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Model Interpretability 
• One of  the common criticisms about NNs has been their lack of  interpretability. Models 

that lack interpretability, i.e., black box models, often have limited use in real-world 

applications. 

• DL systems lacking interpretability are inherently limited. Among other issues, trust and 

verification are difficult to achieve; the system itself  can be challenging to improve/learn 

from; it may be difficult to detect and ameliorate the presence of  model bias; there may even 

be unforeseen legal consequences to using such as system. 



Model Interpretability 
• However, as it turns out, one can use backpropagation to determine the features which 

contribute most significantly to the classification of  a particular test instance. 

• This method provides the analyst with an understanding of  the importance of  different 

features learned by the model; moreover, this approach can also be used as a mechanism 

for feature selection.  



Model Interpretability 
• For instance, consider a test datum 𝒙 = 𝑥1, … , 𝑥𝑑 (an image, for example), for 

which the multilabel output scores of  the NN are 𝑜1, … , 𝑜𝑘 . Furthermore, let the 

output of  the winning class among the 𝑘 outputs be 𝑜𝑚, 1 ≤ 𝑚 ≤ 𝑘.

• Our goal is to identify the features that are most pertinent to the classification 

of  this test instance. Moreover, we wish to identify the specific sensitivity of  the 

output 𝑜𝑚 to each 𝑥𝑖 . 



Model Interpretability 
• For instance, consider a test datum 𝒙 = 𝑥1, … , 𝑥𝑑 (an image, for example), for 

which the multilabel output scores of  the NN are 𝑜1, … , 𝑜𝑘 . Furthermore, let the 

output of  the winning class among the 𝑘 outputs be 𝑜𝑚, 1 ≤ 𝑚 ≤ 𝑘.

• Our goal is to identify the features that are most pertinent to the classification 

of  this test instance. Moreover, we wish to identify the specific sensitivity of  the 

output 𝑜𝑚 to each 𝑥𝑖 . 

• Features with large absolute magnitudes of  this sensitivity are naturally relevant 

to the classification of  this test instance and will have the greatest influence on the 

classification for the winning class. Thus, we need to compute: 
𝜕𝑜𝑚

𝜕𝑥𝑖
.

1,..., ,...,i dx x x=x



Model Interpretability 
• Thus, we need to compute: 

𝜕𝑜𝑚

𝜕𝑥𝑖
.

• Notice that the sign of  the derivative also reveals whether increasing 𝑥𝑖 slightly from its current 

value increases or decreases the score of  the winning class. Other partials derivatives for non winning 

classes can also be relevant, but their importance is diminished when many classes exist. 



Model Interpretability 
• Thus, we need to compute: 

𝜕𝑜𝑚

𝜕𝑥𝑖
.

• Notice that the sign of  the derivative also reveals whether increasing 𝑥𝑖 slightly from its current 

value increases or decreases the score of  the winning class. Other partials derivatives for non winning 

classes can also be relevant, but their importance is diminished when many classes exist. 

• How do we compute this derivative? Fortunately, it is a straightforward application of  

backpropagation. Features with largest aggregate sensitivity over entire training data are most relevant. 

• This process is closely related to “saliency analysis” in classical CV, which tells us which features 

(pixels) in an image are most relevant in the image being classified as a dog, etc. 



Autoencoders 
•Autoencoders (AEs) represent a fundamental architecture that is used for various kinds of  

unsupervised learning, including feature engineering, principal component analysis (PCA), incomplete 

data factorization, and dimensionality reduction. 

• One significant advantage of  AEs that is often overlooked, includes their strong conceptual 

consonance with matrix factorization methods. From this perspective, one can frame a variety of  

traditional matrix factorization methods (e.g., sparse factorization, PCA, etc.), as a special case –

through the use of bespoke architectures – of  AEs. 



Autoencoders 
•Autoencoders (AEs) represent a fundamental architecture that is used for various kinds of  

unsupervised learning, including feature engineering, principal component analysis (PCA), incomplete 

data factorization, and dimensionality reduction. 

• One significant advantage of  AEs that is often overlooked, includes their strong conceptual 

consonance with matrix factorization methods. From this perspective, one can frame a variety of  

traditional matrix factorization methods (e.g., sparse factorization, PCA, etc.), as a special case –

through the use of bespoke architectures – of  AEs. 

For this brief  digression about AEs, we show: 

(1) Classical dimensionality reduction methods (SVD) are special cases of  neural architectures (!) 

(2) By modulating the basic AE architecture, one can generate complex non-linear embeddings of  

data. In particular, neural architectures provide unprecedented flexibility in controlling properties 

of  these embeddings. 



Autoencoders 
• Autoencoders aim to reconstruct input data by passing it through a network bottleneck. This 

network bottleneck serves as a mechanism for (automated) dimensionality reduction. 

• Although reconstructing data might seem like a trivial matter in general, the introduction of  a 

bottleneck holds a reduced representation of  the data, and hence the final layer of  the AE cannot, in 

general, reconstruct the input data exactly. Thus, this type of  reconstruction is inherently lossy. 



