want the distance between
classes to be large. This quantity is known as the between-classes scatter:

Se= 2 (#—n) (1t —p2)

classes ¢
o
[+]
’ o o
. ° or %&
. y Op :° o
> o
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LLDA

* “Good separation” means Sy, should be small and S should be large; accordingly
we wish to make the ratio: Sg/Sy as large as possible.

* Regarding dimensionality reduction: we want Sg/Sy, to be large when we reduce
the number of dimensions of our data.

* Recall that the projection of a data point (i.e. a vector) x onto another vector w

can be written as z = wix.

* So let’s consider the between and within scatter quantities projected onto some

vector wi
why?

T

L e (WT (%, —ﬂc))(WT (, —uc)) =w'S, W

classes ¢ jec

> (W (=))W (22— 1)) = W Sgw

classes ¢



LLDA

* Thus, the ratio of projected between-class and within-class scatter 1s:
w'S,w
N
W' S, W

How do we find the maximum value of this expression with respect to w?



LLDA

* Thus, the ratio of projected between-class and within-class scatter 1s:
w'S w
T
W' S, W

How do we find the maximum value of this expression with respect to w?

Take the derivative with respect to w and set it equal to zero (i.e. find the “critical
points™).



LLDA

* Thus, the ratio of projected between-class and within-class scatter 1s:
w' S w
w'S, W

How do we find the maximum value of this expression with respect to w?

Take the derivative with respect to w and set it equal to zero (i.e. find the “critical

points™).
» This yields: Why?
T T
SBW(W SWW)—SWW(W SBW)

(WT - W)2




LDA

* Thus, the ratio of projected between-class and within-class scatter 1s:
w' S w
w'S, W

How do we find the maximum value of this expression with respect to w?

Take the derivative with respect to w and set it equal to zero (i.e. find the “critical

points™).

» This yields: Why?

SBW(WT SWW)—SWW(WTSBW)

=) Calculus!
T 2 :
(W SWW) (E) Pt

V2

vV

FYI: Matrices have analogous “derivative” rules (see Matrix Calenlus):

&[XTAX] =x"(A+A") , etc.



LLDA

* After some simplification and solving a sub-problem known as the generalized
eigenvalue problem, we arrive at Fisher’s solution in the 2-class case:

<
W' Spw
w*=argmax| —=2— |=S" (u, —
g W'S, W W (ILll /Uz)
Let’s recap the LDA framework and what w* represents, now that we have the

solution:

(*) LDA seeks to reduce dimensionality while preserving as much of the class
discriminatory information as possible.

(*) We seek to obtain a scalar y by projecting each datum x onto a line: y = w'x.

(*) Of all possible lines, w* represents the one that maximizes the separability of the
scalars.

- onm—

w.w Ak
0 ¥,

FIGURE 6.5 Plot of the iris data showing the three classes left: before and right:
after LDA has been applied.



LDA

(*) In the figure: the two classes A and B appear overlapped along both X, and X,
directions.

(*) However, they are perfectly separated along the discriminant function w*.

(*) Projecting the data onto this discriminant function renders a perfect separation of

the two classes.

o 7
N Class A D}O’.;b,- >
.—:,- R f:;")f;_ %
- - 4y f
§ , /’ ¢¢%.-_';;' Je { WTSBW =)
N 2N W* = arg max | — =S, (tn—m)
> | w'S, W
2 N . '
:_J/ ‘,” Class B

7\
/ \

/ \
Class A ,’, ClassB \
\L

X4

* Note that there are a variety of different forms of LDA, including the use of Bayes’
theorem for posterior classification, and QDA (quadratic discriminant analysis), where
the discriminant function 1s parabolic.



Rifs\

Like LLDA, principal component analysis (PCA) amounts to
computing a transformation of a data set in order to identify a (useful)
lower-dimensional set of axes.

Essential idea: PCA generates a particular set of coordinate axes (usually in
fewer dimensions than the original data) that capture the maximum

variability in the data; furthermore, these new coordinate axes are

orthogonal (which is to say they are uncorrelated).

12

10

s =6 -2 -2 0 2z 4 6 8 10




PCA: (Aside) Gram-Schmidt

* One of the quintessential results in Linear Algebra is the Gram-Schmidt algorithm (NB:
this 1s the same Gram per the “Gram matrix”).

