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Adversarial Examples
• In 2015, Ian Goodfellow et al., published a landmark paper “Explaining and Harnessing 

Adversarial Examples.”* 

• This research is remarkable in the history of  ML for at least two dominant reasons: 

(1) It demonstrated the general brittleness of  deep models (and data-driven ML workflows 

more generally); this work proved the existence of  adversarial examples to be a feature of  

DNNs and not a bug.  

*https://arxiv.org/pdf/1412.6572.pdf



Adversarial Examples
• In 2015, Ian Goodfellow et al., published a landmark paper “Explaining and Harnessing 

Adversarial Examples.”* 

• This research is remarkable in the history of  ML for at least two dominant reasons: 

(1) It demonstrated the general brittleness of  deep models (and data-driven ML workflows 

more generally); this work proved the existence of  adversarial examples to be a feature of  

DNNs and not a bug.  

Despite their recent “superhuman” successes, this research spawned a renewed interest in 

improving the robustness of  deep models, debiasing these models, and enhancing their 

interpretability – all essential steps toward realizing the broad adoption of  DL-based algorithms 

in commercial products. 

(2) It pointed toward a methodology to generate adversarial examples, and bears close 

conceptual ties with GANS, which we discuss later. 

*https://arxiv.org/pdf/1412.6572.pdf



Adversarial Examples
• In fact, adversarial DL examples were described prior to the Goodfellow paper of  2015, 

including in a well-known paper by Szegedy** – a co-author of  the Goodfellow paper – in the 

year prior. 

• It was previously conjectured that DNNs were susceptible to adversarial examples – but early 

research attributed the existence of  these attacks to the non-linear characteristics of  DNNs. 

The Goodfellow paper argued, conversely, that the linear nature of  DNNs – the very thing that 

made them easy to train, makes them susceptible to such examples. 

* https://arxiv.org/pdf/1312.6199.pdf



Adversarial Examples
• The argument in the paper is as follows: In many problems, the precision of  an individual 

input feature is limited; for instance, with 8-bit images, we discard any visual information falling 

below the 1/255 dynamic pixel intensity range. 

Define a perturbed image as: ෥𝒙 = 𝒙 + 𝜼, where 𝒙 denotes the original image and 𝜼 the 

perturbation, where 𝜼 ∞ < 𝜀, which is to say that all the features of  𝜼 are below the 𝜀-

precision value. 

• Because 𝜼 ∞ does not grow with the dimensionality of  the problem, this means that we can 

make many infinitesimal changes to the input that add up to one large change to the output. 

Which is to say that small perturbations to each pixel can result in a vastly different model 

prediction. 



Adversarial Examples
• Indeed, the researchers demonstrate that this phenomenon generalizes across models of  vastly different 

complexity – from basic logistic regression models to DNNs. 

• They introduce a methodology, termed the “fast gradient sign method” (FGSM). Using gradient-descent, 

they solve for a max-norm (i.e., 𝜼 ∞ < 𝜀) constrained perturbation: 

where sign(·) is the signum function Θ denotes the model parameters, 𝒙 is the input the model and 𝑦 is the 

target associated with 𝒙, 𝐽(Θ, 𝑥, 𝑦) is the cost function used to train the NN, and the final perturbed image is 

defined by: ෥𝒙 = 𝒙 + 𝜼. 

(*) Notice that from this definition, 𝜼 is a vector pointing in the direction of  maximum changing  (with respect 

to the objective function 𝐽, where the condition 𝜼 ∞ < 𝜀 is maintained. 

( ( , , ))sign J y=  η θ x



Adversarial Examples

where sign(·) is the signum function, Θ denotes the model parameters, 𝒙 is the input the model and 𝑦 is the 

target associated with 𝒙, 𝐽(Θ, 𝑥, 𝑦) is the cost function used to train the NN, and the final perturbed image is 

defined by: ෥𝒙 = 𝒙 + 𝜼. 

In summary: We leverage SGD to solve for the perturbation satisfying 𝜼 ∞ < 𝜀 (so it is bounded, enforcing 

the total perturbation to be small); gradient steps are made in the direction of  maximum ascent, so that we move 

“away” from a correct classification of  the image. 

• Notice that FGSM implicitly assumes that when crafting an adversarial example, one has “full access” to the 

NN training cost function 𝐽 Θ, 𝑥, 𝑦 . In a subsequent paper** (also co-authored by Goodfellow), the 

researchers demonstrate that “black box” (i.e., bereft of  access to 𝐽 Θ, 𝑥, 𝑦 ) adversarial attacks are also 

possible. 