Autoencoders 
• Autoencoders aim to reconstruct input data by passing it through a network bottleneck. This 

network bottleneck serves as a mechanism for (automated) dimensionality reduction. 

• Although reconstructing data might seem like a trivial matter in general, the introduction of  a 

bottleneck holds a reduced representation of  the data, and hence the final layer of  the AE cannot, in 

general, reconstruct the input data exactly. Thus, this type of  reconstruction is inherently lossy. 

• The loss function of  the AE is typically a sum-of-squares (note that cross-entropy and binary 

cross-entropy are also commonly used) difference between the input and output, in order to enforce 

veracity of  the reconstruction. Note that the innermost hidden layer will be hierarchically related to 

those in the other hidden layers. 



Autoencoders 
• AEs commonly have a symmetrical structure, as shown. The subnetwork preceding the bottleneck 

layer represents the Encoder network, and the subnetwork following the bottleneck represents the 

Decoder network (we will see this schematic again in our course). 

• If  we denote the network input 𝒙 ∈ 𝐷 (where 𝐷 is the data distribution) and the encoder 

𝐹 ∙ , respectively, then 𝐹 𝒙 , symbolizes a reduced representation of  𝒙 per the network latent space. 



Autoencoders 
• Conversely, if  we sample a point from the network latent space, i.e. 𝐹 ƴ𝒙 and subsequently pass this 

point through the decoder subnetwork 𝐺 ∙ , we generate a synthetic datum – this is to say, a datum 

resembling a sample from the distribution 𝐷. 

• Together, the subnetworks of  an AE form a potent tandem. The encoder subnetwork functions as a 

hierarchical dimensionality reduction mechanism, while the decoder subnetwork provides an apparatus 

to generate synthetic data. 

• An additional benefit of  AEs is that they can be trained in an unsupervised fashion! With 

reconstruction loss no ostensible “label” is required. 



Autoencoders: SVD 
•Next, we describe an AE with a single hidden layer to better illustrate the conceptual link between 

AEs and SVD. 

• We devise an AE with 𝑑 input dimensions and a single hidden layer of  k ≪ d. Assume we have an 

𝑛 × 𝑑 data matrix 𝐷 and we wish to factorize it into the product of  an 𝑛 × 𝑘 matrix 𝑈 and a d × 𝑘
matrix 𝑉: 

• Here 𝑘 is the rank of  the factorization; 𝑈 contains he reduced representation of  the data, and the 

matrix 𝑉 contains the basis vectors. 

TD UV



Autoencoders: SVD 
•Next, we describe an AE with a single hidden layer to better illustrate the conceptual link between 

AEs and SVD. 

• We devise an AE with 𝑑 input dimensions and a single hidden layer of  k ≪ d. Assume we have an 

𝑛 × 𝑑 data matrix 𝐷 and we wish to factorize it into the product of  an 𝑛 × 𝑘 matrix 𝑈 and a d × 𝑘
matrix 𝑉: 

• Here 𝑘 is the rank of  the factorization; 𝑈 contains he reduced representation of  the data, and the 

matrix 𝑉 contains the basis vectors. 

• In traditional ML, matrix factorization is solved by minimizing the Frobenius norm (element-wise 

L2 norm) of  the residual matrix: 𝐷 − 𝑈𝑉𝑇. This yields the following objective: 
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Autoencoders: SVD 

• Notice that the above optimization problem is relatively easy to solve using gradient-descent based 

algorithms. However, in this instance, we demonstrate how to encapsulate this matrix factorization 

problem using a neural network framework. 

• The neural architecture shown has 𝑘 hidden units; the encoder weights are contained in the d × 𝑘
matrix denoted by 𝑊. 

• Notice that the AE depicted creates the reconstructed representation D𝑊𝑇𝑉𝑇 of  the original data 

matrix, where we use the reconstruction loss: 
2
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Autoencoders: SVD 

• The optimal solution to this problem is given by: 𝑊 = 𝑉𝑇𝑉
−1
𝑉𝑇 (this formulation is known as 

the pseudo-inverse of  𝑉):
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Autoencoders: SVD 

• The optimal solution to this problem is given by: 𝑊 = 𝑉𝑇𝑉
−1
𝑉𝑇 (this formulation is known as 

the pseudo-inverse of  𝑉):

• Notice that the AE learning process might deviate from this condition if  the 𝐷 matrix has a small 

rank, etc. Post-multiplying the input 𝐷 by 𝑊𝑇 yields: 𝐷𝑊𝑇 ≈ 𝑈𝑉𝑇𝑉 𝑉𝑇𝑉
−1

= 𝑈; this shows that 

we get the reduced representation from the matrix factorization.

• SVD yields factorization 𝑈𝑉𝑇 where the columns of  𝑉 are orthonormal. The loss function of  the 

AE allows for discovering alternative minima, so it is possible to find an optimal solution in which the 

columns of  𝑉 are not necessarily mutually orthogonal or unit length. Nevertheless, the subspace 

spanned by the 𝑘 columns of  𝑉 will be the same as that spanned by the top-k basis vectors of  SVD. 
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Autoencoders: SVD 
• Many variants of  AEs exist. For instance, one can employ weight-sharing, where some of  the 

weights between the encoder and decoder are shared. This approach has the effect of  reducing the 

parameter footprint of  the AE and simultaneously enforcing regularization, and thus reducing 

overfitting. 

