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Introduction
• Previously we considered Perceptrons based on the McCulloch and Pitts 

neuron model. 

• We identified a method for updating weights, PLA, and noticed that the 

Perceptron is rather limited in that it could only identify straight line 

classifiers.

• This mean that it could not learn to distinguish classes, for instance, with 2D 

XOR function. 

• However, we saw that it was in fact possible to modify the problem so that 

the perceptron could solve the problem. 

Q: How was this done?  

You had me at XOR. 



Introduction
• Previously we considered Perceptrons based on the McCulloch and Pitts 

neuron model. 

• We identified a method for updating weights, PLA, and noticed that the 

Perceptron is rather limited in that it could only identify straight line 

classifiers.

• This mean that it could not learn to distinguish classes, for instance, with 2D 

XOR function. 

• However, we saw that it was in fact possible to modify the problem so that 

the perceptron could solve the problem. 

Q: How was this done?  One way: transform the data!

You had me at XOR. You complete…

my data transformation 



Introduction

• Here we will modify the data by changing its representation (a powerful 

idea in ML and data science). In principle, it is always possible to transform 

any given data set so that the classes within it are linearly separable. 

• We introduce kernel functions to achieve this transformation. 

• The key idea is to ascertain which dimensions to “use”; generally, kernel 

methods comprise a class of  algorithms that do just this. 



Introduction
• We focus here on support vector machines (SVMs) for classification. 

• Given a set of  training examples, each one belonging to a specific category, 

an SVM training algorithm creates a model that separates the categories and 

that can later be used to decide the category of  new set of  data.

• The training component  consists in finding the best separating plane (with 

maximal margin) based on specific vector called support vector. If  the 

decision is not feasible in the initial description space, you can increase space 

dimension using a kernel function and subsequently identify a hyperplane 

that serves as your decision surface.

•



Introduction
• SVMs are one of  the more popular algorithms in modern machine learning 

(although they have decreased in prominence more recently, with the advent 

of  deep NNs). 

• Vapnik introduced them in 1992, at which time they became wildly popular 

in ML due to their impressive classification performance on reasonably-sized 

datasets. 

• In principle, SVMs do not work well on extremely large datasets, since the 

computations don’t scale well with the number of  training examples. 

• In addition to incorporating kernel functions, the SVM algorithm also 

reformulates the classification problem



Introduction
• In addition to incorporating kernel functions, the SVM algorithm also 

reformulates the classification problem in a way that allows us to 

discriminate between a good classifier and a bad one. 

• Consider, for example, the following decision boundaries for identical sets 

of  data. 

Q: Which is the “best” classifier? 



Introduction

Q: Which is the “best” classifier? 

A: The classifier that generalizes best.

How do we quantify the notion of  an optimal line?  



Introduction
• We can measure the distance that we have to travel away from the decision line (in a 

direction perpendicular to the line) before we encounter a data point. 

• Imagine a region (“no man’s land”) around the line that we designate as representing data 

points that are “too close” to the line to be accurately classified; render this region as a 

cylinder in the “hypothesis space.”  

• How large can we make the radius of  this cylinder until classification becomes ambiguous 

(i.e. we capture points from different classes)? 

• Call this maximum radius M, the margin of  the 

decision surface. 



Introduction
• The classifier in the middle has the largest margin of  the three; we say it is the maximum 

margin (linear) classifier. 

• The data points in each class that lie closest to the classification line are called the 

support vectors (of  the classifier). 

• Using the argument that the best classifier is the one that goes through the middle of  “no 

man’s land”, we can make two arguments: 

(1) The margin should be as large as possible.

(2) The support vectors are the most useful data points (they exist on the threshold of  

what we can correctly classify). 

(*) Note: SVMs allow us to discard all of  the training data except for the support vectors! This 

is very useful for compression/data storage constraints.  



Aside #1: VC Dimension
• VC dimension is an important and deep concept in ML.

V. Vapnik

• VC dimension is a measure of  the capacity (i.e. complexity, expressive power, 

richness, or flexibility) of  a space of  functions that can be learned by a 

classification algorithm. 

• A classification model f with some parameter θ is said to shatter a set of  data 

points (x1, …, xn) if, for all assignments of  labels to those points, there exists 

a θ such that the model f makes no errors when evaluating that set of  data 

points. 

• VC dimension (of  a model f) := the maximum number of  points that can 

be arranged so that f shatters them. 