**https://arxiv.org/pdf/1602.02697.pdf

( ( , , ))sign J y=  η θ x



Adversarial Examples
• Using FGSM, the authors cause a shallow softmax classifier to have an error rate of  99.9% on MNIST (with 

an average confidence of  79.3%), and a NN with 87.15% error rate on CIFAR-10.



Adversarial Examples
• Using FGSM, the authors cause a shallow softmax classifier to have an error rate of  99.9% on MNIST (with 

an average confidence of  79.3%), and a NN with 87.15% error rate on CIFAR-10.

• Since the initial publication of  this research, adversarial examples have been elicited and studied in a wide 

variety of  domains (beyond images), including audio applications*, identity “dodging”**, and (not least of  

all), adversarial training*** (where a model is intentionally trained on adversarial examples) to improved 

robustness. 

* https://arxiv.org/pdf/1801.01944.pdf

**https://arxiv.org/pdf/1801.00349.pdf

***https://papers.nips.cc/paper/2019/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf



GAN Applications
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GAN Applications
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Sometimes it FAILS!



GAN Applications: 

Google DeepDream

https://www.youtube.com/watch?v=sh-MQboWJug

*Technically not using a GAN, bust still fundamentally uses a CNN as a generative model.

https://www.youtube.com/watch?v=sh-MQboWJug


GAN Applications: 

Image/Video Upsampling

https://www.youtube.com/watch?v=pZXFXtfd-Ak&t=45s

*Teco Gan:

https://www.youtube.com/watch?v=pZXFXtfd-Ak&t=45s


GAN Applications: Image Colorization



GAN Applications: 3D GANs 

https://www.youtube.com/watch?v=mfx7uAkUtCI

https://www.youtube.com/watch?v=mfx7uAkUtCI


GAN Applications: GauGAN

http://nvidia-research-mingyuliu.com/gaugan/

http://nvidia-research-mingyuliu.com/gaugan/


GAN Applications: Text/ Caption 

Generation



GAN Applications: Image Generation

from Text

https://openaccess.thecvf.com/content_cvpr_2018/papers/Xu_AttnGAN_Fine-

Grained_Text_CVPR_2018_paper.pdf



GAN Applications: Music Generation

https://experiments.withgoogle.com/ai/ai-duet/view/

https://storage.googleapis.com/magentadat

a/papers/gansynth/index.html

https://ganharp.ctpt.co/

https://experiments.withgoogle.com/ai/ai-duet/view/
https://ganharp.ctpt.co/


GAN Applications: OpenAI Jukebox

https://jukebox.openai.com/https://arxiv.org/pdf/2005.00341.pdf



GAN FAILS



VAE Background: 

Autoencoders
• Kingma and Welling published “Auto-Encoding Variational Bayes”* in 2013. 

• Recall that an Autoencoder (AE) is a (symmetric)
feed-forward NN containing a bottleneck layer and 
trained using reconstruction loss. 

• AE can naturally be divided into two comparable components:
An encoder network and a decoder network. The encoder
induces a form of  dimensionality reduction (e.g., PCA), while
the decoder can be used to generate synthetic data. 

Feature Latent Space

*https://arxiv.org/pdf/1312.6114.pdf



VAE Background: 

Autoencoders
• Importantly, variational autoencoders (VAEs) add a stochastic mechanism 

(a random vector) that enables the network to generate synthetic outputs; 

additionally, VAEs regularize the latent space.



VAE Background: 

Variational Inference (brief)
• The goal of  variational inference is to approximate a conditional density of latent variables 

(denoted z), given observed variables (denoted x), using optimization. This conditional density 

can be used to produce point or interval estimates for latent variables, form predictive densities 

of  new data, etc. 

• As usual, we can write the conditional density as: 

( , )
( | )

( )

p z x
p z x

p x
=



VAE Background: 

Variational Inference

• Here the denominator contains the marginal density of  the observations, also known as the 

evidence. We can calculate the evidence by marginalizing out the latent variables:

• In many cases, this integral is intractable and so we must resort to approximation techniques. 

On the one hand, we can use Monte Carlo techniques to generate a numerical approximation to 

the exact posterior using samples. 

• By contrast, variational inference provides an analytical solution to the posterior distribution. 

( , )
( | )

( )

p z x
p z x

p x
=

( ) ( , )p x p z x dz= 



VAE Background: 

Variational Inference

• In variational inference, we specify a family Q of  density functions (e.g., Gaussians) over latent 

variables. Each 𝑞(𝑧) ∈ 𝑄 is a candidate approximation to the exact conditional. 

• Our goal is to find the best candidate, i.e., the one closest in KL divergence to the exact 

conditional. Accordingly, we solve the following optimization problem:

•  Once found, q* is the best approximation for the conditional – within the family Q. The 

complexity of  the family determines the complexity of  this optimization problem. 

