
Dimensionality Reduction:

CS 445/545 



Outline

•  “Big data” and motives for dimensionality reduction

•  LDA (linear discriminant analysis)

•  PCA (principal component analysis)

•   SVD (singular value decomposition) 



Big Data/High-Dimensional Data

In the beginning…



Big Data/High-Dimensional Data

In the beginning…

There was small data…
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Aside: Is the Basis of  the Universe 

Information? 

• In the 1940s,  “the father of  the digital age,”

Claude Shannon, formalized the notion of  information

through entropy. 

•  The theoretical physicist John Archibald Wheeler later stated that

The universe had (3) parts:

(1) Everything is particles

(2) Everything is fields

(3) Everything is information

logi i

i

H p p 



Aside: Is the Basis of  the Universe 

Information? 

• A study in 2017 revealed substantial evidence that we live in a holographic 

universe. 

•In this view, we might be caught inside a giant hologram; the cosmos is 

a projection, much like a 3D simulation. 

•If  the nature of  reality is in fact reducible to information itself, that implies a 

conscious mind on the receiving end, to interpret and comprehend it.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.041301



Aside: Is the Basis of  the Universe 

Information? 
• Wheeler himself  believed in a participatory universe, where consciousness holds a 

central role. 

• It is possible that information theory may in the future help bridge the gap 

between general relativity and quantum mechanics, or aid in our understanding 

of  dark matter. 

"The universe is a physical system that contains and processes information in a 

systematic fashion and that can do everything a computer can do.“ – Seth Lloyd, 

MIT 

Susskind: “On the world as hologram” https://www.youtube.com/watch?v=2DIl3Hfh9tY



Aside: Is the Basis of  the Universe 

Information? 
• Just for fun…here is a short conversation with Minsky on the question of  

whether information is a basic building block of  reality. 

https://www.closertotruth.com/series/information-fundamental



Introduction

• Most traditional statistical techniques (e.g. regression/classification) were 

developed in low-dimensional settings (i.e. n >> p where n is the data size and p

is the number of  features). 

•   Over the last several decades, new technologies have drastically changed the 

way that data are collected (see “big data age”). Consequently, it is now 

commonplace to work with data with a very large number of  features (i.e. p

>> n). 

•   While p can be extremely large, the number of  observations n is often limited 

due to cost, sample availability, or other considerations.  



Introduction
• Data containing more features than observations are typically referred to as 

high-dimensional. 

•    Issues pertaining to the bias-variance tradeoff  and overfitting are commonly 

exacerbated in high dimensions. 

•    With a large number of  features, statistical models (e.g. regression) can 

become too flexible and hence overfit the data. 

•   Recall the curse of  dimensionality, which poses two fundamental, associated 

problems: (1) “neighborhoods” become very large (this is problematic in 

particular for kernel and clustering methods), (2) we need a much larger data 

set to adequately “fill” the space for predictive modeling, etc. 



Interpretability in High Dimensions
• In high-dimensional settings we need to be cautious about how we 

interpret our results – that is to say if  they can be reasonably interpreted at 

all. 

•   Of  course, it is oftentimes adequate, depending on the application, to treat a 

machine learning model as a mere predictive “black box” (e.g. statistical 

arbitrage, government work). 

•   Conversely, if  we want to say that the features in our model directly impact 

the outcomes we observe (note: in ML we almost never use the c-word – viz.,  

variables caused observed effect) we need to be alert to multicollinearity. 

•    In high dimensions, it is very likely that some of  our model variables are 

mutually correlated. This means we can never know exactly which variables 

(if  any) are truly predictive of  the outcome. Moreover, we can rarely identify 

the optimal set of  features for a given phenomenon of  interest.  



Interpretability in High Dimensions

• The “first rule” of  data science and ML: one can always add more and 

more features to achieve zero classification/predictive error, a perfect 

correlation coefficient value, etc.  

•   In the end, however, this is a useless model.  We always need to report 

results on an independent test or validation set. 

•   In 2008, Hinton et al, developed a non-linear dimensionality technique known 

as t-SNE (t-distributed stochastic neighbor embedding) that is particularly well-suited 

for embedding high-dimensional data into 2 or 3 dimensions, which can be 

visualized with a scatter plot. 

