

SVM merch
available in the
CS department
after lecture

SVM

SVM

Introduction
• Previously we considered Perceptrons based on the McCulloch and Pitts

neuron model.

• We identified a method for updating weights, PLA, and noticed that the

Perceptron is rather limited in that it could only identify straight line

classifiers.

• This mean that it could not learn to distinguish classes, for instance, with 2D

XOR function.

• However, we saw that it was in fact possible to modify the problem so that

the perceptron could solve the problem.

Q: How was this done?

You had me at XOR.

Introduction
• Previously we considered Perceptrons based on the McCulloch and Pitts

neuron model.

• We identified a method for updating weights, PLA, and noticed that the

Perceptron is rather limited in that it could only identify straight line

classifiers.

• This mean that it could not learn to distinguish classes, for instance, with 2D

XOR function.

• However, we saw that it was in fact possible to modify the problem so that

the perceptron could solve the problem.

Q: How was this done? One way: transform the data!

You had me at XOR. You complete…

my data transformation

Introduction

• Here we will modify the data by changing its representation (a powerful

idea in ML and data science). In principle, it is always possible to transform

any given data set so that the classes within it are linearly separable.

• We introduce kernel functions to achieve this transformation.

• The key idea is to ascertain which dimensions to “use”; generally, kernel

methods comprise a class of algorithms that do just this.

Introduction
• We focus here on support vector machines (SVMs) for classification.

• Given a set of training examples, each one belonging to a specific category,

an SVM training algorithm creates a model that separates the categories and

that can later be used to decide the category of new set of data.

• The training component consists in finding the best separating plane (with

maximal margin) based on specific vector called support vector. If the

decision is not feasible in the initial description space, you can increase space

dimension using a kernel function and subsequently identify a hyperplane

that serves as your decision surface.

•

Introduction
• SVMs are one of the more popular algorithms in modern machine learning

(although they have decreased in prominence more recently, with the advent

of deep NNs).

• Vapnik introduced them in 1992, at which time they became wildly popular

in ML due to their impressive classification performance on reasonably-sized

datasets.

• In principle, SVMs do not work well on extremely large datasets, since the

computations don’t scale well with the number of training examples.

• In addition to incorporating kernel functions, the SVM algorithm also

reformulates the classification problem

Introduction
• In addition to incorporating kernel functions, the SVM algorithm also

reformulates the classification problem in a way that allows us to

discriminate between a good classifier and a bad one.

• Consider, for example, the following decision boundaries for identical sets

of data.

Q: Which is the “best” classifier?

Introduction

Q: Which is the “best” classifier?

A: The classifier that generalizes best.

How do we quantify the notion of an optimal line?

Introduction
• We can measure the distance that we have to travel away from the decision line (in a

direction perpendicular to the line) before we encounter a data point.

• Imagine a region (“no man’s land”) around the line that we designate as representing data

points that are “too close” to the line to be accurately classified; render this region as a

cylinder in the “hypothesis space.”

• How large can we make the radius of this cylinder until classification becomes ambiguous

(i.e. we capture points from different classes)?

• Call this maximum radius M, the margin of the

decision surface.

Introduction
• The classifier in the middle has the largest margin of the three; we say it is the maximum

margin (linear) classifier.

• The data points in each class that lie closest to the classification line are called the

support vectors (of the classifier).

• Using the argument that the best classifier is the one that goes through the middle of “no

man’s land”, we can make two arguments:

(1) The margin should be as large as possible.

(2) The support vectors are the most useful data points (they exist on the threshold of

what we can correctly classify).

(*) Note: SVMs allow us to discard all of the training data except for the support vectors! This

is very useful for compression/data storage constraints.

Aside #1: VC Dimension
• VC dimension is an important and deep concept in ML.

V. Vapnik

• VC dimension is a measure of the capacity (i.e. complexity, expressive power,

richness, or flexibility) of a space of functions that can be learned by a

classification algorithm.

