
Neural Networks, Backpropagation and Deep Learning

CS 410/510: CV & DL

Outline

• Historical Notes

• UAT

• Gradient Descent

• Backpropagation & Computational Graphs

• Automatic Differentiation

• Activations, Weight Initialization

• Deep Learning Challenges

• Data Augmentation, Feature Pre-Processing

• SGD, Momentum, AdaGrad, Adam, Second-Order Methods

• Backpropagation Derivation

Historical Notes
• Feedforward networks can be seen as efficient non-linear function approximators based on using

gradient descent to minimize the error in a function approximation.

•As such, the modern feedforward NN is the culmination of centuries of progress on the general

function approximation task.

• The chain rule underlying backprop was invented by Leibniz (1796), and due naturally to foundations

also laid by Newton.

• Calculus and algebra have been used to solve optimization problems in closed form since their

inception, but gradient descent was not introduced as a technique for iteratively approximating the

solution to optimization problems until 19C (Cauchy, 1847).

Newton CauchyLeibniz Al-Khwarizmi Galois

Historical Notes

Neurons & the Brain

Neurons & the Brain

Hebb’s Postulate

McCulloch & Pitts Neuron Model (1943)

(3) Components:

(1) Set of weighted inputs {wi} that correspond to synapses

(2) An “adder” that sums the input signals (equivalent to membrane of the cell that collects

the electrical charge)

(3) An activation function (initially a threshold function) that decides whether the neuron

fires (“spikes”) for the current inputs.

McCulloch & Pitts Neuron Model (1943)

Limitations & Deviations of the M-P Neuron Model:

• Summing is linear.

• No explicit model of “spike trains” (sequence of pulses that encodes

information in biological neuron).

• Threshold value is usually fixed.

• Sequential updating implicit (biological neurons usually update themselves

asynchronously)

• Weights can be positive (excitatory) or negative (inhibitory); biological

neurons do not change in this way.

• Real neurons can have synapses that link back to themselves (e.g. feedback

loop) – see RNNs (recurrent neural networks).

• Other biological aspects ignored: chemical concentrations, refractory

periods, etc.

Historical Notes
• Beginning in the 1940s, these function approximation techniques were used to motivate ML models

such as the percepton. However, the earliest models were based on linear models.

• In the 1960s Rosenblatt proved that the perceptron learning rule converges to correct weights

in a finite number of steps, provided the training examples are linearly separable.

•Critics including Marvin Minsky point out several of the flaws of the linear model family, such as its

inability to learn the XOR function, which led to a backlash against the entire NN approach.

• Learning non-linear functions required the development of a MLP (multi-layer perceptron) and a

means of computing the gradient through such a model. Efficient applications of the chain rule based

on DP (dynamic programming) began to appear in the 1960s and 1970s.

Rosenblatt Minsky

Historical Notes
• 1969: Minsky and Papert proved that perceptrons cannot represent non-linearly

separable target functions.

• However, they showed that adding a fully connected hidden layer makes the

network more powerful.

– i.e., Multi-layer neural networks can represent non-linear decision surfaces.

• Later it was shown that by using continuous activation functions (rather than

thresholds), a fully connected network with a single hidden layer can in principle

represent any function.

• 1986: “rediscovery” of backprop algorithm: Hinton et al.

• The Universal Approximation Theorem (1989) states that one hidden layer is

sufficient to approximate any function to arbitrary accuracy with a NN. (we say:

“NNs are universal function approximators”); RNNs are Turing Complete.

FIGURE 4.10 Schematic of the effective learning shape at each stage of the MLP.

Universal Approximation Properties
• A linear model, mapping from features to outputs via matrix multiplication,

can by definition represent only linear functions. It has the advantage of being

easy to train because many loss functions result in convex optimization

problems when applied to linear models.

• The universal approximation theorem (UAT) states that a feedforward

network with a linear output layer and at least one hidden layer with any

“squashing” activation function can approximate any Borel measurable (e.g. a

continuous function on a closed and bounded subset of Rn) function from one

finite-dimensional space to another with any desired non-zero amount of

error, provided the network is given enough hidden units.

• The UAT states that regardless of what function we are trying to learn, we

know that a sufficiently large MLP will be able to represent this function. We

are not guaranteed, however, that the training algorithm will be able to learn

the function.

Universal Approximation Properties
• The UAT states that regardless of what function we are trying to learn, we

know that a sufficiently large MLP will be able to represent this function. We

are not guaranteed, however, that the training algorithm will be able to learn

the function.

• Cybneko (1989) proved UAT for sigmoid activations.

• Hornik (1991) proved that the network itself gives rise to universal

approximation property -- not specific choice of activation (so no long as

activation is non-linear).

• Classical UAT related to depth-bounded networks (e.g. depth-2). Lu et al.

(2017) proved UAT for width-bound NNs (width: n+4 with RELU, where n is

the input dimension).

Universal Approximation Properties
• Even if the MLP is able to represent the function. Learning can fail for (2) different

reasons:

(1) The optimization algorithm used for training may not be able to find the value of the

parameters that corresponds to the desired function.

(2) The training algorithm might choose the wrong function as a result of overfitting.

Universal Approximation Properties

• Feedforward networks provide a universal system for representing functions in the

sense that, given a function, there exists a feedforward network that approximates the

function; there is no universal procedure for examining a training set of specific

examples and choosing a function that will generalize to points not in the training set.

Universal Approximation Properties

• Feedforward networks provide a universal system for representing functions in the

sense that, given a function, there exists a feedforward network that approximates the

function; there is no universal procedure for examining a training set of specific

examples and choosing a function that will generalize to points not in the training set.

*Note also that the theorem does not prescribe the size of the network (some bounds can

be approximated); unfortunately, in the worst case, an exponential number of hidden units

may be required.

*Recall that any time we choose a specific ML algorithm, we are implicitly imposing some

set of prior beliefs we have about what kind of function the algorithm should learn (this is

the so-called inductive bias of the learning algorithm); choosing a deep model generally

indicates that we want to learn a composition of several simpler functions.

Historical Notes
•The “rediscovery” of the backpropagation algorithm (Hinton & Rumelhardt) ushered in a very active

period of research for MLPs. In particular, “connectionism” took root in the ML community, which

placed emphasis on connections between neurons as the locus of learning and memory (cf.

distributed representation: each concept is represented by many neurons, each neuron participates

in the representation of many concepts.

http://www.cs.toronto.edu/~bonner/courses/2014s/csc321/lecture

s/lec5.pdf

http://www.jneurosci.org/content/35/13/5180

Historical Notes
• Following the success of backprop, NN research gained popularity and reached a peak in the early

1990s. Afterwards, other ML techniques became more popular until the modern deep learning

renaissance that began in 2006.

• The core ideas behind modern feedforward nets have not changed substantially since the 1980s. The

same backprop algorithm and the same approaches to gradient descent are still in use. Most of the

improvement in NN performance from 1986-2018 can be attributed to two factors:

Historical Notes
• Following the success of backprop, NN research gained popularity and reached an (initial) apex in the

early 1990s.Afterwards, other ML techniques became more popular until the modern deep learning

renaissance that began in 2006.

• The core ideas behind modern feedforward nets have not changed substantially since the 1980s. The

same backprop algorithm and the same approaches to gradient descent are still in use. Most of the

improvement in NN performance from 1986-2018 can be attributed to two factors:

(1) Larger datasets have reduced the degree to which statistical generalization is a challenge for NNs.

(2) NNs have come much larger because of more powerful computer (including the use of GPUs)

and better software infrastructure.

Historical Notes
• Nevertheless, a number of algorithmic changes have also contributed to subsequent

improvements in the performance of NNs.

• One of these algorithmic changes was the replacement of mean squared error (MSE) with the

cross-entropy family of loss functions. MSE was popular in the 1980s and 1990s but was

gradually replaced by cross-entropy losses and the principles of MLE as ideas spread between the

statistics community and ML community.

• The use of cross-entropy losses greatly improved the performance of models with sigmoid and

softmax outputs, which had previously suffered from saturation and slow learning when using

MSE.

Historical Notes
• The other major algorithmic change that has greatly improved the performance of

feedforward networks was the replacement of sigmoid hidden units with piecewise linear

hidden units, such as rectified linear units (RELUs). Rectification using the max{0,z} function

was introduced in early NN models.

• As of the early 2000s, rectified linear units were avoided due to the belief that activation

functions with non-differentiable points must be avoided.