Aside #1: VC Dimension
• Example: If  f is a constant classifier, its VC dimension is zero, since it cannot shatter even a 

single point. 

• Example: If  is a straight line classifier (in 2-D). There exist sets of  3 points that can indeed be 

shattered using the model (any 3 points that are non-collinear can be shattered). However, no 

set of  4 points can be shattered. Thus the VC dimension of  a straight line is 3. 

• Example: f is a single-parameter “sine classifier”, i.e. for a certain parameter θ, the classifier fθ
returns 1 if  the input number x is larger than sin(θx) and 0 otherwise. 

• The VC dimension of  f is infinite, since it can 

shatter the set:                       for any positive m. 

(*) Note the last example shows, importantly, that 

VC dimension is not directly related to the number of

model parameters!

Note we only show 3 of  the 

23=8 possible binary labelings

for 3 points. 

 2 |m m 



Aside #1: VC Dimension

• Another example: the VC dimension of  a rectangle in R2 (where the rectangle 

encompasses all data of  a particular class). 

• The diagram shows that a rectangle shatters at least 4 points in the plane; 

for 5 points there exists a counter-example (try it). 

• In general, the VC dimension of  a hyperplane in Rd is d+1.

(e.g. in R2 we previously showed a hyperplane has VC dimension = 3). 



Aside #1: VC Dimension

• Another example: the VC dimension of  a spherical indicator function in R2 (where 

the sphere encompasses all data of  a particular class). 

• Three points in R2 can be shattered, but four cannot; thus VC dim(f) = 3 in 

R2 (useful for nearest neighbors classifiers, radial basis functions).

    2 2, ,f r I r  x c x c



Aside #2: Optimization Paradigms
• Two of  the most common optimization paradigms in ML include: 

(1) Optimization with equality constraints. 

(2) Optimization with inequality constraints. 
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Notation
• Assume a binary classification problem.

– Instances are represented by vector x  n.

– Training examples: x = (x1, x2, …, xn)

S = {(x1, t1), (x2, t2), ..., (xm, tm) | (xk, tk) n {+1, −1}}

– Hypothesis:   A function h: n{+1, −1}.

h(x) = h(x1, x2, …, xn) {+1, −1}



• Here, assume positive and negative instances are to be 

separated by the hyperplane

where b is the bias. 
  

  

w× x +b = 0

  

   

w× x +b = w
T
x +b

= w1x1 +w2x2 + b = 0

Equation of line: 

x2

x1



• Intuition:  the best hyperplane (for future generalization) 

will “maximally” separate the examples

  

w× x +b = 0



Definition of  Margin (with respect to a 

hyperplane):

Distance from separating hyperplane to nearest positive (or negative) 

instance.



Vapnik (1979) showed that the 

hyperplane maximizing the margin 

of S will have minimal VC 

dimension in the set of all consistent 

hyperplanes, and will thus be 

optimal.                                    

Definition of  Margin (with respect to a 

hyperplane):

Distance from separating hyperplane to nearest positive (or negative) 

instance.



Vapnik (1979) showed that the 

hyperplane maximizing the margin 

of S will have minimal VC 

dimension in the set of all consistent 

hyperplanes, and will thus be 

optimal.                                    

This is an optimization

problem!

Definition of  Margin (with respect to a 

hyperplane):
Distance from separating hyperplane to nearest positive (or negative) 

instance.



Maximum Margin

• Linear Classifiers can lead to many equally 

valid choices for the decision boundary

Are these really 

“equally valid”?



Max Margin

• How can we pick 

which is best?

• Maximize the 

size of the 

margin.

Are these really 

“equally valid”?

Small Margin

Large Margin



Support Vectors

• Support Vectors 
are those input 
points (vectors) 
closest to the 
decision boundary

• 1. They are 
vectors

• 2. They “support” 
the decision 
hyperplane

25



Support Vectors

• Define this as a 

decision problem

• The decision 

hyperplane:

• No fancy math, just the 

equation of a 

hyperplane.

26



Support Vectors

• Aside: Why do some 
cassifiers use 
or  
– Simplicity of the math 

and interpretation.

– For probability density 
function estimation 0,1 
has a clear correlate.

– For classification, a 
decision boundary of 0 
is more easily 
interpretable than .5.