•    Specifically, it models each high-dimensional object by a two- or three-dimensional 

point in such a way that similar objects are modeled by nearby points and 

dissimilar objects are modeled by distant points.



t-SNE: H-D Data Visualization

• First, t-SNE constructs a probability distribution over pairs of  high-dimensional 

objects in such a way that similar objects have a high probability of  being picked, 

whilst dissimilar points have an extremely small probability of  being picked. 

•    Second, t-SNE defines a similar probability distribution over the points in the low-

dimensional map, and it minimizes the KL divergence (a standard measure of  

“distance” between probability distributions) between the two distributions with 

respect to the locations of  the points in the map. 



t-SNE for MNIST 



t-SNE for Atari! (Deepmind) 



Word2vec (2013) 
•  Word2vec is a group of  related models (Google) that are used to produce 

word embeddings. 

•  These models are shallow, two-layer neural network that are trained to 

reconstruct linguistic contexts of  words.  

•  Word2vec takes as its input a large corpus of  text and produces a vector 

space (usually of  high dimensions), with each unique word in the corpus 

being assigned a corresponding vector in the space.

•  Word vectors are positioned  in the vector space such that words that 

share common contexts in the corpus are located in close proximity to 

one another in the space.



t-SNE for word2vec



Dimensionality Reduction
• In general: the higher the number of  dimensions we have, the more training data 

we need. 

•    Additionally, computational cost is generally an explicit function of  

dimensionality. 

•    Dimensionality reduction can also remove noise in a data set, which can, in 

turn, significantly improve the results of  a learning algorithm.     

•   These are perhaps the strongest reasons why dimensionality reduction is useful 

(in addition to improving visualization/interpretability). 

In general, there are (3) common ways to perform dimensionality reduction: 

(1) Feature selection – determine whether the features available are actually useful, 

i.e. are they correlated with the output variables. 

(2) Feature derivation – means deriving new features from old ones, generally by 

applying transforms to the data set that change the coordinate system axes (e.g., 

by moving or rotating); this is usually achieved through matrix multiplication.

(3) Clustering – group together similar data points to see whether this allows fewer 

features to be used. 



LDA
•   We will consider linear discriminant analysis (LDA) in an unsupervised setting 

(that is to say the data has no target label), due to Fisher (1936). 

•   Consider the case of  two data classes; we can compute various summary 

statistics for these data, including μ, the mean of  the entire set, as well as μ1 and 
μ2, the means of  each class, respectively; and the covariance of  each class:

*Note: We use the standard notation for column vectors, so that wTw is equivalent to the dot 

product of  w with itself, whereas wwT yields an nxn matrix, for n-dimensional w. 

  
T

j j

j

x x  



LDA
•   The principal insight of  LDA is that the covariance matrix can tell us about the 

scatter within a dataset, which is the amount of  spread extant within the data. 

•   The way to find the scatter is to multiply the covariance by pc, the probability of  

the given class (that is, the number of  data points there are in the class divided 

by the total number). 

•   Adding the values of  this for all of  the classes gives us a measure called the 

within-class scatter of  the data set:

  
T

W c j c j c

classes c j c

S p x x 


   



LDA
•   Within-class scatter of  the data set:

•   If  the data is easy to separate into classes, then this within-class scatter should 

be small, so that each class is tightly clustered together. 

•    Conversely, in order to separate data, we also want the distance between 

classes to be large. This quantity is known as the between-classes scatter: 

  
T
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classes c j c

S p x x 


   
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LDA
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LDA
•   “Good separation”  means SW should be small and SB should be large; accordingly 

we wish to make the ratio: SB/SW as large as possible. 

•   Regarding dimensionality reduction: we want SB/SW to be large when we reduce 

the number of  dimensions of  our data.

•   Recall that the projection of  a data point (i.e. a vector) x onto another vector w

can be written as z = wTx. 

•   So let’s consider the between and within scatter quantities projected onto some 

vector w: 

     

     
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why?



LDA
•   Thus, the ratio of  projected between-class and within-class scatter is:

How do we find the maximum value of  this expression with respect to w?  
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LDA
•   Thus, the ratio of  projected between-class and within-class scatter is:

How do we find the maximum value of  this expression with respect to w? 

