Suppert Veetor Machines
CS§ AA35/545

Supperk Veeker Machines
CS§ A45/545

Introduction

Previously we considered Perceptrons based on the McCulloch and Pitts
neuron model.

We identified a method for updating weights, PLA, and noticed that the
Perceptron 1s rather limited in that it could only identify straight line

classifiers.

This mean that it could not learn to distinguish classes, for instance, with 2D
XOR function.

‘.
‘.,

You had me at XOR.

However, we saw that it was in fact possible to modify the problem so that
the perceptron could solve the problem.

Q: How was this done?

Introduction

* Previously we considered Perceptrons based on the McCulloch and Pitts
neuron model.

* We identified a method for updating weights, PLLA, and noticed that the
Perceptron 1s rather limited in that it could only identify straight line

classifiers.

* This mean that it could not learn to distinguish classes, for instance, with 2D
XOR function. ’ Al

You ha You complete...
my data transformation

-—

 However, we saw that it was in fac
the perceptron could solve the pro

Q: How was this done? One way: transform the data!

Introduction

* Here we will modify the data by changing its representation (a powerful
idea 1n ML and data science). In principle, it is always possible to transform
any given data set so that the classes within 1t are Znearly separable.

* We introduce kernel functions to achieve this transformation.

* The key idea 1s to ascertain which dimensions to “use”; generally, &erne/
methods comprise a class of algorithms that do just this.

Introduction

* We focus here on support vector machines (SVMs) for classification.

* Given a set of training examples, each one belonging to a specific category,
an SVM training algorithm creates a model that separates the categories and
that can later be used to decide the category of new set of data.

* The training component consists in finding the best separating plane (with
maximal margin) based on specific vector called support vector. 1f the
decision is not feasible in the initial description space, you can increase space

dimension using a kernel function and subsequently identify a hyperplane
that serves as your decision surface.

Introduction

SVMs are one of the more popular algorithms in modern machine learning
(although they have decreased in prominence more recently, with the advent

of deep NNs).

Vapnik introduced them in 1992, at which time they became wildly popular
in ML due to their impressive classification performance on reasonably-sized
datasets.

In principle, SVMs do not work well on extremely large datasets, since the

computations don’t scale well with the number of training examples.

In addition to incorporating kernel functions, the SVM algorithm also
reformulates the classification problem

Introduction

* In addition to incorporating kernel functions, the SVM algorithm also
reformulates the classification problem in a way that allows us to
discriminate between a good classifier and a bad one.

* Consider, for example, the following decision boundaries for identical sets
of data.

Q: Which 1s the “best” classifier?

X & L ! E *) L ol
& « ¥ *
............. i * o .
......... @ g, T 9 @ ®e
™ ® N
® ® @
® ® =
:—li x X

Introduction

Q: Which is the “best” classifier?

xf ‘ ‘ Xt ‘ ' » H"'JL ‘ ‘
L o . - 02
............. P & s ¥
""""" O, T 0@ 2 e
i O ‘@
@ L i @
o L L
X _"x.

A: The classifier that generalizes best.

How do we quantify the notion of an optimal line?

Introduction

We can measure the distance that we have to travel away from the decision line (in a
direction perpendicular to the line) before we encounter a data point.

Imagine a region (“no man’s land”) around the line that we designate as representing data
points that are “too close” to the line to be accurately classified; render this region as a
cylinder in the “hypothesis space.”

How large can we make the radius of this cylinder until classification becomes ambiguous
(i.e. we capture points from different classes)?
X, 4 -

Call this maximum radius M, the margin of the

decision surface.

Introduction

* The classifier in the middle has the largest margin of the three; we say it is the maximum
margin (linear) classifier.

x4 ‘ X ‘ x, ¢ ‘ .
ol = 2
. . - *
........ .
L O, Pt * Qe
[] o) @ ‘@
o @
o o R

* The data points in each class that lie closest to the classification line are called the
support vectors (of the classifier).

* Using the argument that the best classifier is the one that goes through the middle of “no
man’s land”, we can make two arguments:

(1) The margin should be as large as possible.

(2) The support vectors are the most useful data points (they exist on the threshold of
what we can correctly classify).

(*) Note: SVMs allow us to discard all of the training data except for the support vectors! This
is very useful for compression/data storage constraints.

Aside #1: VC Dimension

1°C dimension 1s an important and deep concept in ML.

V. Vapnik

VC dimension is a measure of the capacity (i.e. complexity, expressive power,
richness, or flexibility) of a space of functions that can be learned by a
classification algorithm.

A classification model fwith some parameter 6 1s said to shatter a set of data
points (X, ..., X,) if, for all assignments of labels to those points, there exists
a 6 such that the model fmakes no errors when evaluating that set of data
points.

VC dimension (of a model /) := the maximum number of points that can
be arranged so that fshatters them.

Aside #1: VC Dimension

Example: If fis a constant classifier, its VC dimension is zero, since it cannot shatter even a

single point.

* Example: If is a straight line classifier (in 2-D). There exist sets of 3 points that can indeed be
shattered using the model (any 3 points that are non-collinear can be shattered). However, no
set of 4 points can be shattered. Thus the VC dimension of a straight line is 3.

- N +
+ s * _/ _\ Note we only show 3 of the
_ /_ _ _ 2°=8 possible binary labelings

for 3 points.