• A classification model f with some parameter θ is said to shatter a set of data

points (x1, …, xn) if, for all assignments of labels to those points, there exists

a θ such that the model f makes no errors when evaluating that set of data

points.

• VC dimension (of a model f) := the maximum number of points that can

be arranged so that f shatters them.

Aside #1: VC Dimension
• Example: If f is a constant classifier, its VC dimension is zero, since it cannot shatter even a

single point.

• Example: If is a straight line classifier (in 2-D). There exist sets of 3 points that can indeed be

shattered using the model (any 3 points that are non-collinear can be shattered). However, no

set of 4 points can be shattered. Thus the VC dimension of a straight line is 3.

• Example: f is a single-parameter “sine classifier”, i.e. for a certain parameter θ, the classifier fθ
returns 1 if the input number x is larger than sin(θx) and 0 otherwise.

• The VC dimension of f is infinite, since it can

shatter the set: for any positive m.

(*) Note the last example shows, importantly, that

VC dimension is not directly related to the number of

model parameters!

Note we only show 3 of the

23=8 possible binary labelings

for 3 points.

 2 |m m 

Aside #1: VC Dimension

• Another example: the VC dimension of a rectangle in R2 (where the rectangle

encompasses all data of a particular class).

• The diagram shows that a rectangle shatters at least 4 points in the plane;

for 5 points there exists a counter-example (try it).

• In general, the VC dimension of a hyperplane in Rd is d+1.

(e.g. in R2 we previously showed a hyperplane has VC dimension = 3).

Aside #1: VC Dimension

• Another example: the VC dimension of a spherical indicator function in R2 (where

the sphere encompasses all data of a particular class).

• Three points in R2 can be shattered, but four cannot; thus VC dim(f) = 3 in

R2 (useful for nearest neighbors classifiers, radial basis functions).

    2 2, ,f r I r  x c x c

Aside #2: Optimization Paradigms
• Two of the most common optimization paradigms in ML include:

(1) Optimization with equality constraints.

(2) Optimization with inequality constraints.

     , , , , , ,f x y z g x y z h x y z     

maximize

subject to and 0

Tc x

Ax b x 

1
maximize

2

subject to

T Tx Qx c x

Ax b





Method of Lagrange Multipliers

von Neumann Dantzig

Linear Programming: Simplex Method

Quadratic Programming

Lagrange

 

 

maximize , ,

subject to (, ,) 0, , , 0

f x y z

g x y z h x y z 

Notation
• Assume a binary classification problem.

– Instances are represented by vector x  n.

– Training examples: x = (x1, x2, …, xn)

S = {(x1, t1), (x2, t2), ..., (xm, tm) | (xk, tk) n {+1, −1}}

– Hypothesis: A function h: n{+1, −1}.

h(x) = h(x1, x2, …, xn) {+1, −1}

• Here, assume positive and negative instances are to be

separated by the hyperplane

where b is the bias.

w× x +b = 0

w× x +b = w
T
x +b

= w1x1 +w2x2 + b = 0

Equation of line:

x2

x1

• Intuition: the best hyperplane (for future generalization)

will “maximally” separate the examples

w× x +b = 0

Definition of Margin (with respect to a

hyperplane):

Distance from separating hyperplane to nearest positive (or negative)

instance.

Vapnik (1979) showed that the

hyperplane maximizing the margin

of S will have minimal VC

dimension in the set of all consistent

hyperplanes, and will thus be

optimal.

Definition of Margin (with respect to a

hyperplane):

Distance from separating hyperplane to nearest positive (or negative)

instance.

Vapnik (1979) showed that the

hyperplane maximizing the margin

of S will have minimal VC

dimension in the set of all consistent

hyperplanes, and will thus be

optimal.

This is an optimization

problem!

Definition of Margin (with respect to a

hyperplane):
Distance from separating hyperplane to nearest positive (or negative)

instance.

Maximum Margin

• Linear Classifiers can lead to many equally

valid choices for the decision boundary

Are these really

“equally valid”?