• In the most straightforward instance of  weight-sharing for AEs, in a one hidden layer variant 𝑊 =
𝑉𝑇 (as shown). 

• Alternatively, one can add a sparse penalty (i.e. L1-penalty) for approximation of  a sparse matrix 

factorization: 

• A significant benefit of  formulating matrix factorization via neural networks is that we only need to 

augment the loss function (here adding the L1 regularization term) in order to solve the sparse variant 

of  matrix factorization.
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Autoencoders: SVD 
• The real power of  AEs is realized when deeper variants are used (along with non-linear activations). 

• As we know, DNNs provide an extraordinary amount of  representational power. Multiple layers 

provide hierarchically reduced representations of  data. 

• Using deep AEs, It is possible to achieve extremely compact data reductions. Greater reduction is 

always achieved by using non-linear units, which implicitly map warped manifolds into hyperplanes; 

such reductions are often useful for 2-D visualization of  high dimensional data (as shown).

Projection of  MNIST dataset using AE 

from 784 dimensions to 2



Autoencoders: SVD 
• AEs provide further utility as denoising workflows.

• AES can also be used for embedding multimodal data (where the input data is heterogenous) in a 

joint latent space. 

• In general, multimodal data poses challenges in classical ML settings, because different features often 

require different types of  processing and treatment. By embedding heterogenous attributes in a 

unified space, one is removing this source of  difficulty.



Autoencoders: Example 
• Here is a simple, one hidden layer AE applied to MNIST: 

• A deeper AE applied to MNIST: 

• Denoising AE:



Convolutional Autoencoders
• A convolutional autoencoder (CAE) functions  in the same fashion as an ordinary AE, but with the 

use of  convolutional operations. 

• CAEs introduce a bottleneck module, but they leverage spatial information (via convolution 

operations), and thus the encoder-decoder subnetworks represent 3D volumes. 



Convolutional Autoencoders
• A convolutional autoencoder (CAE) functions  in the same fashion as an ordinary AE, but with the 

use of  convolutional operations. 

• CAEs introduce a bottleneck module, but they leverage spatial information (via convolution 

operations), and thus the encoder-decoder subnetworks represent 3D volumes. 

• Just as with the compression portion of  the encoder of  an AE, the encoder in a CAE uses repeated 

convolutional operations (layer-by-layer) to process a compressed version of  the network input.

Oftentimes, we use 3D reconstruction error to train the CAE: 
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Convolutional Autoencoders
• In more detail: there are typically (2) operations we wish to invert in the decoder layers, 

corresponding to the convolution and max-pooling and RELU of  the encoder layers. 

(1) The decoder subnetwork consists of  deconvolutional layers (also called transposed 

convolution), which entails performing matrix multiplication (by a transposed weight matrix) in 

order to achieve a “deconvolution” of  the layer activations. Deconvolution “inverts” convolution 

operations in the encoder subnetwork, resulting in a “scaling up” of  the network feature maps.



Convolutional Autoencoders
• In more detail: there are (3) operations we wish to invert in the decoder layers, corresponding to the 

convolution and max-pooling of  the encoder layers. 

(1) The decoder subnetwork consists of  deconvolutional layers (also called transposed 

convolution), which entails performing matrix multiplication (by a transposed weight matrix) in 

order to achieve a “deconvolution” of  the layer activations. Deconvolution “inverts” convolution 

operations in the encoder subnetwork. 

(2) Pooling operations irreversibly lose some information and are therefore impossible to invert 

exactly. The max-”unpooling” operation is implemented with the help of  switches. Typically, with 

unpooling, the feature map is increase by a factor (e.g., of  2), and the values stored at the “switch” 

position from the corresponding maxpooling in the encoder layer is copied from the previous layer 

(the other values are set to zero). 



Convolutional Autoencoders
•Here is a coded exampled of  a CAE with 3 conv layers, with each followed by pooling and RELU*: 

Visualizing the 128-dimensional encodings: 

*This implementation uses conv-upsampling blocks to achieve an inversion of  conv-maxpooling in the encoder network. 

This is also a common implementation schematic for CAEs. 



Visualization
• Unlike generic DNNs, CNNs are highly interpretable models due to the spatial nature of  

learning via convolutional operations. 

• In the most straightforward sense, one can simply visualize the 2D (spatial) components of  the 

learned filters in a CNN (see below).



Visualization
• Unlike generic DNNs, CNNs are highly interpretable models due to the spatial nature of  

learning via convolutional operations. 

• In the most straightforward sense, one can simply visualize the 2D (spatial) components of  the 

learned filters in a CNN (see below).

• Although this type of  visualization can provide some interesting instances of  the primitive edges and 

related features learned in the first layer of  the CNN, it is not very useful for later layers. 