The G-S algorithm takes a basis for, say, an znner product space (viz., a vector
space equipped with an inner product, such as the Euxclidean space R”) and returns

an orthonormal basis for the same space.

Gram



PCA: (Aside) Gram-Schmidt

* One of the quintessential results in Linear Algebra is the Gram-Schmidt algorithm (NB:
this 1s the same Gram per the “Gram matrix”).

The G-S algorithm takes a basis for, say, an znner product space (viz., a vector
space equipped with an inner product, such as the Euxclidean space R”) and returns

an orthonormal basis for the same space.

Gram

(*) Given a basis set, each step of the G-S algorithm amounts to iteratively subtracting off the

orthogonal projection of the current vector from each of the previous vectors in the process.

(*) In the diagram, the set {v, v, } is the original basis set; -
1
u;

(1) Normalize vi: e; = v,/||lv]| ey

(2) Project v, onto v, PTOJu, V2

(3) Detine u, as the difference of v, and the projection of v, onto v, N

(4) Normalize u,: e, = u,/||u,l| (5 the set {e,, e,} is an orthonormal basis.



PCA: (Aside) Gram-Schmidt

The G-S algorithm takes a basis for, say, an zner product space (viz., a vector
space equipped with an inner product, such as the Exclidean space R”) and returns

an orthonormal basis for the same space.

L15]
m = vy, -
[y ||
. ¢ uz
Uz = Va — pProj,,, {VE}‘ A ||l_lg||

LY 3 g 2

Uz = V3 — prﬂju-l [VS} - prﬂjug {VL’J' €3 = ||IJ3|| \,\f’f
= /

Uy = Vy — prﬂju-l [V-i} - prﬂjug [V-i} 3 projug (V-i}‘ €1 = m 5

hi—1

u, = Vi — Z P'mjuj (Vi) o [[a ||

uy

i=1



PCA: (Aside) Gram-Schmidt

an orthonormal basis for the same space.

The G-S algorithm takes a basis for, say, an zner product space (viz., a vector

space equipped with an inner product, such as the Exclidean space R”) and returns

m = Vv,
u; = vy — proj,, (va),
U3 = V3 — prﬂjm [VS) - prc'jug {VS}'

Uy = Vy — prﬂju-l [V-i} - prﬂjug [V-i} 3 projug (V-i}‘

hi—1

W, = Vi — Z prﬂju_]' {VF-!}‘
j=1

uy
e =
C
ey = =
T
Uz
ey =
ey
ey = L
[y |
uy
2. — .
" |

(*) How is this useful? G-S algorithm 1s used to render the QR factorization

of a matrix.

(*) PCA employs a similar strategy to generate the “principal components”

of a data set.



P

u; = vy — proj,, (va),

m = vy,

Uz = V3 — Projy, (Vi) — projy, (va),

Uy =Vy — projl_u (V_i) - projug (V_i) - proju3 (V_i). €4 =

k=1

Uy = Vg — Z ijuj (Vi)
j=1

1:
[

Uz
e2 — A T
[z |

ugz

e — q
[ |

(Aside) Gram-Schmidt

Apply the Gram-Schmidt process to the following basis.

u, u,

B= {d1.1.0), (1.2.0).

Sol: v, =u, =(1.1.0)

u, -\ | W -
v,=u,———v, =(1.2,0)——(1.1.0)=(-
vV, -V, 2

u, v, u, -\
V,=u, — N, — v,
vV, -V, v, -V

|

(0.1.2)1

N | —

1 | =

| 1 U2 11
=(0.1,2)==(1.1,0)——2(==,=.,0)=(0.0.2
(0.1,2)=—(1.1,0)= (==, —.0)=(0,0.2)

| 2

P



Rifs\

PCA generates a particular set of coordinate axes that capture the maximum
variability in the data; furthermore, these new coordinate axes are orthogonal.

The figure shows two versions of the same data set.

o

/.:

VA

v

* In the first image, the data are arranged in an ellipse that runs at 45° axes; while in the
second, the axes have been moved so that the data now runs along the x-axis and 1s
centered on the origin.

e Key idea: the potential for dimensionality reduction rests in the fact that the y dimension
now does not demonstrate much variability — and so it might be possible to ignore it and
simply use the x axis values alone for learning, etc.