Max Margin

• How can we pick

which is best?

• Maximize the

size of the

margin.

Are these really

“equally valid”?

Small Margin

Large Margin

Support Vectors

• Support Vectors
are those input
points (vectors)
closest to the
decision boundary

• 1. They are
vectors

• 2. They “support”
the decision
hyperplane

25

Support Vectors

• Define this as a

decision problem

• The decision

hyperplane:

• No fancy math, just the

equation of a

hyperplane.

26

Support Vectors

• Aside: Why do some
cassifiers use
or
– Simplicity of the math

and interpretation.

– For probability density
function estimation 0,1
has a clear correlate.

– For classification, a
decision boundary of 0
is more easily
interpretable than .5.

27

Support Vectors

• Define this as a

decision problem

• The decision

hyperplane:

• Decision

Function:

28

Support Vectors

• Define this as a

decision problem

• The decision

hyperplane:

• Margin hyperplanes:

29

Support Vectors

• The decision

hyperplane:

• Scale invariance

30

Support Vectors

• The decision

hyperplane:

• Scale invariance

31

Support Vectors

• The decision

hyperplane:

• Scale invariance

What are we optimizing?

• We will represent
the size of the
margin in terms of
w.

• This will allow us to
simultaneously
– Identify a decision

boundary

– Maximize the margin

33

How do we represent the size of

the margin in terms of w?
1. There must at least one

point that lies on each

support hyperplanes

34

Proof outline: If not, we

could define a larger

margin support

hyperplane that does

touch the nearest

point(s).

How do we represent the size of

the margin in terms of w?

1. There must at least one

point that lies on each

support hyperplanes

35

Proof outline: If not, we

could define a larger

margin support

hyperplane that does

touch the nearest

point(s).

How do we represent the size of

the margin in terms of w?

1. There must at least one

point that lies on each

support hyperplanes

2. Thus:

36

3. And:

How do we represent the size of

the margin in terms of w?

1. There must at least one

point that lies on each

support hyperplanes

2. Thus:

3. And:

Why?

 1 2 2Tw x x 

• The vector w is
perpendicular to the
decision hyperplane

– If the dot product of two
vectors equals zero, the
two vectors are
perpendicular.

How do we represent the size of

the margin in terms of w?

 1 2 2Tw x x 

• The margin is the projection

of x1 – x2 onto w, the normal

of the hyperplane.

How do we represent the size of

the margin in terms of w?

 1 2 2Tw x x 

Aside: Vector Projection

• The margin is the projection

of x1 – x2 onto w, the normal

of the hyperplane.

How do we represent the size of

the margin in terms of w?

41Size of the Margin:

Projection:

 1 2 2Tw x x 

Maximizing the margin

• Goal: maximize

the margin:

• This is equivalent

to finding:

42

Linear Separability of the data

by the decision boundary

1 1

1 1

T

i i

T

i i

w x b if t

w x b if t

  

    

Minimizing ||w||

The canonical SVM optimization problem is formalized as:

• Note that Gradient Descent would be ill-suited for this

problem (enforcing the constraints is difficult).

• Instead, the method of Quadratic Programming (QP)

is more efficient.

 
21

minimize subject to: 1, 1,...,
2

k kt b k m
 

    
 

w w x

Minimizing ||w||
The canonical SVM optimization problem is formalized as:

• Because this problem is quadratic, it is necessarily convex!

Thus it admits of a unique solution (minimum).

• We won’t worry about all of the details here, but we’d like

to reformulate this problem using Lagrange multipliers at

which point it can then be presented to a quadratic solver (in

general the solution yielded is rendered in polynomial

time).