• For small datasets, Jarrett et al. (2009) observed that using rectifying non-linearities is even

more important than learning the weights of the hidden layers. Random weights are sufficient

to propagate useful information through a rectified linear network, enabling the classifier layer

at the top to learn how to map different feature vectors to class identities.

Historical Notes

• RELUs are also of historical interest because they show that neuroscience has continued to have

an influence on the development of deep learning algorithms. Glorot et al. (2011) motivated

RELUs from biological considerations. The half-rectifying non-linearity was intended to captured

these properties of biological neurons:

(1) For some inputs, biological neurons are completely inactive.

(2) For some inputs, a biological neuron’s output is proportional to its inputs.

(3) Most of the time, biological neurons operate in the regime where they are inactive (i.e. they

should have sparse activations).

Neurons & the Brain
– Human brain contains ~1011 neurons

– Each individual neuron connects to ~104 neuron

– ~1014 total synapses!

Historical Notes

A “two”-layer neural network

(activation represents

classification)

(internal representation)

(activations represent

feature vector for one training

example)

inputs

hidden layer

output layer

•Input layer—It contains those units (artificial neurons) which receive input from the outside

world on which network will learn, recognize about or otherwise process.

•Output layer—It contains units that respond to the information about how it’s learned any task.

•Hidden layer—These units are in between input and output layers. The job of hidden layer is to

transform the input into something that output unit can use in some way.

Most neural networks are fully connected that means to say each hidden neuron is fully connected to

the every neuron in its previous layer(input) and to the next layer (output) layer.

A Neural Network “Zoo”

Neural network notation

(activation

represents

classification)

(internal

representation)

(activations represent

feature vector for one

training example)

xi : activation of input node i.

hj : activation of hidden node j.

ok : activation of output node k.

wji : weight from node i to node j.

σ : “sigmoid function”.

For each node j in hidden layer,

For each node k in output layer,

hj = s w jixi +w j0
iÎ input layer

å
æ

è

ç
ç

ö

ø

÷
÷

ok = s wkjhj +wk0

jÎhidden layer

å
æ

è

ç
ç

ö

ø

÷
÷

Sigmoid function:

(*) Backpropagation is one particular instance of a larger paradigm of optimization

algorithms know as Gradient Descent (also called “hill climbing”).

(*) There exists a large array of nuanced methodologies for efficiently training NNs

(particularly DNNs), including the use of regularization, momentum, dropout,

batch normalization, pre-training regimes, initialization processes, etc.

(*) Traditionally, the backpropagation algorithm has been used to efficiently train a

NN; more recently the Adam stochastic optimization method (2014) has eclipsed

backpropagation in practice: https://arxiv.org/abs/1412.6980

Gradient Descent

DNNs Learn Hierarchical Feature Representations

Backpropagation
• Backpropagation is the engine behind most (but not all) deep learning training algorithms.

Backpropagation consists of two alternating steps:

(1) Forward step: Propagate the input vector through the network (this consists primarily of

dot product operations followed by non-linear activation operations).

(2) Backward step: Using the output computed in step (1); the “error” (according to some

prescribed loss function) is propagated backward through the network. The backward

step assigns an attribution value to the edges in the network based on the loss

calculated.

Backpropagation
• Backpropagation is the engine behind most (but not all) deep learning training algorithms.

Backpropagation consists of two alternating steps:

(1) Forward step: Propagate the input vector through the network (this consists primarily of

dot product operations followed by non-linear activation operations).

(2) Backward step: Using the output computed in step (1); the “error” (according to some

prescribed loss function) is propagated backward through the network. The backward

step assigns an attribution value to the edges in the network based on the loss

calculated.

(*) For an alternative to backpropagation methods, see, for example: ELM “extreme learning

machines” methodologies (which are considered controversial in mainstream ML.

https://www.researchgate.net/publication/264273594_Extreme_learning_machines

Backpropagation: Computational

Graphs
• A neural network (NN can be modeled as a computational graph, in which a unit of

computation is the neuron.

• NNs are fundamentally more powerful than their building blocks because the parameters of

these models are learned jointly to create a highly optimized composition function of these

models. In addition, the non-linear activations between the different layers enhance the

expressive power of the network.

Backpropagation: Computational

Graphs
• A neural network (NN) is a computational graph, in which a unit of computation is the neuron.

• A multi-layer NN evaluates compositions of functions computed at individual nodes. For instance, a

path of length 2 in the NN in which the activation function g(∙) follows a basic affine transformation (i.e.,

matrix multiplication plus a “bias” shift) results in the composition:

• Weight updates are traditionally computed using gradient descent (or a related variant), in which case,

one applies the chain rule of differential calculus with respect to the the various function compositions

defined across the layers of the network.

Computational Graph: Example
• Next, we consider a simple example of learning the XOR function in 2D.

• (Right image, left-side) Every unit in computational graph is

shown; (Right image right-side) More compactly, each node

represents a layer.

Computational Graph: Example
• Next, we consider a simple example of learning the XOR function in 2D.

• (Left) XOR represented in original space (notice the data are not linearly separable);

(Right) By introducing non-linearity, the data are linearly separable in the learned space.

• (Right image, left-side) Every unit in computational graph is

shown; (Right image right-side) More compactly, each node

represents a layer.

Computational Graph: Example
• Denote the ith element activation: ℎ𝑖 = 𝑔 𝒙𝑇𝑊:,𝑖 + 𝑐𝑖 , where 𝑔 is our activation function –

here we’ll use the standard RELU depicted below, defined: 𝑔 𝑧 = 𝑚𝑎𝑥 0, 𝑧

• Notice that the complete (mathematical) specification of our network is given as:

Computational Graph: Example
• Denote the ith element activation: ℎ𝑖 = 𝑔 𝒙𝑇𝑊:,𝑖 + 𝑐𝑖 , where 𝑔 is our activation function –

here we’ll use the standard RELU depicted below, defined: 𝑔 𝑧 = 𝑚𝑎𝑥 0, 𝑧

• Notice that the complete (mathematical) specification of our network is given as:

𝑓 𝒙;𝑾, 𝒄,𝒘, 𝑏 = 𝒘𝑇𝑚𝑎𝑥 0,𝑾𝑇𝑥 + 𝑐 + 𝑏

𝑿𝑾 =

0
1
1

0
1
1

2 2

⟶𝑿𝑾+ 𝒄 =

0
1
1

−1
0
0

2 1

⟶𝑚𝑎𝑥 0,𝑾𝑇𝑥 + 𝑐 ⟶

0
1
1

0
0
0

2 1

⟶𝒘𝑇𝑚𝑎𝑥 0,𝑾𝑇𝑥 + 𝑐 + 𝑏 =

0
1
1
0

Predicted output over XOR dataset.

• Let: 𝑾 =
1 1
1 1

, 𝒄 =
0
−1

, 𝒘 =
1
−2

, 𝑏 = 0, 𝑿 =

0
1
1

0
0
0

1 1

(XOR input)

Computational Graph: Example
• Some example computation graphs:

(a) 𝑧 = 𝑥𝑦

(b) 𝑦 = 𝜎 𝒙𝑇𝒘+ 𝑏 (logistic regression)

(c) 𝐇 = max{0, 𝑿𝑾+ 𝒃}

(d) linear regression model with regularization (L2 weight decay penalty), i.e., ො𝑦 = 𝒘𝒙 +

λ σ𝑖𝑤𝑖
2 .

