
Visualization, Unsupervised Learning, and Attention

CS 410/510: CV & DL

Outline
• Model Interpretability

• Autoencoders

• Saliency

• Feature Visualization; Image Inversion

• DeepDream

• Visual Attention: Captioning & Classification

Model Interpretability
• One of the common criticisms about NNs has been their lack of interpretability. Models

that lack interpretability, i.e., black box models, often have limited use in real-world

applications.

• DL systems lacking interpretability are inherently limited. Among other issues, trust and

verification are difficult to achieve; the system itself can be challenging to improve/learn

from; it may be difficult to detect and ameliorate the presence of model bias; there may even

be unforeseen legal consequences to using such as system.

Model Interpretability
• However, as it turns out, one can use backpropagation to determine the features which

contribute most significantly to the classification of a particular test instance.

• This method provides the analyst with an understanding of the importance of different

features learned by the model; moreover, this approach can also be used as a mechanism

for feature selection.

Model Interpretability
• For instance, consider a test datum 𝒙 = 𝑥1, … , 𝑥𝑑 (an image, for example), for

which the multilabel output scores of the NN are 𝑜1, … , 𝑜𝑘 . Furthermore, let the

output of the winning class among the 𝑘 outputs be 𝑜𝑚, 1 ≤ 𝑚 ≤ 𝑘.

• Our goal is to identify the features that are most pertinent to the classification

of this test instance. Moreover, we wish to identify the specific sensitivity of the

output 𝑜𝑚 to each 𝑥𝑖 .

Model Interpretability
• For instance, consider a test datum 𝒙 = 𝑥1, … , 𝑥𝑑 (an image, for example), for

which the multilabel output scores of the NN are 𝑜1, … , 𝑜𝑘 . Furthermore, let the

output of the winning class among the 𝑘 outputs be 𝑜𝑚, 1 ≤ 𝑚 ≤ 𝑘.

• Our goal is to identify the features that are most pertinent to the classification

of this test instance. Moreover, we wish to identify the specific sensitivity of the

output 𝑜𝑚 to each 𝑥𝑖 .

• Features with large absolute magnitudes of this sensitivity are naturally relevant

to the classification of this test instance and will have the greatest influence on the

classification for the winning class. Thus, we need to compute:
𝜕𝑜𝑚

𝜕𝑥𝑖
.

1,..., ,...,i dx x x=x

Model Interpretability
• Thus, we need to compute:

𝜕𝑜𝑚

𝜕𝑥𝑖
.

• Notice that the sign of the derivative also reveals whether increasing 𝑥𝑖 slightly from its current

value increases or decreases the score of the winning class. Other partials derivatives for non winning

classes can also be relevant, but their importance is diminished when many classes exist.

Model Interpretability
• Thus, we need to compute:

𝜕𝑜𝑚

𝜕𝑥𝑖
.

• Notice that the sign of the derivative also reveals whether increasing 𝑥𝑖 slightly from its current

value increases or decreases the score of the winning class. Other partials derivatives for non winning

classes can also be relevant, but their importance is diminished when many classes exist.

• How do we compute this derivative? Fortunately, it is a straightforward application of

backpropagation. Features with largest aggregate sensitivity over entire training data are most relevant.

• This process is closely related to “saliency analysis” in classical CV, which tells us which features

(pixels) in an image are most relevant in the image being classified as a dog, etc.

Autoencoders
•Autoencoders (AEs) represent a fundamental architecture that is used for various kinds of

unsupervised learning, including feature engineering, principal component analysis (PCA), incomplete

data factorization, and dimensionality reduction.

• One significant advantage of AEs that is often overlooked, includes their strong conceptual

consonance with matrix factorization methods. From this perspective, one can frame a variety of

traditional matrix factorization methods (e.g., sparse factorization, PCA, etc.), as a special case –

through the use of bespoke architectures – of AEs.

Autoencoders
•Autoencoders (AEs) represent a fundamental architecture that is used for various kinds of

unsupervised learning, including feature engineering, principal component analysis (PCA), incomplete

data factorization, and dimensionality reduction.

• One significant advantage of AEs that is often overlooked, includes their strong conceptual

consonance with matrix factorization methods. From this perspective, one can frame a variety of

traditional matrix factorization methods (e.g., sparse factorization, PCA, etc.), as a special case –

through the use of bespoke architectures – of AEs.

For this brief digression about AEs, we show:

(1) Classical dimensionality reduction methods (SVD) are special cases of neural architectures (!)

(2) By modulating the basic AE architecture, one can generate complex non-linear embeddings of

data. In particular, neural architectures provide unprecedented flexibility in controlling properties

of these embeddings.

Autoencoders
• Autoencoders aim to reconstruct input data by passing it through a network bottleneck. This

network bottleneck serves as a mechanism for (automated) dimensionality reduction.

• Although reconstructing data might seem like a trivial matter in general, the introduction of a

bottleneck holds a reduced representation of the data, and hence the final layer of the AE cannot, in

general, reconstruct the input data exactly. Thus, this type of reconstruction is inherently lossy.