27



Support Vectors

• Define this as a 

decision problem

• The decision 

hyperplane:

• Decision 

Function:

28



Support Vectors

• Define this as a 

decision problem

• The decision 

hyperplane:

• Margin hyperplanes:

29



Support Vectors

• The decision 

hyperplane:

• Scale invariance

30



Support Vectors

• The decision 

hyperplane:

• Scale invariance

31



Support Vectors

• The decision 

hyperplane:

• Scale invariance



What are we optimizing?

• We will represent 
the size of the 
margin in terms of 
w.

• This will allow us to 
simultaneously
– Identify a decision 

boundary

– Maximize the margin

33



How do we represent the size of 

the margin in terms of w?
1. There must at least one 

point that lies on each 

support hyperplanes

34

Proof outline: If not, we 

could define a larger 

margin support 

hyperplane that does 

touch the nearest 

point(s).



How do we represent the size of 

the margin in terms of w?

1. There must at least one 

point that lies on each 

support hyperplanes

35

Proof outline: If not, we 

could define a larger 

margin support 

hyperplane that does 

touch the nearest 

point(s).



How do we represent the size of 

the margin in terms of w?

1. There must at least one 

point that lies on each 

support hyperplanes

2. Thus:

36

3. And:



How do we represent the size of 

the margin in terms of w?

1. There must at least one 

point that lies on each 

support hyperplanes

2. Thus:

3. And:

Why? 

 1 2 2Tw x x 



• The vector w is 
perpendicular to the 
decision hyperplane

– If the dot product of two 
vectors equals zero, the 
two vectors are 
perpendicular.

How do we represent the size of 

the margin in terms of w?

 1 2 2Tw x x 



• The margin is the projection 

of x1 – x2 onto w, the normal 

of the hyperplane.

How do we represent the size of 

the margin in terms of w?

 1 2 2Tw x x 



Aside: Vector Projection



• The margin is the projection 

of x1 – x2 onto w, the normal 

of the hyperplane.

How do we represent the size of 

the margin in terms of w?

41Size of the Margin:

Projection:

 1 2 2Tw x x 



Maximizing the margin

• Goal: maximize 

the margin:

• This is equivalent 

to finding: 

42

Linear Separability of the data 

by the decision boundary

1 1

1 1

T

i i

T

i i

w x b if t

w x b if t

  

    



Minimizing ||w||

The canonical SVM optimization problem is formalized as: 

• Note that Gradient Descent would be ill-suited for this 

problem (enforcing the constraints is difficult). 

•    Instead, the method of  Quadratic Programming (QP) 

is more efficient.  

 
21

minimize subject to: 1, 1,...,
2

k kt b k m
 

    
 

w w x



Minimizing ||w||
The canonical SVM optimization problem is formalized as: 

• Because this problem is quadratic, it is necessarily convex! 

Thus it admits of  a unique solution (minimum). 

• We won’t worry about all of  the details here, but we’d like 

to reformulate this problem using Lagrange multipliers at 

which point it can then be presented to a quadratic solver (in 

general the solution yielded is rendered in polynomial 

time).

 
21

minimize subject to: 1, 1,...,
2

k kt b k m
 

    
 

w w x



Dual Representation
• It turns out (as Neumann first observed) that w can be expressed as a 

linear combination of  the training examples: 

• The results of  the SVM training algorithm (involving solving a 

quadratic programming problem) are the k and the bias b. 

w = ak

xkÎ S

å xk

where ak ¹ 0 only if xk  is a support vector



• After solving the “dual problem” (i.e. obtaining 

the k and the bias b), we classify a new example x 

as follows: 

• Where | S | = M.      (S is the training set)

SVM Classification



• After solving the “dual problem” (i.e. obtaining 

the k and the bias b), we classify a new example x 

as follows: 

• where | S | = M.      (S is the training set)

• Recall that the dot product 

furnishes a “similarity” measure. 