3 points shattered 4 points impossible

* Example: fis a single-parameter “sine classifier”, i.e. for a certain parameter 6, the classifier f,
returns 1 if the input number x is larger than szz(0x) and 0 otherwise.

1 T —r

* The VC dimension of fis infinite, since it can

shatter the set: {2‘"‘ |ImeN } for any positive 7. \

1 L 1 1 1 1 e - ot 1
0 01 0.2 03 04 05 06 07 08 09 1

(*) Note the last example shows, importantly, that

VC dimension is not directly related to the number of T T T

model parameters! YRR TEYRTRRYRIAY

Aside #1: VC Dimension

* Another example: the VC dimension of a recfangle in R? (where the rectangle
encompasses all data of a particular class).

0 ® ®
O o)
o)
OIZ| o ® (2}
O 0 2 3
O [0) ®
O o)

° Jor|P_d2P_ e 4

* The diagram shows that a rectangle shatters at least 4 points in the plane;
for 5 points there exists a counter-example (try it).

e In general, the VC dimension of a hyperplane in R9 is d+1.
(e.g. in R* we previously showed a hyperplane has VC dimension = 3).

Aside #1: VC Dimension

* Another example: the VC dimension of a spherical indicator function in R? (where
the sphere encompasses all data of a particular class).

f (_x,c, r)=1 ((x—c)2 < r2)

* Three points in R? can be shattered, but four cannot; thus VC dim(f) = 3 in
R? (useful for nearest neighbors classifiers, radial basis functions).

Aside #2: Optimization Paradigms

(1) Optimization with equality constraints.

maximize f(X,y,z)
5y . subject to g(x,y,z)=0, h(x,y,z)=0

£
% VE (X, Y,2)=AVg(X,y,2)+uVh(X,y,2)
Method of Lagrange Multipliers

Lagrange
(2) Optimization with inequality constraints.
maximize ¢’ x

Linear Programming: Simplex Method

Two of the most common optimization paradigms in ML include:

el
maximize EXTQx+ch
subject to Ax<b

Quadratic Programming

Notation

* Assume a binary classification problem.
— Instances are represented by vector x € R”
— Training examples: X = (x, X, ..., X))

7.

S ={(Xyp,), Ko, L)y ooy X 2,) | Xp»)€ R7x{+1, —1}}

— Hypothesis: A function /: R*—>{+1, —1}.

h(X) = h(xy, x5, ...y x,) €4{+1, —1}

* Here, assume positive and negative instances are to be

separated by the hyperplane

wix+bH=0
where 4 1s the bias. _ _
Equation of line:

1.0

W X+b=wW' x+b

=wyx; +wox,+b=0

+
" +
S
s+
o A
4
+ o+
Y +tb>0
0.5
197 0.5 0.0 0.5 1.0

Intuition: the best hyperplane (for future generalization)
will “maximally” separate the examples

Detinition of Margin (with respect to a
hyperplane):

Distance from separating hyperplane to nearest positive (or negative)
instance.

1.0

Detinition of Margin (with respect to a
hyperplane):

Distance from separating hyperplane to nearest positive (or negative)

instance. o | | |
Vapnik (1979) showed that the - j i
hyperplane maximizing the margin -
of S will have minimal VC ™

dimension in the set of all consistent
hyperplanes, and will thus be
optimal.

-0.5

-1,
—UJ..D -0.5 0.0 0.5 1.0

Detinition of Margin (with respect to a
hyperplane):

Distance from separating hyperplane to nearest positive (or negative)

instance.
1.0 T
.

Vapnik (1979) showed that the
hyperplane maximizing the margin
of S will have minimal VC
dimension in the set of all consistent
hyperplanes, and will thus be
optimal.

-0.5

This Is an optimization
problem!

'1'-01.9 -0.5 0.0 0.5 1.0

Maximum Margin

* Linear Classifiers can lead to many equally
valid choices for the decision boundary

Are these reall
“equally valid™

Max Margin

 How can we pick Small Marg.n
which Is best?
* Maximize the Lafge HEGET

size of the

margin.
Are these really
“equally valid™?

Support Vectors

* Support Vectors
are those input
points (vectors)
closest to the
decision boundary

1. They are
vectors

« 2. They "support”
the decision
hyperplane

Support Vectors

* Define this as a
decision problem

* The decision
hyperplane:

wlZ+b=0

* No fancy math, just the
equation of a
hyperplane.

Support Vectors

z; are the data
t; € {—1,+1} are the labels

* Aside: Why do some
cassifiers use t; € {0,1}
Ol N {—1, —1—1}

— Simplicity of the math
and interpretation.

— For probability density
function estimation 0,1
has a clear correlate.

— For classification, a
decision boundary of O
IS more easily
Interpretable than .5.

Support Vectors

* Define this as a
decision problem

* The decision
hyperplane:

W4+ b=0

 Decision /

Function:
D(x;) = sign(w"’ ; + b)

Support Vectors

« Define this as a
decision problem

* The decision
hyperplane:

Support Vectors

The decision

hyperplane:

O b=

Scale Invariance

cwld+cb=0

Support Vectors

The decision
hyperplane:

WP EL b=

Scale Invariance

el 4 ch =0

w xr+b = v
w r+b = —v

S u p pO rt Ve Cto rS This scaling does not change the

decision hyperplane, or the support
vector hyperplanes. But we will
eliminate a variable from the

* The decision optimization
hyperplane: v

W E4 b=

« Scale invariance

el 4 ch =0

NP e INT N,
- .
w* r+b = =1

What are we optimizing?