Autoencoders
• Autoencoders aim to reconstruct input data by passing it through a network bottleneck. This

network bottleneck serves as a mechanism for (automated) dimensionality reduction.

• Although reconstructing data might seem like a trivial matter in general, the introduction of a

bottleneck holds a reduced representation of the data, and hence the final layer of the AE cannot, in

general, reconstruct the input data exactly. Thus, this type of reconstruction is inherently lossy.

• The loss function of the AE is typically a sum-of-squares (note that cross-entropy and binary

cross-entropy are also commonly used) difference between the input and output, in order to enforce

veracity of the reconstruction. Note that the innermost hidden layer will be hierarchically related to

those in the other hidden layers.

Autoencoders
• AEs commonly have a symmetrical structure, as shown. The subnetwork preceding the bottleneck

layer represents the Encoder network, and the subnetwork following the bottleneck represents the

Decoder network (we will see this schematic again in our course).

• If we denote the network input 𝒙 ∈ 𝐷 (where 𝐷 is the data distribution) and the encoder

𝐹 ∙ , respectively, then 𝐹 𝒙 , symbolizes a reduced representation of 𝒙 per the network latent space.

Autoencoders
• Conversely, if we sample a point from the network latent space, i.e. 𝐹 ƴ𝒙 and subsequently pass this

point through the decoder subnetwork 𝐺 ∙ , we generate a synthetic datum – this is to say, a datum

resembling a sample from the distribution 𝐷.

• Together, the subnetworks of an AE form a potent tandem. The encoder subnetwork functions as a

hierarchical dimensionality reduction mechanism, while the decoder subnetwork provides an apparatus

to generate synthetic data.

• An additional benefit of AEs is that they can be trained in an unsupervised fashion! With

reconstruction loss no ostensible “label” is required.

Autoencoders: SVD
•Next, we describe an AE with a single hidden layer to better illustrate the conceptual link between

AEs and SVD.

• We devise an AE with 𝑑 input dimensions and a single hidden layer of k ≪ d. Assume we have an

𝑛 × 𝑑 data matrix 𝐷 and we wish to factorize it into the product of an 𝑛 × 𝑘 matrix 𝑈 and a d × 𝑘
matrix 𝑉:

• Here 𝑘 is the rank of the factorization; 𝑈 contains he reduced representation of the data, and the

matrix 𝑉 contains the basis vectors.

TD UV

Autoencoders: SVD
•Next, we describe an AE with a single hidden layer to better illustrate the conceptual link between

AEs and SVD.

• We devise an AE with 𝑑 input dimensions and a single hidden layer of k ≪ d. Assume we have an

𝑛 × 𝑑 data matrix 𝐷 and we wish to factorize it into the product of an 𝑛 × 𝑘 matrix 𝑈 and a d × 𝑘
matrix 𝑉:

• Here 𝑘 is the rank of the factorization; 𝑈 contains he reduced representation of the data, and the

matrix 𝑉 contains the basis vectors.

• In traditional ML, matrix factorization is solved by minimizing the Frobenius norm (element-wise

L2 norm) of the residual matrix: 𝐷 − 𝑈𝑉𝑇. This yields the following objective:

TD UV

2

,

arg min T

F
U V

D UV−

Autoencoders: SVD

• Notice that the above optimization problem is relatively easy to solve using gradient-descent based

algorithms. However, in this instance, we demonstrate how to encapsulate this matrix factorization

problem using a neural network framework.

• The neural architecture shown has 𝑘 hidden units; the encoder weights are contained in the d × 𝑘
matrix denoted by 𝑊.

• Notice that the AE depicted creates the reconstructed representation D𝑊𝑇𝑉𝑇 of the original data

matrix, where we use the reconstruction loss:
2

T TDW V D−

Autoencoders: SVD

• The optimal solution to this problem is given by: 𝑊 = 𝑉𝑇𝑉
−1
𝑉𝑇 (this formulation is known as

the pseudo-inverse of 𝑉):

2
T TDW V D−

()() () ()
2

2 2
1 1 12

1 0
T

T T T T T T T T TDW V D D V V V V D DV V V V D DVV V V D
− − −

−− = − = − = − =

Autoencoders: SVD

• The optimal solution to this problem is given by: 𝑊 = 𝑉𝑇𝑉
−1
𝑉𝑇 (this formulation is known as

the pseudo-inverse of 𝑉):

• Notice that the AE learning process might deviate from this condition if the 𝐷 matrix has a small

rank, etc. Post-multiplying the input 𝐷 by 𝑊𝑇 yields: 𝐷𝑊𝑇 ≈ 𝑈𝑉𝑇𝑉 𝑉𝑇𝑉
−1

= 𝑈; this shows that

we get the reduced representation from the matrix factorization.

• SVD yields factorization 𝑈𝑉𝑇 where the columns of 𝑉 are orthonormal. The loss function of the

AE allows for discovering alternative minima, so it is possible to find an optimal solution in which the

columns of 𝑉 are not necessarily mutually orthogonal or unit length. Nevertheless, the subspace

spanned by the 𝑘 columns of 𝑉 will be the same as that spanned by the top-k basis vectors of SVD.