( , )
( | )

( )

p z x
p z x

p x
=

( )

*( ) argmin ( ( ) || ( | ))
q z Q

q z KL q z p z x


=



VAE Background: 

Variational Inference

• This objective is, however, in general not computable because it requires the aforementioned 

evidence:

( )

*( ) argmin ( ( ) || ( | ))
q z Q

q z KL q z p z x


=



VAE Background: 

Variational Inference

• This objective is, however, in general not computable because it requires the aforementioned 

evidence term:

( )

*( ) argmin ( ( ) || ( | ))
q z Q

q z KL q z p z x


=

( )

*( ) arg min ( ( ) || ( | ))

[log ( )] [log ( | )]

[log ( )] [log ( , )] log ( )

q z Q

q q

q q

q z KL q z p z x

E q z E p z x

E q z E p z x p x



=

= −

= − +



VAE Background: 

Variational Inference

• Because we cannot compute the KL-divergence directly, we instead optimize an alternative 

objective that is equivalent to the KL-divergence up to a constant; this alternative function is 

called the evidence lower-bound (ELBO):

( )

*( ) argmin ( ( ) || ( | ))
q z Q

q z KL q z p z x


=



VAE Background: 

Variational Inference

• Because we cannot compute the KL-divergence directly, we instead optimize an alternative 

objective that is equivalent to the KL-divergence up to a constant; this alternative function is 

called the evidence lower-bound (ELBO):

• The ELBO is the negative KL divergence of  q*, plus log(p(x)) (which is a constant with 

respect to q(z)). 

• Maximizing the ELBO is equivalent to minimizing the KL-divergence. 

( )

*( ) argmin ( ( ) || ( | ))
q z Q

q z KL q z p z x


=

ELBO(q)= [log ( , )] [log ( )]q qE p z x E q z−
( )

*( ) arg min ( ( ) || ( | ))

[log ( )] [log ( , )] log ( )

q z Q

q q

q z KL q z p z x

E q z E p z x p x



=

= − +



VAE Background: 

Variational Inference

• Let’s further analyze ELBO: 

• Notice that ELBO is maximal when: (1) the latent variables explain the data (the likelihood 

expressed by the first term) and (2) when the variational density is close to the prior. 

ELBO(q)= [log ( , )] [log ( )]q qE p z x E q z−

ELBO(q) [log ( )] [log ( | )] [log ( )]

[log ( | )] ( ( ) || ( ))

q q q

q

E p z E p x z E q z

E p x z KL q z p z

= + −

= −



VAE Background: 

Variational Inference

• Let’s further analyze ELBO: 

• Notice that ELBO is maximal when: (1) the latent variables explain the data (the likelihood 

expressed by the first term) and (2) when the variational density is close to the prior. 

Another property of  ELBO is that it lower-bounds the (log) evidence, 

log 𝑝 𝑥 ≥ 𝐸𝐿𝐵𝑂(𝑞) for any 𝑞(z). 

To see this, note: 

(recall that 𝐾𝐿 ≥ 0 – why?) 

ELBO(q)= [log ( , )] [log ( )]q qE p z x E q z−

ELBO(q) [log ( )] [log ( | )] [log ( )]

[log ( | )] ( ( ) || ( ))

q q q

q

E p z E p x z E q z

E p x z KL q z p z

= + −

= −

log ( ) ( ( ) || ( | ) ( )p x KL q z p z x ELBO q= +



VAE

• In summary, the ELBO defines the objective function underlying variational 

inference. 

• However, in order to complete the specification of  this objective function, we still 

need to define the ELBO with respect to the previously mentioned family of  

densities, Q. 



VAE

• In summary, the ELBO defines the objective function underlying variational 

inference. However, in order to complete the specification of  this objective function, 

we still need to define the ELBO with respect to the previously mentioned family of  

densities, Q. 

• There are, naturally, many different families from which one can choose. In 

practice, for improved tractability, a common choice is the so-called mean-field 

variational family; for this set of  functions, the latent variables are assumed to be 

mutually independent, so that each is governed by a distinct factor in the variational 

density. 

1

( ) ( )
m

j j

j

q z q z
=

=



VAE
• Using the ELBO and mean-field family, we have now fully specified the approximate 

conditional inference problem as an optimization problem. 

• In general, maximizing the ELBO is far from trivial. Again, there are many 

optimization techniques available for this task. One common approach is to use 

coordinate ascent variational inference (CAVI, due to Bishop*). CAVI iteratively 

optimizes each factor of  the mean-field variational density, while holding the others 

fixed – in this way we arrive at a local optimum for the ELBO. 

*See: Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg.