(*) In fact, applying this dimensionality reduction often has the nice effect of removing some
of the noise in the data.



Rifs\

A: With PCA, the principal component is the direction in the data with the largest variation.

Q: How do we choose the new axes?

(+ The algorithm first centers the data (by subtracting off the mean), and then chooses the
direction with the largest variation and places an axis in that direction.

* Tor subsequent steps, the algorithm then looks at the variation that remains and finds
another axis that is orthogonal to the first and covers as much of the remaining
variation as possible.

_ Rinse and repeat. ..



Rifs\

A: With PCA, the principal component is the direction in the data with the largest variation.

Q: How do we choose the new axes?

(+ The algorithm first centers the data (by subtracting off the mean), and then chooses the
direction with the largest variation and places an axis in that direction.

< * Tor subsequent steps, the algorithm then looks at the variation that remains and finds
another axis that is orthogonal to the first and covers as much of the remaining
variation as possible.

_ Rinse and repeat. ..

(*) The end result 1s that all the variation is along the axes of the coordinate set, and so the
covariance matrix of the transformed data is diagonal (since each new variable is

uncorrelated with every variable except itself).

(*) Because some of the axes generated in this process have very little variation, we can
typically remove them without drastically affecting the variability in the data (note the
implicit assumption: variation in data features equates to useful information for
classification/inference).



Rifs\

Let’s formally work out the PCA algorithm.

* Suppose we have a data matrix X of dimension n by m (» is the number of training
instances, 7 1s the dimension of each datum).

Goal for PCA: rotate the data so that we render a coordinate

system so the new axes are uncorrelated (i.e. orthogonal) and

can be ranked according to maximum variation.
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Let’s formally work out the PCA algorithm.

* Suppose we have a data matrix X of dimension n by d (7 is the number of training
instances, 4 1s the dimension of each datum).

Goal for PCA: rotate the data so that we render a coordinate

system so the new axes are uncorrelated (i.e. orthogonal) and

can be ranked according to maximum variation.

Using standard techniques from linear algebra, we can express

the rotation of the data matrix X as:

Y=P'X

((«)Hr» .\11145~~>
sin45°  cos45° T T T
Where P is a “rotation matrix’’ with the natural SR

property that PT — P-'l (Why?) ) Counter Clockwise <i(l;: (()) _((\)l\li)()>

cos¢  sino
Clockwise s
—SInmge CoSo

Simple rotation

matrix example
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Y =P"X

* Recall that for PCA, we want the covariance of the transformed matrix Y to be diagonal.

* That is to say, we want to find a matrix P where:

A Ne® )
OW:. e U

cov(Y) =cov(P' X) =

0 0 0 A
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Y =P"X

* Recall that for PCA, we want the covariance of the transformed matrix Y to be diagonal.

* That is to say, we want to find a matrix P where:

A 0 g g 0

. O /., 0, NG
cov(Y)=cov(P X)=| . . . ;
NSO O™ 8

* Let’s relate cov(Y) and cov(X), so that we can more easily solve for P.

COV(Y) =E |:YY-r :| (By definition of covariance;

recall the data is centered)
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Y =P"X

* Recall that for PCA, we want the covariance of the transformed matrix Y to be diagonal.

* That is to say, we want to find a matrix P where:

i D 0
O 7, SN

cov(Y) =cov(P' X) =

0 0 0 A
e Let’s relate cov(Y) and cov(X), so that we can more easily solve for P.

cov(Y)=E| YY" |

=E[(PTX)(PTX)T}
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Y =P"X

* Recall that for PCA, we want the covariance of the transformed matrix Y to be diagonal.

* That is to say, we want to find a matrix P where:

i D 0
O 7, SN

cov(Y) =cov(P' X) =

0 0 0 A
e Let’s relate cov(Y) and cov(X), so that we can more easily solve for P.

cov(Y)=E| YY" |
:E_(PTX)(PTX)T}

=E:(PTX)(XTP)] Why?



Rifs\

Y =P"X

* Recall that for PCA, we want the covariance of the transformed matrix Y to be diagonal.