Take the derivative with respect to w and set it equal to zero (i.e. find the “critical 

points”).  
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LDA
•   Thus, the ratio of  projected between-class and within-class scatter is:

How do we find the maximum value of  this expression with respect to w? 

Take the derivative with respect to w and set it equal to zero (i.e. find the “critical 

points”).  

•   This yields: 

   
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LDA
•   Thus, the ratio of  projected between-class and within-class scatter is:

How do we find the maximum value of  this expression with respect to w? 

Take the derivative with respect to w and set it equal to zero (i.e. find the “critical 

points”).  

•   This yields: 

FYI: Matrices have analogous “derivative” rules (see Matrix Calculus): 

, etc.

   
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Calculus!
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LDA
•   After some simplification and solving a sub-problem known as the generalized 

eigenvalue problem, we arrive at Fisher’s solution in the 2-class case: 

Let’s recap the LDA framework and what w* represents, now that we have the 

solution: 

(*) LDA seeks to reduce dimensionality while preserving as much of  the class 

discriminatory information as possible. 

(*) We seek to obtain a scalar y by projecting each datum x onto a line: y = wTx.

(*) Of  all possible lines, w* represents the one that maximizes the separability of  the 

scalars. 

 1

1 2* arg max
T

B
WT

W

w S w
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  

   
 

 

FIGURE 6.5  Plot of the iris data showing the three classes left: before and right: 

after LDA has been applied. 



LDA
(*) In the figure: the two classes A and B appear overlapped along both X1 and X2

directions. 

(*) However, they are perfectly separated along the discriminant function w*.

(*) Projecting the data onto this discriminant function renders a perfect separation of  

the two classes. 

* Note that there are a variety of  different forms of  LDA, including the use of  Bayes’ 

theorem for posterior classification, and QDA (quadratic discriminant analysis), where 

the discriminant function is parabolic.  
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 



PCA
• Like LDA, principal component analysis (PCA) amounts to 

computing a transformation of  a data set in order to identify a (useful) 

lower-dimensional set of  axes. 

Essential idea: PCA generates a particular set of  coordinate axes (usually in 

fewer dimensions than the original data) that capture the maximum 

variability in the data; furthermore, these new coordinate axes are 

orthogonal (which is to say they are uncorrelated). 



PCA: (Aside) Gram-Schmidt

•    One of  the quintessential results in Linear Algebra is the Gram-Schmidt algorithm (NB: 

this is the same Gram per the “Gram matrix”). 

The G-S algorithm takes a basis for, say, an inner product space (viz., a vector

space equipped with an inner product, such as the Euclidean space Rn) and returns

an orthonormal basis for the same space. 

Gram



PCA: (Aside) Gram-Schmidt

•    One of  the quintessential results in Linear Algebra is the Gram-Schmidt algorithm (NB: 

this is the same Gram per the “Gram matrix”). 

The G-S algorithm takes a basis for, say, an inner product space (viz., a vector

space equipped with an inner product, such as the Euclidean space Rn) and returns

an orthonormal basis for the same space. 

(*) Given a basis set, each step of  the G-S algorithm amounts to iteratively subtracting off  the 

orthogonal projection of  the current vector from each of  the previous vectors in the process. 

(*) In the diagram, the set {v1, v2} is the original basis set; 

(1) Normalize v1:   𝑒1 = 𝑣1/ 𝑣1
(2) Project v2 onto v1

(3) Define u2 as the difference of  v2 and the projection of  v2 onto v1

(4) Normalize u2: 𝑒2 = 𝑢2/ 𝑢2 (5) the set {e1, e2} is an orthonormal basis. 

Gram



PCA: (Aside) Gram-Schmidt

The G-S algorithm takes a basis for, say, an inner product space (viz., a vector

space equipped with an inner product, such as the Euclidean space Rn) and returns

an orthonormal basis for the same space.  



PCA: (Aside) Gram-Schmidt

The G-S algorithm takes a basis for, say, an inner product space (viz., a vector

space equipped with an inner product, such as the Euclidean space Rn) and returns

an orthonormal basis for the same space.  

(*) How is this useful? G-S algorithm is used to render the QR factorization 

of  a matrix. 