 
21

minimize subject to: 1, 1,...,
2

k kt b k m
 

    
 

w w x

Dual Representation
• It turns out (as Neumann first observed) that w can be expressed as a

linear combination of the training examples:

• The results of the SVM training algorithm (involving solving a

quadratic programming problem) are the k and the bias b.

w = ak

xkÎ S

å xk

where ak ¹ 0 only if xk is a support vector

• After solving the “dual problem” (i.e. obtaining

the k and the bias b), we classify a new example x

as follows:

• Where | S | = M. (S is the training set)

SVM Classification

• After solving the “dual problem” (i.e. obtaining

the k and the bias b), we classify a new example x

as follows:

• where | S | = M. (S is the training set)

• Recall that the dot product

furnishes a “similarity” measure.

SVM Classification

Example

1 2-1-2

1

2

-

2

-1

Example

1 2-1-2

1

2

-

2

-1

Input to SVM optimizer:

x1 x2 class
1 1 1

1 2 1

2 1 1

−1 0 −1

0 −1 −1

−1 −1 −1

Output from SVM optimizer:

Support vector α

(−1, 0) −.208

(1, 1) .416

(0, −1) −.208

b = −.376

Example

1 2-1-2

1

2

-

2

-1

Input to SVM optimzer:

x1 x2 class
1 1 1

1 2 1

2 1 1

−1 0 −1

0 −1 −1

−1 −1 −1

Output from SVM optimizer:

Support vector α

(−1, 0) −.208

(1, 1) .416

(0, −1) −.208

b = −.376

Example

1 2-1-2

1

2

-

2

-1

w = akxk
kÎ{training examples}

å

= -.208 (-1, 0)+.416 (1,1)-.208 (0,-1)

= (.624,.624)

Weight vector:

Input to SVM optimzer:

x1 x2 class
1 1 1

1 2 1

2 1 1

−1 0 −1

0 −1 −1

−1 −1 −1

Output from SVM optimizer:

Support vector α

(−1, 0) −.208

(1, 1) .416

(0, −1) −.208

b = −.376

1 2-1-2

1

2

-

2

-1

Weight vector:

Example
Input to SVM optimzer:

x1 x2 class
1 1 1

1 2 1

2 1 1

−1 0 −1

0 −1 −1

−1 −1 −1

Output from SVM optimizer:

Support vector α

(−1, 0) −.208

(1, 1) .416

(0, −1) −.208

b = −.376

Separation line:

w1x1 +w2x2 + b = 0

.624x1 +.624x2 -.376 = 0

x2 = -x1 +.6

w = akxk
kÎ{training examples}

å

= -.208 (-1, 0)+.416 (1,1)-.208 (0,-1)

= (.624,.624)

1 2-1-2

1

2

-

2

-1

Weight vector:

Example
Input to SVM optimzer:

x1 x2 class
1 1 1

1 2 1

2 1 1

−1 0 −1

0 −1 −1

−1 −1 −1

Output from SVM optimizer:

Support vector α

(−1, 0) −.208

(1, 1) .416

(0, −1) −.208

b = −.376

Separation line:

w1x1 +w2x2 + b = 0

.624x1 +.624x2 -.376 = 0

x2 = -x1 +.6

w = akxk
kÎ{training examples}

å

= -.208 (-1, 0)+.416 (1,1)-.208 (0,-1)

= (.624,.624)

Example

1 2-1-2

1

2

-

2

-1

Classifying a new point:

Example

1 2-1-2

1

2

-

2

-1

Classifying a new point:

Example

1 2-1-2

1

2

-

2

-1

Classifying a new point:

Example

1 2-1-2

1

2

-

2

-1

Classifying a new point:

SVM summary
• Equation of line: w1x1 + w2x2 + b = 0

• Define margin using:

• Margin distance:

• To maximize the margin, we minimize ||w||

subject to the constraint that positive examples

fall on one side of the margin, and negative

examples on the other side:

• We can relax this constraint using “slack variables”

xk × w +b ³ +1 for positive instances (tk = +1)

xk × w +b £ -1 for negative instances (tk = -1)

1

w

tk w × xk +b() ³1, k =1,...,m

where tk Î {-1,+1}

SVM summary
• To do the optimization, we use the dual formulation:

The results of the optimization “black box” are

and b .

w = akxk
kÎ{training examples}

å

{ak}

SVM review
• Once the optimization is done, we can classify a new

example x as follows:

That is, classification is done entirely through a linear

combination of dot products with training examples.