SVM Classification



Example

1 2-1-2

1

2

-

2

-1



Example

1 2-1-2

1

2

-

2

-1

Input to SVM optimizer:

x1 x2 class
1 1 1

1 2 1

2 1 1

−1 0 −1

0 −1 −1

−1 −1 −1

Output from SVM optimizer:

Support vector α

(−1, 0) −.208

(1, 1) .416

(0, −1) −.208

b = −.376 
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x1 x2 class
1 1 1

1 2 1

2 1 1

−1 0 −1
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Example

1 2-1-2

1

2

-

2

-1

w = akxk
kÎ{training examples}

å

= -.208 (-1, 0)+.416 (1,1)-.208 (0,-1)

= (.624,.624)

Weight vector: 

Input to SVM optimzer:

x1 x2 class
1 1 1

1 2 1

2 1 1

−1 0 −1

0 −1 −1

−1 −1 −1

Output from SVM optimizer:

Support vector α

(−1, 0) −.208

(1, 1) .416

(0, −1) −.208

b = −.376 



1 2-1-2
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-

2
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Weight vector: 

Example
Input to SVM optimzer:

x1 x2 class
1 1 1

1 2 1

2 1 1

−1 0 −1

0 −1 −1

−1 −1 −1

Output from SVM optimizer:

Support vector α

(−1, 0) −.208

(1, 1) .416

(0, −1) −.208

b = −.376 

Separation line: 

w1x1 +w2x2 + b = 0

.624x1 +.624x2 -.376 = 0

x2 = -x1 +.6

w = akxk
kÎ{training examples}

å

= -.208 (-1, 0)+.416 (1,1)-.208 (0,-1)

= (.624,.624)
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å

= -.208 (-1, 0)+.416 (1,1)-.208 (0,-1)

= (.624,.624)
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Classifying a new point: 
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Example

1 2-1-2
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-
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-1

Classifying a new point: 



SVM summary
• Equation of line:  w1x1 + w2x2 + b = 0

• Define margin using: 

• Margin distance: 

• To maximize the margin, we minimize ||w|| 

subject to the constraint that positive examples

fall on one side of the margin, and negative

examples on the other side: 

• We can relax this constraint using “slack variables”

xk × w +b ³ +1  for positive instances (tk = +1)

xk × w +b £ -1  for negative instances (tk = -1)

   

1

w

tk w × xk +b( ) ³1, k =1,...,m

where tk Î {-1,+1}



SVM summary
• To do the optimization, we use the dual formulation:

The results of the optimization “black box” are           

and b .

w = akxk
kÎ{training examples}

å

{ak}



SVM review
• Once the optimization is done, we can classify a new

example x as follows:

That is, classification is done entirely through a linear

combination of dot products with training examples. 

This is a “kernel” method.  

h(x) = class(x) = sgn w × x + b( )

= sgn akxk
k=1

m

å
æ

è
ç

ö

ø
÷× x + b

æ

è
çç
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ø
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= sgn ak xk × x( )
k=1

m

å
æ

è
ç
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Example:  

Watson used tree kernels and SVMs to classify 

question types for Jeopardy! questions

From Moschitti et al., 2011



IBM Watson 

https://www.youtube.com/watch?v=DywO4zksfXw



IBM Watson: Jeopardy

https://www.youtube.com/watch?v=P18EdAKuC1U



IBM Watson (2016)

• “Emotion detection” has been a central piece of  recent research 

in attempts to make AI systems more compassionate. 

• IBM Watson recently released textual emotion detection (with new 

enhancements) as a new functionality with Watson. 

• Some of  these enhancements include: (1) a new feature selection 

process using “linear SVMs with L1 penalty” And (2) new 

“kernel-based classifiers.” 



IBM Watson (2016)

https://www.ibm.com/blogs/bluemix/2016/10/watson-has-more-accurate-emotion-

detection/

Demo: https://natural-language-understanding-demo.ng.bluemix.net/

SVMs!



Non-linearly separable training 

examples
• What if  the training examples are not linearly separable? 



Non-linearly separable training 

examples
• What if  the training examples are not linearly separable? 

• Use old trick:  Find a function that maps points to a higher 

dimensional space (“feature space”) in which they are linearly 

separable, and do the classification in that higher-

dimensional space.



Need to find a function  that will perform such a mapping:

: n F

Then can find hyperplane in higher dimensional feature 

space F, and do classification using that hyperplane in higher 

dimensional space. 

x1

x2

x1

x2

x3



Challenge

Find a 3-dimensional feature space in which 

XOR is linearly separable.  

x2

x1

(0, 1) (1, 1)

(0, 0)

(1, 0) x1

x2

x3



• Problem: 

– Recall that classification of  instance x is expressed in 

terms of  dot products of  x and support vectors.  

– The quadratic programming problem of  finding the 

support vectors and coefficients also depends only 

on dot products between training examples.

