Adversarial Examples, VAEs and GANs
CS 410/510: CV & DL

First... A Message from Mark

Outline

* Adversarial Examples

* Applications of GANs/VAEs

e VAEs
e GANs
e GAMEGAN

* Graph Neural Networks

Adversarial Examples

* In 2015, Ian Goodfellow et al., published a landmark paper “Explaining and Harnessing
Adversarial Examples.”*

EXPLAINING AND HARNESSING
ADVERSARIAL EXAMPLES
Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy

Google Inc., Mountain View, CA
{goodfellow, shlens, szegedy}@google.com

* This research is remarkable in the history of ML for at least two dominant reasons:

(1) It demonstrated the general brittleness of deep models (and data-driven ML workflows
more generally); this work proved the existence of adversarial examples to be a feature of

DNNs and not a bug,

*https:/ /atxiv.otg/ pdf/1412.6572.pdf

Adversarial Examples

* In 2015, Ian Goodfellow et al., published a landmark paper “Explaining and Harnessing
Adversarial Examples.”*

EXPLAINING AND HARNESSING
ADVERSARIAL EXAMPLES
Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy

Google Inc., Mountain View, CA
{goodfellow, shlens, szegedy}@google.com

* This research is remarkable in the history of ML for at least two dominant reasons:

(1) It demonstrated the general brittleness of deep models (and data-driven ML workflows

more generally); this work proved the existence of adversarial examples to be a feature of

DNNs and not a bug,

Despite their recent “superhuman’ successes, this research spawned a renewed interest in
improving the robustness of deep models, debiasing these models, and enhancing their
interpretability — all essential steps toward realizing the broad adoption of DL-based algorithms
in commercial products.

(2) It pointed toward a methodology to generate adversarial examples, and bears close
conceptual ties with GANS, which we discuss later.

*https:/ /atxiv.otg/ pdf/1412.6572.pdf

Adversarial Examples

* In fact, adversarial DL examples were described prior to the Goodfellow paper of 2015,
including in a well-known paper by Szegedy** — a co-author of the Goodfellow paper — in the
year priof.

* It was previously conjectured that DNNs were susceptible to adversarial examples — but early
research attributed the existence of these attacks to the non-linear characteristics of DNNss.
The Goodfellow paper argued, conversely, that the linear nature of DNNs — the very thing that
made them easy to train, makes them susceptible to such examples.

* https:/ /arxiv.org/pdf/1312.6199.pdf

Adversarial Examples

* The argument in the paper is as follows: In many problems, the precision of an individual
input feature is limited; for instance, with 8-bit images, we discard any visual information falling
below the 1/255 dynamic pixel intensity range.

Define a perturbed image as: X = x + 1, where X denotes the original image and i the
perturbation, where ||1]|» < &, which is to say that all the features of 1 are below the &-
precision value.

* Because ||1|| o does not grow with the dimensionality of the problem, this means that we can
make many infinitesimal changes to the input that add up to one large change to the output.
Which is to say that small perturbations to each pixel can result in a vastly different model
prediction.

Adversarial Examples

* Indeed, the researchers demonstrate that this phenomenon generalizes across models of vastly different
complexity — from basic logistic regression models to DNN:Zs.

* They introduce a methodology, termed the “fast gradient sign method” (FGSM). Using gradient-descent,
they solve for a max-norm (i.e., |[|9]| < €) constrained perturbation:

n=¢-sign(vl(0,x,Yy))

where sign(*) is the signum function ® denotes the model parameters, X is the input the model and y is the
target associated with x, J(®, x, y) is the cost function used to train the NN, and the final perturbed image is
defined by: X = x + 7.

(*) Notice that from this definition, 7 is a vector pointing in the direction of maximum changing (with respect
to the objective function J, where the condition ||| < € is maintained.

Adversarial Examples
n=¢-sign(vVl(0,x,Y))

where sign(*) is the sighum function, ® denotes the model parameters, X is the input the model and Y is the
target associated with x, J(®, x, y) is the cost function used to train the NN, and the final perturbed image is

deﬁned by x == x + n R . Tram\ngsamples” ”” Class A
) / \

Adversarial
regions

Mode

Adversarial
regions

Adversarial
regions

In summary: We leverage SGD to solve for the perturbation satisfying [|[7]| < € (so it is bounded, enforcing
the total perturbation to be small); gradient steps are made in the direction of maximum ascent, so that we move

“away” from a correct classification of the image.

* Notice that FGSM implicitly assumes that when crafting an adversarial example, one has “full access” to the
NN training cost function J(®, x, ¥). In a subsequent paper** (also co-authored by Goodfellow), the
researchers demonstrate that “black box™ (i.e., bereft of access to J(0, x, ¥)) adversarial attacks are also

possible.

**https://atxiv.org/pdf/1602.02697.pdf

Adversarial Examples

* Using FGSM, the authors cause a shallow softmax classifier to have an error rate of 99.9% on MNIST (with
an average confidence of 79.3%), and a NN with 87.15% error rate on CIFAR-10.

+.007 x

: x +
z sign(VaJ (6, 2,4)) esign(VgJ (6, x,y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Adversarial Examples

* Using FGSM, the authors cause a shallow softmax classifier to have an error rate of 99.9% on MNIST (with
an average confidence of 79.3%), and a NN with 87.15% error rate on CIFAR-10.

+.007 x

z sign(VaJ (6, 2,4)) csign(V:j_(G. z,y))

“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

e Since the initial publication of this research, adversarial examples have been elicited and studied in a wide
variety of domains (beyond images), including audio applications*, identity “dodging”**, and (not least of
all), adversarial training*** (where a model is intentionally trained on adversarial examples) to improved

robustness.
"it was the
:> best of times,
it was the
worst of times"
WMMWMN x 0.001
Yy -
"it is a truth
universally
acknowledged
that a single"
.V

* https:/ /arxiv.org/pdf/1801.01944.pdf
*https:/ /arxiv.org/pdf/1801.00349.pdf
*khttps:/ / papers.nips.cc/papet/2019/file/7503cfacd12053d309b6bed5¢89de212-Paper.pdf

GAN Applications

Thispersondoesnotexist.com

N Ares

Thispersondoes

GAN Applications:
Google DeepDream

*Technically not using a GAN, bust still fundamentally uses a CNN as a generative model.

https://www.youtube.com/watch?v=sh-MQboW]ug

https://www.youtube.com/watch?v=sh-MQboWJug

Image/Vid

GAN Applications:

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network

Christian Ledig, Lucas Theis, Ferenc Huszir, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi

Twitter

Abstract

Despite the breakthroughs in accuracy and speed of
single image super-resolution using faster and deeper con-
volutional neural networks, one central problem remains
largely unsolved: how do we recover the finer texture details
when we super-resolve at large upscaling factors? The
behavior of optimization-based supe I methods is
principally driven by the choice of the objective function.
Recent work has largely focused on minimizing the mean
squared reconstruction error. The resulting estimates have
high peak signal-to-noise ratios, but they are often lacking
high-frequency details and are perceptually unsatisfving in
the sense that they fail to match the fidelity expected at
the higher resolution. In this paper, we present SRGAN,
a generative adversarial network (GAN) for image super-
resolution (SR). To our knowledge, it is the first framework
capable of inferring photo-realistic natural images for 4x
upscaling factors. To achieve this, we propose a perceptual
loss function which consists of an adversarial loss and a
content loss. The adversarial loss pushes our solution to
the natural image manifold using a discriminator network
that is trained to differentiate between the super-resolved
images and original photo-realisti In addition, we

et o s

*Teco Gan:

ro,aacostadiaz,aaitken,atejani, jtotz,

1. Introduction

The highly challenging task of estimating a high-
resolution (HR) image from its low-resolution (LR)
counterpart is referred to as super-resolution (SR). SR
received substantial attention from within the computer
vision research community and has a wide range of
applications [0, 71, 43].

4x SRGAN (proposed) original

Figure 1: Super-resolved image (left) is almost indistin-
guishable from original (right). [4x upscaling]

The ill-posed nature of the underdetermined SR problem
is particularly p 1 for high upscaling factors, for
which texture detail in the reconstructed SR images is
typically absent. The optimization target of supervised
SR i is ly the minimization of the mean

www.youtube.com/watch?v=pZ XFXtfd-Ak&t=45s

https:

SRGAN

(21.15dB/0.6868)
—

LEARNING TEMPORAL COHERENCE VIA SELF-
SUPERVISION FOR GAN-BASED VIDEO GENERATION

Mengyu Chu’, You Xie’, Jonas Mayer, Laura Leal-Taixé, Nils Thuerey
Department of Computer Science

Technical University of Munich

Munich, Germany

{m

jonas.a.mayer, leal.taixe, ni

thuerey}@tt

ABSTRACT

We focus on temporal self-supervision for GAN-based video generation tasks.
While ial training lly yields g models for a variety of

co Upsamplin

https://www.youtube.com/watch?v=pZXFXtfd-Ak&t=45s

GAN Applications: Image Colorization

Image Colorization using
Generative Adversarial Networks

Kamyar Nazeri, Eric Ng, and Mehran Ebrahimi

Faculty of Science, University of Ontario Institute of Technology
2000 Simcoe Street North, Oshawa, Ontario, Canada L1H 7K4
{kamyar .nazeri, eric.ng,mehran.ebrahimi}@uoit.ca
http://www.Imaginglab.ca/

Abstract. Over the last decade, the process of automatic image col-
orization has been of significant interest for several application areas
including restoration of aged or degraded images. This problem is highly
ill-posed due to the large degrees of freedom during the assignment of
color information. Many of the recent developments in automatic col-
orization involve images that contain a common theme or require highly
processed data such as semantic maps as input. In our approach, we
attempt to fully generalize the colorization procedure using a condi-
tional Deep Convolutional Generative Adversarial Network (DCGAN).
The network is trained over datasets that are publicly available such as
CIFAR-10 and Places365. The results between the generative model and
traditional deep neural networks are compared.