Backpropagation
• Recall the Chain Rule of Calculus:

Let , then the Chain Rule states:

:

dz dz dy

dx dy dx
=

(()) ()z f g x f y= =

Backpropagation
• Recall the Chain Rule of Calculus:

Let , then the Chain Rule states:

• For functions of several variables, we introduce the analogue of the derivative,

termed the partial derivative. Partial derivatives entail computing the derivative of a

multivariate function wrt (“with respect to”) a single variable, while treating all other

variables as constants. Let 𝑓(𝑥, 𝑦, 𝑧, …); partial derivatives are commonly denoted:

dz dz dy

dx dy dx
=

(()) ()z f g x f y= =

 or equivalently: or ; recall that in general: = , etc. x x xy yx

f
f D f f

x





Backpropagation
• We can thus generalize the chain rule to vector-valued functions. Suppose that 𝒙 ∈
ℝ𝑚, 𝒚 ∈ ℝ𝑛; if 𝒚 = 𝑔(𝒙) and z = 𝑓 𝒚 , then:

 of

= or equivalently in vector notation:

T

j

ji j i

Jacobian g

yz z
z z

x y x

   
 =  

    
 x y

y

x

Backpropagation
• We can thus generalize the chain rule to vector-valued functions. Suppose that 𝒙 ∈
ℝ𝑚, 𝒚 ∈ ℝ𝑛; if 𝒚 = 𝑔(𝒙) and z = 𝑓 𝒚 = 𝑓(𝑔(𝒙)) then:

• Consider the following example:

Let

 of

= or equivalently in vector notation:

T

j

ji j i

Jacobian g

yz z
z z

x y x

   
 =  

    
 x y

y

x

() () () () ()

()() ()

1 2 1 1 2 1 2 1 2

1 1 2

, , sin , , 2

2 sin

g g x x x x x f f y y y y

z f g x x x

= = = = = +

= = +

y x y

x

Backpropagation
• We can thus generalize the chain rule to vector-valued functions. Suppose that 𝒙 ∈
ℝ𝑚, 𝒚 ∈ ℝ𝑛; if 𝒚 = 𝑔(𝒙) and z = 𝑓 𝒚 = 𝑓(𝑔(𝒙)) then:

• Consider the following example:

Let

 of

= or equivalently in vector notation:

T

j

ji j i

Jacobian g

yz z
z z

x y x

   
 =  

    
 x y

y

x

()

()

1 2
2

1 1 1 2 1

1 2
1 2

2 1 2 2 2

1 1

1 2 1

2 2

 of
21 2

1 1 2 sin

1 0 2 cos

j

j j i

j

j j i

T

T

Jacobian g

y y yz z z z
x

x y x y x y x

y y yz z z z
x x

x y x y x y x

y y z

x x y
z z

y y z

yx x

     
= = + =  + 

      

     
= = + =  + 

      

     
          =  = 
      
      





x y

y

x () ()
()

()

()

()
2 2

2 1 2 1 2 1 2

1 0 1 2sin 1 2sin1 1

2sin cos 0 cos 2 cos2 2

T
x x

x x x x x x x

+        
 = = =         +         


() () () () ()

()() ()

1 2 1 1 2 1 2 1 2

1 1 2

, , sin , , 2

2 sin

g g x x x x x f f y y y y

z f g x x x

= = = = = +

= = +

y x y

x

Backpropagation
• The main computational challenge for backpropagation relates to the multivariate

chain rule. (see pathwise aggregation lemma, next slides)

Backpropagation
• The main computational challenge for backpropagation relates to the multivariate

chain rule. (see pathwise aggregation lemma, next slides)

Computational Graphs & Backpropagation
• Here is an example schematic of symbol-to-symbol computation of derivatives from a

computation graph.

• Another example schematic of the computational graph used to train a single-layer NN

using cross-entropy loss and weight decay:

Computational Graphs & Backpropagation

• Notice that the calculation of the chain rule along a path in a computational graph typically

admits of many redundancies. Let 𝑥 = 𝑓 𝑤 , 𝑦 = 𝑓 𝑥 , 𝑧 = 𝑓 𝑦 :

• Notice that the calculation of
𝜕𝑧

𝜕𝑤
requires that we compute that value 𝑓 𝑤 many times.

Naturally, a more efficient approach is to simply compute this value only once and store it in

order to avoid these redundant calculations. This is the key idea behind applying dynamic

programming to backpropagation.

Backpropagation
• Pathwise Aggregation Lemma: Consider a directed acyclic computational graph

(DAG) in which the ith node contains variable y(i). The local derivative z(i,j) of the

directed edge (i,j) in the graph is defined as:
𝜕𝑦 𝑗

𝜕𝑦 𝑖
. Let a non-null set of paths P exist

from variable w in the graph to output node containing variable o. Then, the value of
𝜕𝑜

𝜕𝑤
is given by computing the product of the local gradients along each path in P, and

summing these products over all paths:

𝜕𝑜

𝜕𝑤
= ෍

𝑝∈𝑃

ෑ

𝑖,𝑗 ∈𝑝

𝑧 𝑖, 𝑗

Backpropagation
• Pathwise Aggregation Lemma: Consider a directed acyclic computational graph

(DAG) in which the ith node contains variable y(i). The local derivative z(i,j) of the

directed edge (i,j) in the graph is defined as:
𝜕𝑦 𝑗

𝜕𝑦 𝑖
. Let a non-null set of paths P exist

from variable w in the graph to output node containing variable o. Then, the value of
𝜕𝑜

𝜕𝑤
is given by computing the product of the local gradients along each path in P, and

summing these products over all paths:

𝜕𝑜

𝜕𝑤
= ෍

𝑝∈𝑃

ෑ

𝑖,𝑗 ∈𝑝

𝑧 𝑖, 𝑗

Backpropagation: Dynamic Programming

• Although the summation discussed previously has an exponential number of paths, one can

nonetheless compute it efficiently using dynamic programming.

• We want to compute the product of z(i,j) over each path p ε P from source node w to output o

and then add them:

𝑆(𝑤, 𝑜) = ෍

𝑝∈𝑃

ෑ

𝑖,𝑗 ∈𝑝

𝑧 𝑖, 𝑗

Backpropagation: Dynamic Programming
• Although the summation discussed previously has an exponential number of paths, one can

Nevertheless, compute this result efficiently using dynamic programming.

• We want to compute the product of z(i,j) over each path p ε P from source node w to

output o and then add them:

(*) In practice, when using dynamic programming for backpropagation for redundant

calculations required for enumerating all paths.

𝑆(𝑤, 𝑜) = ෍

𝑝∈𝑃

ෑ

𝑖,𝑗 ∈𝑝

𝑧 𝑖, 𝑗

Backpropagation: Dynamic Programming
• Pathwise Aggregation – in this example, explicit computation of the partial derivative

of the output (o) wrt to the input (w), requires “pathwise aggregation” over all 25 =
32 paths in the network!

𝜕𝑜

𝜕𝑤
= ෍

𝑝∈𝑃

ෑ

𝑖,𝑗 ∈𝑝

𝑧 𝑖, 𝑗

• Notice that the given network represents a DAG (so it admits of a topological

ordering), so we can apply dynamic programming (DP) to generate an efficient solution

for the calculation of:
𝜕𝑜

𝜕𝑤
. Recall that z i, j =

𝜕𝑦 𝑗

𝜕𝑦 𝑖
.

• We will use a common DP methodology – compute 𝐒 𝐰, 𝒋 for all nodes w in the

graph beginning with w ≔ 𝑜 (so we traverse right to left); see the formula below for

the general calculation of S i, 𝑜 . Note that 𝐀 𝒊 symbolizes the set of nodes at the

endpoints of outgoing edge for each intermediate node 𝑖. Let S 11,11 = 1 by

default.

Backpropagation: Dynamic Programming

• We will use a common DP methodology – compute S w, j for all nodes w in the graph

beginning with w ≔ 𝑜 (so we traverse right to left); see the formula below for the general

calculation of S i, 𝑜 . Note that A 𝑖 symbolizes the set of nodes at the end points of

outgoing edge for each intermediate node 𝑖. Let S 11,11 = 1.

• Next, we compute S 9,11 = 𝑆 11,11 ∙ 𝑧 9,11 = 1 ∙
𝜕𝑦 11

𝜕𝑦 9
=

𝜕𝑤32

𝜕𝑤16 = 2𝑤16

• Similarly, S 10,11 = 𝑆 11,11 ∙ 𝑧 10,11 = 1 ∙
𝜕𝑦 11

𝜕𝑦 10
=

𝜕𝑤32

𝜕𝑤16 = 2𝑤16

Backpropagation: Dynamic Programming

• We will use a common DP methodology – compute S w, j for all nodes w in the graph

beginning with w ≔ 𝑜 (so we traverse right to left); see the formula below for the general

calculation of S i, 𝑜 . Note that A 𝑖 symbolizes the set of nodes at the end points of

outgoing edge for each intermediate node 𝑖. You should see that S 11,11 = 1.

• Next, we compute S 9,11 = 𝑆 11,11 ∙ 𝑧 9,11 = 1 ∙
𝜕𝑦 11

𝜕𝑦 9
=

𝜕𝑤32

𝜕𝑤16 = 2𝑤16

• Similarly, S 10,11 = 𝑆 11,11 ∙ 𝑧 10,11 = 1 ∙
𝜕𝑦 11

𝜕𝑦 10
=

𝜕𝑤32

𝜕𝑤16 = 2𝑤16

and S 7,11 = 𝑆 9,11 ∙ 𝑧 7,9 + 𝑆 10,11 ∙ 𝑧 7,10 = 2𝑤16 𝜕𝑦 9

𝜕𝑦 7
+

2𝑤16 𝜕𝑦 10

𝜕𝑦 7
= 2𝑤16 𝜕𝑤

16

𝜕𝑤8 + 2𝑤16 𝜕𝑤
16

𝜕𝑤8 = 4𝑤24 + 4𝑤24 = 8𝑤24.