2
T TDW V D−

()() () ()
2

2 2
1 1 12

1 0
T

T T T T T T T T TDW V D D V V V V D DV V V V D DVV V V D
− − −

−− = − = − = − =

Autoencoders: SVD
• Many variants of AEs exist. For instance, one can employ weight-sharing, where some of the

weights between the encoder and decoder are shared. This approach has the effect of reducing the

parameter footprint of the AE and simultaneously enforcing regularization, and thus reducing

overfitting.

• In the most straightforward instance of weight-sharing for AEs, in a one hidden layer variant 𝑊 =
𝑉𝑇 (as shown).

• Alternatively, one can add a sparse penalty (i.e. L1-penalty) for approximation of a sparse matrix

factorization:

• A significant benefit of formulating matrix factorization via neural networks is that we only need to

augment the loss function (here adding the L1 regularization term) in order to solve the sparse variant

of matrix factorization.

2

1
,

arg min T T T

F
W V

DW V D DW− +

Autoencoders: SVD
• The real power of AEs is realized when deeper variants are used (along with non-linear activations).

• As we know, DNNs provide an extraordinary amount of representational power. Multiple layers

provide hierarchically reduced representations of data.

• Using deep AEs, It is possible to achieve extremely compact data reductions. Greater reduction is

always achieved by using non-linear units, which implicitly map warped manifolds into hyperplanes;

such reductions are often useful for 2-D visualization of high dimensional data (as shown).

Projection of MNIST dataset using AE

from 784 dimensions to 2

Autoencoders: SVD
• AEs provide further utility as denoising workflows.

• AES can also be used for embedding multimodal data (where the input data is heterogenous) in a

joint latent space.

• In general, multimodal data poses challenges in classical ML settings, because different features often

require different types of processing and treatment. By embedding heterogenous attributes in a

unified space, one is removing this source of difficulty.

Autoencoders: Example
• Here is a simple, one hidden layer AE applied to MNIST:

• A deeper AE applied to MNIST:

• Denoising AE:

Convolutional Autoencoders
• A convolutional autoencoder (CAE) functions in the same fashion as an ordinary AE, but with the

use of convolutional operations.

• CAEs introduce a bottleneck module, but they leverage spatial information (via convolution

operations), and thus the encoder-decoder subnetworks represent 3D volumes.

Convolutional Autoencoders
• A convolutional autoencoder (CAE) functions in the same fashion as an ordinary AE, but with the

use of convolutional operations.

• CAEs introduce a bottleneck module, but they leverage spatial information (via convolution

operations), and thus the encoder-decoder subnetworks represent 3D volumes.

• Just as with the compression portion of the encoder of an AE, the encoder in a CAE uses repeated

convolutional operations (layer-by-layer) to process a compressed version of the network input.

Oftentimes, we use 3D reconstruction error to train the CAE:

()() ()

1 1 1

W H D
k k

ij ij

i j k

E X X
= = =

= −

Convolutional Autoencoders
• In more detail: there are typically (2) operations we wish to invert in the decoder layers,

corresponding to the convolution and max-pooling and RELU of the encoder layers.

(1) The decoder subnetwork consists of deconvolutional layers (also called transposed

convolution), which entails performing matrix multiplication (by a transposed weight matrix) in

order to achieve a “deconvolution” of the layer activations. Deconvolution “inverts” convolution

operations in the encoder subnetwork, resulting in a “scaling up” of the network feature maps.

Convolutional Autoencoders
• In more detail: there are (3) operations we wish to invert in the decoder layers, corresponding to the

convolution and max-pooling of the encoder layers.

(1) The decoder subnetwork consists of deconvolutional layers (also called transposed

convolution), which entails performing matrix multiplication (by a transposed weight matrix) in

order to achieve a “deconvolution” of the layer activations. Deconvolution “inverts” convolution

operations in the encoder subnetwork.

(2) Pooling operations irreversibly lose some information and are therefore impossible to invert

exactly. The max-”unpooling” operation is implemented with the help of switches. Typically, with

unpooling, the feature map is increase by a factor (e.g., of 2), and the values stored at the “switch”

position from the corresponding maxpooling in the encoder layer is copied from the previous layer

(the other values are set to zero).

Convolutional Autoencoders
•Here is a coded exampled of a CAE with 3 conv layers, with each followed by pooling and RELU*:

Visualizing the 128-dimensional encodings:

*This implementation uses conv-upsampling blocks to achieve an inversion of conv-maxpooling in the encoder network.

This is also a common implementation schematic for CAEs.

Visualization
• Unlike generic DNNs, CNNs are highly interpretable models due to the spatial nature of

learning via convolutional operations.

• In the most straightforward sense, one can simply visualize the 2D (spatial) components of the

learned filters in a CNN (see below).

Visualization
• Unlike generic DNNs, CNNs are highly interpretable models due to the spatial nature of

learning via convolutional operations.

• In the most straightforward sense, one can simply visualize the 2D (spatial) components of the

learned filters in a CNN (see below).