* We will represent
the size of the
margin in terms of
W

* This will allow us to
simultaneously

— |dentify a decision
boundary

— Maximize the margin

How do we represent the size of
the margin in terms of w?

1. There must at least one

point that lies on each -
support hyperplanes - -~
Proof outline: If not, we W -

could define a larger
margin support
hyperplane that does
touch the nearest
point(s).

L1

How do we represent the size of
the margin in terms of w?

1. There must at least one
point that lies on each
support hyperplanes

Proof outline: If not, we m1D

could define a larger

margin support

hyperplane that does \
touch the nearest

point(s).

How do we represent the size of
the margin in terms of w?

1. There must at least one
point that lies on each
support hyperplanes

2. Thus:
wlz; +b = 1
wleze +b = —1
3. And:
w' (1 — T2) = 2

How do we represent the size of
the margin in terms of w?

1. There must at least one
point that lies on each
support hyperplanes

2. Thus: —
X1
waEl +h =1 -

wlze + b —1

3. And:
T

W (X1_X2)22 @

Why?

How do we represent the size of
the margin in terms of w?

 The vector wis
perpendicular to the
decision hyperplane
— If the dot product of two
vectors equals zero, the

two vectors are
perpendicular.

T

W (X —X,)=2

 The margin is the projection

How do we represent the size of
the margin in terms of w?

of X, — X, onto w, the normal
of the hyperplane.

T

W (X —X,)=2

Aside: Vector Projection

v - u = ||v]|||u]| cos(0) |
adjacent
= - cos(f) =
b Y hypotenuse
v - ﬂfﬁ hypotenuse = ||U|| adjacent = ||goal||
7 al
N
S
7 y |9]) || lgoal|
—=— = ||goal — = €0s(0) = ==
i S i [Rk
v-u ||goal|

[wllal 1]

How do we represent the size of
the margin in terms of w?

 The margin is the projection
of X, — X, onto w, the normal
of the hyperplane.

W (X —X,)=2
?7-11’1_[
||

=T

w' (1 — xg)w,

Projection:

2

Size of the Margin: m

Maximizing the margin

e Goal: maximize 2
. max ——
the margin:]
* This Is equivalent
to finding: min |||

Linear Separability of the data

by the decision boundary IS t-(u_fTaf' +b) > 1
1 (2 T

W'x +b>1ift =1

W'x +bh<-1ift =-1

Minimizing ||w]|

The canonical SVM optimization problem is formalized as:

minimize (%kuzjsubject to: t (w-x, +b)=1, k=1..m

* Note that Gradient Descent would be ill-suited for this
problem (enforcing the constraints 1s difficult).

* Instead, the method of Quadratic Programming (QP)
1s more efficient.

Minimizing ||w]|

The canonical SVM optimization problem is formalized as:

minimize (%Hw”zjsubject ot (w-x,+b)>1 k=1..m

Because this problem is quadratic, it is necessarily convex!
Thus it admits of a unique solution (minimum).

~_/

We won’t worry about all of the details here, but we’d like
to reformulate this problem using [agrange multipliers at
which point it can then be presented to a guadratic solver (in
general the solution yielded 1s rendered in polynomial
time).

Dual Representation

* It turns out (as Neumann first observed) that w can be expressed as a
linear combination of the training examples:

o
w=Aaa.x,
XkTS

where g, 1 0 only If x, Is a support vector

* The results of the SVM training algorithm (involving solving a
quadratic programming problem) are the ¢4 and the bias /.

SVM Classification

* After solving the “dual problem” (i.e. obtaining
the ¢ and the bias), we classity a new example x
as follows:

h(x) = sgn(iak (x'xk)+b)

* Where | § | =M. (3 1s the training set)

SVM Classification

* After solving the “dual problem” (i.e. obtaining
the ¢ and the bias 4), we classify a new example x
as follows:

h(x) = sgn(iak (x'xk)+b)

*where | § | =M. (§1s the training set)
* Recall that the dot product

furnishes a “similarity’’ measure. vew = |v] W] cos
Y Vv
/

Example

Example

Input to SVM optimizer:

1 i 1
1 2 1
2 1 1
= 0 =
0 -1 =
-1 -1 -1

Output from SVM optimizer:

Support vector a

(-1, 0) -.208
(1, 1) 416
0, -1) -.208

b=-.376

Example

Input to SVM optimzer:

1 i 1
1 2 1
2 1 1
= 0 =
0 -1 =
-1 -1 -1

Output from SVM optimizer:

Support vector a

(-1, 0) -.208
(1, 1) 416
0, -1) -.208

b=-.376

Example

Weight vector:

2

o
W= a ax,

k T{training examples}

= -.208(~1,0)+.416 (11) - 208 (0,~1)

= (.624,.624)

Input to SVM optimzer:

1 i 1
1 2 1
2 1 1
= 0 =
0 -1 =
-1 -1 -1

Output from SVM optimizer:

Support vector a

(-1, 0) ~.208
(1, 1) 416
(0, -1) -.208
b =-.376

Example

Separation line:

wx, *w,x, +b=0
.624x, +.624x,-.376=0

X,=-x,*.6

Weight vector:

2

o
W= a ax,

k T{training examples}

= -.208(~1,0)+.416 (11) - 208 (0,~1)

= (.624,.624)

Input to SVM optimzer:

1 i 1
1 2 1
2 1 1
= 0 =
0 -1 =
-1 -1 -1

Output from SVM optimizer:

Support vector a

(-1, 0) ~.208
(1, 1) 416
(0, -1) -.208
b =-.376

Example

Separation line:

wx, *w,x, +b=0
.624x, +.624x,-.376=0

X,=-x,*.6

Weight vector:

2

o
W= a ax,

k T{training examples}

= -.208(~1,0)+.416 (11) - 208 (0,~1)

= (.624,.624)

Input to SVM optimzer:

1 i 1
1 2 1
2 1 1
= 0 =
0 -1 =
-1 -1 -1

Output from SVM optimizer:

Support vector a

(-1, 0) ~.208
(1, 1) 416
(0, -1) -.208
b =-.376

Example o _
Classifying a new point:

Example o _
Classifying a new point:

m

h((2,2)) =Sgn((2ak(xk 'X))+b), where sgn(z) = {

k=1

1ifz>0
—1i1fz<0

Example o _
Classifying a new point:

h((2,2)) =sgn((§ak (x, -x))+b), where sgn(z) = { lli.ffz>00
%! —lifz =<

= sgn(-208[(~1,0)-(2,2)]+ 416[(1,1)-(2,2)] - .208[(0,-1)- (2,2)] - .376)

Example o |
Classifying a new point:

h((2,2)) =sgn((§ak (x, -x))+b), where sgn(z) = { lli.ffz>00
%! —lifz =<

— sgn(-208[(=1,0)+(2,2)] + 416[(1,1)+ (2,2)] - 208[(0,- 1)+ (2,2)] - 376)
=sgn (416 +1.664+.416-.376) = +1

SVM summary

* Equation of line: w;x; +w,x,+b =0

* Define margin using:
x, xw+b3+1 for positive instances (¢, = +1)
x, *w+b £ -1 for negative instances (¢, = -1)

. 1
. * Margin distance:;—:
Iwl

» To maximize the margin, we minimize ||w]|
subject to the constraint that positive examples
fall on one side of the margin, and negative
examples on the other side:

tk(wxxk +b) 31 k=1..m
where ¢, T {-1,+1}

« We can relax this constraint using “slack variables”

SVM summary

 To do the optimization, we use the dual formulation:

(@]
W= a ax,

k T{training examples}

The results of the optimization “black box” are {&, }
w andb.

SVM review

« Once the optimization is done, we can classify a nev
example x as follows:

h(x) = class(x) = sgn(wxx +b)

&2 2 0 0

= sgnggaakkax + bz

ekzl @]
&R 4 6 0
:sgnggaak (x, xx)++ bz
€ k=1 g 0

That is, classification is done entirely through a linear
combination of dot products with training examples.
This is a “kernel” method.

Example:
Watson used tree kernels and SVMs to classify
guestion types for Jeopardy! questions

From Moschitti et al., 2011

- -

A Kernel Space Prec. | Rec. F1
e S SN WSK+CSK 70.00 | 57.19 | 62.95
JJ % JJ NN VBN PP - -
iUy N PR CTWSGeK &5 [6200 | 518
artiiclal green grass use) LY -CT+W 4+ . . e
. Dﬁﬁh CSK+RBC 47.80 | 74.51 | 58.23
I LS. PTK-CT+CSK+RBC 59.33 | 74.84 | 65.79
e T \a Iplaying field
== NP el A BOW+CSK+RBC 60.65 | 73.53 | 6647
a"_,_..--—-"'"'ﬁ"""-—--.._“_x\' .
S ND VP PTK-CT+WSK+CSK+RBC | 67.66 | 66.99 | 67.32
Sammpan T "'-‘.\ /""“\‘\\\ -
DT 1 NNVVEN PPN PTK-CT+PASS+CSK+RBC | 62.46 | 71.24 | 66.56
I | N Y WSK+CSK+RBC 69.26 | 66.99 | 68.11
a flat-bottomed boat jused IN __NP 3
s | TN ALL 61.42 | 67.65 | 64.38

{UI];DlT NlN
a canal Table 2: Performance of Kernel Combinations using
leave-one-out cross-validation.

Figure 5: Similarity according to PTK and STK

IBM Watson

https://www.youtube.com/watch?v=DywO4zksfXw

IBM Watson: Jeopardy

https://www.youtube.com/watch?v=P18EdAKuC1U

IBM Watson (2016)

e “Emotion detection’ has been a central piece of recent research
in attempts to make Al systems more compassionate.

* IBM Watson recently released zextual emotion detection (with new
enhancements) as a new functionality with Watson.

* Some of these enhancements include: (1) a new feature selection
process using “linear SVMs with L1 penalty” And (2) new
“kernel-based classifiers.”