* That is to say, we want to find a matrix P where:

A 0 g g 0

. O /., 0, NG
cov(Y)=cov(P X)=| . [ . ;
NSO O™ 8

e Let’s relate cov(Y) and cov(X), so that we can more easily solve for P.

cov(Y)=E[ YY" |
:E_(PTX)(PTX)T}

-e[(Prx)(x7P)]
=P'E| XX |P
=P cov(X)P

Why?



Rifs\
* In summary: COV(Y ) =pi COV( X ) P

e This tells us that:

Pcov(Y)=PP" cov(X)P =cov(X)P

Why?
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* In summary: COV(Y ) =pi COV( X ) P

e This tells us that:

Pcov(Y)=PP" cov(X)P =cov(X)P

PT = P—l

(*) Remember that cov(Y) is a diagonal matrix; if we write the matrix P as a set of column
vectors: P = [pl, Py Py ] , then we have:

A 0 ... 0
NE N

Pcov(Y)=[p,,p,,-Py] =[Py, AP35 s AuPy ]
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* In summary: COV(Y ) =P’ COV( X ) P and
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(%) If we write A = (ﬂl, g ) and Z = COV(X), we then arrive at the fundamental
equation:



Rifs\

* In summary: COV(Y ) =P’ COV( X ) P and

A 0TS
O ma B0
Pcov(Y)=[p,,P,,.--, Py ] R =[P, AP, 4D, ]
0 _OE 8N
(%) If we write A = (ﬂl, g )T and Z = COV(X), we then arrive at the fundamental

equation:

Ap; = Zp, foreach p,

\ }
f

Pcov(Y) =cov(X)P
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(%) If we write A = (ﬂl, g ) and Z = COV(X), we then arrive at the fundamental
equation:

Ap; = Zp, foreach p,

This is the 7th column of cov(X)P
This 1s the /th column of Pcov(Y)
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* In summary: COV(Y) =T COV( X ) P and

Yl e
g A
ReGUACPIID X Do Bl ™ . =] APy APy, e Aypy ]
g0 | _OTM

b
(%) If we write A = (ﬂl, g ) and Z = COV(X), we then arrive at the fundamental
equation:

Ap; = Zp, foreach p,

This is the 7th column of cov(X)P
This 1s the /th column of Pcov(Y)

(*) Do you recognize anything “special” about the structure of these vectors?
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* In summary: cov(Y) = P’ COV( X ) P and

Flh tae
Ot/ ¥ &0
SO | By spyrer oW | IR SV b o O
G0 AN

b
(%) If we write A = (ﬂl, Ay Ay ) and Z = COV(X), we then arrive at the fundamental
equation:

Ap. =Zp, foreachp.

The p, vectors are eigenvectors of Z=cov(X)!
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e In summary: we need to solve AP. = ZP. for each . where each p, vector is an
y i i i Pi

eigenvector of Z=cov(X).

(*) Useful fact (1): all eigenvectors of a square symmetric matrix A are orthogonal to each
other.
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e In summary: we need to solve AP. = ZP. for each . where each p, vector is an
y i i i Pi

eigenvector of Z=cov(X).

(*) Useful fact (1): all eigenvectors of a square symmetric matrix A are orthogonal to each
other.

(*) Useful fact (2): Z=cov(X) is a square symmetric matrix (as 1s true for a#y covariance

matrix).



Rifs\

* In summary: we need to solve 7»1), = Zp, for each P; , where each p; vector is an
eigenvector of Z=cov(X).

(*) Useful fact (1): all eigenvectors of a square symmetric matrix A are orthogonal to each
other.

(*) Useful fact (2): Z=cov(X) is a square symmetric matrix (as 1s true for a#y covariance
matrix).

(*) If we put (1) and (2) together, this means that the solution to the PCA problem (i.e.
solving for the matrix P) boils down to determining the eigendecomposition (also called
the spectral decomposition) — which is guaranteed to exist — of cov(X).

Z =cov(X)=EDE'

Where D is the diagonal matrix of eigenvalues for Z, and E is the corresponding (orthogonal)
matrix of eigenvectors.



PCA
Z =cov(X)=EDE'

* Note: In the eigendecomposition for cov(X), the dimensions with large eigenvalues have

lots of variation and are therefore useful dimensions.