This is a “kernel” method.

h(x) = class(x) = sgn w × x + b()

= sgn akxk
k=1

m

å
æ

è
ç

ö

ø
÷× x + b

æ

è
çç

ö

ø
÷÷

= sgn ak xk × x()
k=1

m

å
æ

è
ç

ö

ø
÷+ b

æ

è
çç

ö

ø
÷÷

Example:

Watson used tree kernels and SVMs to classify

question types for Jeopardy! questions

From Moschitti et al., 2011

IBM Watson

https://www.youtube.com/watch?v=DywO4zksfXw

IBM Watson: Jeopardy

https://www.youtube.com/watch?v=P18EdAKuC1U

IBM Watson (2016)

• “Emotion detection” has been a central piece of recent research

in attempts to make AI systems more compassionate.

• IBM Watson recently released textual emotion detection (with new

enhancements) as a new functionality with Watson.

• Some of these enhancements include: (1) a new feature selection

process using “linear SVMs with L1 penalty” And (2) new

“kernel-based classifiers.”

IBM Watson (2016)

https://www.ibm.com/blogs/bluemix/2016/10/watson-has-more-accurate-emotion-

detection/

Demo: https://natural-language-understanding-demo.ng.bluemix.net/

SVMs!

Non-linearly separable training

examples
• What if the training examples are not linearly separable?

Non-linearly separable training

examples
• What if the training examples are not linearly separable?

• Use old trick: Find a function that maps points to a higher

dimensional space (“feature space”) in which they are linearly

separable, and do the classification in that higher-

dimensional space.

Need to find a function  that will perform such a mapping:

: n F

Then can find hyperplane in higher dimensional feature

space F, and do classification using that hyperplane in higher

dimensional space.

x1

x2

x1

x2

x3

Challenge

Find a 3-dimensional feature space in which

XOR is linearly separable.

x2

x1

(0, 1) (1, 1)

(0, 0)

(1, 0) x1

x2

x3

• Problem:

– Recall that classification of instance x is expressed in

terms of dot products of x and support vectors.

– The quadratic programming problem of finding the

support vectors and coefficients also depends only

on dot products between training examples.

Class(x) = sgn ak (x × xk
kÎ{training examples}

å)+b
æ

è

ç
ç

ö

ø

÷
÷

– So if each xk is replaced by (xk) in these procedures, we

will have to calculate (xk) for each k as well as calculate a

lot of dot products, (x) (xk)

– But in general, if the feature space F is high dimensional,

(xi)  (xj) will be expensive to compute.

• Second trick (the “kernel trick”):

– Suppose that there were some magic function,

K(xi, xj) = (xi)  (xj)

such that K is cheap to compute even though (xi)  (xj) is

expensive to compute.

– Then we wouldn’t need to compute the dot product directly;

we’d just need to compute K during both the training and

testing phases.

– The good news is: such K functions exist! They are called

“kernel functions”, and come from the theory of integral

operators.

Example: Polynomial kernel:

Suppose x = (x1, x2) and z = (z1, z2).

k(x,z) = (x× z)2

Example: Polynomial kernel:

Suppose x = (x1, x2) and z = (z1, z2).

k(x,z) = (x× z)2

More on Kernels
• So far we’ve seen kernels that map instances in n to

instances in z where z > n.

• One way to create a kernel: Figure out appropriate

feature space Φ(x), and find kernel function k which

defines inner product on that space.

• More practically, we usually don’t know appropriate feature

space Φ(x).

• What people do in practice is either:

1. Use one of the “classic” kernels (e.g., polynomial),

or 2. Define their own function that is appropriate for

their task, and show that it qualifies as a kernel.

How to define your own kernel

• Given training data (x1, x2, ..., xn)

• Algorithm for SVM learning uses kernel matrix (also

called Gram matrix):

• We can choose some function K, and compute the

kernel matrix K using the training data.