IBM Watson (2016)

https://www.ibm.com/blogs/bluemix/2016/10/watson-has-more-accurate-emaotion-
detection/

C | & Secure | httpsy//www.ibm.com/blogs/bluemix ccurate-emotion-detection/
IBM Cloud Blog Why IB rt
We are pleased to announce that IBM Watson's emotion detection capability has undergone significant enhancements. These new available on 1B
enhancements were built on the ensemble framework described in the previous article. These enhancements will remain pivotal in « IBM Cloud Fou
improving user interactions, and understanding their emotional state. Utility (RMU)

What are the new enhancements? « The futysof d

Newly released emotion model brings following enhancements

Expansion in the traigiag dassye W% o 8T tr MMy oSkt femmth e sieio g elease. Systematic expansion of the

o elect Month v
tra@ng et has helped the new model to significantly improve its vocabulary ceverageﬂn We.

. New feature selection process: Feature selection is one of the most important steps in building a large, ags
/ system. In this release, we explore some linear models penalized with the L1 norm to have coefficients o]
/ be non-zero. Based on our experiments, we find that Linear SVM with L1 penalty helped most to extra s. analytics annourlwcements 20i apps Architecture Center best of
I These selected features along with topic and specialized engineered features helped classifiers in the del not\wly bluemix Bl UE€MIX bluemix-support-notifications buildpacks client
to improve accuracy but also to provide transparency for the final prediction. success Cloud cloudant cloud foundry conference containers

dashdb database deployment dE@VOPS dOCKET eciipse garage garage-

Diverse classifiers: The ensemble framework performs better when it contains diverse set of classifiers in it. In this re\eas&ve methad naskathon homspage hybrid 84 Cloud interconnect iot java

\ bring a new set of diverse classifiers exploring different hypotheses, including tree-based ensemble classifiers, kernel-bgwed Kubernetes liberty microservices mobile mesierirst NOde.jS
\ classifiers, and latent topic-based classifiers. Since training data is continuously increasing, this diverse set of clymers has to openwhisk Security seneress spark swit wiio Video watson
A, address the scalability problem before being incorporated into our ensemble framework. - webinar

y -
Improvmximsupport: Qur new release significantly improved emotion detect\og at gemon/word-level.

L] — —
«+ Expanded support for emoticons, éMis A |a MEmT ;S inDrtant step for detecting emotions in conversational
systems

All of these enhancements helped us achieve improved accuracy (in terms of average F1-measure), which is better than the state of
the art emotion models [Li et. Al 2009, Kim et.al 2010, Liu 2012, Agrawal and An 2012, Wang and Pal 2015] included in our previous
version. Some of these state-of-the art emotion models are part of our ensemble framework.

This is the current state of our work at the time of this release. We are continuously improving our models and look forward to
releasing enhanced models in the future

Ready to try a demo? ~

Check out these fun (and possibly insightful) service demonstrations

Demo: https://natural-language-understanding-demo.ng.bluemix.net/

Non-linearly separable training
examples

* What if the training examples are not linearly separable?

Non-linearly separable training
examples

* What if the training examples are not linearly separable?

* Use old trick: Find a function that maps points to a higher

dimensional space (“feature space”) in which they are linearly
separable, and do the classification in that higher-
dimensional space.

X3

Need to find a function @ that will perform such a mapping:
®: R*—> F

Then can find hyperplane in higher dimensional feature
space I, and do classification using that hyperplane in higher
dimensional space.

Challenge

Find a 3-dimensional feature space in which
XOR 1s linearly separable.

X
X5 2

0,1 1,1
‘() ‘()

(1, 0) Xy

* Problem:

— Recall that classification of instance x is expressed in
terms of dot products of x and support vectors.

s . 0
Class(x) = sgng a a, (xxx,)+bz

k T{training examples} 4]

— The quadratic programming problem of finding the
support vectors and coefficients also depends only
on dot products between training examples.

— So if each x, is replaced by D(x,) in these procedures, we

will have to calculate @ (x,) for each £ as well as calculate a

lot of dot products, P(x)- D(x,)
— But in general, if the feature space F is high dimensional,

O(x;) - D(x;) will be expensive to compute.

* Second trick (the “kernel trick”):

— Suppose that there were some magic function,
K, x) = Dx) - Dx)

such that Kis cheap to compute even though O(x)) - D(x)) is
expensive to compute.

— Then we wouldn’t need to compute the dot product directly;
we’d just need to compute K during both the training and
testing phases.

— The good news 1s: such K functions exist! They are called
“kernel functions”, and come from the theory of integral
operators.

Example: Polynomial kernel:

Suppose x = (x;, Xx,) and z = (3, 3)-
k(x,z) = (x* z)°

Let O(x) = (xlz,\/i' xlxz,xg) :

Then:
(2 \(2)
O(x) D(z) =|| V2" xx, | | V2" 72,
i v D

(s

)) =(x- z)* = k(x,2)

Example: Polynomial kernel:
Let O(x) = (xf,ﬁ- xlxz,xg))

T Z
A2 x1x2J' [\/5 lez]]
o #
2

o (3)-(2) e ()] s

Then :

Suppose X = (x, x,) and z = (3,).
k(x,z) = (x* z)°

d(x) D(z) =

Most commonly used kernels
Linear
K(X,X;) =X"X,
Polynomial
K(x,x,)=[(x-x,)+1]

Gaussian (or “radial basis function”)

2
K(x,x,)= ¢ TR

Sigmoid
K(x,x;) =tanh(ax-Xx, +b)

polynomial degree 2 polynomial degree 5

gaussian, gamma=0.1 gaussian, gamma=1
! g G

1.0

T [5

0.5 i 3 3 5
}.+ ++ ++
0.0 o - I
+ +
-0.5 qf : -

-1.0

More on Kernels

So far we’ve seen kernels that map instances in R" to
instances in NR* where z > n.