VAE
• Using the ELBO and mean-field family, we have now fully specified the approximate 

conditional inference problem as an optimization problem. 

• In general, maximizing the ELBO is far from trivial. Again, there are many 

optimization techniques available for this task. One common approach is to use 

coordinate ascent variational inference (CAVI, due to Bishop*). CAVI iterativly

optimizes each factor of  the mean-field variational density, while holding the others 

fixed – in this way we arrive at a local optimum for the ELBO. 

•  Where 𝑝(𝑧𝑗|𝑧_𝑗 , 𝑥) denotes the total is the “total conditional” (i.e., 𝑝(𝑧𝑗) given 𝑥 and 

all latent variables except 𝑧𝑗, as seen with Gibbs sampling. 

*See: Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg.



VAE
• We previously showed that minimizing our VAE objective is equivalent to maximizing 

the ELBO:



VAE
• We previously showed that minimizing our VAE objective is equivalent to maximizing 

the ELBO:

Notice that the RHS involves (3) quantities: 

(1) q(z) (also written q(z|x)) a projection of  the data x into the latent space

(2) z, the latent variable

(3) p(x|z) the distribution generating the data, given the latent variable. 

• This structure is equivalent to an autoencoder, where q(z|x) is the encoder network; z is 

the encoded representation, and p(x|z) is the decoder network. 



VAE

• For a VAE, we assume that the encoder projects the input to a standard normal 

(i.e., q 𝑧|𝑥 = 𝑁(𝜇(𝑥), Σ(𝑥)); furthermore, for simplicity, we assume the latent 

distribution is a standard normal, i.e., p 𝑧 = 𝑁(0, 𝐼).

ELBO(q) [log ( | )] ( ( | ) || ( ))qE p x z KL q z x p z= −



VAE

• For a VAE, we assume that the encoder projects the input to a standard normal 

(i.e. q 𝑧|𝑥 = 𝑁(𝜇(𝑥), Σ(𝑥)); furthermore, we assume the latent distribution is a 

standard normal, i.e., p 𝑧 = 𝑁(0, 𝐼).

Under these conditions, this KL divergence term admits of  a closed-form: 

• In summary, q 𝑧|𝑥 is represented by a neural network, where the NN maps input 

data (x) to a mean vector 𝜇 𝑥 and (diagonal) covariance matrix Σ 𝑥 (the 

parameters of  the latent space). 

(*) By minimizing the indicated KL divergence, we encourage the latent space to 

conform with a standard Normal. 

ELBO(q) [log ( | )] ( ( | ) || ( ))qE p x z KL q z x p z= −



VAE

• Notice that the first term on the RHS is equivalent to MLE; so, to maximize this 

term we want to minimize the reconstruction error of  the decoder with respect 

to a  given an input x, the associated encoding z, and the reconstruction of  this 

encoding. 

ELBO(q) [log ( | )] ( ( | ) || ( ))qE p x z KL q z x p z= −



VAE

• We are almost done – however, recall that  we want the latent parameter (z) 

corresponding with the input (x) to be sampled z~𝑁(μ(x),Σ(x)). 

• However, in order to enable training of  the q(z|x) network using backpropagation, 

the sampling process must exist outside of  the network itself. To achieve this, we use 

the so-call “reparameterization trick” (inverse sampling of  a Gaussian). 

ELBO(q) [log ( | )] ( ( | ) || ( ))qE p x z KL q z x p z= −
( )

*( ) argmin ( ( ) || ( | ))
q z Q

q z KL q z p z x


=

(1) Want to minimize this
(2) Equivalent to maximizing ELBO

(3) Equivalent to minimizing reconstruction 

error and KL divergence



VAE
• Imposing a structure on the latent space (e.g., Gaussian) is a powerful idea for 

generative models. This approach has the effect of  regularizing the latent space

(and hence avoiding overfitting to the data). 

• Optimizing with both reconstruction loss and KL divergence loss additionally 

enforces “similarity embedding” – which is to say, similar inputs to the VAE are 

mapped close to one another in the latent space. 



VAE
• Reconstructing faces with a VAE:

• Generating synthetic faces with a VAE:



VAE: Latent Space Arithmetic
• Notice that it is possible to manipulate the latent space associated with a generative 

model using latent space arithmetic. 

•For instance, suppose we wish to vary a particular attribute of  our generated 

synthetic data. The CelebA dataset includes annotations with various attributes, e.g., 

wearing hat, smiling, etc. 



VAE: Latent Space Arithmetic
• In a similar vein to the latent space arithmetic seen with word-embedding models 

(e.g., Word2Vec), one can use vector arithmetic to meaningfully augment latent 

vectors. 