Class(x) = sgn ak (x × xk
kÎ{training examples}

å )+b
æ

è

ç
ç

ö

ø

÷
÷



– So if  each xk is replaced by (xk) in these procedures, we 

will have to calculate (xk) for each k as well as calculate a 

lot of  dot products,   (x) (xk) 

– But in general, if  the feature space F is high dimensional, 

(xi)  (xj) will be expensive to compute.



• Second trick (the “kernel trick”):

– Suppose that there were some magic function, 

K(xi, xj) = (xi)  (xj)  

such that K is cheap to compute even though (xi)  (xj) is 

expensive to compute.  

– Then we wouldn’t need to compute the dot product directly; 

we’d just need to compute K during both the training and 

testing phases.

– The good news is:  such K functions exist!  They are called 

“kernel functions”, and come from the theory of  integral 

operators.  



Example: Polynomial kernel: 

Suppose x = (x1, x2) and z = (z1, z2). 

  

k(x,z) = (x× z)2



Example: Polynomial kernel: 

Suppose x = (x1, x2) and z = (z1, z2). 

  

k(x,z) = (x× z)2









More on Kernels
• So far we’ve seen kernels that map instances in n to 

instances in z where z > n.  

• One way to create a kernel:  Figure out appropriate 

feature space Φ(x), and find kernel function k which 

defines inner product on that space.  

• More practically, we usually don’t know appropriate feature 

space Φ(x).  

• What people do in practice is either:

1. Use one of  the “classic” kernels (e.g., polynomial),

or  2. Define their own function that is appropriate for 

their task, and show that it qualifies as a kernel.  



How to define your own kernel

• Given training data (x1, x2, ..., xn)

• Algorithm for SVM learning uses kernel matrix (also 

called Gram matrix):

• We can choose some function K, and compute the 

kernel matrix K using the training data. 

• We just have to guarantee that our kernel defines an 

inner product on some feature space.  

• Not as hard as it sounds.  

Ki, j =K(xi,x j ),  for i, j =1,...,n



What counts as a kernel? 

• Mercer’s Theorem:   If  the kernel matrix K is “positive 

definite”, it defines a kernel, that is, it defines an inner 

product in some feature space.  

• We don’t even have to know what that feature space is!   It 

can have a huge number of  dimensions.  

• Recall: 



Summary of  “kernel trick” (or kernel method) 
• Kernel methods can be thought of  as instance-based learners: rather than learning some 

fixed set of  parameters corresponding to the features of  their inputs, they instead 

"remember" the ith training example (xi,yi) and learn it for a corresponding weight αi. 

• For generalization in the classification step, a new datum x is compared (via the

“similarity” function k) to each training input xi: 

• The kernel trick avoids the explicit mapping needed to get linear algorithms to render a

non-linear decision boundary.

• The key idea is that k(x,xi) is expressed as an inner product in another space V. 

• By appropriately defining the kernel (e.g. using Mercer’s theorem) we are guaranteed 

that V is an inner product space (aside: an inner product space naturally induces a

norm on a vector space, in which case we get “intuitive” geometric properties per 

Euclidean spaces). 

• The upshot for SVMs: we get the rich representative qualities of  non-linear decision 

boundaries without having to compute Ф explicitly. 

class(x) = sgn ak k(x, xk
kÎsupport vectors

å )
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è
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Structural Kernels

• In domains such as natural language processing and 

bioinformatics, the similarities we want to capture are 

often structural (e.g., parse trees, formal grammars).  

• An important area of  kernel methods is defining 

structural kernels that capture this similarity (e.g., 

sequence alignment kernels, tree kernels, graph kernels, 

etc.)



• Design criteria - we want kernels to be:

– valid – Satisfy Mercer condition of  positive semi-

definiteness.

– good – embody the “true similarity” between objects

– appropriate – generalize well

– efficient – the computation of  K(x, x’) is feasible



Summary of SVM algorithm
Given training set 

S = {(x1, t1), (x2, t2), ..., (xm, tm) | (xk, tk) n {+1, -1}

1. Choose a kernel function k(x,z).

2. Apply optimization procedure (using the kernel function K) to 

find support vectors xk , coefficients k , and bias b. 

3. Given a new instance, x, find the classification of x by 

computing 

class(x) = sgn ak k(x, xk
kÎsupport vectors
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Summary of SVM algorithm

Computational complexity for SVM: This can be difficult 

to compute in general. 