• In the first layer, it is possible to visualize these filters directly because they operate directly on the 

input image. For later layers, convolutions are aggregated across layers, leading to increasingly abstract 

learned filters in the later layers of  a CNN. 

First (left) & second (right) layer filters in a CNN



Visualization
• In order to obtain a more coherent form of  interpretability, one must find a way to map the impacts 

of  all operations back to the input layer of  the network. 

• Therefore, the goal of  network visualization is often to identify and highlight portions of  the input 

image to which a particular hidden feature is responding. 



Visualization
• In order to obtain a more coherent form of  interpretability, one must find a way to map the impacts 

of  all operations back to the input layer of  the network. 

• Therefore, the goal of  network visualization is often to identify and highlight portions of  the input 

image to which a particular hidden feature is responding. 

•For instance, the value of  a hidden feature might be sensitive to changes in the portion of  the image 

corresponding to a face, a flower, or a traffic sign, etc. This is naturally achieved by computing the 

sensitivity (via the gradient) of  a hidden feature with respect to each pixel of  the input image. 



Visualization: Saliency
• In CV, a saliency map is an image that shows each pixel’s unique quality. The goal of  a saliency map 

is to simplify and/or change the representation of  an image into something that is more meaningful 

and easier to analyze for a CV workflow.  

• Saliency is closely related to image segmentation (a topic we study in more detail later in our 

course); in fact, saliency detection is frequently used as a pre-step for object segmentation in CV. 



Visualization: Saliency

• In the visual system, it is widely believed that two basic, complementary stages of  visual processing 

take place*: 

(1) The pre-attentive process where low-level features such as orientation, edges, or intensities can 

“pop up” automatically. From the perspective of  object detection, pre-attentive objects become 

candidates for object detection. These pre-attentive objects are sometimes called proto objects. 

(2) An attention process that is generally slower, executed in a serial fashion, and compute-intensive 

relative to the pre-attentive process. 

*https://www.sciencedirect.com/science/article/pii/S0042698900000031



Visualization: Classical Saliency
• For an introduction to classical saliency algorithms, we now review spectral residual saliency* (Hou et al., 

2007)  a component of  OpenCV library. 

• It is well-known that natural images exhibit a general, scale invariant property. In other words, the 

distribution of  image statistics for natural images remains unchanged if  the image is scaled. 



Visualization: Classical Saliency
• For an introduction to classical saliency algorithms, we review spectral residual saliency* (Hou et al., 

2007)  a component of  OpenCV library. 

• It is well-known that natural images exhibit a general, scale invariant property. In other words, the 

distribution of  image statistics for natural images remains unchanged if  the image is scaled. 

• This property is encapsulated by the power law, which is to say the amplitude A(f) of  the averaged Fourier 

spectrum of  an ensemble of  natural images obeys the distribution: 

*http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.125.5641&rep=rep1&type=pdf
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Visualization: Classical Saliency
• Given an input image, the authors first compute the log of  the Fourier transform of  the image: 𝐿 𝑓 .

( )L f



Visualization: Classical Saliency
• Given an input image, the authors first compute the log of  the Fourier transform of  the image: 𝐿 𝑓 .

• Because the log transform of  a natural image is locally linear (see image above), the average log spectrum 

can be approximated using a local average filter over an 𝑛 × 𝑛 window: 

• The averaged spectrum can then be approximated by convolving: 

• The authors define the spectral residual R(f): 
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Visualization: Classical Saliency

• To generate a saliency map, S x , the authors then perform an inverse Fourier transform (F-1) on the 

spectral residual, followed by Gaussian smoothing:

Fourier Transform log Fourier spectral residualAverage spectrum approximation
of Input Image 
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Visualization: Classical Saliency

• To generate a saliency map, S x , the authors then perform an inverse Fourier transform (F-1) on the 

spectral residual, followed by Gaussian smoothing:

• S x is then thresholded to (i.e., S x > 𝛿) for object detection. 

Fourier Transform log Fourier spectral residualAverage spectrum approximation
of Input Image 
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Visualization: Classical Saliency

Fourier Transform log Fourier spectral residualAverage spectrum approximation
of Input Image 
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Visualization
• Consider a NN that has been trained using a large dataset like ImageNet. The goal is to visualize and 

understand the impact of  the different portions of  the input image on various features in the hidden 

layers and the output layers. 

In general, to this end, we would like to address the following:



Visualization
• Consider a NN that has been trained using a large dataset like ImageNet. The goal is to visualize and 

understand the impact of  the different portions of  the input image on various features in the hidden 

layers and the output layers. 

In general, we would like to address the following:

(1) Given an activation of  a feature anywhere in the NN for a particular input image, visualize the 

portions of  the input to which that feature is responding the most. 

• The feature might be from a convolutional layer, fully-connected layer, or even the output layer.     

Note that in the latter case, for example, if  an input image is activating the label for “dog”, we   

hope to see parts of  the specific input image that look most like a dog. 



Visualization
• Consider a NN that has been trained using a large dataset like ImageNet. The goal is to visualize and 

understand the impact of  the different portions of  the input image on various features in the hidden 

layers and the output layers. 