• You should verify that iterating this DP strategy to completion yields:
𝜕𝑜

𝜕𝑤
= 32𝑤31;

note that this method avoids exponential path aggregation calculations, as was to be

shown.

Backpropagation: Dynamic Programming

• Automatic Differentiation (AD) is a set of techniques to numerically evaluate the derivative of a

function. Many contemporary ML and DL libraries (e.g., Pytorch, TensorFlow) include AD

capabilities.

• Different from symbolic differentiation (i.e., directly using mathematical expression) and

numerical differentiation (e.g., an iterative algorithm to estimate the derivative of a function), AD

replaces the domain of variables to incorporate derivatives per the chain rule.

Automatic Differentiation

• Automatic Differentiation (AD) is a set of techniques to numerically evaluate the derivative of a

function. Many contemporary ML and DL libraries (e.g., Pytorch, TensorFlow) include AD

capabilities.

• Different from symbolic differentiation (i.e., directly using mathematical expression) and

numerical differentiation (e.g., an iterative algorithm to estimate the derivative of a function), AD

replaces the domain of variables to incorporate derivatives per the chain rule.

• AD computes derivatives through the accumulation of values during code execution to generate

numerical derivative evaluations (rather than derivative expressions).

Automatic Differentiation

Baydin et al., “Automatic Differentiation: A Survey” (JMLR 2018)

• AD is a deep topic, for brevity we note that at a high-level AD uses the chain rule to compute the

accumulation of derivatives. This is done for two fundamental processes: (1) forward accumulation

(i.e., AD for forward pass through a NN) and (2) reverse accumulation (used for backprop).

Automatic Differentiation

• AD is a deep topic, for brevity we note that at a high-level AD uses the chain rule to compute the

accumulation of derivatives. This is done for two fundamental processes: (1) forward accumulation

(i.e., AD for forward pass through a NN) and (2) reverse accumulation (used for backprop).

• Consider the following example (https://sidsite.com/posts/autodiff/):

where we wish to compute
𝜕𝑑

𝜕𝑎
. Using the product rule we have:

• Note that if we wish to compute
𝜕𝑑

𝜕𝑏
a similar tedious process is required.

Automatic Differentiation

• Let’s now contrast the computation of
𝜕𝑑

𝜕𝑎
using AD.

• The left image denotes the computational graph for this problem. On the right, we see the AD

methodology. Consider the derivatives appearing on the edges as local derivatives.

• The basic idea through reverse accumulation is to begin at the output node of the computational graph,

and then consider each path in the computational graph from the output node to the input nodes.

• We follow two simple rules: (1) add together different path accumulations and (2) multiply local

derivatives along each path.

Automatic Differentiation

• Let’s now contrast the computation of
𝜕𝑑

𝜕𝑎
using AD.

• We follow two simple rules: (1) add together different path accumulations and (2) multiply local

derivatives along each path.

Automatic Differentiation

conventional Chain Rule executionAD execution

• Vanilla NNs consist of chains of feed-forward layers, with the main considerations being the depth

of the network and width of each layer.

• In practice, though, NN architectures can be very diverse (see the NN “Zoo”, shown previously).

Ultimately, NN design should be intentional and developed with consideration for the specific task at

hand.

• Special architectures for computer vision called convolutional neural networks (CNNs) are described

later in our course. FF networks can be generalized to the recurrent neural networks (RNNs) for

sequence processing, which have their own architectural considerations.

Architectural Considerations

• Observe that layers need not be connected in a sequential chain; many architectures make use of

skip connections and residual layers to benefit gradient flow in the network.

• One can additionally vary the connectivity strategy of the network. Many specialized networks

have fewer connections (than dense networks) or they admit of some other form of

compression. Note that CNNs utilize parameter sharing to this end.

• Recently, Neural Architecture Search (NAS) has emerged as a new paradigm for automating the

design of DNNs.

Architectural Considerations

• DNNs frequently embody large and unwieldy, overparameterized models. Thus, recent

research has focused on transforming DNNs into more sustainable network designs.

• This effort is catalyzed by several factors, including: the desire to conserve memory and

compute overhead for the deployment of commercial DL models, energy sustainability, the

need for greater model interpretability, and the aspiration to port DL models to low compute

environments, including edge and IOT devices.

Architectural Considerations

• DNNs frequently embody large and unwieldy, overparameterized models. Thus, recent

research has focused on transforming DNNs into more sustainable network designs.

• This effort is catalyzed by several factors, including: the desire to conserve memory and

compute overhead for the deployment of commercial DL models, energy sustainability, the

need for greater model interpretability, and the aspiration to port DL models to low compute

environments, including edge and IOT devices.

• Today there exist a large variety of DL model compression techniques, due to the desirability

of compact models with state-of-the-art functionality.

• Roughly, these techniques fall into several generic categories, comprising pruning,

quantization, low-rank and sparse approximations, and knowledge distillation.

Architectural Considerations

Weight Initialization

• Training algorithms for DNN models are usually iterative and thus require the user

to specify some initial point from which to begin the iterations. Moreover, training

deep models is a sufficiently difficult task that most algorithms are strongly affected

by the choice of initialization.

• The initial point can determine whether the algorithm converges at all, with

some initial points being so unstable that the algorithm encounters numerical

difficulties and fails altogether. When learning does converge, the initial point can

determine how quickly learning converges and whether it converges to a point

with high or low cost.

Weight Initialization

• Modern initialization strategies are usually simple and heuristic; designing improved

initialization strategies is a difficult task because NN optimization is not yet well

understood.

• The most general guideline agreed upon by most practitioners is known as

“symmetry-breaking.” If two hidden units with the same activation function are

connected to the same inputs, then these units have different initial parameters. If the

training is deterministic, “symmetric” units will update identically (and hence be

useless); even if the training is stochastic, it is usually best to initialize each unit to

compute a different function from all the other units.

• Note that the scale of the initial distribution does have a large effect on both the

outcome of the optimization procedure and the ability of the network to generalize.

Weight Initialization
• Larger initial weights will yield a strong symmetry-breaking effect, helping to avoid

redundant units; in addition, they will also potentially help avoid the problem of

vanishing gradients. Nevertheless, they may conversely exacerbate the exploding

gradient problem; in RNNs, large initial weights can manifest chaotic behavior.

* Sparse initialization (Martens, 2010) fixes the number of non-zero weights for

initialization; Xavier initialization draws random initial values from a distribution with

zero mean and variance inversely proportional to the size of the previous layer in the

network.

Weight Initialization

• Another related approach is to initialize the weights to generate random values from a

Gaussian distribution with zero mean and small standard deviation (e.g. 10-2). This will

result in small random values that are both positive and negative.

• One problem with this initialization is that it is not sensitive to the number of

inputs to a specific neuron. For example, if one neuron has only 2 inputs and

another has 100 inputs, the output of the latter is far more sensitive to the average

weight because of the additive effect of more inputs (which will manifest itself through

a much larger gradient).

https://www.deeplearning.ai/ai-notes/initialization/index.html

Weight Initialization

(*) It can be shown that the variance of outputs scales with the number of inputs, and

therefore the standard deviation scales with the square root of the number of inputs.

• To balance this fact, each weight can be initialized by a value drawn from 𝑁 0,
1

𝑟
,

where r indicates the number of inputs to that neuron.

• Xavier initialization is somewhat more sophisticated, so that initial weights are

drawn from 𝑁 0,
2

𝑟𝑖𝑛+𝑟𝑜𝑢𝑡
, where rin and rout are the fan-in and fan-out values of a

particular neuron, respectively.

https://www.deeplearning.ai/ai-notes/initialization/index.html

Challenges for DNN Optimization
• Traditionally, ML implementations avoid the difficulty of general optimization by carefully

designing the objective function and constraints to ensure that the optimization problem is

convex.

• When training NNs, however, we must confront the general non-convex case.

Convex Function Non-Convex Function

Challenges for DNN Optimization: Local Minima

• For a convex function, any local minimum is guaranteed to be a global minimum.

• With non-convex functions, such as with loss functions of NNs, it is possible to have

many local minima. Moreover, nearly any DNN is essentially guaranteed to have a very

large number of local minimal (even uncountably many).

• One of the chief reasons for the presence of many local minima for NNs, is due to

the problem of model identifiability. A model is said to be identifiable if a sufficiently

large training set can rule out all but one setting of the mode’s parameters.