1 Introduction

The automatic colorization of grayscale images has been an active area of re-
search in machine learning for an extensive period of time. This is due to the
large variety of applications such color restoration and image colorization for
animations. In this manuscript, we will explore the method of colorization using
generative adversarial networks (GANs) proposed by Goodfellow et al. [1]. The
network is trained on the datasets CIFAR-10 and Places365 [2] and its results
will be compared with those obtained using existing convolutional neural net-
works (CNN).

Models for the colorization of grayscales began back in the early 2000s. In 2002,
Welsh et al. [3] proposed an algorithm that colorized images through texture
synthesis. Colorization was done by matching luminance and texture informa-
tion between an existing color image and the grayscale image to be colorized.
However, this proposed algorithm was defined as a forward problem, thus all so-
lutions were deterministic. Levin et al. [4] proposed an alternative formulation to
the colorization problem in 2004. This formulation followed an inverse approach,
where the cost function was designed by penalizing the difference between each
pixel and a weighted average of its neighboring pixels. Both of these proposed
methods still required significant user intervention which made the solutions less
than ideal.

Applications: 3D GANs

Learning a Probabilistic Latent Space of Object Shapes
via 3D Generative-Adversarial Modeling

4 7’ = T
/ >
et
1 A
1=Gx1ex16X1 64x32X32X32 /
z G(z) in 3D Voxel Space
64x64x64

Figure 1: The generator of 3D Generative Adversarial Networks (3D-GAN)

fIFISL] ot rerenm
A e TR T T

Figure 2: Shapes synthesized by 3D-GAN

Abstract

We study the problem of 3D object generation. We propose a novel framework, namely 3D Generative Adversarial Network (3D-GAN), which
generates 3D objects from a probabilistic space by leveraging recent advances in volumetric convolutional networks and generative
adversarial nets. The benefits of our model are three-fold: first, the use of an adversarial criterion, instead of traditional heuristic criteria,
enables the generator to capture object structure implicitly and to synthesize high-quality 3D objects; second, the generator establishes a
mapping from a low-dimensional probabilistic space to the space of 3D objects, so that we can sample objects without a reference image or
CAD models, and explore the 3D object manifold; third, the adversarial discriminator provides a powerful 3D shape descriptor which,
learned without supervision, has wide applications in 3D object recognition. Experiments demonstrate that our method generates high-
quality 3D objects, and our unsupervisedly learned features achieve impressive performance on 3D object recognition, comparable with
those of supervised learning methods.

https://www.youtube.com/watch?v=mfx7uAkUtCI

https://www.youtube.com/watch?v=mfx7uAkUtCI

GAN Applications: GauGAN

Semantic Image Synthesis with Spatially-Adaptive Normalization

Taesung Park'?* Ming-Yu Liu> Ting-Chun Wang®> Jun-Yan Zhu®*

'UC Berkeley >NVIDIA >3MIT CSAIL

M

Semantic 1 Using S

sofeur] ajf1g Juisn vonemdiueyy ajf1g

&

Figure 1: Our model allows user control over both semantic and style as synthesizing an image. The semantic (e.g., the
existence of a tree) is controlled via a label map (the top row), while the style is controlled via the reference style image (the
leftmost column). Please visit our website for interactive image synthesis demos.

Abstract https:

We propose spatially-adaptive normalization, a simple 1. Introduction
but effective layer for synthesizing photorealistic images
given an input semantic layout. Previous methods directly
[feed the semantic layout as input to the deep network, which
is then processed through stacks of convolution, normaliza-
tion, and nonlinearity layers. We show that this is subop-
timal as the normalization layers tend to “wash away” se-
mantic information. To address the issue, we e propose ll\llllf

the innut lavaeut for dulati the in

Conditional image synthesis refers to the task of gen-
erating photorealistic images conditioning on certain in-
put data. Seminal work computes the output image by
stitching pieces from a single image (e.g., Image Analo-
gies [16]) or using an image collection [7, 14, 23, 30, 35].
Recent methods directly learn the mapping using neural net-
works [3,6, 22, 47,45, 54,55, 56]. The latter methods are

http://nvidia-research-mingyuliu.com/gaugan

http://nvidia-research-mingyuliu.com/gaugan/

Pizza

MLE

GAN Applications: Text/ Caption

(Generation

Generating Diverse and Accurate Visual Captions by Comparative Adversarial
Learning

Diangi Li'*, Qiuyuan Huang’, Xiaodong He**, Lei Zhang®, Ming-Ting Sun
!'University of Washington, 2Microsoft Research, *JD AI Research
{diangili, mts} @uw.edu, xiaodong.he @jd.com, {leizhang, gihua}@microsoft.com

a pizza on a plate on a wooden ta-
ble

a cheese pizza on a plate sits on a
table

a pizza sitting on a plate next to a

glass of wine

a plate of pizza and a glass of beer

on the table

the pizza is covered with cheese
and tomatoes

a pizza topped with lots of top-
pings is ready to be cut

a close up of a sliced pizza on a
plate
a partially eaten pizza is being

cooked on a pan

Car

a green garbage truck in a business
district

a large green truck driving past a
tall building

an antique black car sitting in a
parking lot

an old style truck parked in a park-
ing space near a building

a group of buses driving down a
street
a city street filled with taxis and
buses

the city buses are driving through
the traffic

people are waiting in line as the
bus travel down the road

people gather to a street where a
bus get ready to board

QUEENE :

I had thought thou hadst a Roman; for the oracle,
Thus by All bids the man against the word,

Which are so weak of care, by old care done;

Your children were in your holy love,

And the precipitation through the bleeding throne.

BISHOP OF ELY:

Marry, and will, my lord, to weep in such a one were prettiest;

Yet now I was adopted heir
of the world's lamentable day,
To watch the next way with his father with his face?

ESCALUS:
The cause why then we are all resolved more sons.

VOLUMNIA:
0, no, no, no, no, no, no, no, no, no, no, no, no, no,
And love and pale as any will to that word.

QUEEN ELIZABETH:
But how long have I heard the soul for this world,
And show his hands of life be proved to stand

PETRUCHIO:

I say he look'd on, if I must be content

To stay him from the fatal of our country’s bliss.
His lordship pluck'd from this sentence then for prey,
And then let us twain, being the moon,

were she such a case as fills m

no,

no,

no,

no,

no,

no,

no,

it is no sin it shoul

Applications: Image Generation

from

AttnGAN: Fine-Grained Text to Image Generation
with Attentional Generative Adversarial Networks

Tao Xu*', Pengchuan Zhang?, Qiuyuan Huang’,
Han Zhang?®, Zhe Gan®, Xiaolei Huang', Xiaodong He’

"Lehigh University “Microsoft Research “Rutgers University Duke University °JD Al Research
{tax313, xih206}@lehigh.edu, {penzhan, gihua, xiaohe}@microsoft.com
han.zhang@cs.rutgers.edu, zhe.gan@duke.edu, xiaodong.he@jd.com

Abstract

In this paper, we propose an Attentional Generative Ad-
versarial Network (AtnGAN) that allows attention-driven,
multi-stage refinement for fine-grained text-to-image gener-
ation. With a novel attentional generative network, the At-
mGAN can synthesize fine-grained details at different sub-
regions of the image by paying attentions to the relevant
words in the natural language description. In addition, a
deep attentional multimodal similarity model is proposed to
compute a fine-grained image-text matching loss for train-
ing the generator. The proposed AttnGAN significantly out-
performs the previous state of the art, boosting the best re-
ported inception score by 14.14% on the CUB dataset and
170.25% on the more challenging COCO dataset. A de-
tailed analysis is also performed by visualizing the atten-
tion layers of the AunGAN. It for the first time shows that
the layered attentional GAN is able to automatically select
the condition at the word level for generating different parts
of the image.

1. Introduction

Automatically generating images according to natural
language descriptions is a fundamental problem in many
applications, such as art generation and computer-aided de-
sign. Italso drives research progress in multimodal learning
and inference across vision and language, which is one of
the most active research areas in recent years [0, 15, 16,
19,41, 4, 30,5, 1, 31, |

Most recently pmpmu] text-to-image synthesis methods
are based on Generative Adversarial Networks (GANs) [6].
A commonly used approach is to encode the whole text de-

S S g

this bird is red with white and has a very short beak

10:short ~ 3:red 11:beak 9:very 8:2

3:red 5:white 1:bird 10:short 0:this

|

Figure 1. Example results of the proposed AttnGAN. The first row
gives the low-to-high resolution images generated by Gy, Gy and
Gy of the AnGAN; the second and third row shows the top-5
most attended words by Fi"“" and F§''" of the AnGAN, re-
spectively. Here, images of Gy and (7 are bilinearly upsampled
10 have the same size as that of G2 for better visualization.

only on the global sentence vector lacks important fine-
grained information at the word level, and prevents the gen-
eration of high quality images. This problem becomes even
more severe when generating complex scenes such as those
in the COCO dataset [11].