• We just have to guarantee that our kernel defines an

inner product on some feature space.

• Not as hard as it sounds.

Ki, j =K(xi,x j), for i, j =1,...,n

What counts as a kernel?

• Mercer’s Theorem: If the kernel matrix K is “positive

definite”, it defines a kernel, that is, it defines an inner

product in some feature space.

• We don’t even have to know what that feature space is! It

can have a huge number of dimensions.

• Recall:

Summary of “kernel trick” (or kernel method)
• Kernel methods can be thought of as instance-based learners: rather than learning some

fixed set of parameters corresponding to the features of their inputs, they instead

"remember" the ith training example (xi,yi) and learn it for a corresponding weight αi.

• For generalization in the classification step, a new datum x is compared (via the

“similarity” function k) to each training input xi:

• The kernel trick avoids the explicit mapping needed to get linear algorithms to render a

non-linear decision boundary.

• The key idea is that k(x,xi) is expressed as an inner product in another space V.

• By appropriately defining the kernel (e.g. using Mercer’s theorem) we are guaranteed

that V is an inner product space (aside: an inner product space naturally induces a

norm on a vector space, in which case we get “intuitive” geometric properties per

Euclidean spaces).

• The upshot for SVMs: we get the rich representative qualities of non-linear decision

boundaries without having to compute Ф explicitly.

class(x) = sgn ak k(x, xk
kÎsupport vectors

å)
æ

è
çç

ö

ø
÷÷+b

æ

è

ç
ç

ö

ø

÷
÷

Structural Kernels

• In domains such as natural language processing and

bioinformatics, the similarities we want to capture are

often structural (e.g., parse trees, formal grammars).

• An important area of kernel methods is defining

structural kernels that capture this similarity (e.g.,

sequence alignment kernels, tree kernels, graph kernels,

etc.)

• Design criteria - we want kernels to be:

– valid – Satisfy Mercer condition of positive semi-

definiteness.

– good – embody the “true similarity” between objects

– appropriate – generalize well

– efficient – the computation of K(x, x’) is feasible

Summary of SVM algorithm
Given training set

S = {(x1, t1), (x2, t2), ..., (xm, tm) | (xk, tk) n {+1, -1}

1. Choose a kernel function k(x,z).

2. Apply optimization procedure (using the kernel function K) to

find support vectors xk , coefficients k , and bias b.

3. Given a new instance, x, find the classification of x by

computing

class(x) = sgn ak k(x, xk
kÎsupport vectors

å)
æ

è
çç

ö

ø
÷÷+b

æ

è

ç
ç

ö

ø

÷
÷

Summary of SVM algorithm

Computational complexity for SVM: This can be difficult

to compute in general.

Basic Idea: (1) We need to perform O(m2n) primitives for

the dot product/kernel (m is the number of data points

and n is the dimensionality); (2) unfortunately, to solve

the QP problem this requires inversion of the kernel

matrix which is in general O(m3).

class(x) = sgn ak k(x, xk
kÎsupport vectors

å)
æ

è
çç

ö

ø
÷÷+b

æ

è

ç
ç

ö

ø

÷
÷

How to define your own kernel

• Given training data (x1, x2, ..., xm)

• Algorithm for SVM learning uses kernel matrix (also called Gram

matrix):
Ki, j =K(xi,x j), for i, j =1,...,m

How to define your own kernel

• We can choose some function K, and compute the kernel matrix

K using the training data.

• We just have to guarantee that our kernel defines an inner

product on some feature space.

• Mercer’s Theorem: : If K is “positive semi-definite”, it defines a

kernel, that is, it defines an inner product in some feature space.

• We don’t even have to know what that feature space is!

• K is positive semi-definite if all the eigenvalues of K are positive.