• Although this type of visualization can provide some interesting instances of the primitive edges and

related features learned in the first layer of the CNN, it is not very useful for later layers.

• In the first layer, it is possible to visualize these filters directly because they operate directly on the

input image. For later layers, convolutions are aggregated across layers, leading to increasingly abstract

learned filters in the later layers of a CNN.

First (left) & second (right) layer filters in a CNN

Visualization
• In order to obtain a more coherent form of interpretability, one must find a way to map the impacts

of all operations back to the input layer of the network.

• Therefore, the goal of network visualization is often to identify and highlight portions of the input

image to which a particular hidden feature is responding.

Visualization
• In order to obtain a more coherent form of interpretability, one must find a way to map the impacts

of all operations back to the input layer of the network.

• Therefore, the goal of network visualization is often to identify and highlight portions of the input

image to which a particular hidden feature is responding.

•For instance, the value of a hidden feature might be sensitive to changes in the portion of the image

corresponding to a face, a flower, or a traffic sign, etc. This is naturally achieved by computing the

sensitivity (via the gradient) of a hidden feature with respect to each pixel of the input image.

Visualization: Saliency
• In CV, a saliency map is an image that shows each pixel’s unique quality. The goal of a saliency map

is to simplify and/or change the representation of an image into something that is more meaningful

and easier to analyze for a CV workflow.

• Saliency is closely related to image segmentation (a topic we study in more detail later in our

course); in fact, saliency detection is frequently used as a pre-step for object segmentation in CV.

Visualization: Saliency

• In the visual system, it is widely believed that two basic, complementary stages of visual processing

take place*:

(1) The pre-attentive process where low-level features such as orientation, edges, or intensities can

“pop up” automatically. From the perspective of object detection, pre-attentive objects become

candidates for object detection. These pre-attentive objects are sometimes called proto objects.

(2) An attention process that is generally slower, executed in a serial fashion, and compute-intensive

relative to the pre-attentive process.

*https://www.sciencedirect.com/science/article/pii/S0042698900000031

Visualization: Classical Saliency
• For an introduction to classical saliency algorithms, we now review spectral residual saliency* (Hou et al.,

2007) a component of OpenCV library.

• It is well-known that natural images exhibit a general, scale invariant property. In other words, the

distribution of image statistics for natural images remains unchanged if the image is scaled.

Visualization: Classical Saliency
• For an introduction to classical saliency algorithms, we review spectral residual saliency* (Hou et al.,

2007) a component of OpenCV library.

• It is well-known that natural images exhibit a general, scale invariant property. In other words, the

distribution of image statistics for natural images remains unchanged if the image is scaled.

• This property is encapsulated by the power law, which is to say the amplitude A(f) of the averaged Fourier

spectrum of an ensemble of natural images obeys the distribution:

*http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.125.5641&rep=rep1&type=pdf

{ ()} 1/E L f f

Visualization: Classical Saliency
• Given an input image, the authors first compute the log of the Fourier transform of the image: 𝐿 𝑓 .

()L f

Visualization: Classical Saliency
• Given an input image, the authors first compute the log of the Fourier transform of the image: 𝐿 𝑓 .

• Because the log transform of a natural image is locally linear (see image above), the average log spectrum

can be approximated using a local average filter over an 𝑛 × 𝑛 window:

• The averaged spectrum can then be approximated by convolving:

• The authors define the spectral residual R(f):

2

1 1 1

1 1 11
()

1 1 1

nh f
n

 
 
 =
 
 
 

() () ()nA f h f L f= 

() () ()R f L f A f= −

()L f () ()* ()nA f h f L f= () () ()R f L f A f= −

Visualization: Classical Saliency

• To generate a saliency map, S x , the authors then perform an inverse Fourier transform (F-1) on the

spectral residual, followed by Gaussian smoothing:

Fourier Transform log Fourier spectral residualAverage spectrum approximation
of Input Image

() () () ()* () () () ()n

I

F I L f A f h f L f R f L f A f→ → = → = −

Visualization: Classical Saliency

• To generate a saliency map, S x , the authors then perform an inverse Fourier transform (F-1) on the

spectral residual, followed by Gaussian smoothing:

• S x is then thresholded to (i.e., S x > 𝛿) for object detection.

Fourier Transform log Fourier spectral residualAverage spectrum approximation
of Input Image

() () () ()* () () () ()n

I

F I L f A f h f L f R f L f A f→ → = → = −

Visualization: Classical Saliency

Fourier Transform log Fourier spectral residualAverage spectrum approximation
of Input Image

() () () ()* () () () ()n

I

F I L f A f h f L f R f L f A f→ → = → = −

Visualization
• Consider a NN that has been trained using a large dataset like ImageNet. The goal is to visualize and

understand the impact of the different portions of the input image on various features in the hidden

layers and the output layers.

In general, to this end, we would like to address the following:

Visualization
• Consider a NN that has been trained using a large dataset like ImageNet. The goal is to visualize and

understand the impact of the different portions of the input image on various features in the hidden

layers and the output layers.

In general, we would like to address the following:

(1) Given an activation of a feature anywhere in the NN for a particular input image, visualize the

portions of the input to which that feature is responding the most.