* In order to perform a dimensionality reduction on our data set, we can therefore throw
away dimensions for which the eigenvalues are very small (usually smaller than some

chosen parameter).

Original dataset Reconstructed data after PCA

- |
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* Here 1s the PCA algorithm:

(1) Write N data points X,=(X;;,Xy;,- - -,X)p;) 25 TOW VECtOTS.
(2) Put these vectors into the data matrix X (of size N x M).

(3) Center the data by subtracting off the mean of each column, place into matrix B.

1

(4) Computer the covariance matrix: = BBT

-
(5) Computer the eigenvalues and ezgenvectors ot C, so: C=VDV

where D is the diagonal matrix of eigenvalues; V is the matrix of corresponding eigenvectors.

(6) Sort of the columns of D into order of decreasing eigenvalues, and apply the same order to the
columns of V.

(7) Reject those with eigenvalues less than some given threshold, leaving I. dimensions in the data.



PCA for MNIST

MNIST Dataset reduced to 2 Components using PCA

Component 2

-4 -3 -2 -1 0 1
Component 1




PCA vs. LDA

PCA: LDA:

component axes that maximizing the component
maximize the variance axes for class-separation
bad projection xx Xxx xx xxx
A1 xx,,;x % xx xxx xx

good projection: separates classes well



Extending PCA

Q: What strong assumptions did we make about the surface for the directions of maximum
variation with PCA?
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Q: What strong assumptions did we make about the surface for the directions of maximum
variation with PCA?

A: We assumed these surfaces of maximum variation are straight lines (this is a strong
assumption!)

Q: How can are “break’ the linear restriction for PCA?



Extending PCA

Q: What strong assumptions did we make about the surface for the directions of maximum
variation with PCA?

A: We assumed these surfaces of maximum variation are straight lines (this is a strong
assumption!)

QQ: How can are break the linear restriction for PCA?

A: “Kernelize” PCA!

linear PCA kernel PCA
\T R S R’ L A
B : -' . : ............ - - '::: -
. - ,'\_\'x .x - _,.x = x.xx S = : - _.h
b Y F
‘ - k(xy) = (xy) k(x,y) = (xy)

Fig. 1. Basic idea of kernel PCA: by using a nonlinear kernel function k instead of
the standard dot product, we implicitly perform PCA in a possibly high—dimensional
space F' which is nonlinearly related to input space. The dotted lines are contour lines
of constant feature value.



Kernel PCA

(*) All we have to do is express the covariance matrix C (recall this was the covariance of the
data matrix X after centering) in terms of a kernel transformation:

CzﬁiZN_l:d)(xn)-d)(xn)T

(*) Next we compute the eigendecomposition ot C and use the eigenvectors with the largest
associated eigenvalues for PCA.

(*) Recall (from SVM lecture) that by using a kernel function we implicitly perform a dot
product in a larger dimensional feature space (this is the crux of the kernel trick), with
the upshot of enhanced expressiveness.

PCA

U. ”‘f : . 15 :‘ .“f pCA

~'.5',' . o2 ™ ¢ ’ 04
0 e o 02 ;
Bintrl x o O 8 ot 3 e %
0 o Sk R © Kernel g ., 3 %
o R @ v e )
E 0 i &




PCA & Auto-encoders

* Note that PCA is intimately connected with MLPs.

(*) An MLP can perform (non-linear) PCA using what is called an auto-associator (motre
commonly: auto-encoder).

(*) If we train the MLP where the output equals the input, we are asking the network to
learn a data “reconstruction” process; we therefore train to minimize the reconstruction error.

(*) Usually the hidden layers are smaller in dimension than the output/input layers so that
they form a compression “bottleneck”.

(*) The activations at the hidden layers (i.e. the feature vectors) encode

a dimensionality reduction of the data.