• For example, if  we want to generate faces that are “smiling”, we could in principle 

take the average latent embedding of  all the faces with the attribute smiling in our 

training set and subtract from this the average latent embedding of  all the faces 

without the attribute smiling. This gives us a vector in the latent space pointing from 

“non-smiling” to “smiling”. 

• Now to apply “smiling” to a latent embedding, we apply the following 

transformation: 

( ) = +z z feature_vector



VAE: Latent Space Arithmetic



GAN
• The original GAN paper (Goodfellow et al, 2014) is 

one of  the most influential ML papers in recent years. 

• Simply put, a GAN is a battle between two adversaries:

the generator and the discriminator. 

• The generator attempts to convert random noise into

observations that appear as though they were sampled 

from the original dataset. 

• Conversely, the discriminator tries to predict whether 

an observation comes from the original dataset or is a 

forgery produced by the generator. 

https://arxiv.org/pdf/1406.2661.pdf



GAN
• At the beginning of  this process, the generator outputs noisy images and the discriminator 

predicts randomly. 

• The key to GANs lies in how we effect the training of  the two networks in tandem, so 

that as the generator becomes more adept at fooling the discriminator, the discriminator 

must adapt in order to maintain its ability to spot “fakes”.



GAN
• Here’s an example specification of  a GAN; the architecture of  the discriminator is given on 

the right. 

Discriminator: define input; stack convolutional layers; flatten the last convolutional layer, 

etc.;  note that a stride of  size 2 in the conv layers will reduce the overall size of  the tensor; 

the final “dense” layer (using sigmoid activation) ensures the output is a scalar in the range 

[0,1], corresponding with the probability that the input image is real. 



GAN
• The input to the generator is a vector, usually drawn from a multivariate Normal

distribution; the output is an image of  the same size as the original dataset. 

• The generator serves the same purpose as the decoder for a VAE, in that it converts a 

vector from the model latent space into an image. The trope of  mapping from a low-to-high 

dimensional space is common in DL; for a CNN, as we have seen, this operation is 

commonly known as deconvolution (also: transposed convolution).



GAN: Transposed Convolution
• The transposed convolution operation is effected by performing a “backward strided

convolution”. 

• In the images below, the blue maps are inputs; cyan maps are outputs.  

• Traditionally, one could achieve up-sampling by applying interpolation schemes (e.g. bilinear 

interpolation). Modern architectures such as NNs, however, tend to let the network itself  

learn the proper transformation automatically, without human intervention. 

Basic convolution with 

padding=1, stride =2 
Transposed conv with no 

padding, no stride

Transposed conv with no 

padding and stride



GAN: Transposed Convolution
• Let’s dive a little deeper into the contrast between convolution and transposed convolution. 

• With convolution, consider C as the kernel, Large as the input, and Small as the output 

image after convolution. Following convolution, we down-sample the large image into a small 

output image, i.e., C x Large = Small. 

• In the example shown, we take a 4x4 input matrix and flatten it to 16x1; in addition, we 

transform the 3x3 kernel into a 4x16 sparse, orthogonal matrix. Using matrix 

multiplication, the resultant matrix is 4x1, which we then subsequently transform back to a 

2x2 output. 



GAN: Transposed Convolution
• If, we multiply the equation C x Large = Small, by CT, we arrive at: CTxSmall = Large. In 

this way multiplication by the transposed convolution yields an up-sampling procedure. (for 

reference: we encountered this operation previously when discussing Aes and 

backpropagation through CNNs). 

• Note that in practice, using a transposed convolution can lead to the presence of  

checkerboard artifacts; to alleviate this, practitioners commonly apply a two-step process 

instead: (i) bilinear up-sample, followed by (ii) convolution. 

• For a comprehensive treatment of  these topics, see: https://arxiv.org/abs/1603.07285

https://arxiv.org/abs/1603.07285


GAN: Training
• In general, training the discriminator amounts to a supervised learning problem: we create a 

training set of  (randomly inserted) real observations from the dataset interspersed with 

outputs produced by the generator (label 1 for true image, 0 for fakes). Recall that binary 

cross-entropy loss is defined: 

( ) ( )
1

1
( , ) log( 1 log(1 ))

n

i i i i

i

L y p y p y p
n =

= − + − −



GAN: Training
• In general, training the discriminator amounts to a supervised learning problem: we create a 

training set of  (randomly inserted) real observations from the dataset interspersed with 

outputs produced by the generator (label 1 for true image, 0 for fakes). Recall that binary 

cross-entropy loss is defined: 

• To train the GAN discriminator D, we calculate the loss when comparing predictions for 

real images 𝑝𝑖 = 𝐷(𝑥𝑖) to the response 𝑦𝑖= 1 and predictions for generated images 𝑝𝑖 =
𝐷(𝐺 𝑧𝑖 ) to the response 𝑦𝑖= 0. Therefore, for the GAN discriminator, minimizing the loss 

function can be written as follows: 

( ) ( )
1

1
( , ) log( 1 log(1 ))

n

i i i i

i

L y p y p y p
n =

= − + − −

  ( )( )~ ~min log ( ) log 1 ( ( ))
X ZD x p z pE D x E D G z− + −  



GAN: Training
• Training the generator is considerably more difficult, as we don’t readily have access 

to a training set that tells us the true image that a particular point in the latent space should 

be mapped to, for instance. 