One way to create a kernel: Figure out appropriate
feature space @ (x), and find kernel function £ which
defines inner product on that space.

More practically, we usually don’t know appropriate feature
space D(x).

What people do in practice is either:
1. Use one of the “classic” kernels (e.g;, polynomial),

or 2. Define their own function that is appropriate for
their task, and show that it qualifies as a kernel.

How to define your own kernel

* Given training data (X, X,, ..., X,)

* Algorithm for SVM learning uses kernel matrix (also
called Gram matrix):

K, =K(xi,xj), fori,j=1..,n

* We can choose some function K, and compute the
kernel matrix K using the training data.

* We just have to guarantee that our kernel defines an
inner product on some feature space.

e Not as hard as it sounds.

What counts as a kernel?

* Mercer’s Theorem: If the kernel matrix K is “positive
definite”, it defines a kernel, that 1s, it defines an inner

product in some feature space.

* We don’t even have to know what that feature space is! It
can have a huge number of dimensions.

Recall:

A nxn real matrix M is positive semi-definite

if zZIMz>0 Vz

Inner Product - Definition

Definition: An inner product on a vector
space Vis a function that to each pair of
vectors u and v in V, associates a real
number <u,v> and satisfies the following
axioms for all u, v, win V and all scalars

1. <uv> = <v,u>

2. <U+V,W> = <U,W> + <V,W>
3. <cu,v> = c<u,v>

4. <u,u> 20 & <u,u>=0 iff u=0

Summary of “kernel trick” (or kernel method)

Kernel methods can be thought of as zustance-based learners: rather than learning some
fixed set of parameters corresponding to the features of their inputs, they instead
"remember" the /th training example (x,7) and learn it for a corresponding weight o..

For generalization 1n the classification step, a new datum x 1s compared (via the
“similarity” function k) to each training input x;:

class(x):sgn{ D akk(x,xk)}b

kesupport vectors

The kernel trick avoids the explicit mapping needed to get linear algorithms to render a
non-linear decision boundary.

The key idea 1s that k(x,x;) is expressed as an inner product in another space 1.

By appropriately defining the kernel (e.g. using Mercer’s theorem) we are guaranteed
that [1s an inner product space (aside: an inner product space naturally induces a
norm on a vector space, in which case we get “intuitive” geometric properties per
Euclidean spaces).

The upshot for SVMs: we get the rich representative qualities of non-linear decision

boundaries without having to compute @ explicitly.

Structural Kernels

* In domains such as natural language processing and
bioinformatics, the similarities we want to capture are

often structural (e.g., parse trees, formal grammars).

* An important area of kernel methods is defining
structural kernels that capture this similarity (e.g;,

sequence alignment kernels, tree kernels, graph kernels,
etc.)

* Design criteria - we want kernels to be:

— valid — Satisty Mercer condition of positive semi-

definiteness.
— good — embody the “true similarity” between objects
— appropriate — generalize well

— efficient — the computation of K(x, x’) 1s feasible

Summary of SVM algorithm

Given training set
S ={(Xy1, 1), (Xa1 1)y coes Kims t) | (Xp,)€ R x{+1, -1}

1. Choose a kernel function k(x,z).

2. Apply optimization procedure (using the kernel function K) to
find support vectors x, , coefficients ¢, , and bias b.

3. Given a new instance, X, find the classification of x by
computing

class(x):sgn{(> akk(x,xk)}bJ

k esupport vectors

Summary of SVM algorithm

Computational complexity for SVM: This can be difficult
to compute in general.

Basic Idea: (1) We need to perform O(m?*n) primitives for
the dot product/kernel (7 is the number of data points
and 7 is the dimensionality); (2) unfortunately, to solve
the QP problem this requires inversion of the kernel
matrix which is in general O(m?).

k esupport vectors

class(x):sgn{(> akk(x,xk)}bJ

How to define your own kernel

« Given training data (X, X5, ..., X;)

» Algorithm for SVM learning uses kernel matrix (also called Gram

matrix):

K, =K(x,,x;), fori j=1..,m

K{I”' X/

)

How to define your own kernel

We can choose some function K, and compute the kernel matrix
K using the training data.

We just have to guarantee that our kernel defines an inner
product on some feature space.

Mercer’'s Theorem: : If K is “positive semi-definite”, it defines a
kernel, that is, it defines an inner product in some feature space.

We don’t even have to know what that feature space is!

K Is positive semi-definite if all the eigenvalues of K are positive.

Example of Simple “Custom” Kernel

Similarity between DNA Sequences:

E.g., (four bases: Adenine, Guanine, Cytosine
and Thymine).

5, = GAATGTCCTTTCTCTAAGTCCTAAG
5, = GGAGACTTACAGGAAAGAGATTCG

Detine “Hamming Distance Kernel™:

hamming(s,, §,) = number of sites where strings
match

Kernel matrix tor hamming kernel

Suppose training set 1s

5, = GAATGTCCTTTCTCTAAGTCCTAAG
5, = GGAGACTTACAGGAAAGAGATTCG
53 = GGAAACTTTCGGGAGAGAGTTITCG

What is the Kernel matrix K?