“bottleneck™ hidden layer
. |
T

/alllayers are fully connected but not\

drawn

input layer output layer

(reconstruction of input layer)



PCA & Auto-encoders: Image
Denoising

Original
iiiii

Encoder

—>E—> Decoder —>
Reconstructed
input

eeeeeeeeee
representation

The image
shows how a
"denoising"
autoencoder
may be used to
generate correct
input from
corrupted input.

corrupt input

ORI 7EEL | [B10E50
GIGIOI0I¥IYER TIS]S
MME S EEATEO
AR 9 L | DI KBS
SISEAIOEH 9 E 1A 7
HI19] 2] 21818109
7N 1] ) ] 61010
=] 1) K i i i FY R A
OIOI31 311415191419
/p?ﬂﬂﬂﬂ@@ﬂﬂ

cleaned input



SVD

* Of the vast array of different matrix factorizations used in applied math, the singular
value decomposition (SVD) is one of the most common and useful (we show its
conceptual connection with PCA in the subsequent slides).

 Recall that a symmetric matrix A admits of an eigendecomposition. Notably, if A is not
symmetric, then there is no guarantee that it has an eigendecomposition — so not every

matrix can be factored in this way.

When it came to our previous discussion of PCA, we had A=XXT.

Now, 1s .4 symmetric?



SVD

* Of the vast array of different matrix factorizations used in applied math, the singular
value decomposition (SVD) is one of the most common and useful (we show its
conceptual connection with PCA in the subsequent slides).

* Recall that a symmetric matrix A admits of an eigendecomposition. Notably, if A is not
symmetric, then there is no guarantee that it has an eigendecomposition — so not every

matrix can be factored in this way.

When it came to our previous discussion of PCA, we had A=XXT .

Now, is A symmetric? Yes: AT=XXHT=XHTXT=XXT=A.

The PCA algorithm was crucially reliant on the fact that A was symmetric and thus it has an
eigendecomposition.



SVD

* Conversely, every matrix has a singular value decomposition!

Definition: For an 7 x n matrix A, the sigular values of A are the square roots of the
cigenvalues of ATA. They are denoted:

Oy Oy

It is conventional to arrange the singular values in decreasing order, whence: o, > o, >..20 :

Example:

w

. r1o0 2 1
ATA= 1 0|=

10 1) | 112

has eigenvalues A,=3 and A,=1. Consequently, the singular values of A are: o = \/Z _1



SVD

* Definition: Let A be an 7 x 7# matrix with singular values, 0; = 0, =...=2 0, > 0 and

(0)
- il &
orthogonal matﬁx V and an » x n diagonal matrix X of the form:

A=UxV'

Note: the columns of U are called /ef? singular vectors of A, and the columns of V are called

o, o _ 0, = 0. Then there exist an 7 x 7 orthogonal matrix U, and 7 x 7

right singular vectors of A. The matrices U and V are not uniquely determined by A

() NB: rank(A) = r. | o T s |l o=
_ T XT - rxd

A | U

nxd nxrTr
U > ve

nxd nxd dxd



-~

5 VT
TXT rxd
T A 7 _ ||
A:UZV nxd nxr
Example: » ¢ 1" 10 | L |
B ORpN v.oox v

- = nxd nxd dxd

1 0 1
2 | ST
ATA=|1 0 =| 1
0 0 1
0 1 0




5 VT
rXT rxd
T A 5 _ |||
A:UZV nxd nxr
Example:

A:{l 1 0} _ _ U. || S | o
0 0 1 nxd nxd dxd
N0 | [ 1o g10%ES

ATA—lo{llo}—llO
h s e,

_0 1_ _O 0 l_

eigenvalues(AT A) A =2,4,=12,=0



SVD

5 VT
X T rxd
T A 1_ 0
A:UZV nxd o nxr
Example:
A= U by &
0 0 1 nxd nxd dxd
P R iy, T
. 110
A A=|1 O — N ol 1,
0 01
0 1 0 0 1 . 3
3 ’ = ~ 11(0]|-1
eigenvalues(ATA):ﬂizz,ﬁ,z:1,23=O eigenvectors(ATA): 11.00],] 1
1

These vectors are orthogonal, so now we normalize them:

M2 Jeee 1 B2 | N[ ]

J2 0 0
V=1/4J2 0 1/42 |==|0 1 0
() R ) 0 00




Example: A= |:

0 01

SVD

eigenvalues(AT A) A =2,4=,1=0

eigenvectors( AT A):

17 [0
1 ] O ]