• The feature might be from a convolutional layer, fully-connected layer, or even the output layer.

Note that in the latter case, for example, if an input image is activating the label for “dog”, we

hope to see parts of the specific input image that look most like a dog.

Visualization
• Consider a NN that has been trained using a large dataset like ImageNet. The goal is to visualize and

understand the impact of the different portions of the input image on various features in the hidden

layers and the output layers.

In general, we would like to address the following:

(1) Given an activation of a feature anywhere in the NN for a particular input image, visualize the

portions of the input to which that feature is responding the most.

• The feature might be from a convolutional layer, fully-connected layer, or even the output layer.

Note that in the latter case, for example, if an input image is activating the label for “dog”, we

hope to see parts of the specific input image that look most like a dog.

(2) Given a particular feature anywhere in the NN, render a “dream image” that is likely to activate

that feature the most. This is sometimes called the image inversion problem*. Again, the feature

could come from any convolutional layer, FC layer or output layer.

*https://arxiv.org/pdf/1611.03679.pdf

Visualization
Gradient-Based Visualization of Activated Features

• While backpropagation is conventionally used to train a CNN, it can also be used to generate

gradient-based visualization.

• The main difference from the traditional backpropagation setting is that our end-goal is to determine

the sensitivity of the hidden/output features with respect to different pixels of the input image rather

than with respect to the weights. However, even traditional backpropagation does compute the

sensitivity of the outputs with respect to various layers as an intermediate step.

Visualization
Gradient-Based Visualization of Activated Features

• While backpropagation is conventionally used to train a CNN, it can also be used to generate gradient-

based visualization.

• The main difference from the traditional backpropagation setting is that our end-goal is to determine the

sensitivity of the hidden/output features with respect to different pixels of the input image rather than with

respect to the weights. However, even traditional backpropagation does compute the sensitivity of the

outputs with respect to various layers as an intermediate step.

• When the sensitivity of an output 𝑜 is computed with respect to the input pixels, the visualization of this

sensitivity over the corresponding pixels is referred to as a saliency map.

• For example, the output 𝑜 might be the softmax probability of the class “flower”. Then, for each pixel xi 𝑥𝑖

in the image we want to determine the value of
𝜕𝑜

𝜕𝑥𝑖
. Simply, this value can be computed by straightforward*

backpropagation to the input layer.

Visualization
Gradient-Based Visualization of Activated Features

• The softmax probability of “flower” will be relatively insensitive to small changes in portions of the image

that are irrelevant to the recognition of flower. Therefore, the values
𝜕𝑜

𝜕𝑥𝑖
will be close to zero for such

irrelevant regions.

• In more detail: Consider a pre-trained AlexNet with input image of dimension 224x224x3. We compute
𝜕𝑜

𝜕𝑥𝑖
over this volume, generating a gradient tensor of the same dimension.

• To aid in visualization, we convert this gradient volume into a grayscale image by calculating the maximum

of the absolute magnitude of the gradient over the three RGB channels, yielding a 224x224x1 saliency map

with non-negative values.

https://arxiv.org/pdf/1312.6034.pdf

Visualization
Gradient-Based Visualization of Activated Features

• This general approach has also been used for visualizing the activations of specific hidden features. Consider the

value ℎ of a hidden variable (i.e., a neuron in a CNN) for a particular input image. How is this variable responding

to the input image at its current activation level?

• The idea is that if we slightly increase or decrease the color intensity of some pixels, the value ℎ will be affected

more than if we increase/decrease other pixels. In addition, the receptive field of ℎ will depend on its placement in

the network. For neurons in the first layer (say of VGG), h will have a receptive field of size 3x3; conversely,

neurons in later layers in the network will have a larger receptive field.

Visualization
Gradient-Based Visualization of Activated Features

• This general approach has also been used for visualizing the activations of specific hidden features. Consider the

value ℎ of a hidden variable (i.e., a neuron in a CNN) for a particular input image. How is this variable responding

to the input image at its current activation level?

• The idea is that if we slightly increase or decrease the color intensity of some pixels, the value ℎ will be affected

more than if we increase/decrease other pixels. In addition, the receptive field of ℎ will depend on its placement in

the network. For neurons in the first layer (say of VGG), h will have a receptive field of size 3x3; conversely,

neurons in later layers in the network will have a larger receptive field.

• At a high level of activation of ℎ, some of the pixels in that receptive field will be more sensitive to ℎ than others.

By isolating the pixels to which the hidden variable ℎ has the greatest sensitivity and visualizing the corresponding

regions, one can get an idea of what part of the input most affects a particular hidden feature.

(Left) Layer 6-based gradient
𝜕ℎ

𝜕𝑥𝑖
for

corresponding image crops (Right)
(Left) Layer 9-based gradient

𝜕ℎ

𝜕𝑥𝑖
for

corresponding image crops (Right)

Visualization
Gradient-Based Visualization of Activated Features

• The previous discussion focused on visualizing elements of the input image to which a feature (i.e.,

output neuron, hidden layer neuron, etc.) is responding the most.