(*) PCA employs a similar strategy to generate the “principal components” 

of  a data set. 



PCA: (Aside) Gram-Schmidt



PCA
PCA generates a particular set of  coordinate axes that capture the maximum 

variability in the data; furthermore, these new coordinate axes are orthogonal.

The figure shows two versions of  the same data set. 

•   In the first image, the data are arranged in an ellipse that runs at 45◦ axes; while in the 

second, the axes have been moved so that the data now runs along the x-axis and is 

centered on the origin. 

•   Key idea: the potential for dimensionality reduction rests in the fact that the y dimension 

now does not demonstrate much variability – and so it might be possible to ignore it and 

simply use the x axis values alone for learning, etc. 

(*) In fact, applying this dimensionality reduction often has the nice effect of  removing some 

of  the noise in the data. 



PCA
Q: How do we choose the new axes? 

A:  With PCA, the principal component is the direction in the data with the largest variation. 

•   The algorithm first centers the data (by subtracting off  the mean), and then chooses the 

direction with the largest variation and places an axis in that direction.

•   For subsequent steps, the algorithm then looks at the variation that remains and finds 

another axis that is orthogonal to the first and covers as much of  the remaining 

variation as possible. 

Rinse and repeat…









PCA
Q: How do we choose the new axes? 

A:  With PCA, the principal component is the direction in the data with the largest variation. 

•   The algorithm first centers the data (by subtracting off  the mean), and then chooses the 

direction with the largest variation and places an axis in that direction.

•   For subsequent steps, the algorithm then looks at the variation that remains and finds 

another axis that is orthogonal to the first and covers as much of  the remaining 

variation as possible. 

Rinse and repeat…

(*) The end result is that all the variation is along the axes of  the coordinate set, and so the 

covariance matrix of  the transformed data is diagonal (since each new variable is 

uncorrelated with every variable except itself). 

(*) Because some of  the axes generated in this process have very little variation, we can 

typically remove them without drastically affecting the variability in the data (note the 

implicit assumption: variation in data features equates to useful information for 

classification/inference).









PCA
Let’s formally work out the PCA algorithm. 

•   Suppose we have a data matrix X of  dimension n by m (n is the number of  training 

instances, m is the dimension of  each datum). 

Goal for PCA: rotate the data so that we render a coordinate 

system so the new axes are uncorrelated (i.e. orthogonal) and 

can be ranked according to maximum variation. 



PCA
Let’s formally work out the PCA algorithm. 

•   Suppose we have a data matrix X of  dimension n by d (n is the number of  training 

instances, d is the dimension of  each datum). 

Goal for PCA: rotate the data so that we render a coordinate 

system so the new axes are uncorrelated (i.e. orthogonal) and 

can be ranked according to maximum variation. 

Using standard techniques from linear algebra, we can express

the rotation of  the data matrix X as:

Where P is a “rotation matrix” with the natural 

property that PT = P-1 (why?).

TY P X

Simple rotation 

matrix example



PCA

•  Recall that for PCA, we want the covariance of  the transformed matrix Y to be diagonal.

•    That is to say, we want to find a matrix P where:  

TY P X

1

2
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0 0
cov( ) cov( )

0 0 0

T

N

Y P X







 
 
  
 
 
 



PCA

•  Recall that for PCA, we want the covariance of  the transformed matrix Y to be diagonal.

•    That is to say, we want to find a matrix P where:  

•    Let’s relate cov(Y) and cov(X), so that we can more easily solve for P. 

TY P X

1

2

0 0

0 0
cov( ) cov( )

0 0 0

T

N

Y P X







 
 
  
 
 
 

cov( ) TY E YY   
(By definition of  covariance; 

recall the data is centered)



PCA

•  Recall that for PCA, we want the covariance of  the transformed matrix Y to be diagonal.

•    That is to say, we want to find a matrix P where:  

•    Let’s relate cov(Y) and cov(X), so that we can more easily solve for P. 

TY P X

1

2

0 0

0 0
cov( ) cov( )

0 0 0

T

N

Y P X






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PCA

•  Recall that for PCA, we want the covariance of  the transformed matrix Y to be diagonal.