To find U we compute:

il

u =—

0

110

Mo 0 s

T A
T O} A:UZV nxd
-1 MRONE e |
1 V=[1/42 0 1/2
| 0 1 0
lii-a]
1/2 :F}, u, iszzl'
0 0 o, 1

—~

5
nxr

-
n xd
i
3 —| [0F N
0O O
0

110
0

0 0 1
1

-~

. rxd

dxd
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i vT
A . | T X T . rxd
0
P =
M' A:UZV nXd nXxr

nxd nxd dxd

INLNEARL NG

0 0 1|=UxVT

-1N2 132 0

o — O
O O O

110 1 00
A= _ 0
{001}{010}0




SVD

Geometric Interpretation: In general, X can be regarded as a scaling matrix, and U, V can

be viewed as rotation matrices. T
A=UXV

Thus the expression UXV can be intuitively interpreted as a composition of three

successive geometrical transformations: a rotation or reflection, a scaling and another
rotation or reflection. 4

Ta€y

____.—'-'-'--—-__
T
v L ()
P P
3 €3
/ A~
LY
L1
. €y - 084 g’
L’l -
\ | O T
s
Fa n

N — d

T
—

Tally |
s

As shown in the figure, the singular values can be interpreted as the semiaxes of an
ellipse in 2D. This concept can be generalized to #-dimensional Euclidean space, with the
singular values of any » X 7 square matrix being viewed as the semiaxes of an #-
dimensional ellipsoid.

As in PCA, these coordinate axes provide a natural framework for determining a
dimensionality reduction scheme that captures maximal variation.



SVD: Outer Product Form

* SVD factorization yields a useful method for “low rank approximations/dimensionality
reduction of data.

Theorem: For a given SVD decomposition of an 7 x 7 matrix A, we can express A in the
so-called outer product form:

e, i "y
A=ouyV, +..+0o,U.V,

Where 0; = 0, =...=2 0, > 0 denote the singular values of A;u and v are the
corresponding /lf? singular and right singular vectors.

(*) Note that the condition number of a matrix A 1s defined as the ratio of the largest and
the smallest singular values of A. Matrices with large condition numbers are called ill-
conditioned (this has a significant impact on the stability of many different kinds of

numerical algorithms in linear algebra).
Gmax

cond(A) =
O

min



SVD: Outer Product Form

Example:

|

0 O

|

4

il
0 0

> T T
A=oUyV, +..+0o,U.V,

1
0

|

2

0 O
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0 0 1

-1/42 1/N2 0
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SVD: Outer Product Form for
Image Compression

* Consider the task of compressing a grayscale image of dimension 340 x 280; each pixel
is in the range [0, 255].

* We can store this image in a 340 x 280 dimension matrix, but transmitting and
manipulating these 95,200 numbers 1s very expensive.

* Lets use SVD for efficient image compression. Recall that the small singular values in
the SVD of a matrix correspond with “less informative” data features.




SVD: Outer Product Form for

Image Compression

* Suppose we have the SVD of A expressed in outer product form:

A=oUV, +..+oUV

Pl I

* For the original 340 x 280 image shown, we have r = 280 (why?).
o Define: A, =oUV, +...+o UV, K<r

as the g-rank approximation to A.




SVD: Outer Product Form for
Image Compression

* Suppose we have the SVD of A expressed in outer product form:

A=oUV, +..+oUV

Pl I

* For the original 340 x 280 image shown, we have r = 280 (why?).
o Define: A, =oUV, +...+o UV, K<r
as the g-rank approximation to A.

(*) It for example, we use a k = 20 rank approximation tor
A (i.e. we use the largest 20 singular values), the storage/
computational overhead is reduced from 95,200 numbers
to 12,420!




SVD: Outer Product Form for
Image Compression

k

Orignial, k = r = 28 k=

b T [ =
A, =ouyv, +..+oUyV,, k=32

(*) Here, using the SVD-based, low-
rank approximation to A, the fidelity
of the image 1s very strong — even
after discarding roughly 85% of the
image datal




SVD: Audio Denoising & the
“cocktail party problem”

* The cocktail party effect is the phenomenon of the brain's ability to focus one's
auditory attention (an effect of selective attention in the brain) on a particular
stimulus while filtering out a range of other stimuli.