To address this issue, we propose an Attentional Genera-
tive Adversarial Network (AttnGAN) that allows attention-
driven, multi-stage refinement for fine-grained text-to-
imaoe oeneration The averall architecture of the Attn(GAN

cXt

this bird has wings that are black and has a white belly

Figure 5. Example results of our AttnGAN model trained on CUB
while changing some most attended words in the text descriptions.

ared double
decker bus

is floating on

top of a lake

a fluffy black
cat floating on
top of a lake

a stop sign
is floating on
top of a lake

a stop sign
is flying in
the blue sky

Figure 6. 256 x256 images generated from descriptions of novel
scenarios using the AttnGAN model trained on COCO. (Interme-
diate results are given in the supplementary material.)

https://openaccess.thecvf.com/content_cvpr_2018/papers/Xu_AttnGAN_Fine-
Grained_Text_ CVPR_2018_paper.pdf

GAN Applications: Music Generation

https://experiments.withgoogle.com/ai/ai-duet/view/

GANSYNTH:
ADVERSARIAL NEURAL AUDIO SYNTHESIS

https://storage.googleapis.com/magentadat
g:\:: ':'I::'l‘lu '::-:::mr Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris Donahue, a/ p ap e rS / g an Synth /I n d eX h tml

Mountain View, CA 94043, USA

ABSTRACT

Efficient audio synthesis is an inherently difficult machine learning task, as hu-

man perception is sensitive to both global structure and fine-scale waveform co-

herence. Autoregressive models, such as WaveNet, model local structure but have /
slow iterative sampling and lack global latent structure. In contrast crative

Adversarial Networks (GANs) have global latent conditioning and efficient p;
lel sampling, but struggle to generate locally-coherent audio waveforms. Herein,
we demonstrate that GANs can in fact generate high-fidelity and locally-coherent
audio by modeling log magnitudes and instantaneous frequencies with sufficient
frequency resolution in the spectral domain. Through extensive empirical investi-
gations on the NSynth dataset, we demonstrate that GANs are able to outperform
strong WaveNet baselines on automated and human evaluation metrics, and effi-
ciently generate audio several orders of magnitude faster than their autoregressive
counterparts.'

1 INTRODUCTION

Neural audio synthesis, training generative models to efficiently produce audio with both high-
fidelity and global structure, is a challenging open problem as it requires modeling temporal scales

.
over at least five orders of magnitude (~0.1ms to ~100s). Large advances in the state-of-the art https _ //q an h arp . Ctpt . CO/
have been pioneered almost exclusively by autoregressive models, such as WaveNet, which solve

https://experiments.withgoogle.com/ai/ai-duet/view/
https://ganharp.ctpt.co/

GAN Applications: OpenAl Jukebox

Jukebox: A Generative Model for Music

Prafulla Dhariwal *' Heewoo Jun~' Christine Payne "' Jong Wook Kim' Alec Radford' Ilya Sutskever '

Abstract

We introduce Jukebox, a model that generates
music with singing in the raw audio domain. We
tackle the long context of raw audio using a multi-
scale VQ-VAE to compress it to discrete codes,
and modeling those using -gressive Trans-
formers. We show that the combined model at
scale can generate high-fidelity and diverse songs
with coherence up to multiple minutes. We can
condition on artist and genre to steer the musical
and vocal style, and on unaligned lyrics to make
the singing more controllable. We are releasing
thousands of non cherry-picked samples, along
with model weights and code.

1. Introduction

Music is an integral part of human culture, existing from the
earliest periods of human civilization and evolving into a
wide diversity of forms. It evokes a unique human spirit in
its creation, and the question of whether computers can ever
capture this creative process has fascinated computer scien-
tists for decades. We have had algorithms generating piano
sheet music (Hiller Jr & Isaacson, 1957; Moorer, 1972;
Hadjeres et al., 2017; Huang et al., 2017), digital vocoders
generating a singer’s voice (Bonada & Serra, 2007; Saino
et al., 2006; Blaauw & Bonada, 2017) and also synthesizers
producing timbres for various musical instruments (Engel
etal., 2017; 2019). Each captures a specific aspect of music
generation: melody, composition, timbre, and the human
voice singing. However, a single system to do it all remains
elusive.

The field of generative models has made tremendous
progress in the last few years. One of the aims of gen-
erative modeling is to capture the salient aspects of the data
and to generate new instances indistinguishable from the
true data The hypothesis is that by learning to produce the

oped advances in text generation (Radford et al.), speech
generation (Xie et al., 2017) and image generation (Brock
et al., 2019; Razavi et al., 2019). The rate of progress in
this field has been rapid, where only a few years ago we
had algorithms producing blurry faces (Kingma & Welling,
2014; Goodfellow et al., 2014) but now we now can gener-
ate high-resolution faces indistinguishable from real ones
(Zhang et al., 2019b).

Generative models have been applied to the music genera-
tion task too. Earlier models generated music symbolically
in the form of a pianoroll, which specifies the timing, pitch,
velocity, and instrument of each note to be played. (Yang
etal., 2017; Dong et al., 2018; Huang et al., 2019a; Payne,
2019: Roberts et al., 2018: Wu et al., 2019). The symbolic
approach makes the modeling problem easier by working
on the problem in the lower-dimensional space. However, it
constrains the music that can be generated to being a specific
sequence of notes and a fixed set of instruments to render
with. In parallel, researchers have been pursuing the non-
symbolic approach, where they try to produce music directly
as a piece of audio. This makes the problem more challeng-
ing, as the space of raw audio is extremely high dimensional
with a high amount of information content to model. There
has been some success, with models producing piano pieces
either in the raw audio domain (Oord et al., 2016; Mehri
etal., 2017; Yamamoto et al., 2020) or in the spectrogram
domain (Vasquez & Lewis, 2019). The key bottleneck is
that modeling the raw audio directly introduces extremely
long-range dependencies, making it computationally chal-
lenging to learn the high-level semantics of music. A way to
reduce the difficulty is to learn a lower-dimensional encod-
ing of the audio with the goal of losing the less important
information but retaining most of the musical information.
This approach has demonstrated some success in generat-
ing short instrumental pieces restricted to a set of a few
instruments (Oord et al., 2017; Dieleman et al., 2018).

In this work, we show that we can use state-of-the-art deep

https:/ /arxiv.org/pdf/2005.00341.pdf

Codebook €4

/u\

Vector Codebook

ﬂ- Quantization] l I [} Lookup

Decode
B]

Encode l— Qu::::’!m H”HH] Szﬁb::k l--. Decode

R 1 T S———
X/ hy = E(xg) =, = argming | h, ¢! e, = Dies)

SOUNDTRACK

CLASSICAL

HIP HOP

https://jukebox.openai.com/

GAN FAILS

\ ‘ \\-\“; X

A perfectly .
normal
human boy

Festus

Freshly Marbled water, only 2% Sulfur.
Perfect for whew your face emits ultraviolet
Light, this decadent beret and floral-laden
concoction adds a warm undertone of fresh
scent, with notes of water, leweon essence, wabt

wax, and bergamot. -)\ *
= -
How Artlllclal‘.wi'rn‘t.e“lﬂligence Works
and Why It's Making the World
Chrgsa nthemium a Weirder Place

N7 A
VOl | (('\,\,f““;
1 VU LUV

K
1/

|
\

Traditionally associated with bad post-apocalyptic
stories, this drink conjures up images of a dark Lab,
smouldering and broken. A smoky, fruity scent
radiates from the Lily of the valley, and with every

tff of citrus and tropical fruit ow hand, each
smell quenches the 1000 notes of chrysanthemunm

VAE Background:

Autoencoders

* Kingma and Welling published “Auto-Encoding Variational Bayes™* in 2013.

* Recall that an Autoencoder (AE) is a (symmetric)
feed-forward NN containing a bottleneck layer and Auto-Encoding Variational Bayes
trained using reconstruction loss.

* AE can naturally be divided into two comparable components: T
An encoder network and a decoder network. The encoder
induces a form of dimensionality reduction (e.g., PCA), while
the decoder can be used to generate synthetic data.

Feature Latent Space

neural networ heural network

encoder

| decoder

*https:/ /arxiv.otg/pdf/1312.6114.pdf

loss = [|x-x[]* = [[x-d@E)|[* = [[>-d(eG)|f?

VAE Background:

Autoencoders

* Importantly, variational autoencoders (VAEs) add a stochastic mechanism
(a random vector) that enables the network to generate synthetic outputs;
additionally, VAEs regularize the latent space.

encoder

training
process e

encoded vector

(in latent space)

decoder
input d
generation sampler decoded content
process
(reconstructed input /

generated content)
sampled vector

(from latent space)

VAE Background:
Variational Inference (brief)

* The goal of variational inference is to approximate a conditional density of latent variables
(denoted z), given observed variables (denoted x), using optimization. This conditional density
can be used to produce point or interval estimates for latent variables, form predictive densities

of new data, etc.

* As usual, we can write the conditional density as:

p(z,X)

p(z|x) = T

VAE Background:

Variational Inference

p(z,X)
p(X)

p(z[x)=

* Here the denominator contains the marginal density of the observations, also known as the
evidence. We can calculate the evidence by marginalizing out the latent variables:

p(x) = [p(z,x)dz

* In many cases, this integral is intractable and so we must resort to approximation techniques.
On the one hand, we can use Monte Carlo techniques to generate a numerical approximation to

the exact posterior using samples.