•    That is to say, we want to find a matrix P where:  

•    Let’s relate cov(Y) and cov(X), so that we can more easily solve for P. 

TY P X

1

2

0 0

0 0
cov( ) cov( )

0 0 0

T

N

Y P X







 
 
  
 
 
 
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  Why? 



PCA

•  Recall that for PCA, we want the covariance of  the transformed matrix Y to be diagonal.

•    That is to say, we want to find a matrix P where:  

•    Let’s relate cov(Y) and cov(X), so that we can more easily solve for P. 

TY P X

1

2

0 0

0 0
cov( ) cov( )

0 0 0

T

N

Y P X







 
 
  
 
 
 

Why? 
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PCA

•  In summary: 

•  This tells us that: 

Why? 

 cov( ) covTY P X P

   cov( ) cov covTP Y PP X P X P 



PCA

•  In summary: 

•  This tells us that: 

(*) Remember that cov(Y) is a diagonal matrix; if  we write the matrix P as a set of  column 

vectors:                               , then we have: 

 cov( ) covTY P X P

   cov( ) cov covTP Y PP X P X P 
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PCA

•  In summary:                                                  and 

(*) If  we write                                                                  , we then arrive at the fundamental 

equation: 

 cov( ) covTY P X P
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PCA

•  In summary:                                                  and 

(*) If  we write                                                                  , we then arrive at the fundamental 

equation: 

 cov( ) covTY P X P

   
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PCA

•  In summary:                                                  and 

(*) If  we write                                                                  , we then arrive at the fundamental 

equation: 

 cov( ) covTY P X P

   
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This is the ith column of  Pcov(Y) 

This is the ith column of  cov(X)P 



PCA

•  In summary:                                                  and 

(*) If  we write                                                                  , we then arrive at the fundamental 

equation: 

(*) Do you recognize anything “special” about the structure of  these vectors? 
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PCA

•  In summary:                                                  and 

(*) If  we write                                                                  , we then arrive at the fundamental 

equation: 

The pi vectors are eigenvectors of  Z=cov(X)!
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PCA

•  In summary: we need to solve                                                 , where each pi vector is an 

eigenvector of Z=cov(X). 

(*) Useful fact (1): all eigenvectors of  a square symmetric matrix A are orthogonal to each 

other. 
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PCA

•  In summary: we need to solve                                                 , where each pi vector is an 

eigenvector of Z=cov(X). 

(*) Useful fact (1): all eigenvectors of  a square symmetric matrix A are orthogonal to each 

other. 

(*) Useful fact (2): Z=cov(X) is a square symmetric matrix (as is true for any covariance 

matrix).  

(*) If  we put (1) and (2) together, this means that the solution to the PCA problem (i.e. 

solving for the matrix P) boils down to determining the eigendecomposition (also called 

the spectral decomposition) – which is guaranteed to exist – of  cov(X). 

Where D is the diagonal matrix of  eigenvalues for Z, and E is the corresponding (orthogonal) 

matrix of  eigenvectors. 

for each
i i i

λp Zp p
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PCA

•   Note: In the eigendecomposition for cov(X), the dimensions with large eigenvalues have 

lots of  variation and are therefore useful dimensions. 

•    In order to perform a dimensionality reduction on our data set, we can therefore throw 

away dimensions for which the eigenvalues are very small (usually smaller than some 

chosen parameter). 

 cov T Z X EDE



PCA
•  Here is the PCA algorithm: 

(1) Write N data points xi=(x1i,x2i,…,xMi) as row vectors.

(2) Put these vectors into the data matrix X (of  size N x M).

(3) Center the data by subtracting off  the mean of  each column, place into matrix B. 

(4) Computer the covariance matrix: 

(5) Computer the eigenvalues and eigenvectors of  C, so: 

where D is the diagonal matrix of  eigenvalues; V is the matrix of  corresponding eigenvectors. 

(6) Sort of  the columns of  D into order of  decreasing eigenvalues, and apply the same order to the 

columns of  V. 

(7) Reject those with eigenvalues less than some given threshold, leaving L dimensions in the data. 

TC VDV

1 T

N
C BB



PCA for MNIST



PCA vs. LDA
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Extending PCA

Q: What strong assumptions did we make about the surface for the directions of  maximum 

variation with PCA? 