In general, we would like to address the following:

(1) Given an activation of  a feature anywhere in the NN for a particular input image, visualize the 

portions of  the input to which that feature is responding the most. 

• The feature might be from a convolutional layer, fully-connected layer, or even the output layer.     

Note that in the latter case, for example, if  an input image is activating the label for “dog”, we   

hope to see parts of  the specific input image that look most like a dog. 

(2) Given a particular feature anywhere in the NN, render a “dream image” that is likely to activate     

that feature the most. This is sometimes called the image inversion problem*. Again, the feature  

could come from any convolutional layer, FC layer or output layer. 

*https://arxiv.org/pdf/1611.03679.pdf



Visualization
Gradient-Based Visualization of  Activated Features 

• While backpropagation is conventionally used to train a CNN, it can also be used to generate 

gradient-based visualization. 

• The main difference from the traditional backpropagation setting is that our end-goal is to determine 

the sensitivity of  the hidden/output features with respect to different pixels of  the input image rather 

than with respect to the weights. However, even traditional backpropagation does compute the 

sensitivity of  the outputs with respect to various layers as an intermediate step.



Visualization
Gradient-Based Visualization of  Activated Features 

• While backpropagation is conventionally used to train a CNN, it can also be used to generate gradient-

based visualization. 

• The main difference from the traditional backpropagation setting is that our end-goal is to determine the 

sensitivity of  the hidden/output features with respect to different pixels of  the input image rather than with 

respect to the weights. However, even traditional backpropagation does compute the sensitivity of  the 

outputs with respect to various layers as an intermediate step.

• When the sensitivity of  an output 𝑜 is computed with respect to the input pixels, the visualization of  this 

sensitivity over the corresponding pixels is referred to as a saliency map. 

• For example, the output 𝑜 might be the softmax probability of  the class “flower”. Then, for each pixel xi 𝑥𝑖

in the image we want to determine the value of  
𝜕𝑜

𝜕𝑥𝑖
. Simply, this value can be computed by straightforward* 

backpropagation to the input layer. 



Visualization
Gradient-Based Visualization of  Activated Features 

• The softmax probability of  “flower” will be relatively insensitive to small changes in portions of  the image 

that are irrelevant to the recognition of  flower. Therefore, the values 
𝜕𝑜

𝜕𝑥𝑖
will be close to zero for such 

irrelevant regions. 

• In more detail: Consider a pre-trained AlexNet with input image of  dimension 224x224x3. We compute 
𝜕𝑜

𝜕𝑥𝑖
over this volume, generating a gradient tensor of  the same dimension. 

• To aid in visualization, we convert this gradient volume into a grayscale image by calculating the maximum 

of  the absolute magnitude of  the gradient over the three RGB channels, yielding a 224x224x1 saliency map 

with non-negative values. 

https://arxiv.org/pdf/1312.6034.pdf



Visualization
Gradient-Based Visualization of  Activated Features 

• This general approach has also been used for visualizing the activations of  specific hidden features. Consider the 

value ℎ of  a hidden variable (i.e., a neuron in a CNN) for a particular input image. How is this variable responding 

to the input image at its current activation level?

• The idea is that if  we slightly increase or decrease the color intensity of  some pixels, the value ℎ will be affected 

more than if  we increase/decrease other pixels. In addition, the receptive field of  ℎ will depend on its placement in 

the network. For neurons in the first layer (say of  VGG), h will have a receptive field of  size 3x3; conversely, 

neurons in later layers in the network will have a larger receptive field.



Visualization
Gradient-Based Visualization of  Activated Features 

• This general approach has also been used for visualizing the activations of  specific hidden features. Consider the 

value ℎ of  a hidden variable (i.e., a neuron in a CNN) for a particular input image. How is this variable responding 

to the input image at its current activation level?

• The idea is that if  we slightly increase or decrease the color intensity of  some pixels, the value ℎ will be affected 

more than if  we increase/decrease other pixels. In addition, the receptive field of  ℎ will depend on its placement in 

the network. For neurons in the first layer (say of  VGG), h will have a receptive field of  size 3x3; conversely, 

neurons in later layers in the network will have a larger receptive field.

• At a high level of  activation of  ℎ, some of  the pixels in that receptive field will be more sensitive to ℎ than others. 

By isolating the pixels to which the hidden variable ℎ has the greatest sensitivity and visualizing the corresponding 

regions, one can get an idea of  what part of  the input most affects a particular hidden feature. 

(Left) Layer 6-based gradient 
𝜕ℎ

𝜕𝑥𝑖
for 

corresponding image crops (Right)
(Left) Layer 9-based gradient 

𝜕ℎ

𝜕𝑥𝑖
for 

corresponding image crops (Right)



Visualization
Gradient-Based Visualization of  Activated Features 

• The previous discussion focused on visualizing elements of  the input image to which a feature (i.e., 

output neuron, hidden layer neuron, etc.) is responding the most. 

• Remarkably, we can invert the visualization process to instead render a synthesized image that 

activates a feature (including output class)! 