• Remarkably, we can invert the visualization process to instead render a synthesized image that

activates a feature (including output class)!

Visualization
Gradient-Based Visualization of Activated Features

• For simplicity, consider 𝑜 to be the unnormalized score for a particular output image class, e.g.,

“shiba inu.” We would like to learn the input image ҧ𝑥 that maximizes the output 𝑜, while applying

some regularization to ҧ𝑥 (we apply the regularization so that the output image conforms with basic

semantic properties of images* – this is sometimes called an image prior):

where λ is the regularization parameter and is important to extract semantically interpretable images;

this particular form of regularization clips the image intensities.

*Oftentimes intensity clipping, and minimization of total variation of an image, are imposed as

image prior conditions; see: https://arxiv.org/pdf/1412.0035.pdf

2
arg max () ()

x

J x o x= −

https://arxiv.org/pdf/1412.0035.pdf

Visualization
Gradient-Based Visualization of Activated Features

• For simplicity, consider 𝑜 to be the unnormalized score for a particular output image class, e.g.,

“shiba inu.” We would like to learn the input image ҧ𝑥 that maximizes the output 𝑜, while applying

some regularization to ҧ𝑥 (we apply the regularization so that the output image conforms with basic

semantic properties of images* – this is sometimes called an image prior):

where λ is the regularization parameter and is important to extract semantically interpretable images;

this particular form of regularization clips the image intensities.

*Oftentimes intensity clipping, and minimization of total variation of an image, are imposed as

image prior conditions; see: https://arxiv.org/pdf/1412.0035.pdf

In literature this inversion problem is often generally framed as:

where x denotes the inverse image, Φ(·) a representation function (e.g., feature map of a hidden layer

in a NN); Φ0=Φ(x0) is the reference image representation.

2
arg max () ()

x

J x o x= −

()()0

Regularizer

arg min , ()
H W C

x l R
 

 
=   + 

  x

x x

https://arxiv.org/pdf/1412.0035.pdf

Visualization
Gradient-Based Visualization of Activated Features

• One can approximate a solution to this optimization problem using gradient ascent in conjunction

with backpropagation in order to learn the image ҧ𝑥 maximizing the objective function.

2
arg max () ()

x

J x o x= −

Visualization
Gradient-Based Visualization of Activated Features

• One can approximate a solution to this optimization problem using gradient ascent in conjunction

with backpropagation in order to learn the image ҧ𝑥 maximizing the objective function.

Thus, we start with a zero image ҧ𝑥0 (or random noise) and update ҧ𝑥𝑖+1 using gradient ascent:

• Here α is the learning rate. The key point is that backpropagation is being leveraged in an unusual

way to update image pixels while keeping the (already learned) weights of the model fixed.

2
arg max () ()

x

J x o x= −

1 ()i i xx x J x+  + 

Visualization
Gradient-Based Visualization of Activated Features

• Above are examples of synthesized images from “Deep Inside Convolutional Networks: Visualizing

Image Classification Models and Saliency Maps” (*Simonyan et al., 2014).

• These images are illustrative of what the trained network perceives – at least loosely – to constitute

“idealized” instantiations of a particular category.

*https://arxiv.org/pdf/1312.6034.pdf

2
arg max () ()

x

J x o x= −
1 ()i i xx x J x+  + 

Visualization
Gradient-Based Visualization of Activated Features

• An analogous methodology can be applied to actualize synthetic images that activate hidden layer

neurons ℎ (in lieu of output neurons o). Happily, the methodology is essentially no different, as we

once again use gradient ascent:

• Visualizing synthetic images in this fashion enlightens us about several intriguing aspects of

CNNs, including:

(1) The individual learned features – and their relation to other learned features – (including

high-level features) in the network.

(2) The effect and function of the receptive field of the network components.

1 ()i i xx x J x+  + 
2

arg max () ()
x

J x h x= −

Visualization
Gradient-Based Visualization of Activated Features

• Above, visualizations from ResNet-34 hidden neurons. Oftentimes, the feature visualizations appear as

gossamer composites; (below) the absolute activation for a given input image, indicating the sensitivity to the

class of “feathers” in this case.

https://towardsdatascience.com/how-to-visualize-convolutional-features-in-40-lines-of-code-70b7d87b0030

2
arg max () ()

x

J x h x= −

1 ()i i xx x J x+  + 

Input image
Layer (absolute)

filter activations

Maximum

activation filter

Visualization
Gradient-Based Visualization of Activated Features

• Above we see the difference in the receptive field of different neurons in deeper layers of a trained

CNN.

Visualization: Dream Deeper
• Following the publication of several influential papers on CNNs and deep

model visualization (including the work we have reviewed here), Google

created DeepDream (2015), a program that creates dream-like hallucinogenic

images from pre-trained CNNs.

• DeepDream uses a pre-trained CNN (e.g., Inception) and applies gradient ascent to the activations of a set of layers in

the network in response to an input image (these layers can be chosen at random, or pre-selected).