A: We assumed these surfaces of  maximum variation are straight lines (this is a strong 

assumption!)

Q: How can are break the linear restriction for PCA? 

A: “Kernelize” PCA!



Kernel PCA
(*) All we have to do is express the covariance matrix C (recall this was the covariance of  the 

data matrix X after centering) in terms of  a kernel transformation: 

(*) Next we compute the eigendecomposition of  C and use the eigenvectors with the largest 

associated eigenvalues for PCA. 

(*) Recall (from SVM lecture) that by using a kernel function we implicitly perform a dot 

product in a larger dimensional feature space (this is the crux of  the kernel trick), with 

the upshot of  enhanced expressiveness.

   
1

1 N
T

n n

i

x x
N 

  C



PCA & Auto-encoders
• Note that PCA is intimately connected with MLPs. 

(*) An MLP can perform (non-linear) PCA using what is called an auto-associator (more 

commonly: auto-encoder). 

(*) If  we train the MLP where the output equals the input, we are asking the network to 

learn a data “reconstruction” process; we therefore train to minimize the reconstruction error. 

(*) Usually the hidden layers are smaller in dimension than the output/input layers so that 

they form a compression “bottleneck”. 

(*) The activations at the hidden layers (i.e. the feature vectors) encode

a dimensionality reduction of  the data. 



PCA & Auto-encoders: Image 

Denoising 



SVD
•  Of  the vast array of  different matrix factorizations used in applied math, the singular 

value decomposition (SVD) is one of  the most common and useful (we show its 

conceptual connection with PCA in the subsequent slides). 

•  Recall that a symmetric matrix A admits of  an eigendecomposition. Notably, if  A is not

symmetric, then there is no guarantee that it has an eigendecomposition – so not every 

matrix can be factored in this way.

When it came to our previous discussion of  PCA, we had A=XXT . 

Now, is A symmetric? 



SVD
•  Of  the vast array of  different matrix factorizations used in applied math, the singular 

value decomposition (SVD) is one of  the most common and useful (we show its 

conceptual connection with PCA in the subsequent slides). 

•  Recall that a symmetric matrix A admits of  an eigendecomposition. Notably, if  A is not

symmetric, then there is no guarantee that it has an eigendecomposition – so not every 

matrix can be factored in this way.

When it came to our previous discussion of  PCA, we had A=XXT . 

Now, is A symmetric? Yes: AT=(XXT)T=(XT)TXT=XXT=A.

The PCA algorithm was crucially reliant on the fact that A was symmetric and thus it has an 

eigendecomposition. 



SVD
•  Conversely, every matrix has a singular value decomposition! 

Definition: For an m x n matrix A, the singular values of  A are the square roots of  the 

eigenvalues of  ATA. They are denoted: 

It is conventional to arrange the singular values in decreasing order, whence: 

Example: 

has eigenvalues λ1=3 and  λ2=1. Consequently, the singular values of  A are: 

1,..., n 
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SVD
•  Definition: Let A be an m x n matrix with singular values,   σ1 ≥ σ2 ≥…≥ σ𝑟 > 0 and    

σ𝑟 + 1 =
σ𝑟 + 2 = ⋯ =

σ𝑛 = 0. Then there exist an m x n orthogonal matrix U, and n x n 

orthogonal matrix V, and an m x n diagonal matrix Σ of  the form:

Note: the columns of  U are called left singular vectors of  A, and the columns of  V are called 

right singular vectors of  A. The matrices U and V are not uniquely determined by A.

(*) NB: rank(A) = r. 

TA U V 



SVD

Example: 

TA U V 
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SVD

Example: 

TA U V 
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SVD

Example: 

These vectors are orthogonal, so now we normalize them: 
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SVD

Example: 

To find U we compute: 

TA U V 
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SVD

Example: 

TA U V 
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SVD

TA U V 

Geometric Interpretation: In general, Σ can be regarded as a scaling matrix, and U, V can 

be viewed as rotation matrices. 

Thus the expression UΣV can be intuitively interpreted as a composition of  three 

successive geometrical transformations: a rotation or reflection, a scaling and another 

rotation or reflection. 