Challenges for DNN Optimization: Local Minima

• Models with latent variables (e.g. hidden neurons) are not in general identifiable

because we can obtain equivalent models by exchanging latent variables with one

another.

• Local minima are problematic if they correspond with high cost (vis-à-vis the global

minimum). *Note that local minima are typically less problematic for DNN training

than saddle points (this concept is not always well-appreciated by ML

practitioners).

Challenges for DNN Optimization: Plateaus, Saddle Points

• For many high-dimensional, non-convex functions, local minima (and maxima) are in

fact rare compared to saddle points.

• Some points around a saddle point have greater cost than the saddle point, while

others have lowers cost. At a saddle point, the Hessian matrix has both positive and

negative eigenvalues.

• Why are saddle points more common than local extrema in high dimensions? The

basic intuition is this: in order to render a local extreme value, all of the eigenvalues

must be of the same sign (naturally, this is very unlikely – all things being equal – in

high dimensions).

Challenges for DNN Optimization: Plateaus, Saddle Points

• For first-order optimization, saddle points are not necessarily a significant problem

(Goodfellow); however, for second-order methods, they clearly constitute a problem.

• Degenerate locations such as plateaus can pose major problems for all

numerical algorithms.

Challenges for DNN Optimization: Cliffs, Exploding and

Vanishing Gradients
• NNs with many layers often have extremely steep regions resembling cliffs in the parameter space. This is

due to the multiplication of several large weights together. On the face of an extremely steep cliff structure,

the gradient update step can alter the parameters drastically.

• Gradient clipping, a heuristic technique, can help avoid this issue. When the traditional gradient descent

algorithm proposes making a large step, the gradient clipping heuristic intervenes to reduce the step size,

thereby making it less likely to go outside the region where the gradient indicates the direction of

approximately steepest descent.

Challenges for DNN Optimization: Cliffs, Exploding and

Vanishing Gradients
• NNs with many layers often have extremely steep regions resembling cliffs in the parameter space. This is

due to the multiplication of several large weights together. On the face of an extremely steep cliff structure,

the gradient update step can alter the parameters drastically.

• Gradient clipping, a heuristic technique, can help avoid this issue. When the traditional gradient descent

algorithm proposes making a large step, the gradient clipping heuristic intervenes to reduce the step size,

thereby making it less likely to go outside the region where the gradient indicates the direction of

approximately steepest descent.

• When the computational graph for a NN becomes very large (e.g. RNNs), the issue of

exploding/vanishing gradients can arise. Vanishing gradients make it difficult to known which direction

the parameters should move to improve the cost function, while exploding gradients can make learning

unstable.

*LSTMs, RELU, and ResNet (Microsoft) have been applied to solve the vanishing gradient problem.

Challenges for DNN Optimization: Hill-Climbing

• Potentially compounding this problem, many activation functions have small derivatives.

• The specific choice of activation function often has a considerable effect on the severity of the vanishing

gradient problem.

• In recent years, the sigmoid and tanh activation functions have been increasingly supplanted by the ReLU

and the hard tanh functions (see subsequent slides on variants of the ReLU activation).

(*) NB: The computational requirements to generate the derivate of a piecewise linear function are naturally

significantly less than that required for a transcendental function (e.g. ex) – where a sigmoid is defined as the

composition of a transcendental function.

Cross-Entropy Loss
• As mentioned, cross-entropy loss is generally preferred to MSE, particularly for classification

problems with DNNs.

Cross-entropy loss is defined:

Where c refers to one hot encoded classes (or labels), whereas p refers to softmax applied probabilities

() () ()log 1 log 1i i i iE c p c p= − + − −

Cross-Entropy Loss
• As mentioned, cross-entropy loss is generally preferred to MSE, particularly for classification

problems with DNNs.

Cross-entropy loss is defined:

Where c refers to one hot encoded classes (or labels), whereas p refers to softmax applied probabilities

(2) Properties make cross-entropy a natural loss function:

(1) E ≥ 0; all individual terms are negative and there is a minus outside.

(2) If the neuron's actual output is close to the desired output for all training inputs, x, then the cross-

entropy will be close to zero. To demonstrate this, we assume (WLOG) that the desired outputs c are

all either 0 or 1. Suppose for example that c = 0 and p ≈ 0, for some input x (so the neuron has done

well on this input). The first term in E vanishes, while the second term is close to zero; a similar

analysis holds when c = 1 and p ≈ 1.

() () ()log 1 log 1i i i iE c p c p= − + − −

Cross-Entropy Loss
• Cross-entropy loss is defined:

One can show that, for example, that the partial derivative of the cross-entropy loss function is:

*(σ denotes the sigmoid function) Which indicates that the gradient is larger (i.e. learning is faster) the

larger the error; in addition, the cross-entropy loss function does not in general “bottom out” like the

MSE loss.

() () ()log 1 log 1i i i iE c p c p= − + − −

()()j

xj

E
x z y

w



= −




RELU & Their Generalizations
• Rectified linear units use the activation function g(z) = max{0, z}.

• These units are easy to optimize because they are so similar to linear units; the only difference being

the RELU is zero across half of its domain. This makes the derivatives through a RELU remain large

whenever the unit is active.

• The gradients are therefore not only large but consistent.

RELUs are typically used on top of an affine transformation:

•One drawback of RELU: is that they cannot learn via gradient-based methods on examples for which

their activation is zero; various generalizations of RELUs guarantee they receive gradient everywhere.

*affine transformations preserve points, straight lines, planes, and parallelism.

()Tg= +h W x b

RELU & Their Generalizations
(3) Generalizations of RELUs are based on using a non-zero slope αi when zi < 0:

(1) Absolute value rectification fixes αi = -1, to obtain g(z)=|z|; this method has been used for

object recognition from images, where it makes sense to seek features that are invariant under polarity

reversal of the input illumination.

() () (), max 0, min 0,i i i ii
h g z z= = +z α

RELU & Their Generalizations
(3) Generalizations of RELUs are based on using a non-zero slope αi when zi < 0:

(1) Absolute value rectification fixes αi = -1, to obtain g(z)=|z|; this method has been used for

object recognition from images, where it makes sense to seek features that are invariant under polarity

reversal of the input illumination.

(2) Leaky RELU fixes αi to a small value like 0.01.

• Note that the gradient of a standard ReLU is zero for negative values of its argument. While this

inactivity is arguably biological-plausible -- since in real brains, neuron firing is often sporadic and

followed by refractory periods (see previous slides) -- it can nevertheless lead to undesirable,

pathological behavior for artificial NNs.

• In artificial NNs, zero outputs can cause some ReLU units to be “knocked out”, in which case they

can reach a state in which they are never further updated during training. Such a neuron can be

considered dead, which is a kind of permanent “brain damage” in biological parlance.

(*) The problem of dying neurons can be partially ameliorated by the leaky ReLU.

() () (), max 0, min 0,i i i ii
h g z z= = +z α

RELU & Their Generalizations
(3) Generalizations of RELUs are based on using a non-zero slope αi when zi < 0:

(1) Absolute value rectification fixes αi = -1, to obtain g(z)=|z|; this method has been used for

object recognition from images, where it makes sense to seek features that are invariant under poliartiy

reversal of the input illumination.

(2) Leaky RELU fixes αi to a small value like 0.01.

(3) Maxout units (Goodfellow, 2013); instead of applying an element-wise function g(z), maxout units

divide z into groups of k values. Each maxout unit then outputs the maximum element of one of

those groups.

This provides a way of learning a piecewise linear function that responds to multiple directions in the

input x space. Each maxout unit can learn a piecewise linear, convex function with up to k pieces;

maxout units can thus be seen as learning the activation function itself rather than just the relationship

between units; with enough k, a maxout unit can learn to approximate any convex function with

arbitrary fidelity.

() () (), max 0, min 0,i i i ii
h g z z= = +z α

“Swish” Activations

• Of note, swish activation introduces a non-monotonic “bump” for 𝑥 < 0 (the shape of this

bump is modulated by the parameter β), as this regularizes large initial negative parameter weights.

• Non-monotonic feature increases the “expressivity” of activations; smoothness helps improve

network optimization efficiency by making output space smoother and thus easier to traverse for

optimization.

• In 2018 Google Brain introduced “swish” activation functions

(https://arxiv.org/pdf/1710.05941.pdf); swish a smooth, non-monotonic function

matching/outperforming RELU in experiments.