Example of Simple “Custom” Kernel

Similarity between DNA Sequences:

E.g., (four bases: Adenine, Guanine, Cytosine

and Thymine).

s1 = GAATGTCCTTTCTCTAAGTCCTAAG

s2 = GGAGACTTACAGGAAAGAGATTCG

Define “Hamming Distance Kernel”:

hamming(s1, s2) = number of sites where strings

match

Kernel matrix for hamming kernel

Suppose training set is

s1 = GAATGTCCTTTCTCTAAGTCCTAAG

s2 = GGAGACTTACAGGAAAGAGATTCG

s3 = GGAAACTTTCGGGAGAGAGTTTCG

What is the Kernel matrix K?

K s1 s2 s3

s1

s2

s3

Tree Kernels

• In NLP Tree Kernels are commonly used for sentence classification.

• Beginning with a parse tree for a sentence we can compute the

“similarity” of two sentences (i.e. two trees).

• Well-designed kernels enable us to compute the similarity in an

efficient way – without explicitly computing (potentially) large

dimensional feature vectors for these trees.

S: sentence

NP: noun-phrase

VP: verb-phrase

V: verb

N: noun

D: determiner (e.g. an article)

Tree Kernels
• A subtree is defined as a node and all of its children (note: terminals are not considered

subtrees).

• A subtree kernel simply counts the number of common subtrees between two given

trees.

• Consider the sentences: “A cat eats a mouse” vs. “A mouse eats a cat.”

Ksubtree(s1,s2) = 7 in this case because the sentences generate seven common subtrees.

• Other possible kernels include subset kernels (has higher granularity than subtree kernel).

In this case, Ksubset(s1,s2)=54.

[NP [D [a]] [N [cat]]],

[NP [D [a]] [N [mouse]]],

[N [mouse]],

[N [cat]],

[V [eats]],

[D [a]] (counted twice as it appears twice)

Hard- vs. soft-

margin SVMs

Hard-margin SVMs

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

w ×x +b = 0

w ×x +b = -1

w ×x +b =1 min
w,b

1

2
w

2æ

è
ç

ö

ø
÷

subject to:

tk w × xk + b() ³1, k =1,...,m

(tk Î {-1,+1})

Find w and b by doing the

following minimization:

Extend to soft-margin SVMs

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

w ×x +b = 0

w ×x +b = -1

w ×x +b =1

Extend to soft-margin SVMs

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

w ×x +b = 0

w ×x +b = -1

w ×x +b =1

Allow some instances to be

misclassified, or fall within margins,

but penalize them by distance to

margin hyperplane.

Extend to soft-margin SVMs

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

w ×x +b = 0

w ×x +b = -1

w ×x +b =1

ξ0

Allow some instances to be

misclassified, or fall within margins,

but penalize them by distance to

margin hyperplane.

Extend to soft-margin SVMs

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

w ×x +b = 0

w ×x +b = -1

w ×x +b =1

ξ0

ξ1

Allow some instances to be

misclassified, or fall within margins,

but penalize them by distance to

margin hyperplane.

Extend to soft-margin SVMs

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

w ×x +b = 0

w ×x +b = -1

w ×x +b =1

ξ0

ξ1

ξk are called slack

variables.

ξk > 0 only if xk is

misclassified or inside

margin

Allow some instances to be

misclassified, or fall within margins,

but penalize them by distance to

margin hyperplane.

Extend to soft-margin SVMs

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

w ×x +b = 0

w ×x +b = -1

w ×x +b =1

min
w,b

1

2
w

2æ

è
ç

ö

ø
÷+C xk

k

å

subject to:

tk w ×xk + b() ³1-xk, k =1,...,m

(tk Î {-1,+1})

Revised optimization problem:

Find w and b by doing the

following minimization:

ξ0

ξ1

Allow some instances to be

misclassified, or fall within margins,

but penalize them by distance to

margin hyperplane.