* By contrast, variational inference provides an analytical solution to the posterior distribution.

VAE Background:

Variational Inference

p(z,X)
p(X)

* In variational inference, we specify a family QQ of density functions (e.g., Gaussians) over latent
variables. Each q(z) € Q is a candidate approximation to the exact conditional.

p(z[x)=

* Our goal is to find the best candidate, i.e., the one closest in KL divergence to the exact
conditional. Accordingly, we solve the following optimization problem:

q*(z) = aﬁ?}j” KL(q(z) || p(z|x))

* Once found, g* 1s the best approximation for the conditional — within the family Q. The
complexity of the family determines the complexity of this optimization problem.

VAE Background:

Variational Inference

q*(z) = aZ?ZU‘J” KL(a(z) || p(z|x))

* This objective is, however, in general not computable because it requires the aforementioned
evidence:

VAE Background:

Variational Inference

q(z)eQ

q*(z) =argmin KL(q(z) || p(z | x))

* This objective is, however, in general not computable because it requires the aforementioned

evidence term:

q*(z2) =argmin KL(q(2) ||
4(2)<Q

= Ey[logq(z)] - E,[log p(z
= Ey[loga(z)]-E,[log p(z,

(2] x))

x)]'+ log p(x) ,

e I S

p(x) = | plz,x)dz

VAE Background:

Variational Inference

q*(z) = azgzgngn KL(a(z) || p(z|x))

* Because we cannot compute the KL-divergence directly, we instead optimize an alternative

objective that 1s equivalent to the KL-divergence up to a constant; this alternative function is
called the evidence lower-bound (ELLBO):

VAE Background:

Variational Inference

q*(z) = aﬁ?}j” KL(a(z) || p(z|x))

* Because we cannot compute the KL-divergence directly, we instead optimize an alternative

objective that 1s equivalent to the KL-divergence up to a constant; this alternative function is
called the evidence lower-bound (ELLBO):

9*(2) = arq%;nojn KL(a(2) || p(z]x))

EL|3O(C|):Eq [log p(z,X)]— Eq [10gq(2)]| =k m0ga@1-E,flog p(z, 01+ log p(x)

* The ELBO is the negative KL divergence of g*, plus log(p(x)) (which is a constant with
respect to q(z)).

* Maximizing the ELBO is equivalent to minimizing the KL-divergence.

VAE Background:

Variational Inference
ELBO(q)=E,[log p(z,x)] - E,[logq(z)]

* Let’s further analyze ELBO:
ELBO(q) = E,[log p(2)]+E,[log p(x|z)] - E,[logq(z)]
= E,llog p(x|2)]-KL(a(2) || p(2))

* Notice that ELBO 1s maximal when: (1) the latent variables explain the data (the likelihood
expressed by the first term) and (2) when the variational density is close to the prior.

VAE Background:

Variational Inference
ELBO(q)=E,[log p(z,x)] - E,[logq(z)]

* Let’s further analyze ELBO:
ELBO(q) = E,[log p(2)]+E,[log p(x|z)] - E,[logq(z)]
= E,llog p(x|2)]-KL(a(2) || p(2))

* Notice that ELBO 1s maximal when: (1) the latent variables explain the data (the likelihood
expressed by the first term) and (2) when the variational density is close to the prior.

Another property of ELBO 1s that it lower-bounds the (log) evidence,
logp(x) = ELBO(q) for any q(z).

To see this, note: |Og p(X) = KL(C](Z) || p(Z | X) S ELBO(CI)

(recall that KL = 0 — why?)

VAE

* In summary, the ELBO defines the objective function underlying variational
inference.

* However, in order to complete the specification of this objective function, we still
need to define the ELBO with respect to the previously mentioned family of
densities, Q.

VAE

* In summary, the ELBO defines the objective function underlying variational
inference. However, in order to complete the specification of this objective function,
we still need to define the ELBO with respect to the previously mentioned family of

densities, Q.

* There are, naturally, many different families from which one can choose. In
practice, for improved tractability, a common choice is the so-called mean-field
variational family; for this set of functions, the latent variables are assumed to be
mutually independent, so that each 1s governed by a distinct factor in the variational

density.

a@=]1a,)

VAE

* Using the ELBO and mean-field family, we have now fully specified the approximate
conditional inference problem as an optimization problem.

* In general, maximizing the ELBO is far from trivial. Again, there are many
optimization techniques available for this task. One common approach 1s to use
coordinate ascent variational inference (CAVI, due to Bishop*). CAVI iteratively
optimizes each factor of the mean-field variational density, while holding the others
fixed — in this way we arrive at a local optimum for the ELBO.

*See: Christopher M. Bishop. 2006. Pattern Recognition and Machine 1earning (Information Science and Statistics). Springer-1erlag, Berlin, Heidelberyg.

VAE

* Using the ELBO and mean-field family, we have now fully specified the approximate
conditional inference problem as an optimization problem.

* In general, maximizing the ELBO is far from trivial. Again, there are many
optimization techniques available for this task. One common approach 1s to use
coordinate ascent variational inference (CAVI, due to Bishop*). CAVI iterativly
optimizes each factor of the mean-field variational density, while holding the others
fixed — in this way we arrive at a local optimum for the ELBO.

Algorithm 1: Coordinate ascent variational inference (CAvI)

Input: A model p(x,z), a data set x
Output: A variational density q(z) = nj;l q;(z;)
Initialize: Variational factors q;(z;)
while the ELBO has not converged do

forje{l,..., m} do

| Setgqj(z;) o< exp{E_;[logp(z;|z_;,x)]}

end

Compute ELBO(q) = E[log p(z,x)] —E[logq(z)]
end

return q(z)

* Where p(zj|z_j, x) denotes the total is the “total conditional” (i.e., p(2;) given x and
all latent variables except Zj, as seen with Gibbs sampling.

*See: Christopher M. Bishop. 2006. Pattern Recognition and Machine 1earning (Information Science and Statistics). Springer-1erlag, Berlin, Heidelberyg.

VAE

* We previously showed that minimizing our VAE objective 1s equivalent to maximizing
the ELBO:

ELBO(q) = £, [log p(x| 2)| - KL(q(z| x) || p(2))

VAE

* We previously showed that minimizing our VAE objective 1s equivalent to maximizing
the ELBO:

ELBO(q) = £, [log p(x| 2)| - KL(q(z| x) || p(2))

Notice that the RHS involves (3) quantities:

(1) q(2) (also written q(z|x)) a projection of the data x into the latent space
(2) 7z, the latent variable

(3) p(x|z) the distribution generating the data, given the latent variable.

* This structure is equivalent to an autoencoder, where q(z | x) 1s the encoder network; z 1s
the encoded representation, and p(x|z) 1s the decoder network.

encode > decode >

L
ELBO(q) = E,[log p(x|2)] < KL(Q(Z BRI IO(Z))‘/

_—
~—____——

* For a VAE, we assume that the encoder projects the input to a standard normal
(e, q(z|x) = N(u(x), 2(x)); furthermore, for simplicity, we assume the latent
distribution is a standard normal, i.e., p(z) = N (O, I).

L
ELBO(q) = E,[log p(x|2)] < KL(Q(Z BRI IO(Z))‘/

—-— o

* For a VAE, we assume that the encoder projects the input to a standard normal
(.e. q(z]|x) = N(u(x), Z(x)); furthermore, we assumé the latent distribution is a
standard normal, i.e., p(z) = N(0,I).

Under these conditions, this K. divergence terny admits of a closed-form:

Y o;+ui—log(o,) -
i=1

e In summary, q(z|x) is represented by a neural network, where the NN maps input
data (x) to a mean vector U(x) and (diagonal) covariance matrix X(x) (the
parameters of the latent space).

(*) By minimizing the indicated KL divergence, we encourage the latent space to
conform with a standard Normal.

VAE

— o gy,

ELBO(Q) = E,[log p(x| 2)]=KL(q(z[9 [P(2)

_—am - =

* Notice that the first term on the RHS 1s equivalent to MLE; so, to maximize this
term we want to minimize the reconstruction error of the decoder with respect
to a given an input X, the associated encoding z, and the reconstruction of this

encoding;

encode > decode >

input hidden output

A
i
I

i

{2
AR
AT
SRR
RN
A

VAE

* We are almost done — however, recall that we want the latent parameter (2)
corresponding with the input (x) to be sampled Z~N ((x),2(X)).

* However, in order to enable training of the q(z|x) network using backpropagation,
the sampling process must exist outside of the network itself. To achieve this, we use
the so-call “reparameterization trick” (inverse sampling of a Gaussian).

no problem for backpropagaton ~ s----. backpropagation is not possible due to sampling
s Pr::-:&s{"\m *"MM I\ A WM E . neural network neural network
/ ““ / encoder decoder
sampling without reparametrisation trick sampling with reparametrisation trick loss = ” © ||2 + KL[F N{O, ”] = || -d()“2 6 KL[,N(O, |)]
(3) Equivalent to minimizing reconstruction
error and KL divergence
q*(z) =argmin KL(q(2) || p(z| X)) - L1
gmi ELBO(4) = E,[log p(x| 2)]-KL(a(z ¥ || p(2))

(1) Want to minimize this (2) Equivalent to maximizing ELBO

VAE

* Imposing a structure on the latent space (e.g., Gaussian) 1s a powerful idea for
generative models. This approach has the effect of regularizing the latent space
(and hence avoiding overfitting to the data).

what can happen without regularisation x V what we want to obtain with regularisation

* Optimizing with both reconstruction loss and KL divergence loss additionally
enforces “similarity embedding” — which is to say, similar inputs to the VAE are
mapped close to one another in the latent space.