() ()
1 x

x
f x x x

e 
 

−
=  =

+

Feature Preprocessing
• There are two general forms of feature preprocessing:

(1) Additive preprocessing and mean-centering. It can be useful to mean-center the data to remove

certain types of bias effects (recall that PCA does this); mean-centering is often paired with standardization.

(*) If it is desirable for all feature values to be non-negative (e.g. χ2 test for feature selection), then one can

simply add the absolute value of the maximum negative feature to the data set.

Feature Preprocessing
(1) Additive preprocessing and mean-centering. It can be useful to mean-center the data to remove

certain types of bias effects (recall that PCA does this); mean-centering is often paired with standardization.

(2) Feature normalization. Standardization is a default feature normalization technique:

This assumes that each feature is drawn from a standard normal Gaussian (i.e., N(0,1)).

(*) Another, common form of feature normalization is min-max normalization:

This data transformation maps the dataset to [0,1].

(*) In general, feature normalization often ensures better performance, as it safeguards against ill-

conditioning (where the loss function is more sensitive to some parameters vs. others).

i
i

x
x





−


()min

max() min()

i

i

x x
x

x x

−


−

Feature Preprocessing: Whitening
• Whitening is a linear data transformation that transforms a vector of random variables with known

covariance matrix into a set of new variables whose covariance is the identity matrix (i.e. this procedure

produces decorrelated variables with variances equal to 1). This procedure is called “whitening” because it

changes the input vector into a white noise vector.

• Suppose X is a random column vector with non-singular covariance matrix M and mean equal to zero

(that is to say, assume the data has been mean-centered).

Then the transformation Y=WX for the whitening matrix where W satisfies: WWT=M-1 yields the

whitened random vector Y with unit diagonal covariance matrix.

Feature Preprocessing: Whitening
• Whitening is a linear data transformation that transforms a vector of random variables with known

covariance matrix into a set of new variables whose covariance is the identity matrix (i.e. this procedure

produces decorrelated variables with variances equal to 1). (this procedure is called “whitening” because it

changes the input vector into a white noise vector).

• Suppose X is a random column vector with non-singular covariance matrix M and mean equal to zero

(that is to say, assume the data has been mean-centered).

Then the transformation Y=WX for the whitening matrix where W satisfies: WWT=M-1 yields the

whitened random vector Y with unit diagonal covariance matrix.

(*) Note that the choice of the whitening matrix W is not unique. Common choices include: W=M-1/2

(Mahalanobis whitening), Choleksy decomposition-based whitening, where W=M-1 and the eigen-system

of M (PCA whitening).

()()
TT T T T TCov Y E YY E WX WX E WXX W WW E XX      = = = =      

() ()
1

Cov X Cov X I
−

= =

Feature Preprocessing: Whitening

Data Augmentation
• The best way to make an ML model generalize better is to train it on more data. Of course, data are

limited/expensive.

• One way to get around this problem is to generate synthetic data and add it to the training set.

• This approach is easiest for classification. A classifier needs to take a complicated, high-dimensional

input x and summarize it with a single category identity y. This means that the main task facing a

classifier is to be invariant to a wide variety of transformations; we can generate new (x, y) pairs easily

by transforming the x inputs in our training set.

Data Augmentation
• The best way to make an ML model generalize better is to train it on more data. Of course, data are

limited/expensive.

• One way to get around this problem is to generate synthetic data and add it to the training set.

• This approach is easiest for classification. A classifier needs to take a complicated, high-dimensional

input x and summarize it with a single category identity y. This means that the main task facing a

classifier is to be invariant to a wide variety of transformations; we can generate new (x, y) pairs easily

by transforming the x inputs in our training set.

• Dataset augmentation has been particularly effective for object recognition; operations like

translating the training images a few pixels in each direction can often greatly improve generalization;

many operations such as rotating the image or scaling the image are also quite effective (one needs to

be careful that the transformation does not alter the correct image class).

• Injecting noise in the input to a NN can also be seen as a form of data augmentation; one way to

improve the robustness of a NN is to simply train them with random noise applied to their inputs.

Early Stopping
• When training large models with sufficient representation capacity to overfit the task, we often

observe that training error decreases steadily over time, but validation set error begins to rise again.

• This means we can obtain a model with better validation set error (and hopefully better test error) by

returning to the parameter setting at the point in time with the lowest validation set error. Every time

the error on the validation set improves, we store a copy of the model parameters; when the training

terminates, we return these parameters, rather than the latest parameters.

* This strategy is known as early stopping; it is one of the most common forms of regularization

used in deep learning.

Dropout

• Dropout (Srivastava et al., 2014) provides a computationally inexpensive but powerful method of regularizing a

broad family of models (it is akin to bagging).

• Dropout trains the ensemble consisting of all subnetworks that can be formed by removing non-output units from

an underlying base network. Recall that to learn with bagging, we define k different models, construct k different

datasets by sampling from the training set with replacement, and then train model i on dataset i. Dropout aims to

approximate this process, but with an exponentially large number of NNs.

• In practice, each time we load an example into a minibatch for training, we randomly sample a different binary

mask to apply to all input and hidden units in the network; the mask is sampled independently for each unit (e.g. 0.8

probability for including an input unit and 0.5 for hidden units).

• In the case of bagging, the models are all independent; for dropout, the models share parameters.

Adversarial Training

• Szegedy et al. (2014) found that even NNs that perform at human level accuracy have a nearly 100 percent

error rate on examples that are intentionally construction by using an optimization procedure to search for an

input x’ near a data point x such that the model output is very different from x’ (oftentimes such adversarial

examples are indiscernible to humans).

• In the context of regularization, one can reduce the error rate on the original i.i.d. test set via adversarial

training – training on adversarially perturbed examples from the training set.

• Goodfellow et al. (2014), showed that one of the primary cause of these adversarial examples is excessive

linearity. NNs are primarily built out of linear parts, and so the overall function that they implement proves to

be highly linear as a result.

• Adversarial training help to illustrate the power of using a large function family in combination with

aggressive regularization – a major theme in contemporary deep learning.

Basic Algorithms: SGD

Basic Algorithms: SGD

• Stochastic Gradient Descent (SGD) and its variants are some of the most frequently used optimization

algorithms in ML. Using a minibatch of i.i.d. samples, one can obtain an unbiased estimate of the gradient

(where examples are drawn from the data-generating distribution).

•A crucial parameter for the SGD algorithm is the learning rate, ε. In practice, it is necessary to gradually

decrease the learning rate over time. This is because the SGD gradient estimator introduces a source of noise

(the random sampling of m training examples) that does not vanish even when we arrive at a minimum.

A sufficient condition to guarantee convergence of SGD is that:

In practice, it is common to decay the learning rate linearly until iteration τ:

* Note that for SGD, the computation time per update does not grow with the number of training examples.

This allows convergence even when the number of training examples becomes very large.

2

1 1

 and
kk

k k

 
 

= =

=    

() 01 with k

k
    


= − + =

Momentum
• The method of momentum is designed to accelerate learning, especially in the face of high curvature, small

but consistent gradients, or noisy gradients.

• The momentum algorithm accumulates an exponentially decaying moving average of past gradients and

continues to move in their direction.

• Formally, the momentum algorithm introduces a variable v that plays the role of velocity – it is the direction

and speed at which the parameters move through parameter space. The velocity is set to an exponentially

decaying average of the negative gradient.

Momentum
• The method of momentum is designed to accelerate learning, especially in the face of high curvature, small

but consistent gradients, or noisy gradients.

• The momentum algorithm accumulates an exponentially decaying moving average of past gradients and

continues to move in their direction.

• Formally, the momentum algorithm introduces a variable v that plays the role of velocity – it is the direction

and speed at which the parameters move through parameter space. The velocity is set to an exponentially

decaying average of the negative gradient.

• The name momentum derives from a physical analogy, in which the negative gradient is a force moving a

particle through parameter space, according to Newton’s laws of motion. If the only force is the gradient of

the cost function, then the particle might never come to rest. To resolve this problem, we add one other force,

proportional to v(t); in physics terminology this force corresponds to viscous drag, as the if the particle must

push through a resistant medium such as syrup.

• The velocity v accumulates the gradient elements; the larger alpha is relative to epsilon, the more previous

gradients affect the current direction.

Momentum

• It is well known that the learning rate is reliably one of the most challenging hyperparameters to set because

it significantly affects model performance. The cost function is often highly sensitive to some directions in

parameters space and insensitive to others.

• While the momentum algorithm mitigates these issues somewhat, it does so at the expense of introducing

another hyperparameter.

• Recently, a number of incremental methods have been introduced that adapt the learning rates of model

parameters.

