IV: Section (ii) Trees, Directed Graphs & Isomorphisms

Def: A Tree is a connected, acyclic (i.e., contains no cycles) graph.

Ex.

- Tree w/ 7 vertices
- Tree w/ 5 vertices

7) Essential Facts about Trees

Trees are often characterized according to the following (4) equivalences:

1) G is connected & contains no cycles, n vertices
2) G is connected & contains n-1 edges
3) G has n-1 edges & no cycles
4) For each u, v ε V(G), there exists a unique path from u to v contained in G.

Note that by equivalences we mean that, say, if property (1) holds for a graph with n vertices, then so does (2), (3), (4), etc.

Observe that in the previous example, the tree on the left has 7 vertices & 6 edges; the tree on the right consists of 5 vertices & 4 edges - each tree is acyclic & connected, confirming the above-noted equivalences.
Additional pertinent facts about trees:
(a) Every edge of a tree is a so-called cut-edge, meaning that its deletion increases the number of components in the graph.

Ex.
\[e_1 \quad e_2 \quad e_3 \quad e_4 \]

A tree with 5 vertices, 4 edges; note graph is connected & acyclic.

Observe that the deletion/removal of any edge of this tree increases the number of components of the graph.

Deletion of \(e_1 \):

\[e_1 \quad e_2 \quad e_3 \quad e_4 \]

2 components

(b) Adding one edge to a tree forms exactly one cycle.

Ex.
\[e_1 \quad e_2 \quad e_3 \quad e_4 \quad e^* \]

Note that adding any of the edges \(e^* \) forms exactly one cycle in the graph.

def. A spanning tree of a graph \(G \) is a subgraph of \(G \) with vertex set \(V(G) \) satisfying the tree criteria (i.e., it is connected & acyclic).
Example: Considering \(G = K_4 \):

A spanning tree of \(G \) is given by:

Note that this choice is not unique, and that a graph in general possesses many spanning trees.

(c) Every connected graph contains a spanning tree. (See the example above).

Definition: A **directed graph** (or "digraph" for short) is a graph whose edges are directed/oriented from one incident vertex to the other. Conventionally, for a directed edge: \(u \to v \), we say that \(u \) is the **tail** of \(v \) is the **head**, so that an edge is from its tail to its head. Frequently, graphs are presented as **weighted** if each edge is attributed a real-valued weight. Such weights often represent "flow" (e.g., traffic/current modeling), "cost", "distance", or some such real-world measure.

Example: A digraph.

Here the arrows indicated the orientation of each edge in the graph.
Ex. 1. Digraphs & weighted digraphs.

A finite simulation for two light switches: D - Down, U - Up.

A "Markov chain" digraph.

Def. The incidence matrix, \(M(G) \), of an (undirected) graph \(G \) is an \(n \times m \) matrix where \(|V(G)| = n \) & \(|E(G)| = m \), respectively, such that \(m_{ij} = 1 \) if vertex \(v_i \) & edge \(e_j \) are incident, & \(m_{ij} = 0 \) otherwise.

Ex. 2. For a directed graph \(G \), the incidence matrix is defined analogously; we define \(m_{ij} = +1 \) if \(v_i \) is the tail of \(e_j \); similarly, we define \(m_{ij} = -1 \) if \(v_i \) is the head of \(e_j \).
Ex.

Def. The adjacency matrix, \(A(G) \), of an undirected/directed graph \(G \) is an \(n \times n \) matrix where the entry \(a_{ij} \) equals the number of edges from \(v_i \) to \(v_j \) in \(G \).

Ex.

Def. A **walk** in a graph is a sequence \(v_0, e_1, v_1, e_2, v_2, \ldots, v_k \) of graph vertices and edges such that edge \(e_i \) has endpoints \(v_{i-1} \) and \(v_i \).

Next we show how the adjacency matrix of a graph can be used to count all the walks in a graph of a specified length.
Theorem

Let \(A(6) \) be the adjacency matrix of a graph having vertices \(v_1, \ldots, v_6 \). The number of distinct \(v_0 - v_i \) walks of length \(k \) (\(k \geq 1 \)) is equal to the \((0,i)\) element of \(A^k \).