*https://www.freud.org.uk/education/resources/the-interpretation-of-dreams/

“The interpretation of dreams is the royal road to a

knowledge of the unconscious activities of the mind.”*

-- Freud

Visualization: Dream Deeper
• Following the publication of several influential papers on CNNs and deep

model visualization (including the work we have reviewed here), Google

created DeepDream (2015), a program that creates dream-like hallucinogenic

images from pre-trained CNNs.

• DeepDream uses a pre-trained CNN (e.g., Inception) and applies gradient ascent to the activations of set of layers in

the network in response to an input image (these layers can be chosen at random, or pre-selected).

• Notice that the choice of layers in addition to the input image (naturally) will have a significant impact on the

resulting image, due to the sensitivity of each neuron to specific image/class features.

https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

• The results vary quite a bit with the kind of image,

because the features that are entered bias the network

towards certain interpretations. For example, horizontal lines

tend to get filled with towers and pagodas. Rocks and trees

turn into buildings. Birds and insects appear in images of

leaves.

• This technique gives us a qualitative sense of the level of

abstraction that a particular layer has achieved in its

understanding of images.

Visualization: Dream Deeper

• The original image is processed at different scales “octaves” (typically a small number, e.g., 3, ~40%

rescale size).

Visualization: Dream Deeper

• The original image is processed at different scales “octaves” (typically a small number, e.g., 3, ~40%

rescale size).

• For each octave we execute a “dream” loop, where layer activations (usually we take a set of

neurons/layers) are computed for the input image. These normalized layer activations represent the

“gradient” – we then execute a step of gradient ascent.

• We repeat several iterations of gradient ascent for the current octave, generating a scaled “dream”

image. This image is the result of “over processing” the activations corresponding with the chosen

layers/neurons for the current input.

Visualization: Dream Deeper

• After generating the “dream” image for the current octave, many of the fine-grain details of

original image may be lost. For this reason, we perform a “detail injection”, where the pixel

difference between the upscaled image and original image is added to the dream image.

• We repeat this process for several octaves to generate the final DeepDream output.

Visualization: Dream Deeper
• DeepDream Loss Function

• Looping Over Octaves
• Gradient Ascent

https://github.com/google/deepdream

Visualization: Dream Deeper

Visual Attention: Captioning
• Human beings rarely use all the available sensory inputs in order to accomplish specific tasks.

• In particular, the retina contains a central fovea which has an extremely high resolution compared

with the remainder of the eye. This region has a high concentration of color-sensitive cones, whereas

most of the non-central portions of the eye have relatively low resolution with a predominance of

color-insensitive rods.

• When, for instance, reading a street number, the fovea fixates on the number. Although one is aware

of the other objects outside this central field of vision, it is virtually impossible to use images in the

peripheral region to perform detail-oriented tasks.

Attention and saliency used for sign-reading

in Streetview data (Google)

Visual Attention: Captioning
• The use of visual attention in computer vision has many viable applications, including

segmentation, improving classification models, video tracking, text extraction, and medical imaging.

Next, we focus on a common use case of attention: image captioning.

• Following the aforementioned “coherence theory” of vision (Rensink, 2000), the authors leverage

visual attention so that the model learns to fix its “gaze” on salient objects while generating the

corresponding words in the output sequence.

https://arxiv.org/pdf/1502.03044.pdf

Visual Attention: Captioning
• The authors introduce a multi-step algorithm: (1) CNN-based features are rendered for the input

image, then (2) these features are fed into a Recurrent Neural Network (RNN) with attention

mechanism that generates a caption.

(1) Concretely, given an input image, we extract L vector representations of different spatial regions

using a pre-trained CNN; each vector is of dimension D:

• Notably, the authors utilize low-level features to render this latent representation.

1{ ,..., }, D

L ia a a a= 

Visual Attention: Captioning

• The goal is to produce a caption, i.e., a sequence of one-hot encoded vectors connoting words

(from a vocabulary of 𝐾 total words) in the caption:

1{ ,..., }, D

L ia a a a= 

1{ ,...., }, K

C iy y y y= 

Visual Attention: Captioning

• The goal is to produce a caption, i.e., a sequence of one-hot encoded vectors connoting words

(from a vocabulary of 𝐾 total words) in the caption:

(2) The author employ an RNN to handle the caption generation/processing. RNNs represent

traditional architectures for handling variable-size input/output; they are particularly well-suited for

NLP problems for this reason.

1{ ,..., }, D

L ia a a a= 

1{ ,...., }, K

C iy y y y= 

Visual Attention: Captioning
• In the late 1990s a variant of RNNs was introduced, called Long-short term Memory (LSTMs).

These models greatly improved the capacity of RNNs for a variety of NLP-related tasks, including

machine translation.

• In summary, an LSTM introduces several sub-network components, including memory cells,

forget gates, and input gates (a multitude of additional nuanced LSTM model types exist), etc.