Algorithms with Adaptive Learning Rates

• The AdaGrad algorithm (Duchi et al, 2011) individually adapts the learning rates of all model

parameters by scaling them inversely proportional to the square root of the sum of all the historical

squared values of the gradient.

• The parameters with the largest partial derivative of the loss have a correspondingly rapid decrease in their

learning rate, while parameters with small partial derivates have a relatively small decrease in their learning

rate. The net effect is greater progress in the more gently sloped directions of parameter space.

*Note: empirically, for training DNNs, the accumulation of squared gradients from the beginning of training can

result in premature and excessive decrease in the effective learning rate.

AdaGrad

• The RMSProp algorithm (Hinton, 2012) modifies AdaGrad to perform better in the non-convex setting by

changing the gradient accumulation into an exponentially-weighted moving average. Where AdaGrad shrinks

the learning rate according to the entire history of the squared gradient, RMSProp uses an exponentially

decaying average to discard history from the extreme past so that it can converge rapidly after

finding a convex bowl.

• Empirically, RMSProp has been to shown to be an effective and practical optimization algorithm for DNNs.

RMSProp

• Adam (Kingman and Ba, 2014) is another adaptive learning rate optimization algorithm (“adaptive

moments”). It can be seen as a variant on the combination of RMSProp and momentum with several

distinctions.

• First, in Adam, momentum is incorporated directly as an estimate of the first-order moment (with

exponential weighting) of the gradient. Second, Adam includes bias corrections to the estimates of both the

first-order moments (the momentum term) and the (uncentered) second-order moments to account for their

initialization at the origin.

• RMSProp also incorporates an estimate of the (uncentered) second-order moment; however, it lacks the

correction factor. Thus, unlike in Adam, the RMSProp second-order moment estimate may have high bias

early in training. *Adam is generally regarded as being fairly robust to the choice of hyperparameters.

Adam

DL Optimization Comparison

Left: Contours of a loss surface and time evolution of different optimization algorithms.

Notice the "overshooting" behavior of momentum-based methods, which make the

optimization look like a ball rolling down the hill. Right: A visualization of a saddle point in

the optimization landscape, where the curvature along different dimension has different

signs (one dimension curves up and another down). Notice that SGD has a very hard time

breaking symmetry and gets stuck on the top. Conversely, algorithms such as RMSprop will

see very low gradients in the saddle direction. Due to the denominator term in the RMSprop

update, this will increase the effective learning rate along this direction, helping RMSProp

proceed. Images credit: Alec Radford.

https://twitter.com/alecrad

Second-Order Methods

• A number of methods have been proposed in recent years for using second-order derivatives for

optimization (consider this scenario as incorporating an approximation of the curvature of the loss function

into the optimization problem).

• Such methods can partially alleviate some of the problems caused by curvature of the loss function,

including cliffs, and the necessity of many course correction steps for hill climbing.

• Newton’s method is a classical second-order iterative approximation method. In contrast to first-order

methods, second-order methods make use of second derivatives (i.e. the curvature of the loss function) to

improve optimization.

Second-Order Methods: Newton’s Method

• Newton’s method is a classical second-order iterative approximation method. In contrast to first-order

methods, second-order methods make use of second derivatives (i.e. the curvature of the loss function) to

improve optimization.

• Newton’s method is an optimization scheme based on using a second-order Taylor series expansion to

approximate J(θ) near some point θ0, ignoring derivatives of higher order:

Where H is the Hessian of J wrt θ evaluated at θ0. If we then solve for the critical point of this function, we

obtain the Newton parameter update rule:

() () () () () ()0 0 0 0 0

1

2

T T
J J J + −  + − −

θ
θ θ θ θ θ θ θ H θ θ

()1

0 0* H J−= − 
θ

θ θ θ

Second-Order Methods: Newton’s Method

• If the objective function is convex but not quadratic, this update can be iterated, yielding a training

algorithm. For surfaces that are not quadratic, as long as the Hessian remains positive definite, Newton’s

method can be applied iteratively. This implies a two-step procedure: (1) update or compute the inverse

Hessian; (2) update the parameters according to the equation above.

* In deep learning, the surface of the objective function is usually non-convex; with many features and

potential saddle points, this is a potential problem for Newton’s Method.

() () () () () ()0 0 0 0 0

1

2

T T
J J J + −  + − −

θ
θ θ θ θ θ θ θ H θ θ ()1

0 0* H J−= − 
θ

θ θ θ

Second-Order Methods: Newton’s Method

• If the objective function is convex but not quadratic, this update can be iterated, yielding a training

algorithm. For surfaces that are not quadratic, as long as the Hessian remains positive definite, Newton’s

method can be applied iteratively. This implies a two-step procedure: (1) update or compute the inverse

Hessian; (2) update the parameters according to the equation above.

* In deep learning, the surface of the objective function is usually non-convex; with many features and

potential saddle points, this is a potential problem for Newton’s Method.

• Commonly, researchers apply a regularization strategy, for which the update becomes (this regularization is

used in approximations to Newton’s Method including the Levenberg-Marquardt algorithm):

• Beyond the challenges of saddle points, the application of Newton’s method for training large NNs is

limited by its significant computational requirements; ostensibly, Newton’s method requires the inversion

of a matrix (O(n3)); as a consequence, only networks with a very small number of parameters can be

practically trained via Newton’s method.

(*) In practice, it is common to apply a second-order method using a “Hessian-free” approach, meaning that

the full Hessian is either approximated with a low-rank matrix or eigen-vector methods are applied (see

conjugate gradients).

() () () () () ()0 0 0 0 0

1

2

T T
J J J + −  + − −

θ
θ θ θ θ θ θ θ H θ θ ()1

0 0* H J−= − 
θ

θ θ θ

()() ()
1

0 0 0* H f f
−

 = − +   θ
θ θ θ I θ

Second-Order Methods: Newton’s Method

Supplemental Backpropagation Derivation

• Initialize the network weights w to small random numbers (e.g.,

between −0.05 and 0.05).

• Until the termination condition is met, Do:

– For each (x,t)  training set, Do:

1. Propagate the input forward:

– Input x to the network and compute the activation hj of

each hidden unit j.

– Compute the activation ok of each output unit k.

Backpropagation Algorithm

2. Calculate error terms

For each output unit k, calculate error term k :

For each hidden unit j, calculate error term j :

d j ¬ hj (1-hj) wkj
kÎoutput units

å dk

æ

è

ç
ç

ö

ø

÷
÷

2. Calculate error terms

For each output unit k, calculate error term k :

For each hidden unit j, calculate error term j :

d j ¬ hj (1-hj) wkj
kÎoutput units

å dk

æ

è

ç
ç

ö

ø

÷
÷

3. Update weights

Hidden to Output layer: For each weight wkj

where

Input to Hidden layer: For each weight wji

where

kj kj kjw w w −

Dwkj =hdkhj

ji ji jiw w w −

Dw ji =hd jxi

– Forwards Phase: compute the activation of each neuron in the

hidden layers and outputs using:

– Backwards pass

– Compute the error at the output using:

– Compute the error at the hidden layer(s) using:

– Update the output layer weights using:

where

– Update the hidden layer weights using:

where

– (If using sequential updating) randomize the order of the input

vectors so that you don’t train in exactly the same order each

iteration.