• To train the generator, we connect it to the discriminator by feeding the output from the 

generator into the discriminator so that the output from the combined model is the 

probability that a generated image is real (according to the discriminator). 



GAN: Training
• We can train the combined model by creating training batches consisting of  randomly 

generated latent vectors as input and a response which is set to 1, since we want to train the 

generator to produce images that the discriminator thinks are real. The loss is just binary 

cross-entropy loss between the output from the discriminator and the response vector of  1. 

• Importantly, we freeze the weights of  the discriminator while we are training the 

combined model, so that only the generator’s weights are updated. 



GAN: Training

• To train the GAN generator G, we calculate the loss when comparing predictions for the 

generated images 𝑝𝑖 = 𝐷(𝐺 𝑧𝑖 ) to the response 𝑦𝑖 = 1.  Therefore, for the GAN 

generator, the minimizing loss function can be written as follows: 

( )( )~min log ( ( ))
ZG z pE D G z−   



GAN: Training

( )( )~min log ( ( ))
ZG z pE D G z−   



GAN: Training
• GAN training is equivalent to a zero-sum non-cooperative game. From a game 

theory context, the GAN model converges when the discriminator and the generator 

reach a Nash equilibrium. 

• If  trained properly (which commonly requires the use of  several “tricks” which we 

mention next), the discriminator and generator will converge to an equilibrium that 

allows the generator to learn meaningful information from the discriminator and the 

quality of  the images will improve. 



GAN: Challenges
• GANs are notoriously difficult to train, for several reasons: 

• Mode Collapse: Mode collapse occurs when the generator finds a small number of  

samples that fool the discriminator and therefore the generator isn’t able to produce any 

examples other than this limited set. 

• This can occur, say if  we train the generator over several batches without updating the 

discriminator in between. In this situation, the generator would be inclined to find a 

singly observation that always fools the discriminator (the mode). 

• Oscillating Loss: The losses of  the discriminator and generator oscillate wildly. 

GANs are trained successfully when we observe a loss stabilization (shown in the 

previous slide); unfortunately, oscillating loss is common to vanilla GAN approaches. 



GAN: CycleGAN

https://arxiv.org/pdf/1703.10593.pdf



GAN: CycleGAN
• For the image translation task, CycleGAN trains without using paired examples.

• CycleGAN is composed of (4) sub-models: two generators and two discriminators. 

The first generator GAB converts images from domain A to domain B; whereas the 

second generator GBA, converts images from domain B to domain A. 

• The authors employ a U-Net architecture (shown on the right) for the generator 

models. 



“World Models” GAN
• Ha and Schmidhuber (NeurIPS, 2018) presented “World Models”*, a paradigm for 

training RL agents using a VAE, whereby an agent is trained:

“entirely insides of  its own hallucinated dream generated by its world model, 

and [we] transfer this policy back into the actual environment.”  

*https://worldmodels.github.io/

*https://arxiv.org/pdf/1803.10122.pdf

https://worldmodels.github.io/


“World Models” GAN
The pipeline consists of  (3) fundamental components: 

(1) The Vision Model (V), A VAE that encodes high-dimensional observations into a 

low-dimensional latent vector. 



“World Models” GAN
The pipeline consists of  (3) fundamental components: 

(2) A Memory RNN (M): this unit approximates 𝑝(𝑧𝑡) using a GMM (Gaussian 

Mixture Model); the RNN is trained to output the probability distribution of  the next 

latent vector 𝑧𝑡+1 given the current and past information available to it -- specifically 

predict: 𝑝(𝑧𝑡+1|𝑎𝑡, 𝑧𝑡, ℎ𝑡)

• Technically, 𝑀 incorporates a Mixture Density Network (MDN), which has been 

used previously for “sequence generation” (e.g., handwriting, as shown below left). 



“World Models” GAN
The pipeline consists of  (3) fundamental components: 

(3) A controller (C) (a simple, ~1k parameters) RL agent that determines the course of  

actions to take in order to maximize the expected cumulative reward of  the agent during 

a rollout of  the environment. 