VAE

* Reconstructing faces with a VAE:

BEEAaDalA=ZDE
BEafbalaE=EDC

Figure 3-18. Reconstructed faces, after passing through the encoder and decoder

* Generating synthetic faces with a VAE:

Figure 3-20. New generated faces

VAE: Latent Space Arithmetic

* Notice that it 1s possible to manipulate the latent space associated with a generative
model using latent space arithmetic.

*For instance, suppose we wish to vary a particular attribute of our generated
synthetic data. The CelebA dataset includes annotations with various attributes, e.g,,
wearing hat, smiling, etc.

Glasses

Pointy
nose W

Oval face

VAE: Latent Space Arithmetic

* In a similar vein to the latent space arithmetic seen with word-embedding models
(e.g., Word2Vec), one can use vector arithmetic to meaningfully augment latent
vectors.

* For example, if we want to generate faces that are “smiling”, we could in principle
take the average latent embedding of all the faces with the attribute smiling in our
training set and subtract from this the average latent embedding of all the faces
without the attribute smiling. 'This gives us a vector in the latent space pointing from
“non-smiling” to “smiling”.

* Now to apply “smiling” to a latent embedding, we apply the following
transformation:

2' =z + a(feature_vector)

VAE: Latent Space Arithmetic

subtracting vector adding vector

mg -4

LT IIITTTT
e I T TTTTEEE
o -1-1-1- 11400
-~-0HONAAAAAAS
-~2A222222 Y
~— 500000800
ad P-0-F-F-F-F § ¥ ¥]

* The original GAN paper (Goodftellow ez a/, 2014) is

one of the most influential ML papers in recent years.

 Simply put, a GAN is a battle between two adversaries:
the generator and the discriminator.

* The generator attempts to convert random noise into
observations that appear as though they were sampled
from the original dataset.

* Conversely, the discriminator tries to predict whether

an observation comes from the original dataset or is a
forgery produced by the generator.

Training set l/

noise

—=(]|||

Generator . | /Fakeimage

Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair! Aaron Courville, Yoshua Bengio®
Département d'informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC H3C 3J7

Abstract

We propose a new framework for estimating generative models via an adversar-
ial process, in which we simultaneously train two models: a generative model G
that captures the data distribution, and a discriminative model D that estimates
the probability that a sample came from the training data rather than G. The train-
ing procedure for G is to maximize the probability of D mak istake. This
framework corresponds to a minimax two-player game. In the ce of arbitrary
functions G and D, a unique solution exists, with G recovering the training data
distribution and D equal to 1 everywhere. In the case where G and D are defined
by multilayer perceptrons, the entire system can be trained with backpropagation.
There is no need for any Markov chains or unrolled approximate inference net-
works during either training or generation of samples. Experiments demonstrate
the potential of the framework through qualitative and quantitative evaluation of
the generated samples.

1 Introduction

The promise of deep learning is to discover rich, hierarchical models [2] that represent probability
distributions over the kinds of data encountered in artificial intelligence applications, such as natural
images, audio waveforms containing speech, and symbols in natural language corpora. So far, the
most striking successes in deep learning have involved discriminative models, usually those that
map a high-dimensional, rich sensory input to a class label [14, 22]. These striking successes have
primarily been based on the backpropagation and dropout thms, using piecewise linear units
[19, 9. 10] which have a particularly well-behaved gradient . Deep generative models have had less
of an impact, due to the difficulty of approximating many intractable probabilistic computations that
arise in maximum likelihood estimation and related strategies, and due to difficulty of leveraging

https:/ /arxiv.org/pdf/1406.2661.pdf

Discriminator

L s Real
Random / T @S{Fake

GAN

At the beginning of this process, the generator outputs noisy images and the discriminator

predicts randomly.

* The key to GANs lies in how we effect the training of the two networks in tandem, so
that as the generator becomes more adept at fooling the discriminator, the discriminator
must adapt in order to maintain its ability to spot “fakes”.

Training set V Discriminator
/ AR .
Vo - S =
noise / 2
— %
Generator Fake image

GAN

* Here’s an example specification of a GANj the architecture of the discriminator is given on

the right.

Discriminator: define input; stack convolutional layers; flatten the last convolutional layer,
etc.; note that a stride of size 2 in the conv layers will reduce the overall size of the tensor;

the final “dense” layer (using sigmoid activation) ensures the output is a scalar in the range

[0,1], corresponding with the probability that the input image is real.

gan = GAN(input_dim = (28,28,1)

3
3
3
3
3
3
3
3
E]
3
3
3
3
3
3
3
3
£l

)

Generator

discriminator_conv_filters = [64,64,128,128]
discriminator_conv_kernel_size = [5,5,5,5]
discriminator_conv_strides = [2,2,2,1]
discriminator_batch_norm_momentum = None
discriminator_activation = "relu”®
discriminator_dropout_rate = 0.4
discriminator_learning_rate = 0.0008
generator_initial_dense_layer_size = (7, 7, 64)
generator_upsample = [2,2, 1, 1]
generator_conv_filters = [128,64, 64,1]
generator_conv_kernel_size = [5,5,5,5]
generator_conv_strides = [1,1, 1, 1]
generator_batch_norm_momentum = 0.9
generator_activation = “relu”
generator_dropout_rate = None
generator_learning_rate = 0.0004

optimiser = "rmsprop”®

z_dim = 100

Layer (type) Output Shape Param #
discriminator_input (Inputla (Nooe, 28, 28, 1) O
discriminator conv_0 (Conv2D (None, 14, 14, 64) 1664
activation_1 (Activation) (None, 14, 14, 64) 0
dropout_1 (Dropout) (None, 14, 14, 64) 0
Hi‘scirim-invatc;t:con‘v_‘l (Conv2D (None, 7 64) 102464
activation 2 (Activation) (None, 7, 7, 64) v
dropout_2 (Dropout) (None, 7, 64) 0
discriminator conv_2 (Conv2D (None, 4, 4, 128) 204928
acix}ailgn_i (Activation) (None, 4, 4, 128) 0
dropout_3 (Dropout) (None, 4, 4, 128) 0
discriminator_conv_3 (Conv2D (None, 4, 4, 128) 409728
activation_4 (Activation) (None, 4, 4, 128) 0
dropout_4 (Dropout) (None, 4, 4, 128) 0
flatten 1 (Flatten) (None, 2048) 0
dense_1 (Dense) (None, 1) 2049

Total params: 720,833
Trainable params: 720,833
Non-trainable params: 0

GAN

* The input to the generator is a vector, usually drawn from a multivariate Normal
distribution; the output is an image of the same size as the original dataset.

* The generator serves the same purpose as the decoder for a VAE, in that it converts a

vector from the model latent space into an image. The trope of mapping from a low-to-high
dimensional space is common in DL; for a CNN, as we have seen, this operation is
commonly known as deconvolution (also: transposed convolution).

gan = GAN(input_dim = (28,28,1)

Taer o), Ot B P , discriminator_conv_filters = [64,64,128,128]

====== s , discriminator_conv_kernel_size = [5,5,5,5]
generator_input (InputLayer) (None, 100) 0 discriminator conv strides = [2 2.9 1]
dense_9 (Dense) (None, 3136) 316736 , discriminator_batch_norm_momentum = None
— — s i = .
batch_normalization_10 (Batc (None, 3136) 12544 3 d!scr!m!nator_aCtlvatlon - relU
, discriminator_dropout_rate = 0.4
activation 36 (Activation) (None, 3136) 0

, discriminator_learning_rate = 0.0008
reshape_{ (Reshape) (None, 7, 7, 64) 0 , generator_initial_dense_layer_size = (7, 7, 64)
, generator_upsample = [2,2, 1, 1]

up_sampling2d 10 (UpSampling (None, 14,714, €4) 0
, generator_conv_filters = [128,64, 64,1]
generator_conv_0 (Conv2D) (None, 14, 14, 128) 204928 < = EEEE
) -)))) , generator_conv_kernel_size = [5,5,5,5]
batch_normalization 11 (Batc (None, 14, 14, 128) 512 3 generator_conv_strides = [1,‘\’ y B “]
activation 37 (Activation) (None, 14, 14, 128) 0 , generator_batch_norm_momentum = 0.9
_— - : : , generator_activation = "relu”
up_sampling2d_11 (UpSampling (None, 28, 28, 128) 0 generator drOpOUt rate = None
3 = i
generator_conv_1 (Conv2D) (None, 28, 28, €4) 204864 4 generator_'earning_rate = 0.0004
batch_normalization 12 (Batc (None, 28, 28, €4) 256 , optimiser = “rmsprop”
B I , z_dim = 100
activation 38 (Activation) (None, 28, 28, €4) 0) -
generator_conv_2 (Conv2D) (None, 28, 28, €4) 102464
batch ﬂor’mal’u’an’on’,l]’ (7Batrc 7(No’ne.”Z’B, 728’, 674) T 256
activation_39 (Activation) (None, 28, 28, €4) 0
generator_conv_3 (Conv2D) (None, 28, 28, 1) 1601
activation_40 (Activation) (None, 28, 28, 1) 0 Generator

Discriminator

Total params: 844,161
Trainable params: 837,377
Non-trainable params: 6,784

GAN: Transposed Convolution

* The transposed convolution operation is effected by performing a “backward strided
convolution”.