The introduction of these components allows the RNN to learn “long-term” semantic

dependencies between words (e.g., if, say, a dependent object in a sentence appears at the end of

the sentence).

https://www.bioinf.jku.at/publications/older/2604.pdf

Visual Attention: Captioning
• In the LSTM cell, ℎ𝑡 is the hidden representation of the LSTM (at step t); 𝑦𝑡 ∈ ℝ𝑘 is the one-hot

encoded word in the caption (at step t); 𝐸 ∈ ℝ𝑚×𝑘 is a learned embedding matrix to map 𝑦𝑡 to an

embedding space (E𝑦𝑡); Ƹ𝑧𝑡 ∈ ℝ𝐿 is the context vector (explained next), capturing the visual information

associated with a particular input location.

https://arxiv.org/pdf/1502.03044.pdf

Visual Attention: Captioning
• In the LSTM cell, ℎ𝑡 is the hidden representation of the LSTM (at step t); 𝑦𝑡 ∈ ℝ𝑘 is the one-hot

encoded word in the caption (at step t); 𝐸 ∈ ℝ𝑚×𝑘 is a learned embedding matrix to map 𝑦𝑡 to an

embedding space (E𝑦𝑡); Ƹ𝑧𝑡 ∈ ℝ𝐿 is the context vector (explained below), capturing the visual

information associated with a particular input location.

• The input to the LSTM cell consists of the context vector (Ƹ𝑧𝑡), word embedding (E𝑦𝑡−1), and previous

hidden state (ℎ𝑡−1). A combination of learnable affine transformations and a non-linear sigmoid

transformations modulate the input, output, and forget gates within the LSTM.

https://arxiv.org/pdf/1502.03044.pdf

Visual Attention: Captioning
• Using the hidden representation output from the LSTM (ℎ𝑡−1) in conjunction with annotation

vectors (𝑎𝑖) derived from the low-level features of a CNN (for patch 𝑖), the authors train a separate

(MLP) attention model: 𝑓𝑎𝑡𝑡(𝑎𝑖 , ℎ𝑡−1) that returns a weight associated with each hidden

representation and each annotation vector (associated with different image patches in the input

image).

• The output of 𝑓𝑎𝑡𝑡(∙) is a context vector corresponding with time t: Ƹ𝑧𝑡 ∈ ℝ𝐿, which weights the

visual attention corresponding with the relevant portion of the image for the current caption word.

Depending on the formulation of 𝑓𝑎𝑡𝑡(∙) , the visual attention context vector can be “hard” (in

which case a single region of attention is highlighted) or “soft” (in which case multiple regions of

attention are highlighted).

https://arxiv.org/pdf/1502.03044.pdf

Visual Attention: Captioning

https://arxiv.org/pdf/1502.03044.pdf

Visual Attention: Classification
• A closely-related work leveraging attention for image classification is the so-called Glimpse

Network (DeepMind, 2014).

https://proceedings.neurips.cc/paper/2014/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf

Visual Attention: Classification
• A closely-related work leveraging attention for image classification is the so-called Glimpse

Network (DeepMind, 2014).

• Glimpse uses reinforcement learning (RL) to focus visual attention on relevant parts of an image.

The general idea, borrowed loosely from coherence theory, is that computer vision tasks (classification

in this case) can be made more efficient through the incorporation of an attention mechanism.

• In this case, the model extracts image information by adaptively selecting sub-regions (or frames

in a video) for processing – in lieu of processing an entire image/video at once.

https://proceedings.neurips.cc/paper/2014/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf

Visual Attention: Classification
• The authors use an RNN as the controller to identify the precise location of visual attention

in each time-stamp; this choice is based on the feedback from the glimpse in the previous

time-stamp.

• This work show that using the glimpse network equipped with a visual attention mechanism

can outperform a generic CNN for classification.

Visual Attention: Classification

(A) Glimpse sensor: Given an image with representation 𝑋𝑡, a glimpse sensor creates a

retina-like representation of the image. The glimpse sensor is conceptually assumed to not

have full access to the image (because of bandwidth constraints) and is thus able to access

only a small portion of the image in high-resolution, centered at 𝑙𝑡−1.

• The resolution of a particular location in the image reduces with the distance from the

location 𝑙𝑡−1. This reduced representation is denoted 𝜌(𝑋𝑡 , 𝑙𝑡−1).

Visual Attention: Classification

(B) Glimpse network: The glimpse network contains the glimpse sensor and encodes

both the glimpse location 𝑙𝑡−1 and the glimpse representation ρ into latent space using

simple linear layers.

• Subsequently, the two are combined into a single hidden representation using another

linear layer. The resulting output 𝑔𝑡 is the input to the 𝑡th time-stamp of the hidden layer

in the RNN.

Visual Attention: Classification

(C) RNN: the RNN includes the glimpse network and sensor; it generates action-location

output pairs at each time-step. The action output at time-stamp 𝑡 is denoted by 𝑎𝑡, and

rewards are associated with the action (to train the RL model); a reward might be

associated, say, with the class label of the object or numerical digits (for Streetview data).

• The RNN also outputs 𝑙𝑡 the location in the image for the next time-stamp on which

the glimpse network should focus. Training of the RNN is done to maximize the

expected reward over time (e.g., predict the correct class). Tunable parameters include:

𝜃𝑔 (glimpse network parameters), 𝜃ℎ (RNN hidden network parameters) and 𝜃𝑎 (action

network parameters).