Basic Idea: (1) We need to perform O(m2n) primitives for 

the dot product/kernel (m is the number of  data points 

and n is the dimensionality); (2) unfortunately, to solve 

the QP problem this requires inversion of  the kernel 

matrix which is in general O(m3). 

class(x) = sgn ak k(x, xk
kÎsupport vectors
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How to define your own kernel

• Given training data (x1, x2, ..., xm)

• Algorithm for SVM learning uses kernel matrix (also called Gram 

matrix):
Ki, j =K(xi,x j ),  for i, j =1,...,m



How to define your own kernel

• We can choose some function K, and compute the kernel matrix 

K using the training data. 

• We just have to guarantee that our kernel defines an inner 

product on some feature space.

• Mercer’s Theorem: :   If K is “positive semi-definite”, it defines a 

kernel, that is, it defines an inner product in some feature space.

• We don’t even have to know what that feature space is!  

• K is positive semi-definite if all the eigenvalues of K are positive. 



Example of  Simple “Custom” Kernel

Similarity between DNA Sequences:

E.g., (four bases: Adenine, Guanine, Cytosine 

and Thymine).

s1 = GAATGTCCTTTCTCTAAGTCCTAAG

s2 = GGAGACTTACAGGAAAGAGATTCG

Define “Hamming Distance Kernel”:  

hamming(s1, s2) = number of  sites where strings 

match



Kernel matrix for hamming kernel

Suppose training set is 

s1 = GAATGTCCTTTCTCTAAGTCCTAAG

s2 = GGAGACTTACAGGAAAGAGATTCG

s3 = GGAAACTTTCGGGAGAGAGTTTCG

What is the Kernel matrix K? 

K s1 s2 s3

s1

s2

s3



Tree Kernels 

•   In NLP Tree Kernels are commonly used for sentence classification.

•   Beginning with a parse tree for a sentence we can compute the 

“similarity” of  two sentences (i.e. two trees).

•   Well-designed kernels enable us to compute the similarity in an 

efficient way – without explicitly computing (potentially) large 

dimensional feature vectors for these trees. 

S: sentence

NP: noun-phrase

VP: verb-phrase

V: verb

N: noun

D: determiner (e.g. an article) 



Tree Kernels 
•   A subtree is defined as a node and all of  its children (note: terminals are not considered 

subtrees). 

•   A subtree kernel simply counts the number of  common subtrees between two given 

trees. 

•   Consider the sentences: “A cat eats a mouse”  vs.  “A mouse eats a cat.” 

Ksubtree(s1,s2) = 7 in this case because the sentences generate seven common subtrees.

•  Other possible kernels include subset kernels (has higher granularity than subtree kernel).

In this case, Ksubset(s1,s2)=54. 

[NP [D [a]] [N [cat]]],

[NP [D [a]] [N [mouse]]],

[N [mouse]],

[N [cat]],

[V [eats]],

[D [a]] (counted twice as it appears twice)



Hard- vs. soft-

margin SVMs



Hard-margin SVMs

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png
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subject to:

tk w × xk + b( ) ³1, k =1,...,m

(tk Î {-1,+1})

Find w and b by doing the 

following minimization: 



Extend to soft-margin SVMs

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

w ×x +b = 0

w ×x +b = -1

w ×x +b =1



Extend to soft-margin SVMs

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

w ×x +b = 0

w ×x +b = -1

w ×x +b =1

Allow some instances to be 

misclassified, or fall within margins, 

but penalize them by distance to 

margin hyperplane.



Extend to soft-margin SVMs

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

w ×x +b = 0

w ×x +b = -1

w ×x +b =1

ξ0

Allow some instances to be 

misclassified, or fall within margins, 

but penalize them by distance to 

margin hyperplane.



Extend to soft-margin SVMs

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

w ×x +b = 0

w ×x +b = -1

w ×x +b =1

ξ0

ξ1

Allow some instances to be 

misclassified, or fall within margins, 

but penalize them by distance to 

margin hyperplane.



Extend to soft-margin SVMs

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

w ×x +b = 0

w ×x +b = -1

w ×x +b =1

ξ0

ξ1

ξk are called slack 

variables.

ξk > 0 only if xk is 

misclassified or inside 

margin

Allow some instances to be 

misclassified, or fall within margins, 

but penalize them by distance to 

margin hyperplane.