Example

Consider the graph:

\[
\begin{align*}
 v_0 & \rightarrow v_1, v_2, v_3, v_4, v_5, v_6 \\
 v_1 & \rightarrow 0, 1, 0, 1 \\
 v_2 & \rightarrow 1, 0, 2, 1 \\
 v_3 & \rightarrow 0, 2, 0, 0 \\
 v_4 & \rightarrow 1, 1, 0, 0 \\
 v_5 & \rightarrow 0, 1, 0, 1 \\
 v_6 & \rightarrow 0, 0, 1, 1 \\
\end{align*}
\]

\(A(6) \)

Note that for walks of length 2 (i.e. \(k = 2 \)), say,

the number of walks from \(v_2 \rightarrow v_3 \) is \((a_{23}) \times 2 \); similarly no walks of length 2 exist for \(v_3 \rightarrow v_4 \) and we see that \((a_{34}) = 0\), etc.

Now consider walks of length 2 (\(k = 2 \)).

\[
A^2 = \begin{bmatrix}
2 & 1 & 2 & 1 \\
1 & 6 & 0 & 1 \\
2 & 0 & 4 & 3 \\
1 & 1 & 2 & 2 \\
\end{bmatrix}
\]

So, for instance, this shows that there are two unique walks of length 2 from \(v_0 \rightarrow v_4 \):

walk 1: \(v_0 \rightarrow v_1 \rightarrow v_4 \)
walk 2: \(v_0 \rightarrow v_2 \rightarrow v_4 \)

In addition, we see from \(A^2 \) that there are no walks of length 2 from \(v_2 \rightarrow v_3 \), etc.
A^2 also reveals, for instance, the presence of six unique walks from v_2 to v_2; we enumerate this list to verify:

- Walk 1: $v_2 \rightarrow v_3 \rightarrow v_2$
- Walk 2: $v_2 \rightarrow v_3 \rightarrow v_2$
- Walk 3: $v_2 \rightarrow v_3 \rightarrow v_2$
- Walk 4: $v_2 \rightarrow v_3 \rightarrow v_2$
- Walk 5: $v_2 \rightarrow v_4 \rightarrow v_2$
- Walk 6: $v_2 \rightarrow v_1 \rightarrow v_2$

These examples are relatively trivial due to the small length size. However, suppose we wanted to count the number of unique walks between two vertices in G for length 10 ($k=10$).

Exponentiating A yields:

$$A^{10} = \begin{bmatrix}
3218 & 4329 & 4382 & 3217 \\
4329 & 10,870 & 4276 & 4329 \\
4382 & 4276 & 6486 & 4382 \\
3217 & 4329 & 4382 & 3218
\end{bmatrix}$$

Incredibly, this shows, for instance, that there are 4,276 unique walks in G between v_2 and v_3! Clearly it would be tremendously onerous (if not impossible) to count all of these walks by hand or even with the aid of a computer, for that matter.

N.B.: In statistics and applied mathematics, the notion of a "random walk" in a graph has become something of a sine qua non for estimating complex probabilities. In this vein, if we wanted
To determine how many random walks of length 10 emanating from v_1 exist in G, we would simply add the components from row 1 of A^{10}.

This gives: $3218 + 4329 + 4382 + 3217 = 15,146$.

In summary, there are a total of 15,146 random walks of length 10 (beginning at v_1) in G — we note again that such a computation would, naturally, be extremely difficult to achieve by hand.

Graph Isomorphism

Informally, two graphs are said to be isomorphic if they are "structurally identical" — in other words, if a re-labeling of the vertices of graph G yields graph H. Thus, the graphs are isomorphic if we write: $G \cong H$.

Ex.