Visualization
Gradient-Based Visualization of  Activated Features 

• For simplicity, consider 𝑜 to be the unnormalized score for a particular output image class, e.g., 

“shiba inu.” We would like to learn the input image ҧ𝑥 that maximizes the output 𝑜, while applying 

some regularization to ҧ𝑥 (we apply the regularization so that the output image conforms with basic 

semantic properties of  images* – this is sometimes called an image prior):

where λ is the regularization parameter and is important to extract semantically interpretable images; 

this particular form of  regularization clips the image intensities.

*Oftentimes intensity clipping, and minimization of  total variation of  an image, are imposed as 

image prior conditions; see: https://arxiv.org/pdf/1412.0035.pdf
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Visualization
Gradient-Based Visualization of  Activated Features 

• For simplicity, consider 𝑜 to be the unnormalized score for a particular output image class, e.g., 

“shiba inu.” We would like to learn the input image ҧ𝑥 that maximizes the output 𝑜, while applying 

some regularization to ҧ𝑥 (we apply the regularization so that the output image conforms with basic 

semantic properties of  images* – this is sometimes called an image prior):

where λ is the regularization parameter and is important to extract semantically interpretable images; 

this particular form of  regularization clips the image intensities.

*Oftentimes intensity clipping, and minimization of  total variation of  an image, are imposed as 

image prior conditions; see: https://arxiv.org/pdf/1412.0035.pdf

In literature this inversion problem is often generally framed as:

where x denotes the inverse image, Φ(·) a representation function (e.g., feature map of  a hidden layer 

in a NN); Φ0=Φ(x0) is the reference image representation. 
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https://arxiv.org/pdf/1412.0035.pdf


Visualization
Gradient-Based Visualization of  Activated Features 

• One can approximate a solution to this optimization problem using gradient ascent in conjunction 

with backpropagation in order to learn the image ҧ𝑥 maximizing the objective function. 

2
arg max ( ) ( )

x

J x o x= −



Visualization
Gradient-Based Visualization of  Activated Features 

• One can approximate a solution to this optimization problem using gradient ascent in conjunction 

with backpropagation in order to learn the image ҧ𝑥 maximizing the objective function. 

Thus, we start with a zero image ҧ𝑥0 (or random noise) and update ҧ𝑥𝑖+1 using gradient ascent: 

• Here α is the learning rate. The key point is that backpropagation is being leveraged in an unusual 

way to update image pixels while keeping the (already learned) weights of  the model fixed. 

2
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x
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Visualization
Gradient-Based Visualization of  Activated Features 

• Above are examples of  synthesized images from “Deep Inside Convolutional Networks: Visualizing 

Image Classification Models and Saliency Maps” (*Simonyan et al., 2014). 

• These images are illustrative of  what the trained network perceives – at least loosely – to constitute 

“idealized” instantiations of  a particular category. 

*https://arxiv.org/pdf/1312.6034.pdf

2
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Visualization
Gradient-Based Visualization of  Activated Features 

• An analogous methodology can be applied to actualize synthetic images that activate hidden layer 

neurons ℎ (in lieu of  output neurons o). Happily, the methodology is essentially no different, as we 

once again use gradient ascent: 

• Visualizing synthetic images in this fashion enlightens us about several intriguing aspects of  

CNNs, including: 

(1) The individual learned features – and their relation to other learned features – (including 

high-level features) in the network.

(2) The effect and function of  the receptive field of  the network components. 

1 ( )i i xx x J x+  + 
2

arg max ( ) ( )
x
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Visualization
Gradient-Based Visualization of  Activated Features 

• Above, visualizations from ResNet-34 hidden neurons. Oftentimes, the feature visualizations appear as 

gossamer composites; (below) the absolute activation for a given input image, indicating the sensitivity to the 

class of  “feathers” in this case. 

https://towardsdatascience.com/how-to-visualize-convolutional-features-in-40-lines-of-code-70b7d87b0030
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Visualization
Gradient-Based Visualization of  Activated Features 

• Above we see the difference in the receptive field of  different neurons in deeper layers of  a trained 

CNN.



Visualization: Dream Deeper
• Following the publication of  several influential papers on CNNs and deep 

model visualization (including the work we have reviewed here), Google 

created DeepDream (2015), a program that creates dream-like hallucinogenic

images from pre-trained CNNs. 

• DeepDream uses a pre-trained CNN (e.g., Inception) and applies gradient ascent to the activations of  a set of  layers in 

the network in response to an input image (these layers can be chosen at random, or pre-selected). 

*https://www.freud.org.uk/education/resources/the-interpretation-of-dreams/

“The interpretation of dreams is the royal road to a 

knowledge of the unconscious activities of the mind.”*

-- Freud



Visualization: Dream Deeper
• Following the publication of  several influential papers on CNNs and deep 

model visualization (including the work we have reviewed here), Google 

created DeepDream (2015), a program that creates dream-like hallucinogenic

images from pre-trained CNNs. 

• DeepDream uses a pre-trained CNN (e.g., Inception) and applies gradient ascent to the activations of  set of  layers in 

the network in response to an input image (these layers can be chosen at random, or pre-selected). 