* In the images below, the blue maps are inputs; cyan maps are outputs.

Basic convolution with Transposed conv with no Transposed conv with no

padding=1, stride =2 padding, no stride padding and stride

* Traditionally, one could achieve up-sampling by applying interpolation schemes (e.g. bilinear
interpolation). Modern architectures such as NNs, however, tend to let the network itself
learn the proper transformation automatically, without human intervention.

GAN: Transposed Convolution

* Let’s dive a little deeper into the contrast between convolution and transposed convolution.

* With convolution, consider C as the kernel, Iarge as the input, and Swa/l as the output

image after convolution. Following convolution, we down-sample the large image into a small

output image, i.e., C x Large = Small.

Input

Kernel

Output

Yo

Y1

0 | O |WooWo1Wo2 0 Wi0W11W12 O |W2,0W2,1W22 0

Xo X1 | X2 | X3
Wo,0/Wo,1Wo,2
Xa Xs | Xe | X7
WioWiiWi2 ¥
X8 X9 | X10|X11
W2,0W2,1W2,2
X12 | X13 | X14 | X15
3x3
l 4x4
Xo
. . : X1
Unrolling the convolution operation
to matrix multiplication X2
X3
G i ') E . Xa
[
Wo,0Wo,1Wo.2| O w:,o[w:,th,z 0 ‘\wz.owz,xwz,z ojlojo]oO Xs
0 ‘WO,DWO,:IWO,Z 0 |W1,0W1,1W12 O W20W21W22 0 0 0 X X6
0 +
0

o o |o |o

|
0|0 0 |Wo0Wo,1Wo0,2 O W1,0W1,1W12 0 (W2,0W2,1(W22

z 4x16
Sparse matrix C .

16x1

Y2

Y3
2x2

* In the example shown, we take a 4x4 input matrix and flatten it to 16x1; in addition, we
transform the 3x3 kernel into a 4x16 sparse, orthogonal matrix. Using matrix
multiplication, the resultant matrix is 4x1, which we then subsequently transform back to a

2x2 output.

GAN: Transposed Convolution

* If, we multiply the equation C x Large = Small, by C', we arrive at: CTxSmall = Large. In
this way multiplication by the transposed convolution vields an up-sampling procedure. (for

reference: we encountered this operation previously when discussing Aes and

backpropagation through CNNs).

Woo 0 | 0 | O | Xo

Wo,1Wo0 0 | O | X1

Wo,2Wo,1|\Wo,0 O X2

0 |Wo,2|Wo,1|Wo,0 X3

Wi0 O |Wo,2Wo,1 X4

Wi1,1W10 0 |Wo,2 Xs

W1,2\W1,1\ W10 O X6 Xo | X1 | X2 | X3
0 |W1,2W1,1|W1,0 X _ X7 > Xa | X5 | X6 | X7
W20 0 |Wi2Wi1 Xs Xs | Xo | X10| X11
W2,1 W20 0 W12 = X12 | X13 | X14 | X15
W2,2 W2,1\W2,0 O X0 | 4x4
0 |W2,2|W2,1W2,0 X1 |

0| 0 |Wz22W21 X12

0| 0|0 w22 X13

o|o0|0]|O Xaa |

0lo|o|o|16x4 X15| 16 x 1

Sparse matrix c’

* Note that in practice, usitig a transposed convolution can lead to the presence of
checkerboard artifacts; to alleviate this, practitioners commonly apply a two-step process
instead: (i) bilinear up-sample, followed by (ii) convolution.

* For a comprehensive treatment of these topics, see: https:/arxiv.org/abs/1603.07285

https://arxiv.org/abs/1603.07285

GAN: Training

* In general, training the discriminator amounts to a supervised learning problem: we create a
training set of (randomly inserted) real observations from the dataset interspersed with
outputs produced by the generator (label 1 for true image, O for fakes). Recall that binary
cross-entropy loss 1s defined:

n

Y:P)=—= Yi 109(P;) +(1—Y;)10gLL— D,
L(y, P) == (¥ log(p,)+ (L-¥,)log(t- p)

i=1

Generator . Discriminator

e 2

=3 F-LE3F I

GAN: Training

* In general, training the discriminator amounts to a supervised learning problem: we create a
training set of (randomly inserted) real observations from the dataset interspersed with
outputs produced by the generator (label 1 for true image, O for fakes). Recall that binary

cross-entropy loss 1s defined:
n

L(y,) =—%Z(yi log(p,)+ (1 ;) log(L— p,))

=1

* To train the GAN discriminator D, we calculate the loss when comparing predictions for
real images p; = D(x;) to the response y;= 1 and predictions for generated images p; =
D(G(z;)) to the response y;= 0. Therefore, for the GAN discriminator, minimizing the loss
function can be written as follows:

miny—(E,.,, [log D(X)]+E,_, [log(1-D(G(2)))])

Generator O Discriminator

GAN: Training

* Training the generator is considerably more difficult, as we don’t readily have access
to a training set that tells us the true image that a particular point in the latent space should
be mapped to, for instance.

* To train the generator, we connect it to the discriminator by feeding the output from the
generator into the discriminator so that the output from the combined model 1s the
probability that a generated image is rea/ (according to the discriminator).

Generator Discriminator

GAN: Training

* We can train the combined model by creating training batches consisting of randomly
generated latent vectors as input and a response which is set to 1, since we want to train the
generator to produce images that the discriminator thinks are real. The loss 1s just binary
cross-entropy loss between the output from the discriminator and the response vector of 1.

* Importantly, we freeze the weights of the discriminator while we are training the
combined model, so that only the generator’s weights are updated.

GGenerator . Discriminator

GAN: Training

min ,— (Exmpx [log D) |+ E._, [log (1- D(G(Z)))D

* To train the GAN generator G, we calculate the loss when comparing predictions for the
generated images p; = D(G(z;)) to the response y; = 1. Therefore, for the GAN

generator, the minimizing loss function can be written as follows:

min, —(E,_,, [log(D(G(2)))])

o, 3 e (o) + g (1 D (0 (=)))]

1 B

1 1

1

® 1

1

. Dﬁ COSt -------- I

I

z~ N(,1) :
or Generator :

o BELA L (i) 1 () ;
X -~ Vo,— > 1og (1-D (G ())) or vg,,azl g (0 (G (2))) !

Real image x

Random noise

GAN: Training

min ,— (Exwpx [log D(x) |+ E._, [k)g (1- D(G(Z)))D

Discriminator training process

Training batch
(generated)

—» Generator

OEO0O--00mOo

Random noise

(]}

Training batch
(dataset images)

—» Generator

Omoo-00o

1

1

1

1

1

1

LR e 01 0 !
Discriminator . . —» 0SS |

t i . N
h‘ !
1

1

1

08 1 :
e 09 1 '
04 1 :

Predictions | Response
0.2 0

Predictions | Response

Predictions | Response
04 1

05 1
Ly - b»Loss
06 1
02 1

ming—(E,-,, [l0g(D(G(2)))])

loss

GAN: Training

* GAN training is equivalent to a zero-sum non-cooperative game. From a game

theory context, the GAN model converges when the discriminator and the generator

reach a Nash equilibrium.

* If trained propetrly (which commonly requires the use of several “tricks” which we

mention next), the discriminator and generator will converge to an equilibrium that

allows the generator to learn meaningful information from the discriminator and the

quality of the images will improve.

accuracy

) 1000 1250 1500 1750 2000 .v ‘)L;O 750 1000 A 15"JC 1"‘,‘.‘ 2000
batch

= discriminator (real)

== discriminator (fake)

= discriminator (average of real & fake)

generator

HEIGNR
ElIElAE
HEHE
slel) |8
HEEN
HENE
HEH
o]]s

7000 steps

HEGN
ELE
HEHNEH
apng
GNGEN
HEnpg
213113
elo) /13

9000 steps

AEGEN
HEne
21al/13
Gcans
GHEEN
HENnE
HENE
aEpne

10000 steps

GAN: Challenges

* GANs are notoriously difficult to train, for several reasons:

* Mode Collapse: Mode collapse occurs when the generator finds a small number of
samples that fool the discriminator and therefore the generator isn’t able to produce any
examples other than this limited set.

* This can occur, say if we train the generator over several batches without updating the
discriminator in between. In this situation, the generator would be inclined to find a
singly observation that always fools the discriminator (the mode).

* Oscillating Loss: The losses of the discriminator and generator oscillate wildly.
GAN:Ss are trained successfully when we observe a loss stabilization (shown in the
previous slide); unfortunately, oscillating loss is common to vanilla GAN approaches.

03

0.2

01

0.0

-0.1

-0.2

-03

0 500 1000 1500 2000 2500

GAN: CycleGAN

Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park™ Phillip Isola Alexei A. Efros
Berkeley Al Research (BAIR) laboratory, UC Berkeley

Monet 7_ Photos . . Summer 5 Winter

T ILY
B
zebra —) horse

horse —» zebra

Photograph Monet Van Gogh Cezanne » Ukiyo-e
Figure 1: Given any two unordered image collections X and Y, our algorithm learns to automatically “translate” an image

https://arxiv.org/pdf/1703.10593.pdf

GAN: CycleGAN

* For the image translation task, CycleGAN trains without using paired examples.
* CycleGAN is composed of (4) sub-models: two generators and two discriminators.
The first generator G, converts images from domain A to domain B; whereas the

second generator Gy,, converts images from domain B to domain A.