$G: \begin{array}{c} \text{w} \\ \text{x} \end{array}$ $H: \begin{array}{c} \text{a} \\ \text{b} \end{array}$

Note that if we impose the following vertex re-labeling on G: $\begin{array}{c} \text{w} & \rightarrow & \text{a} \\ \text{x} & \rightarrow & \text{b} \\ \text{y} & \rightarrow & \text{d} \\ \text{z} & \rightarrow & \text{c} \end{array}$, we get the graph H. Thus, $G \cong H$.
Def. More formally, we say G is \textbf{isomorphic} to H (i.e. \(G \cong H \)) if there exists a bijection \(f \) (one-to-one, onto) from \(V(G) \) to \(V(H) \) such that \(u \in E(G) \) if \(f(u)f(v) \in E(H) \). Put another way, \(f \) "preserves" edge incidence in \(H \).

From the previous example, then, let \(f: V(G) \rightarrow V(H) \) with:
\(f(w) = a, \ f(x) = d, \ f(y) = b \ \& \ f(z) = c \). This defines an isomorphism between \(G \) & \(H \).

Def. If a graph is isomorphic to itself, we say that there exists an \textbf{automorphism} on \(G \).

Note that the (trivial) identity map is an automorphism on \(G \) always. Such an automorphism is consequently said to be \textit{trivial}.

Ex. Consider \(G = K_3 \).

\[\begin{array}{c}
\text{Note that any permutation of the vertices of } K_3 \text{ yields an automorphism.}
\end{array} \]

For instance:
\[\begin{align*}
f(a) &= b \\
f(w) &= c \\
f(z) &= a
\end{align*} \]

is an automorphism of \(K_3 \).

In total, there are 3 such automorphisms.

In general, \(G = K_n \) has \(n! \) total automorphisms. We say the "automorphism class" of \(K_n \) is of size \(n! \).
Lastly, let's explore a deep connection between isomorphic graphs and their adjacency matrices.

Theorem: Two simple graphs G and H are isomorphic iff there exists a permutation matrix P such that $A(G) = P \cdot A(H) \cdot P^T$, where $A(G)$ is the adjacency matrix of G, and $A(H)$ is the adjacency matrix of H.

Q: Why does this work?

If $G \cong H$, then some re-labeling of the vertices of G yields H. Equivalently, re-labeling the rows/cols. of $A(G)$ appropriately gives $A(H)$ (or vice versa).

Note that $P \cdot A(H) \cdot P^T$ effectively performs row swaps of $A(H)$, while $A^T(G) \cdot P^T$ performs transpose column swaps on $A(H)$.

Consequently, $A(G) = P \cdot A(H) \cdot P^T$ means that we can effectively relabelify of row vertices (to equivalent column vertices) on $A(G)$ to yield $A(H)$ (or vice versa).

We demonstrate with an earlier example.
Recall the example:

\[G: \]
\[
\begin{array}{cccc}
\text{x} & \text{w} & \text{y} & \text{z} \\
\hline
\text{x} & 1 & 0 & 1 \\
\text{y} & 0 & 1 & 0 \\
\text{z} & 0 & 1 & 0 \\
\text{w} & 0 & 0 & 0 \\
\end{array}
\]

\[H: \]
\[
\begin{array}{cccc}
\text{a} & \text{c} & \text{b} & \text{d} \\
\hline
\text{a} & 1 & 0 & 0 & 0 \\
\text{b} & 0 & 1 & 0 & 0 \\
\text{c} & 0 & 0 & 1 & 0 \\
\text{d} & 0 & 0 & 0 & 1 \\
\end{array}
\]

Where \(G \cong H \) with the explicit isomorphism:

\[
\begin{aligned}
w & \rightarrow a \\
x & \rightarrow b \\
y & \rightarrow c \\
z & \rightarrow d
\end{aligned}
\]

Consider the respective adjacency matrices:

\[
A(G) = \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

\[
A(H) = \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

As indicated, the isomorphism is achieved. Thusly:

\[
\begin{aligned}
P &= \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}, & P^T &= \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\end{aligned}
\]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
P \cdot A(G) \cdot P^T = A(H)
\]