Extend to soft-margin SVMs

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png
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subject to:

tk w ×xk + b( ) ³1-xk, k =1,...,m

(tk Î {-1,+1})

Revised optimization problem:

Find w and b by doing the 

following minimization: 

ξ0

ξ1

Allow some instances to be 

misclassified, or fall within margins, 

but penalize them by distance to 

margin hyperplane.



Extend to soft-margin SVMs

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png
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subject to:

tk w ×xk + b( ) ³1-xk, k =1,...,m

(tk Î {-1,+1})

Revised optimization problem:

Find w and b by doing the 

following minimization: 

ξ0

ξ1

Optimization tries to keep ξk ’s to 

zero while maximizing margin.

C is parameter that trades off 

margin width with misclassifications 

Allow some instances to be 

misclassified, or fall within margins, 

but penalize them by distance to 

margin hyperplane.



Why use soft-margin SVMs? 

• Always can be optimized  (unlike hard-margin 

SVMs)

• More robust to outliers, noise

• However:  Have to set C parameter



Soft Margin SVM Classification

 

The effects of different kernels when learning a version of XOR with progressively more overlap (left to 

right) between the classes. Top row: polynomial kernel of degree 3 with no slack variables, second row:

polynomial of degree 3 with C = 0.1, third row: RBF kernel, no slack variables, bottom row: RBF 

kernel with C = 0.1. The support vectors are highlighted, and the decision boundary is drawn for each case.
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subject to:

tk w ×xk + b( ) ³1-xk, k =1,...,m

(tk Î {-1,+1})



Multi-Class SVM Classification

• Previously we dealt with two-class classification for 

SVMs. 

• Unfortunately, the theoretical work we used to derive 

the SVM algorithm only works for two classes. 

• How then do we apply SVMs to the general N-class 

problem? 



Multi-Class SVM Classification

• Simple answer: train an SVM that learns to classify one 

class from all other classes (i.e., “one vs. all 

classification”).

• So for N-classes we have N SVMs. For classification 

we merely choose the classifier that makes the strongest 

prediction. 



Data Standardization

In general, we need to do data 

standardization for SVMs to avoid 

imbalance among feature scales:



SVMs & Feature 

Selection
Goal: Select a subset of d features (d < n) in 

order to maximize classification performance with 

fewer features.



Types of Feature Selection 

Methods
• Filter

• Wrapper

• Embedded



Filter Methods
Independent of the 

classification algorithm.

Apply a filtering function to the 

features before applying 

classifier.  

Examples of filtering 

functions: 

– Information gain of individual 

features

– Statistical variance of 

individual features

– Statistical correlation among 

features

Training data

Filter

Selected features

Classifier



Wrapper Methods Training data

Choose subset of 

features

Classifier

(cross-validation)
Accuracy on 

validation set

Classifier

(Entire training set with 

best subset of features)

Evaluate classifier 

on test set

After cross-validation



Filter Methods

Pros: Fast

Cons: Chosen filter might 

not be relevant for a specific 

kind of classifier.

Doesn’t take into account 

interactions among features

Often hard to know how 

many features to select.



Wrapper Methods

Pros: Features are evaluated 

in context of classification

Wrapper method selects 

number of features to use 

Cons: Slow

Filter Methods

Pros: Fast

Cons: Chosen filter might 

not be relevant for a specific 

kind of classifier.

Doesn’t take into account 

interactions among features

Often hard to know how 

many features to select.



Wrapper Methods

Pros: Features are evaluated 

in context of classification

Wrapper method selects 

number of features to use 

Cons: Slow

Filter Methods

Pros: Fast

Cons: Chosen filter might 

not be relevant for a specific 

kind of classifier.

Doesn’t take into account 

interactions among features

Often hard to know how 

many features to select.

Intermediate method, 

often used with SVMs:  

Train SVM using all features

Select features fi with highest | wi |

Retrain SVM with selected features

Test SVM on test set





Embedded Methods
Feature selection is intrinsic part of  any learning algorithm

One example:  

L1 SVM:  Instead of  minimizing         (the “L2 norm”) we 

minimize the L1 norm of  the weight vector: 

Result is that most of  the weights go to zero, leaving a small subset 

of  the weights.  (as mentioned previously: this is tantamount to 

putting a zero mean “prior” on w – in a Bayesian framework). 

Cf., Field of  “sparse coding.”

w

w
1

= wi
i=1

n

å



SVM for feature selection for Spam Detection Task