* The authors employ a U-Net architecture (shown on the right) for the generator

models.
128 x 128 x 3

D D 128 x 128 x 3 r
A B rystil
A
[ﬁ 64 x 64 x 32
i 64 x 64 x 32
Gap
—_— skip connections
—

32x32x64 32x32x64
Gpa

DOWNSAMPLING \16 x 16 x 128 16 x 16 x 7 UPSAMPLING

8 x 8 x 256

-——p

A

“World Models” GAN

* Ha and Schmidhuber (NeurIPS, 2018) presented “World Models”*, a paradigm for
training RL agents using a VAE, whereby an agent is trained:

“entirely insides of its own hallucinated dream generated by its world model,
and [we] transfer this policy back into the actual environment.”

World Models

David Ha' Jiirgen Schmidhuber * *

*https://worldmodels.github.io/

*https:/ /arxiv.org/pdf/1803.10122.pdf

Abstract

We explore building generative neural network
models of popular reinforcement learning
environments. Our world model can be trained
quickly in an unsupervised manner to learn a
compressed spatial and temporal representation
of the environment. By using features extracted
from the world model as inputs to an agent, we
can train a very compact and simple policy that
can solve the required task. We can even train
our agent entirely inside of its own hallucinated
dream generated by its world model, and transfer
this policy back into the actual environment.

An interactive version of this paper is available at

worldmodels.github.i

1. Introduction

Humans develop a mental model of the world based on
what they are able to perceive with their limited senses. The
decisions and actions we make are based on this internal
model. Jay Wright Forrester, the father of system dynamics,
described a mental model as:

The image of the world around us, which we carry in our
head, is just a model. Nobody in his head imagines all
the world, government or country. He has only selected
concepts, and relationships between them, and uses those
to represent the real system. (Forrester, 1971)

To handle the vast amount of information that flows through
our daily lives, our brain learns an abstract representation
of both spatial and temporal aspects of this information
We are able to observe a scene and remember an abstract
description thereof (Cheang & Tsao, 2017; Quiroga et al.,
2005). Evidence also suggests that what we perceive at any
given moment is governed by our brain’s prediction of the
future based on our internal model (Nortmann et al., 2015;
Gerrit et al., 2013).

One way of understanding the predictive model inside of our

Figure 1. A World Model, from Scott McCloud's Understanding
Comics. (McCloud, 1993; E, 2012)

current motor actions (Keller et al., 2012; Leinweber et al.,
2017). We are able to instinctively act on this predictive
model and perform fast reflexive behaviours when we face
danger (Mobbs et al., 2015), without the need to consciously
plan out a course of action.

Take baseball for example. A batter has milliseconds to de-
cide how they should swing the bat — shorter than the time
it takes for visual signals to reach our brain. The reason
we are able to hit a 100 mph fastball is due to our ability to
instinctively predict when and where the ball will go. For
professional players, this all happens subconsciously. Their
muscles reflexively swing the bat at the right time and loca-
tion in line with their internal models” predictions (Gerrit
etal., 2013). They can quickly act on their predictions of
the future without the need to consciously roll out possible
future scenarios to form a plan (Hirshon, 2013).

https://worldmodels.github.io/

“World Models” GAN

The pipeline consists of (3) fundamental components:

(1) The Vision Model (V), A VAE that encodes high-dimensional observations into a

low-dimensional latent vector.

LA

\
\

At each time step, our agent
receives an observation from
the environment

World Model
The Vision Model (V) encodes the
high-dimensional observation into
a low-dimensional latent vector.

The Memory RNN (M) integrates
the historical codes to create a
representation that can predict
future states

A small Controller (C) uses the
representations from both
V and M to select good actions

The agent performs actions that
go back and affect the environment

\

]
/

Original Observed Frame

Vv Vo \ v/
\;_/ \ / \ /
/7- z /»7-'2 l/»f-'z
ln [o | h
M M M
SR ™
|
h . h ‘-‘.‘ h
\ v e \
S el e
a a a

— Encoder [z

Figure 4. Our agent consists of three components that work closely
together: Vision (V), Memory (M), and Controller (C)

Decoder —

Reconstructed Frame

“World Models” GAN

The pipeline consists of (3) fundamental components:

(2) A Memory RNN (M): this unit approximates p(z;) using a GMM (Gaussian
Mixture Model); the RNN is trained to output the probability distribution of the next
latent vector Z¢ 44 given the current and past information available to it -- specifically

predict: p(Z¢+1la, 2, hy)

* Technically, M incorporates a Mixture Density Network (MDN), which has been
used previously for “sequence generation” (e.g., handwriting, as shown below left).

quito predictor. z

T Zin

! T T
AT

+2

clear drawing mosquito g2 random predict

“World Models” GAN

The pipeline consists of (3) fundamental components:

(3) A controller (C) (a simple, ~1k parameters) RL agent that determines the course of
actions to take in order to maximize the expected cumulative reward of the agent during
a rollout of the environment.

-

environment [€ —
| action
> VAE (V)
ﬁ\ MODEL PARAMETER COUNT
. Z | VAE 4,446,915
observation v > MDN-RNN 1,678,785
' N C CONTROLLER 1,088
world mode MDN-RNN (M) >
\ J h
I action]

In summary: (1) VAE learns a latent mapping of images to z;

(2) the MDN-RNN module produces the next frame hidden context and next
trame “dream” latent vector z,, ;

(3) the controller C executes the roll-out simulation in the “dream-world.”

“World Models” GAN

Training with simulated dreams!

* Because the model can predict the future (!), the authors can use it to generate
hypothetical racing scenarios on its own. They produce the probability distribution of
the latent variable, given the current states, and sample a z_, in place of a real
observation. The controller acts in the hallucinated environment generated by M.

Figure 13. Our agent driving inside of its own dream world. Here,
we deploy our trained policy into a fake environment generated
by the MDN-RNN, and rendered using the VAE’s decoder. In the
demo, one can override the agent’s actions as well as adjust 7 to
control the uncertainty of the environment generated by M.

“World Models” GAN

VizDoom from World Models.

Figure 15. Our agent discovers a policy to avoid hallucinated fire-
balls. In the online version of this article, the reader can interact
with the environment inside this demo.

GAMEGAN

* In 2014 Minh et al., (Deepmind) published the seminal research “Playing Atari with Deep
Reinforcement Learning.””*

* This work leveraged DL and RL together to produce a generalizable algorithm with
“superhuman” performance on Atari games. Remarkably, this model was trained strictly through
self-play (i.e., the agent has no prior knowledge or information about the game engine/logic).

Convolution Convvolution Fully connected Fully connected

o]
oo |
B-oe
oo]
oo |

&

02 > 5
+ + +» €« v >

Jdooonn CoCooOn OPPOQan Cdoooon COSOoooo

O
NRAR
e B B BS

BABRAE

*https:/ /www.cs.toronto.edu/~vmnih/docs/dqn.pdf
*RL and the Atari paper are covered in depth in my 4/541 course.

GAMEGAN

* Kim et al. published the outstanding work “Learning to Simulate Dynamic Environments with
GameGAN* (2020), an algorithm that learns to generate an underlying game engine(!) from
observations of gameplay (including user inputs) — the model is not given access to any
underlying game logic or the actual game engine at any time.

GameGAN

*https:/ /arxiv.org/pdf/2005.12126.pdf

GAMEGAN

GameGAN

* While the domain of this research focuses on game-playing, the larger motivation behind this
research is to push the state-of-the-art to improve the fidelity of complex simulations, and
to show that the dynamics of these environments can be learned effectively, and indirectly by
leveraging ML.

* Complex simulations are essential to many branches of science, including the medical
sciences, particularly drug efficacy studies, robotics, automation, engineering, physics, chemistry,
etc. The authors argue that learning to simulate by simply observing is the most scalable way
going forward.

*https:/ /arxiv.org/pdf/2005.12126.pdf

GAMEGAN

* GAMEGAN uses an action-conditioned (conditioned on the key pressed by an agent)
GAN to predict the next frame of a game. This research is similar to GAN-based video
prediction models which predict future frames, however an extra challenge for this problem
setting 1s the presence of stochasticity in the environment (e.g., ghost movements in Pac-

man).

* To this end, GAMEGAN not only predicts the next frame of the game, but it must also
learn the intrinsic dynamics of the environment.

GAMEGAN

* The authors introduce several key innovations in their workflow, including a memory
module to better capture long-term prediction consistency, and a carefully-designed decoder
that disentangles static and dynamic components of the game (e.g;, maze elements vs.

ghosts).

Time

t=0 > t=6
Generated
Image
Memory
Location

Action Down Right Left Left

Visualizing memory module: location of egocentric
agent is tracked with attention; notice maze generation
is consistent when return to location at t=0.

VizDoom Pacman

-
. 0
o ..- -u
Statlc ®
Dynamlc

Decoder disentangles static and dynamic components of game.

83

GAMEGAN

Time

t=0 » t=6

* GAMEGAN focuses on action-conditioned simulation in the image space with an
egocentric agent that moves according to the given action a;~4 at a time t and generates a
new observation/state X¢ 1.