K S, S, Ss

Tree Kernels

* In NLP Tree Kernels are commonly used for sentence classification.

* Beginning with a parse #ree for a sentence we can compute the
“similarity” of two sentences (1.e. two trees).

* Well-designed kernels enable us to compute the similarity in an

etficient way — without explicitly computing (potentially) large

dimensional feature vectors for these trees.

S

/"\

N VP

: /f\‘\\
A% MNP
N\

[N

John hit the ball.

S: sentence

NP: noun-phrase

VP: verb-phrase

V: verb

N: noun

D: determiner (e.g. an article)

Tree Kernels

* A subtree is defined as a node and all of its children (note: terminals are not considered
subtrees).

* A subtree kernel simply counts the number of common subtrees between two given
trees.

* (Consider the sentences: “A cat eats a mouse’ vs. A mouse eats a cat.’

LN S INP [D [a]] [N [cat]]]
d . VAN [NP [D [a]] [N [mouse]]],
NP VP NP VP [N [mouse]],
AR SN AR [N [cat]],
Y K v /o 7 N , [V [eats]],
D N v :"'H D N v ;I\ [D [a]] (counted twice as it appears twice)
D N D N
II|. cal eals | LILCM =Y. _,'IL monse caks £ calk,

K piec(8155,) = 7 1n this case because the sentences generate seven common subtrees.

* Other possible kernels include subset kernels (has higher granularity than subtree kernel).
In this case, K ...(S1,5,)=54.

Hard- vs. soft-
margin SVMs

Hard-margin SVMs

Find w and b by doing the
following minimization:

Maximum Suppcrt vectors
arei ' :
:iﬂecr_gfﬂ wix+h=1 min g HWH
151011 \‘\
hyperplan~ = A
wix+b=0 A

wix+h=-1 subject to:
., &
R t,(wix, +b)3L k=1...m
— L A
N
N\ (1, T{-1+13})
L a.
° ' 2N
= Margmls
* maximized

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

Extend to soft-margin SVMs

Maximum Suppnr‘[vectors
margin '
& wix+h=1
decision ~
Ny
h}rpErplanr" - A N
wix+bH=0 A
wix+h=-1
. . !
\ \
\ N
o \ '~..
W M
/
s’ ‘*,\
! \
/
\
N P4
° & \
\
® [] ® . .
b \ Margm 15
M . o
maximized

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

Extend to soft-margin SVMs

Allow some instances to be
misclassified, or fall within margins,
but penalize them by distance to
margin hyperplane.

Maximum Suppn_rt vectors
margmn wix+h=1
decision ~ .
h}rpErplanr" - A N
wix+b=0 A
wix+b=-1
. al
R"\
L) \)
\ﬁk"\
™
b
L

, 0 ¢
x_ Margin is
* 5
maximized
http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

Extend to soft-margin SVMs

Allow some instances to be
misclassified, or fall within margins,
but penalize them by distance to
margin hyperplane.

Maximum Suppn_rt vectors
margmn wix+h=1
decision ~ .
h}rpErplanr" - A N
wix+b=0 A
wix+b=-1
—~—)
N)
Lt
L) \)
\ﬁk"\
™
b
L

, 0 ¢
x_ Margin is
* 5
maximized
http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

Extend to soft-margin SVMs

Allow some instances to be
misclassified, or fall within margins,
but penalize them by distance to
margin hyperplane.

Maximum Suppn_rt vectors
margmn wix+h=1
decision ~ .
h}rpErplanr" - A N
wix+b=0 A
wix+b=-1
—~—)
N)
Lt
L) \)
\ﬁk"\
™
b
L

, 0 ¢
x_ Margin is
* 5
maximized
http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

Extend to soft-margin SVMs

Allow some instances to be
misclassified, or fall within margins,
but penalize them by distance to
margin hyperplane.

Maximum Suppn_rt vectors
margn wix+h=1
decision ~ .
h}rpErplanr" - A N
wix+b=0 A
wix+b=-1
—~—)
N)
~
L) \)
\Lﬁk"\
N
5
L] \.
® [] e

, 0 ¢
x_ Margin is
* 5
maximized
http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

¢, are called slack
variables.

¢ > 0 only if x, IS
misclassified or inside
margin

Extend to soft-margin SVMs

Allow some instances to be
misclassified, or fall within margins,
but penalize them by distance to
margin hyperplane.

Maximum Suppn_rt vectors
margin wix+bh=1
decision ~
Ny
hyperplan~ ~ A A
wix+b=0 A~
wix+b=-1
\ -
N ‘ S
N
o N
W M
M
)
\
/
’
(] \f \
@ e
¢) \ Margin 15
LY = a
maximized

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

Revised optimization problem:

Find w and b by doing the
following minimization:

min 2w 2
2 k

w,b

subject to:
t(w-x, +b)21-x, k=1..m

(, e{-1+1})

Extend to soft-margin SVMs

Allow some instances to be
misclassified, or fall within margins,
but penalize them by distance to
margin hyperplane.