• Notice that the choice of  layers in addition to the input image (naturally) will have a significant impact on the 

resulting image, due to the sensitivity of  each neuron to specific image/class features. 

https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

• The results vary quite a bit with the kind of  image, 

because the features that are entered bias the network 

towards certain interpretations. For example, horizontal lines 

tend to get filled with towers and pagodas. Rocks and trees 

turn into buildings. Birds and insects appear in images of  

leaves.

• This technique gives us a qualitative sense of  the level of  

abstraction that a particular layer has achieved in its 

understanding of  images.



Visualization: Dream Deeper

• The original image is processed at different scales “octaves” (typically a small number, e.g., 3, ~40% 

rescale size). 



Visualization: Dream Deeper

• The original image is processed at different scales “octaves” (typically a small number, e.g., 3, ~40% 

rescale size). 

• For each octave we execute a “dream” loop, where layer activations (usually we take a set of  

neurons/layers) are computed for the input image. These normalized layer activations represent the 

“gradient” – we then execute a step of  gradient ascent. 

• We repeat several iterations of  gradient ascent for the current octave, generating a scaled “dream” 

image. This image is the result of  “over processing” the activations corresponding with the chosen 

layers/neurons for the current input. 



Visualization: Dream Deeper

• After generating the “dream” image for the current octave, many of  the fine-grain details of  

original image may be lost. For this reason, we perform a “detail injection”, where the pixel 

difference between the upscaled image and original image is added to the dream image. 

• We repeat this process for several octaves to generate the final DeepDream output. 



Visualization: Dream Deeper
• DeepDream Loss Function

• Looping Over Octaves
• Gradient Ascent

https://github.com/google/deepdream



Visualization: Dream Deeper



Visual Attention: Captioning
• Human beings rarely use all the available sensory inputs in order to accomplish specific tasks. 

• In particular, the retina contains a central fovea which has an extremely high resolution compared 

with the remainder of  the eye. This region has a high concentration of  color-sensitive cones, whereas 

most of  the non-central portions of  the eye have relatively low resolution with a predominance of  

color-insensitive rods. 

• When, for instance, reading a street number, the fovea fixates on the number. Although one is aware 

of  the other objects outside this central field of  vision, it is virtually impossible to use images in the 

peripheral region to perform detail-oriented tasks. 

Attention and saliency used for sign-reading

in Streetview data (Google)



Visual Attention: Captioning
• The use of  visual attention in computer vision has many viable applications, including 

segmentation, improving classification models, video tracking, text extraction, and medical imaging. 

Next, we focus on a common use case of  attention: image captioning. 

• Following the aforementioned “coherence theory” of  vision (Rensink, 2000), the authors leverage 

visual attention so that the model learns to fix its “gaze” on salient objects while generating the 

corresponding words in the output sequence.

https://arxiv.org/pdf/1502.03044.pdf



Visual Attention: Captioning
• The authors introduce a multi-step algorithm: (1) CNN-based features are rendered for the input 

image, then (2) these features are fed into a Recurrent Neural Network (RNN) with attention 

mechanism that generates a caption. 

(1) Concretely, given an input image, we extract L vector representations of  different spatial regions 

using a pre-trained CNN; each vector is of  dimension D: 

• Notably, the authors utilize low-level features to render this latent representation. 

1{ ,..., }, D

L ia a a a= 



Visual Attention: Captioning

• The goal is to produce a caption, i.e., a sequence of  one-hot encoded vectors  connoting words 

(from a vocabulary of  𝐾 total words) in the caption: 

1{ ,..., }, D

L ia a a a= 

1{ ,...., }, K

C iy y y y= 



Visual Attention: Captioning

• The goal is to produce a caption, i.e., a sequence of  one-hot encoded vectors  connoting words 

(from a vocabulary of  𝐾 total words) in the caption: 

(2) The author employ an RNN to handle the caption generation/processing. RNNs represent 

traditional architectures for handling variable-size input/output; they are particularly well-suited for 

NLP problems for this reason. 

1{ ,..., }, D

L ia a a a= 

1{ ,...., }, K

C iy y y y= 



Visual Attention: Captioning
• In the late 1990s a variant of  RNNs was introduced, called Long-short term Memory (LSTMs). 

These models greatly improved the capacity of  RNNs for a variety of  NLP-related tasks, including 

machine translation. 

• In summary, an LSTM introduces several sub-network components, including memory cells, 

forget gates, and input gates (a multitude of  additional nuanced LSTM model types exist), etc. 