As shown in the figure, the singular values can be interpreted as the semiaxes of  an 

ellipse in 2D. This concept can be generalized to n-dimensional Euclidean space, with the 

singular values of  any n × n square matrix being viewed as the semiaxes of  an n-

dimensional ellipsoid. 

As in PCA, these coordinate axes provide a natural framework for determining a 

dimensionality reduction scheme that captures maximal variation. 



SVD: Outer Product Form 

•  SVD factorization yields a useful method for “low rank” approximations/dimensionality 

reduction of  data.

Theorem: For a given SVD decomposition of  an m x n matrix A, we can express A in the 

so-called outer product form: 

Where σ1 ≥ σ2 ≥…≥ σ𝑟 > 0 denote the singular values of  A; u and v are the 

corresponding left singular and right singular vectors. 

(*) Note that the condition number of  a matrix A is defined as the ratio of  the largest and 

the smallest singular values of  A. Matrices with large condition numbers are called ill-

conditioned (this has a significant impact on the stability of  many different kinds of  

numerical algorithms in linear algebra). 
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SVD: Outer Product Form 

1 1 1 ...T T

r r r   A u v u v

Example: 
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SVD: Outer Product Form for 

Image Compression  
• Consider the task of  compressing a grayscale image of  dimension 340 x 280; each pixel 

is in the range [0, 255]. 

• We can store this image in a 340 x 280 dimension matrix, but transmitting and 

manipulating these 95,200 numbers is very expensive. 

•  Let’s use SVD for efficient image compression. Recall that the small singular values in 

the SVD of  a matrix correspond with “less informative” data features. 



SVD: Outer Product Form for 

Image Compression  
• Suppose we have the SVD of  A expressed in outer product form:

• For the original 340 x 280 image shown, we have r = 280 (why?).  

•  Define:

as the k-rank approximation to A. 
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SVD: Outer Product Form for 

Image Compression  
• Suppose we have the SVD of  A expressed in outer product form:

• For the original 340 x 280 image shown, we have r = 280 (why?).  

•  Define:

as the k-rank approximation to A. 

(*) If  for example, we use a k = 20 rank approximation for 

A (i.e. we use the largest 20 singular values), the storage/

computational overhead is reduced from 95,200 numbers 

to 12,420! 

1 1 1 ...T T

r r r   A u v u v

1 1 1 ... ,T T

k k k k k r    A u v u v



SVD: Outer Product Form for 

Image Compression  

1 1 1 ... , 32T T

k k k k k    A u v u v

(*) Here, using the SVD-based, low-

rank approximation to A, the fidelity 

of  the image is very strong – even 

after discarding roughly 85% of  the 

image data!



SVD: Audio Denoising & the 

“cocktail party problem”  
• The cocktail party effect is the phenomenon of  the brain's ability to focus one's 

auditory attention (an effect of  selective attention in the brain) on a particular 

stimulus while filtering out a range of  other stimuli.

• Listeners have the ability to both segregate different stimuli into different streams, and 

subsequently decide which streams are most pertinent to them. Thus, it has been 

proposed that one’s sensory memory subconsciously siphons through all stimuli, and 

when an important word or phrase with high meaning appears, it stands out to the 

listener.

•  This effect is what allows most people to "tune into" a single voice and "tune out" all 

others. 



SVD: Audio Denoising & the 

“cocktail party problem”  

(*) Recent research with DNNs 

claims to have solved the problem. 

(*) Another approach: use SVD to 

separate signal from noise! 



PCA & SVD

Q: How do PCA and SVD relate? 

•  In fact, we can use SVD to perform PCA. 

•  Given a data matrix X, perform the SVD decomposition: 
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•  Given a data matrix X, perform the SVD decomposition: 
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PCA & SVD
•  Given a data matrix X, perform the SVD decomposition: 

•  Next, we compute the covariance C of  X (where the data is assumed centered): 

TX U V 

 
T

T T T T T TC XX U V U V U V V U      

    2T T T T TU V V U U V V U U U       

(*) Recall that with the PCA eigendecomposition

algorithm we generate the of  C. 

(*) This is precisely what we’ve done here, 

where: D=Σ2, which confirms that the 

singular values of  X are indeed equivalent to 

the square root of  the eigenvalues of  XXT. 



Fin