In summary: (1) VAE learns a latent mapping of  images to zt;

(2) the MDN-RNN module produces the next frame hidden context and next 

frame “dream” latent vector zt+1; 

(3) the controller C executes the roll-out simulation in the “dream-world.”



“World Models” GAN
Training with simulated dreams!

• Because the model can predict the future (!), the authors can use it to generate 

hypothetical racing scenarios on its own. They produce the probability distribution of  

the latent variable, given the current states, and sample a zt+1 in place of  a real 

observation. The controller acts in the hallucinated environment generated by M. 



“World Models” GAN
VizDoom from World Models. 



GAMEGAN
• In 2014 Minh et al., (Deepmind) published the seminal research “Playing Atari with Deep 

Reinforcement Learning.”*

• This work leveraged DL and RL together to produce a generalizable algorithm with 

“superhuman” performance on Atari games. Remarkably, this model was trained strictly through 

self-play (i.e., the agent has no prior knowledge or information about the game engine/logic). 

*https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

*RL and the Atari paper are covered in depth in my 4/541 course. 



GAMEGAN
• Kim et al. published the outstanding work “Learning to Simulate Dynamic Environments with 

GameGAN”* (2020), an algorithm that learns to generate an underlying game engine(!) from 

observations of  gameplay (including user inputs) – the model is not given access to any 

underlying game logic or the actual game engine at any time. 

*https://arxiv.org/pdf/2005.12126.pdf



GAMEGAN

• While the domain of  this research focuses on game-playing, the larger motivation behind this 

research is to push the state-of-the-art to improve the fidelity of  complex simulations, and 

to show that the dynamics of  these environments can be learned effectively, and indirectly by 

leveraging ML. 

• Complex simulations are essential to many branches of  science, including the medical 

sciences, particularly drug efficacy studies, robotics, automation, engineering, physics, chemistry, 

etc. The authors argue that learning to simulate by simply observing is the most scalable way 

going forward. 

*https://arxiv.org/pdf/2005.12126.pdf



GAMEGAN
• GAMEGAN uses an action-conditioned (conditioned on the key pressed by an agent) 

GAN to predict the next frame of  a game. This research is similar to GAN-based video 

prediction models which predict future frames, however an extra challenge for this problem 

setting is the presence of  stochasticity in the environment (e.g., ghost movements in Pac-

man). 

• To this end, GAMEGAN not only predicts the next frame of  the game, but it must also 

learn the intrinsic dynamics of  the environment. 



GAMEGAN
• The authors introduce several key innovations in their workflow, including a memory 

module to better capture long-term prediction consistency, and a carefully-designed decoder 

that disentangles static and dynamic components of  the game (e.g., maze elements vs. 

ghosts). 

Visualizing memory module: location of  egocentric

agent is tracked with attention; notice maze generation

is consistent when return to location at t=0. 

Decoder disentangles static and dynamic components of  game. 



GAMEGAN

• GAMEGAN focuses on action-conditioned simulation in the image space with an 

egocentric agent that moves according to the given action 𝑎𝑡~𝐴 at a time 𝑡 and generates a 

new observation/state 𝑥𝑡+1.

• The authors assume there is also a stochastic variable 𝑧𝑡~𝑁(0, 𝐼) that corresponds with 

randomness in the environment. Given the history of  images 𝑥1:𝑡, along with 𝑎𝑡 and 𝑧𝑡, 
GameGAN predicts the next image 𝑥𝑡+1. 



GAMEGAN

• In total, GAMEGAN consists of  three key components: 

(1) Dynamics Engine: learns “licit” environment transitions (e.g., Pac-Man can’t move 

through a wall, etc.) using an action-conditioned LSTM. As with a standard LSTM, 

this module maintains both ℎ𝑡 hidden representation and 𝑐𝑡 context parameters, in 

addition to processing action and stochastic variables. 



GAMEGAN

• In total, GAMEGAN consists of  three key components: 

(2) Memory Module: maintains long-term consistency of  static elements (e.g., maze). 

Challenges for conventional RNNs include: (i) need to remember every scene it generates, 

and (ii) design a loss function that enforces such long-term consistency. 

• Motivated by Neural Turing Machines* (NTM), the memory module has a memory 

block and attended location at time 𝑡 (denoted 𝛼𝑡). One can think of  the memory block as 

corresponding with the location of  the egocentric agent and 𝛼𝑡 corresponds with the 

current location. Enforcing long-term consistency amounts to remembering generated 

static elements.