The introduction of  these components allows the RNN to learn “long-term” semantic 

dependencies between words (e.g., if, say, a dependent object in a sentence appears at the end of  

the sentence).

https://www.bioinf.jku.at/publications/older/2604.pdf



Visual Attention: Captioning
• In the LSTM cell, ℎ𝑡 is the hidden representation of  the LSTM (at step t); 𝑦𝑡 ∈ ℝ𝑘 is the one-hot 

encoded word in the caption (at step t); 𝐸 ∈ ℝ𝑚×𝑘 is a learned embedding matrix to map 𝑦𝑡 to an 

embedding space (E𝑦𝑡); Ƹ𝑧𝑡 ∈ ℝ𝐿 is the context vector (explained next), capturing the visual information 

associated with a particular input location. 

https://arxiv.org/pdf/1502.03044.pdf



Visual Attention: Captioning
• In the LSTM cell, ℎ𝑡 is the hidden representation of  the LSTM (at step t); 𝑦𝑡 ∈ ℝ𝑘 is the one-hot 

encoded word in the caption (at step t); 𝐸 ∈ ℝ𝑚×𝑘 is a learned embedding matrix to map 𝑦𝑡 to an 

embedding space (E𝑦𝑡); Ƹ𝑧𝑡 ∈ ℝ𝐿 is the context vector (explained below), capturing the visual 

information associated with a particular input location. 

• The input to the LSTM cell consists of  the context vector ( Ƹ𝑧𝑡), word embedding (E𝑦𝑡−1), and previous 

hidden state (ℎ𝑡−1). A combination of  learnable affine transformations and a non-linear sigmoid 

transformations modulate the input, output, and forget gates within the LSTM. 

https://arxiv.org/pdf/1502.03044.pdf



Visual Attention: Captioning
• Using the hidden representation output from the LSTM (ℎ𝑡−1) in conjunction with annotation 

vectors (𝑎𝑖) derived from the low-level features of  a CNN (for patch 𝑖), the authors train a separate 

(MLP) attention model: 𝑓𝑎𝑡𝑡(𝑎𝑖 , ℎ𝑡−1) that returns a weight associated with each hidden 

representation and each annotation vector (associated with different image patches in the input 

image). 

• The output of  𝑓𝑎𝑡𝑡(∙) is a context vector corresponding with time t: Ƹ𝑧𝑡 ∈ ℝ𝐿, which weights the 

visual attention corresponding with the relevant portion of  the image for the current caption word. 

Depending on the formulation of  𝑓𝑎𝑡𝑡(∙) , the visual attention context vector can be “hard” (in 

which case a single region of  attention is highlighted) or “soft” (in which case multiple regions of  

attention are highlighted). 

https://arxiv.org/pdf/1502.03044.pdf



Visual Attention: Captioning

https://arxiv.org/pdf/1502.03044.pdf



Visual Attention: Classification
• A closely-related work leveraging attention for image classification is the so-called Glimpse 

Network (DeepMind, 2014). 

https://proceedings.neurips.cc/paper/2014/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf



Visual Attention: Classification
• A closely-related work leveraging attention for image classification is the so-called Glimpse 

Network (DeepMind, 2014). 

• Glimpse uses reinforcement learning (RL) to focus visual attention on relevant parts of  an image. 

The general idea, borrowed loosely from coherence theory, is that computer vision tasks (classification 

in this case) can be made more efficient through the incorporation of  an attention mechanism. 

• In this case, the model extracts image information by adaptively selecting sub-regions (or frames 

in a video) for processing – in lieu of  processing an entire image/video at once. 

https://proceedings.neurips.cc/paper/2014/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf



Visual Attention: Classification
• The authors use an RNN as the controller to identify the precise location of  visual attention 

in each time-stamp; this choice is based on the feedback from the glimpse in the previous 

time-stamp. 

• This work show that using the glimpse network equipped with a visual attention mechanism 

can outperform a generic CNN for classification. 



Visual Attention: Classification

(A) Glimpse sensor: Given an image with representation 𝑋𝑡, a glimpse sensor creates a 

retina-like representation of  the image. The glimpse sensor is conceptually assumed to not 

have full access to the image (because of  bandwidth constraints) and is thus able to access 

only a small portion of  the image in high-resolution, centered at 𝑙𝑡−1.

• The resolution of  a particular location in the image reduces with the distance from the 

location 𝑙𝑡−1. This reduced representation is denoted 𝜌(𝑋𝑡 , 𝑙𝑡−1).



Visual Attention: Classification

(B) Glimpse network: The glimpse network contains the glimpse sensor and encodes 

both the glimpse location 𝑙𝑡−1 and the glimpse representation ρ into latent space using 

simple linear layers. 

• Subsequently, the two are combined into a single hidden representation using another 

linear layer. The resulting output 𝑔𝑡 is the input to the 𝑡th time-stamp of  the hidden layer 

in the RNN. 



Visual Attention: Classification

(C) RNN: the RNN includes the glimpse network and sensor; it generates action-location 

output pairs at each time-step.  The action output at time-stamp 𝑡 is denoted by 𝑎𝑡, and 

rewards are associated with the action (to train the RL model); a reward might be 

associated, say, with the class label of  the object or numerical digits (for Streetview data). 

• The RNN also outputs 𝑙𝑡 the location in the image for the next time-stamp on which 

the glimpse network should focus. Training of  the RNN is done to maximize the 

expected reward over time (e.g., predict the correct class). Tunable parameters include: 

𝜃𝑔 (glimpse network parameters), 𝜃ℎ (RNN hidden network parameters) and 𝜃𝑎 (action 

network parameters). 