* Listeners have the ability to both segregate different stimuli into different streams, and
subsequently decide which streams are most pertinent to them. Thus, it has been
proposed that one’s sensory memory subconsciously siphons through all stimuli, and
when an important word or phrase with high meaning appears, it stands out to the
listener.

* This effect is what allows most people to "tune into" a single voice and "tune out" all

others. “
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SVD: Audio Denoising & the
“cocktail party problem”

L
o
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0 AView from Emerging Technology from thearXiv- - . _ -

~

J, B Deep Learning Machine Solves the Cocktail .
'.' Party Problem

.\
o. Separating a singer’s voice from background music has always
‘\. been a uniguely human ability. Not anymore. N

April 2072045 _ -

L-
- —

he cocktail party effect is the ability to focus on a specific
T human voice while filtering out other voices or background
noise. The ease with which humans perform this trick belies
the challenge that scientists and engineers have faced in reproducing it
synthetically. By and large, humans easily outperform the best

automated methods for singling out voices.

A particularly challenging cocktail party problem is in the field of musie,
where humans ean easily concentrate on a singing voice superimposed
on a musical background that includes a wide range of instruments. By

comparison, machines are poor at this task.

Today, that looks to be changing thanks to the work of Andrew Simpson
and pals at the University of Surrey in the U.K. These guys have used
some of the most recent advances associated with deep neural networks

to separate human voices from the background in a wide range of songs.

(*) Recent research with DNN5s
claims to have solved the problem.

(*) Another approach: use SVD to
separate signal from noise!



PCA & SVD

Q: How do PCA and SVD relate?
* In fact, we can use SVD to perform PCA.

* Given a data matrix X, perform the SVD decomposition:

X=UxV'



PCA & SVD

Q: How do PCA and SVD relate?
* In fact, we can use SVD to perform PCA.

* Given a data matrix X, perform the SVD decomposition:

X=UxV'

* Next, we compute the covariance C of X (where the data is assumed centered):

C=XX" =UsV' (UsV] )T —UsvTVETUT



PCA & SVD

* Given a data matrix X, perform the SVD decomposition:
X=UzV'

* Next, we compute the covariance C of X (where the data 1s assumed centered):
C=XX"=UzV' (UVT) =Uzv'VE'U
=U(V'V)zU’

Why?
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* Given a data matrix X, perform the SVD decomposition:
X=UzV'

* Next, we compute the covariance C of X (where the data 1s assumed centered):
C=XX"=UzV' (UVT) =Uzv'VE'U
=UZ(V'V)zUT =Uz(V'V)zUT

Why?



PCA & SVD

* Given a data matrix X, perform the SVD decomposition:
X=UzV'

* Next, we compute the covariance C of X (where the data 1s assumed centered):
C=XX"=UzV' (UVT) =Uzv'VE'U
=Uz(V'V)ZU" =Uz(V'V)zUT =UzU’

Why?



PCA & SVD

* Given a data matrix X, perform the SVD decomposition:

X =UzV'

* Next, we compute the covariance C of X (where the data 1s assumed centered):

C=XX"=UzV' (UzV')

—Uzv'vI'u’

:uz(vTv)zuT =uz(vTv)zuT —UxU’

(*) Recall that with the PCA eigendecomposition
algorithm we generate the of C.

(*) This is precisely what we’ve done here,
where: D=X2, which confirms that the
singular values of X are indeed equivalent to
the square root of the eigenvalues of XXT.

PCA

* Here 1s the PCA algorithm:

(1) Write N data points X;=(Xy;,Xo.\ . - Xy ) AS LOW vectors.

(2) Put these vectors into the data matiix X (af size N x M).

(3) Center the data by subtracting off the mean ofi\each column, place into matrix B.

’—

7
(5) Computer the eigenvalues and €lg€l}1/€t‘fd/.!‘ of C,so: C = VDV \

where D is the diagonal matsix of e1gem’ahles V 1s the matrix of corresifondmg eigenvectors.

-
‘*—____..—’

(6) Sort of the columns of D into order of decreasing eigenvalues, and apply the same order to the
columns of V.

(7) Reject those with eigenvalues less than some given threshold, leaving I dimensions in the data.