* The authors assume there is also a stochastic variable z;~N (0, I) that corresponds with
randomness in the environment. Given the history of images Xq.¢, along with a; and z¢,
GameGAN predicts the next image X¢41.

GAMEGAN

Action a;
Random ; Imace
Noise 2t Rendf.:rmg g
Engine Xt+1

* In total, GAMEGAN consists of three key components:

(1) Dynamics Engine: learns “licit” environment transitions (e.g., Pac-Man can’t move
through a wall, etc.) using an action-conditioned LSTM. As with a standard LSTM,
this module maintains both h; hidden representation and ¢; context parameters, in
addition to processing action and stochastic variables.

GAMEGAN

External Input External Output
Controller
Action a; /_ .
Random :) | Read Heads Write Heads
Noise . — Dynallmcs hy Rende.rlng glage I l
t+1
Memory my_;—» Engine Engine

Image x; — o — J : Memory
\ “\;,/J

* In total, GAMEGAN consists of three key components:

(2) Memory Module: maintains long-term consistency of static elements (e.g;, maze).
Challenges for conventional RNNs include: (1) need to remember every scene it generates,
and (i1) design a loss function that enforces such long-term consistency.

* Motivated by Neural Turing Machines* (NTM), the memory module has a memory
block and attended location at time t (denoted a;). One can think of the memory block as
corresponding with the location of the egocentric agent and &y corresponds with the
current location. Enforcing long-term consistency amounts to remembering generated
static elements.

*https:/ /arxiv.org/ pdf/1410.5401.pdf

Spatial Transposed . Repeat ‘ Concat/Split for Input/Output
SPADE Masking Conv/MLP and Stack , Spatial Softmax Tensor

soﬂ.ma;\

o SO ftmax/sigmoid

Action a;

Random
Noise

Rendering
Engine

1/

Rough sketch stage Attribute stage Final rendering stage

* In total, GAMEGAN consists of three key components:

(3) Rendering engine: responsible for rendering simulated image X1, given the internal
state by (from dynamics engine, LSTM). The authors introduce a specialized rendering
architecture to ensure long-term consistency by learning to produce disentangled scenes.

GAMEGAN

Spatial Transposed » Repeat ‘ Concat/Split for Input/Output
SPADE Masking Conv/MLP and Stack , Spatial Sofimax Tensor

softma)\

- - \‘soﬁmax/sigmoid
-, ~ Bt .
7 SN '/
7 i
’ b :
’ NN SN !
/ PR BN :
‘ 1 |
/ J’_‘ v
l e\
1 i
} VNS K il [T A S
4 \ 7 _J Action a,
! ' .
! 1 Random
I i 1 Noise 2t Image
! D ! Memory m, fe
1 : ! Ty Me_1——>
‘\ ."‘ — L Image x;
ofw -
\
\ T
\ L
~ ’
N L 7)L)]
So > T Y T
~ — - — Rough sketch stage Attribute stage Final rendering stage

(3) Rendering engine (RE): responsible for rendering simulated image X1, given the
internal state hy (from dynamics engine, LSTM). The authors introduce a specialized
rendering architecture to ensure long-term consistency by learning to produce disentangled

Scenes.

* The RE takes as input hy (from LSTM) and m; from the memory module. In the first step
the RE applies a CNN, outputting an attribute map A™ and object map O™; the inputs (h;
and m;) are also fed into linear layer to get a type vector, denoted v™.

GAMEGAN

Spatial Transposed * Repeat ‘ Concat/Split for Input/Output
SPADE Masking Conv/MLP and Stack ; Spatial Softmax Tensor

soﬂ.ma)\.

\‘suﬁmax/sigmuid

Xe41

Rough sketch stage Attribute stage Final rendering stage

(3) Rendering engine (RE): responsible for rendering simulated image X1, given the
internal state hy (from dynamics engine, LSTM). The authors introduce a specialized
rendering architecture to ensure long-term consistency by learning to produce disentangled

Scenes.

* 0™ and v™ are concatenated and fed into an additional conv net, producing R™ the rough
sketch of where each object is located.

.-
SPADE Spatial Transposed * Repeat ‘ Concat/Split for Input/Output
A Masking Conv/MLP and Stack | Spatial Softmax Tensor

soﬂma)&‘

\snﬂmax/sigmnid

Xt4+1

Rough sketch stage Attribute stage Final rendering stage

(3) Rendering engine (RE): responsible for rendering simulated image X¢44, given the
internal state hy (from dynamics engine, LSTM). The authors introduce a specialized
rendering architecture to ensure long-term consistency by learning to produce disentangled

Scenes.

* The location is insufficient alone to render an accurate simulation, as attributes (e.g., color
of ghost) must also be accounted for. The attribute map A¥ is elementwise multiplied by the
rough location tensor R* | then fed through a transposed convolution, which renders a fine
mask N that accounts for the “depth” of objects (to handle occlusions such as Pac-Man
intersecting a ghost). The final output is the predicted state X¢41.

GAMEGAN

Finally, the model is trained using three adversarial loss components:

(1) Single image discriminator: to ensure each generated frame is realistic, the discriminator and
GameGAN simulator play an adversarial game.

(2) Action-conditioned discriminator: GameGAN needs to reflect the actions taken by the agent
faithfully, this loss reflects predicted image and action provided by the agent.

(3) Temporal discriminator: Using a 3D convolution network, the authors employ a temporal
discriminator to decide whether a sequence of frames is real or fake.

The authors also introduce a cycle loss function that encourages the model to keep static elements in
memory.

https:/ /nv-tlabs.github.io/game GAN/

Graph Neural Networks

Hidden layer Hidden layer
o~ e e _owm “Graphs are the most important

.| | T, | e discrete models in the world” G. Strang (MIT)

* Graph data can denote a very large sets of diverse systems: molecules, social networks, images, etc.
* GNN s are a burgeoning DI-based method operating on graphs.

* Many classic DL models (e.g., CNN, RNN, LSTM, attention models, etc.) have been “ported” to the
GNN framework; GNNss can encompass classification, regression prediction, segmentation, etc., tasks.

*Why use GNNs? (1) Natural fit for graph data; (2) GNNs can learn anisotropic filters (for CV tasks).

https://arxiv.org/pdf/1901.00596.pdf

Graph Neural Networks

Basics of GNNs

Goal: similarity(u,v) ~ ZIT,Z,,

N

Need to define!

\/>\ . /_ ... :

d-dimensional
embedding space

Input network

* For GNNSs, we have a global graph structure; in addition, each node has an associated
feature vector (e.g., encoding of atom in a molecule, RGB values in image, etc.). Just like with
standard NNs, GNNs learn an embedding — a node embedding.

* GNNs perform forward propagation through “message-passing”, e.g., aggregating local
information and then performing a DNN-type computation, such as a linear
transformation followed by a non-linear operation.

Graph Neural Networks

B poyerdl
. yer- ® XA
rARGETlrJODE | ' .“ : .“< ' XC
’ & — @ B Layer-2 ® XA
@ = . . @ X
o . ® T ’4. : ‘4-'3 . xg
INPUT GRAPH S S . XF
Neural networks ". a X A
W= oWi Y o k-1y where k — 1.k —
ic = & ’ + Bih, ") where k=1,....k -1

* Aggregation typically involves some basic operation on the neighbors of a target node
(e.g., mean or sample mean of neighbors). Aggregation preserves local information in the

graph.

* Typically, a single linear layer NN is used to propagate updates to nodes from one-step
neighbors.

* This “unrolling” process continues for two-step neighbors, and so on. The parameters
of the GNN are comprised of the weights used in the message-passing process.

Graph Neural Networks

®

N
. E | .

(XIXIX] o

\ yh . Wa. / input layer output layer

o e,
N1 A l e \
l/\ I /\l 3 (a) Graph Convolutional Network (b) Hidden layer activations

Figure 1: Left: Schematic depiction of multi-layer Graph Convolutional Network (GCN) for semi-
Illustration of 2D Convolutional Neural Networks (left) and Graph Convolutional Networks (right), via source SuPenYIsed]ea""ng with C lnPul Channels and F feature TOAPS L the OUtPUl layer‘ »The fgraph Strvc:

o A A o e R S VN ture (edges shown as black lines) is shared over layers, labels are denoted by Y;. Right: t-SNE
(Maaten & Hinton, 2008) visualization of hidden layer activations of a two-layer GCN trained on
the Cora dataset (Sen et al., 2008) using 5% of labels. Colors denote document class.

hidden

layers

=

* Unlike classical CNNs, GCNs can learn anisotropic filters. Notice that “convolution”
does not necessarily entail image processing, Instead, one can think of label information
over a graph as being “smoothed” over the graph.

* In the original GCN* (Kipf, et al.) paper, propagation is defined using the normalized
graph Laplacian:

Unnormalized Graph Laplacian example

Adjacency matrix(A) Degree matrix (D)
g g &3 & z % 348
L E ifo 1 1 o 1z 0 o o
\i/}!,\ 211 0 1 0 210 2 0 o l]_ ~ 1 ~ ~ 1 l l
o sfi 10 1| 300 20 -+ D —3 D_ 3

aoo1 ol 4o o H =0 A H [[
(2)
) q

3 s) Laplacian (L=D-A)

\ 1 28 4

\—/

iz 1 1 o

Example graph

*https:/ /arxiv.otg/ pdf/1609.02907.pdf