Maximum Suppn_rt vectors
margn wix+h=1
decision ~ .
h}rpErplanr" - A N
wix+b=0 A
wix+b=-1
—~—)
N)
~
L) \)
\Lﬁk"\
N
5
L] \.
® [] e

, 0 ¢
x_ Margin is
* 5
maximized
http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

Revised optimization problem:

Find w and b by doing the
following minimization:

min 2w 2
2 k

w,b

subject to:
t(w-x, +b)21-x, k=1..m

(, e{-1+1})

Optimization tries to keep ¢, 's to
zero while maximizing margin.

C Is parameter that trades off
margin width with misclassifications

Why use soft-margin SVMs?

* Always can be optimized (unlike hard-margin
SV Ms)

 More robust to outliers, noise

* However: Have to set C parameter

Sott Margin SVM Classification

min [L]+ 3
w,b 2 k

O | e PR T
. .o.: 35000 4 & or &, ’:‘g °
-] H § ogo o
%9‘- - ?-'ﬁo.'% g Dl B = .
.Y T L / subject to:
— % . t,(w-x, +b)21-x, k=1..m
-7 o PN) . . et 1§ k k k
J av. . O N "o o y g :
Ja . S
(¢, e {-1+1})
4 : .
7 | & ’ e oo ; . . p e
%‘5335(’ “‘:“ cﬂ: ° ° QP‘ K e 08 \\t 2o o ° %mc;n cz%‘,'.:. '_._
) R T RV
. = Faoacie e
‘ﬁn%‘*. %ia .-:_-‘-:'%: % o8 . o ...’.':-2;*‘- ..amﬁ
H - S ‘O ° . -
o ° | o
\

The effects of different kernels when learning a version of XOR with progressively more overlap (left to
right) between the classes. Top row: polynomial kernel of degree 3 with no slack variables, second row:
polynomial of degree 3 with C = 0.1, third row: RBF kernel, no slack variables, bottom row: RBF
kernel with C = 0.1. The support vectors are highlighted, and the decision boundary is drawn for each case.

Multi-Class SVM Classification

* Previously we dealt with two-class classification for

SV Ms.

* Unfortunately, the theoretical work we used to derive
the SVM algorithm only works for two classes.

* How then do we apply SVMs to the general N-class
problem?

Multi-Class SVM Classification

* Simple answer: train an SVM that learns to classity one
class from all other classes (i.e., “one vs. all
classification™).

* So for N-classes we have N SVMs. For classification
we merely choose the classifier that makes the strongest
prediction.

Data Standardization

In general, we need to do data
standardization for SVMs to avoid
Imbalance among feature scales:

Let u; denote the mean value of feature i in the training data, and o; denote the
corresponding standard deviation. For each training example x, replace each x; as
follows:

X T W
Xi=
0

Scale the test data in the same way, using the 4, and o; values computed from the training
data, not the test data.

SVMs & Feature
Selection

Goal: Select a subset of d features (d < n) in
order to maximize classification performance with
fewer features.

Types of Feature Selection

Methods
e Filter

* Wrapper

« Embedded

Filter Methods

Independent of the

classification algorithm. Training data

Apply a filtering function to the
features before applying

classifier.
Filter

Examples of filtering
functions:

— Information gain of individual
features Selected features

— Statistical variance of

individual features

Classifier

— Statistical correlation among

features

Wrapper Methods T

Choose subset of
features

4

Accuracy on Classifier
validation set (cross-validation)

S Y L =

Classifier
(Entire training set with
best subset of features)

After cross-validation

Evaluate classifier
on test set

Filter Methods

Pros: Fast

Cons: Chosen filter might
not be relevant for a specific
kind of classifier.

Doesn’t take into account
Interactions among features

Often hard to know how
many features to select.

Filter Methods

Pros: Fast

Cons: Chosen filter might
not be relevant for a specific
kind of classifier.

Doesn’t take into account
Interactions among features

Often hard to know how
many features to select.

Wrapper Methods

Pros: Features are evaluated
In context of classification

Wrapper method selects
number of features to use

Cons: Slow

Filter Methods

Pros: Fast

Cons: Chosen filter might
not be relevant for a specific
kind of classifier.

Doesn’t take into account
Interactions among features

Often hard to know how
many features to select.

Intermediate method,
often used with SVMs:

Wrapper Methods

Pros: Features are evaluated
In context of classification

Wrapper method selects
number of features to use

Cons: Slow

Train SVM using all features
Select features f; with highest | w; |
Retrain SVM with selected features

Test SVM on test set

0.90

0.85

0.60

0.55

Num Features vs Accuracy

I o I
—— Feature Selection
—— Random Selection

0 10 20 30 40 50 60

Embedded Methods

Feature selection is intrinsic part of any learning algorithm

One example:

L, SVM: Instead of minimizing HWH (the “L2 norm”) we
minimize the L, norm of the weight vector:

5
[wl, =&auw,

i=1

Result is that most of the weights go to zero, leaving a small subset
of the weights. (as mentioned previously: this 1s tantamount to
putting a zero mean “prior” on w — in a Bayesian framework).

Cf., Field of “sparse coding.”

SVM for feature selection for Spam Detection Task

Feature Weight
word_freq_hp -19.63523611
char_freq ! 19.07223054
word_freq_george -17.17445462
word_freq_free 16.84957797
word_freq_remove 15.97374434

Table 1: Top 5 features with highest weight magnitude from SVM. The sign of the weigh
corresponds to the feature correlating with “not spam” for negative values and “spam” fo
positive values.