Extend to soft-margin SVMs

http://nlp.stanford.edu/IR-book/html/htmledition/img1260.png

w ×x +b = 0

w ×x +b = -1

w ×x +b =1

min
w,b

1

2
w

2æ

è
ç

ö

ø
÷+C xk

k

å

subject to:

tk w ×xk + b() ³1-xk, k =1,...,m

(tk Î {-1,+1})

Revised optimization problem:

Find w and b by doing the

following minimization:

ξ0

ξ1

Optimization tries to keep ξk ’s to

zero while maximizing margin.

C is parameter that trades off

margin width with misclassifications

Allow some instances to be

misclassified, or fall within margins,

but penalize them by distance to

margin hyperplane.

Why use soft-margin SVMs?

• Always can be optimized (unlike hard-margin

SVMs)

• More robust to outliers, noise

• However: Have to set C parameter

Soft Margin SVM Classification

The effects of different kernels when learning a version of XOR with progressively more overlap (left to

right) between the classes. Top row: polynomial kernel of degree 3 with no slack variables, second row:

polynomial of degree 3 with C = 0.1, third row: RBF kernel, no slack variables, bottom row: RBF

kernel with C = 0.1. The support vectors are highlighted, and the decision boundary is drawn for each case.

min
w,b

1

2
w

2æ

è
ç

ö

ø
÷+C xk

k

å

subject to:

tk w ×xk + b() ³1-xk, k =1,...,m

(tk Î {-1,+1})

Multi-Class SVM Classification

• Previously we dealt with two-class classification for

SVMs.

• Unfortunately, the theoretical work we used to derive

the SVM algorithm only works for two classes.

• How then do we apply SVMs to the general N-class

problem?

Multi-Class SVM Classification

• Simple answer: train an SVM that learns to classify one

class from all other classes (i.e., “one vs. all

classification”).

• So for N-classes we have N SVMs. For classification

we merely choose the classifier that makes the strongest

prediction.

Data Standardization

In general, we need to do data

standardization for SVMs to avoid

imbalance among feature scales:

SVMs & Feature

Selection
Goal: Select a subset of d features (d < n) in

order to maximize classification performance with

fewer features.

Types of Feature Selection

Methods
• Filter

• Wrapper

• Embedded

Filter Methods
Independent of the

classification algorithm.

Apply a filtering function to the

features before applying

classifier.

Examples of filtering

functions:

– Information gain of individual

features

– Statistical variance of

individual features

– Statistical correlation among

features

Training data

Filter

Selected features

Classifier

Wrapper Methods Training data

Choose subset of

features

Classifier

(cross-validation)
Accuracy on

validation set

Classifier

(Entire training set with

best subset of features)

Evaluate classifier

on test set

After cross-validation

Filter Methods

Pros: Fast

Cons: Chosen filter might

not be relevant for a specific

kind of classifier.

Doesn’t take into account

interactions among features

Often hard to know how

many features to select.

Wrapper Methods

Pros: Features are evaluated

in context of classification

Wrapper method selects

number of features to use

Cons: Slow

Filter Methods

Pros: Fast

Cons: Chosen filter might

not be relevant for a specific

kind of classifier.

Doesn’t take into account

interactions among features

Often hard to know how

many features to select.

Wrapper Methods

Pros: Features are evaluated

in context of classification

Wrapper method selects

number of features to use

Cons: Slow

Filter Methods

Pros: Fast

Cons: Chosen filter might

not be relevant for a specific

kind of classifier.

Doesn’t take into account

interactions among features

Often hard to know how

many features to select.

Intermediate method,

often used with SVMs:

Train SVM using all features

Select features fi with highest | wi |

Retrain SVM with selected features

Test SVM on test set

Embedded Methods
Feature selection is intrinsic part of any learning algorithm

One example:

L1 SVM: Instead of minimizing (the “L2 norm”) we

minimize the L1 norm of the weight vector:

Result is that most of the weights go to zero, leaving a small subset

of the weights. (as mentioned previously: this is tantamount to

putting a zero mean “prior” on w – in a Bayesian framework).

Cf., Field of “sparse coding.”

w

w
1

= wi
i=1

n

å

SVM for feature selection for Spam Detection Task