*https://arxiv.org/pdf/1410.5401.pdf



GAMEGAN

• In total, GAMEGAN consists of  three key components: 

(3) Rendering engine: responsible for rendering simulated image 𝑥𝑡+1, given the internal 

state ℎ𝑡 (from dynamics engine, LSTM). The authors introduce a specialized rendering 

architecture to ensure long-term consistency by learning to produce disentangled scenes. 



GAMEGAN

(3) Rendering engine (RE): responsible for rendering simulated image 𝑥𝑡+1, given the 

internal state ℎ𝑡 (from dynamics engine, LSTM). The authors introduce a specialized 

rendering architecture to ensure long-term consistency by learning to produce disentangled 

scenes.

• The RE takes as input ℎ𝑡 (from LSTM) and 𝑚𝑡 from the memory module. In the first step 

the RE applies a CNN, outputting an attribute map 𝐴𝑚 and object map 𝑂𝑚; the inputs (ℎ𝑡
and 𝑚𝑡 ) are also fed into linear layer to get a type vector, denoted 𝑣𝑚. 



GAMEGAN

(3) Rendering engine (RE): responsible for rendering simulated image 𝑥𝑡+1, given the 

internal state ℎ𝑡 (from dynamics engine, LSTM). The authors introduce a specialized 

rendering architecture to ensure long-term consistency by learning to produce disentangled 

scenes.

• 𝑂𝑚 and 𝑣𝑚 are concatenated and fed into an additional conv net, producing 𝑅𝑚 the rough 

sketch of  where each object is located. 



GAMEGAN

(3) Rendering engine (RE): responsible for rendering simulated image 𝑥𝑡+1, given the 

internal state ℎ𝑡 (from dynamics engine, LSTM). The authors introduce a specialized 

rendering architecture to ensure long-term consistency by learning to produce disentangled 

scenes.

• The location is insufficient alone to render an accurate simulation, as attributes (e.g., color 

of  ghost) must also be accounted for. The attribute map 𝐴𝑘 is elementwise multiplied by the 

rough location tensor 𝑅𝑘 , then fed through a transposed convolution, which renders a fine 

mask η𝑘 that accounts for the “depth” of  objects (to handle occlusions such as Pac-Man 

intersecting a ghost). The final output is the predicted state 𝑥𝑡+1. 



GAMEGAN
Finally, the model is trained using three adversarial loss components:

(1) Single image discriminator: to ensure each generated frame is realistic, the discriminator and 

GameGAN simulator play an adversarial game. 

(2) Action-conditioned discriminator: GameGAN needs to reflect the actions taken by the agent 

faithfully, this loss reflects predicted image and action provided by the agent. 

(3) Temporal discriminator: Using a 3D convolution network, the authors employ a temporal 

discriminator to decide whether a sequence of  frames is real or fake. 

The authors also introduce a cycle loss function that encourages the model to keep static elements in 

memory. 

https://nv-tlabs.github.io/gameGAN/



• Graph data can denote a very large sets of  diverse systems: molecules, social networks, images, etc.

• GNNs are a burgeoning DL-based method operating on graphs. 

• Many classic DL models (e.g., CNN, RNN, LSTM, attention models, etc.) have been “ported” to the 

GNN framework; GNNs can encompass classification, regression prediction, segmentation, etc., tasks. 

•Why use GNNs? (1) Natural fit for graph data; (2) GNNs can learn anisotropic filters (for CV tasks).

https://arxiv.org/pdf/1901.00596.pdf

“Graphs are the most important

discrete models in the world” G. Strang (MIT)

Graph Neural Networks 



Basics of  GNNs

• For GNNs, we have a global graph structure; in addition, each node has an associated 

feature vector (e.g., encoding of  atom in a molecule, RGB values in image, etc.).  Just like with 

standard NNs, GNNs learn an embedding – a node embedding.  

• GNNs perform forward propagation through “message-passing”, e.g., aggregating local 

information and then performing a DNN-type computation, such as a linear 

transformation followed by a non-linear operation.

Graph Neural Networks 



• Aggregation typically involves some basic operation on the neighbors of  a target node 

(e.g., mean or sample mean of  neighbors). Aggregation preserves local information in the 

graph. 

• Typically, a single linear layer NN is used to propagate updates to nodes from one-step 

neighbors. 

• This “unrolling” process continues for two-step neighbors, and so on. The parameters 

of  the GNN are comprised of  the weights used in the message-passing process. 

Graph Neural Networks 



• Unlike classical CNNs, GCNs can learn anisotropic filters. Notice that “convolution” 

does not necessarily entail image processing. Instead, one can think of  label information 

over a graph as being “smoothed” over the graph.  

• In the original GCN* (Kipf, et al.) paper, propagation is defined using the normalized 

graph Laplacian: 

*https://arxiv.org/pdf/1609.02907.pdf

Graph Neural Networks 