Train until stopping condition satisfied.

d j ¬ hj (1-hj) wkj
kÎoutput units

å dk

æ

è

ç
ç

ö

ø

÷
÷

Dwkj =hdkhj

Dw ji =hd jxi

Backpropagation Algorithm (BP)

hj = s w jixi +w j0
iÎ input layer

å
æ

è

ç
ç

ö

ø

÷
÷

ok = s wkjhj +wk0

jÎhidden layer

å
æ

è

ç
ç

ö

ø

÷
÷

kj kj kjw w w −

ji ji jiw w w −

Backprop Example

1 0 Label: 0.9

0 1 Label: -.3

Training set: Test set:

1 1 Label: .8

x1 x2

h1

1

h2

o1

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

1 0

1 0 Label: .9

0 1 Label: -.3

Training set: Test set:

1 1 Label: .8

x1 x2

h1

1

h2

o1

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

Target: .9

1 0

1 0 Label: .9

0 1 Label: -.3

Training set: Test set:

1 1 Label: .8

x1 x2

h1

1

h2

o1

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

Target: .9

1 0

1 0 Label: .9

0 1 Label: -.3

Training set: Test set:

1 1 Label: .8

x1 x21

o1

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

Target: .9

“Forward Phase” – hidden layers

1 0

1 0 Label: .9

0 1 Label: -.3

Training set: Test set:

1 1 Label: .8

x1 x21

o1

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

Target: .9

1 0

1 0 Label: .9

0 1 Label: -.3

Training set: Test set:

1 1 Label: .8

x1 x21

o1

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

Target: .9

“Forward Phase” – output layer

1 0

1 0 Label: .9

0 1 Label: -.3

Training set: Test set:

1 1 Label: .8

x1 x21

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Target: .9

“Forward Phase” – output layer

1 0

x1 x21

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55
Output weight Updates

.552

Target: .9

d j ¬ hj (1-hj) wkj
kÎoutput units

å dk

æ

è

ç
ç

ö

ø

÷
÷

Hidden weight Updates

“Backward Phase”

1 0

x1 x21

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Target: .9 Calculate error terms:

“Backward Phase”

Output weight Updates
Hidden weight Updates

1 0

x1 x21

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Target: .9 Calculate error terms:

“Backward Phase”

Output weight Updates
Hidden weight Updates

1 0

1 0 Label: Positive

0 1 Label: Negative

Training set: Test set:

1 1 Label: Positive

x1 x21

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Target: .9 Calculate error terms:

Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9):

1 0

x1 x21

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Target: .9 Calculate error terms:

Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9): Hidden

unit j=1

1 0

x1 x21

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Target: .9 Calculate error terms:

1

1, 1 .1 .0095 .0905k jw = = = − =

1

1, 2 .1 .0095 .0905k jw = = = − =

1

1, 0 .1 .0172 .0828k jw = = = − =

Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9):

1 0

x1 x21

.1 .1

.1

.1

.0905

.1

1

.0828

.1

.0905

.55 .55

.552

Target: .9 Calculate error terms:

Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9):

1

1, 1 .1 .0095 .0905k jw = = = − =

1

1, 2 .1 .0095 .0905k jw = = = − =

1

1, 0 .1 .0172 .0828k jw = = = − =

1 0

x1 x21

.1 .1

.1

.1

.0905

.1

1

.0828

.1

.0905

.55 .55

.552

Target: .9 Calculate error terms:

Update input-to-hidden weights (learning rate = 0.2; momentum =

0.9): 1

1, 0 .1 .0004 .9996j iw = = = − =

1

1, 1 .1 .0004 .9996j iw = = = − =

Dw j=1,i=2

1 = (.2) .002()(0)+ (.9)(0) = 0 w j=1,i=2

1 = .1

1 0

x1 x21

.9996
.9996

.1

.1

.0905

.1

1

.0828

.1

.0905

.55 .55

.552

Target: .9 Calculate error terms:

Update input-to-hidden weights (learning rate = 0.2; momentum =

0.9):

Dw j=1,i=2

1 = (.2) .002()(0)+ (.9)(0) = 0 w j=1,i=2

1 = .1

1

1, 0 .1 .0004 .9996j iw = = = − =

1

1, 1 .1 .0004 .9996j iw = = = − =

1 0

x1 x21

.9996
.9996

.1

.1

.0905

.1

1

.0828

.1

.0905

.55 .55

.552

Target: .9 Calculate error terms:

Update input-to-hidden weights (learning rate = 0.2; momentum = 0.9): Hidden

unit j=2

Dw j=2,i=1

1 = (.2) .002()(1)+ (.9)(0) = .0004

Dw j=2,i=0

1 = (.2) .002()(1)+ (.9)(0) = .0004
1

2, 0 .1 .0004 .9996j iw = = = − =

Dw j=2,i=2

1 = (.2) .002()(0)+ (.9)(0) = 0

1

2, 1 .1 .0004 .9996j iw = = = − =

w j=2,i=2

1 = .1

1 0

x1 x21

.9996
.9996

.9996

.9996

.0905

.1

1

.0828

.1

.0905

.55 .55

.552

Target: .9 Calculate error terms:

0 1

x1 x21

.9996
.9996

.9996

.9996

.0905

.1

1

.0828

.1

.0905

.55 .55

.552

Target: -.3

Note: This is time step 2, so momentum

term will be nonzero…

Another detailed backprop example:

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

(*) Here is a derivation (later slides contain a derivation with

visuals) of BP (note our text also has a derivation pp. 101-

108). Time permitting, I’ll walk us through this. If you require

further details don’t hesitate to ask for help.

(*) “Will this be on the exam?” No, but understanding the

material at this level makes you a better person – moreover, it

will make your friends envious, your mother will love you

more, and strangers at cocktail parties will be drawn to you

like a magnet. You’re welcome.

Backprop Derivation

What do we need to derive the backpropagation (BP) algorithm?

Only a basic knowledge of differential Calculus!

(*) Recall that we will use BP to update weights in both the

hidden layer(s) and the output layer of our NN.

(*) We use the chain rule to “propagate” the error back

through the network (following the “forward phase”).

obligatory backprop

meme

Backprop Derivation

(*) We’ll call the current input x (a vector) and the output y; the activation

function (throughout the network) will be denoted g(∙).

(*) For simplicity, let’s assume the NN contains only a single hidden layer (BP

extends naturally for more layers); denote the weights of the network v and

w, for the first and second layers respectively.

(*) Recall that “learning” entails tuning the weights of the network.

Backprop Derivation

(*) We wish to minimize the error function:

Where y is the output, t is the target; N is the data set size and L is the

number of nodes (in a given layer).

(*) We use gradient descent. In particular, we wish to know how the error

function changes with respect to the different weights:

*Note: are fixed indices.

() ()
2

2

1 1 0

1 1

2 2

N N L

k k ik i k

k k i

E w y t g w x t
= = =

  
= − = −  

  
  

E

w





,j k = =

Backprop Derivation

(*) Let (the sigmoid function); recall that:

(*) Using the chain rule, we have:

where:

The equation above says that the error at the output changes as we vary

the second-layer weights as a function of the error change with respect to

the input to the output neurons and the change in the input with respect to

the weights.

1
()

1 h
a g h

e−
= =

+
()1a a a = −

hE E

w h w



  

 
=

  

The input to output-layer

neuron 

0

M

j j

j

h w a 
=

=

Backprop Derivation

(*) Consider the (2)nd factor:

hE E

w h w



  

 
=

  

Why?

0

0

M

j j M
j j j

j

w a
w ah

a
w w w






  

=

=




= = =
  




Backprop Derivation

(*) Consider the (2)nd factor:

(*) Last step holds because , except in the case:

hE E

w h w



  

 
=

  

0
jw

w






=


j =

h
a

w







=



Backprop Derivation

(*) Consider the (1)st factor, which we short-hand as follows:

(*) By the chain rule, we have:

Note: hΚ signifies the value of the output neuron prior to activation, whereas

yΚ denotes the value of the output neuron after activation.

hE E

w h w



  

 
=

  

()O

E

h
 


=


()O

yE E

h y h



  

 
 

= =
  

()
0

M
output hidden

j j

j

y g h g w a  
=

 
= =  

 


Backprop Derivation

(*) Consider the (1)st factor, which we short-hand as follows:

(*) By the chain rule, we have:

(*) Also, note that:

hE E

w h w



  

 
=

  

()O

E

h
 


=


()O

yE E

h y h



  

 
 

= =
  

()
0

M
output hidden

j j

j

y g h g w a  
=

 
= =  

 


Backprop Derivation

Continuing…

hE E

w h w



  

 
=

  

()O

yE E

h y h



  

 
 

= =
  

()
()

()
() ()

()
output

output

O output output output

g hE E
g h

g h h g h





  

 
 

= =
  

Backprop Derivation

Continuing…

hE E

w h w



  

 
=

  

()O

yE E

h y h



  

 
 

= =
  

()
()

()
() ()

()
output

output

O output output output

g hE E
g h

g h h g h





  

 
 

= =
  

()
()() ()

2

1

1

2

N
output output

koutput
k

g h t g h
g h

 

 =

  
= − 

  


Backprop Derivation

Continuing…

hE E

w h w



  

 
=

  

()O

yE E

h y h



  

 
 

= =
  

()
()

()
() ()

()
output

output

O output output output

g hE E
g h

g h h g h





  

 
 

= =
  

()
()() ()

2

1

1

2

N
output output

koutput
k

g h t g h
g h

 

 =

  
= − 

  


()() ()output output

kg h t g h 
= −

Backprop Derivation

Continuing…

hE E

w h w



  

 
=

  

()O

yE E

h y h



  

 
 

= =
  

()
()

()
() ()

()
output

output

O output output output

g hE E
g h

g h h g h





  

 
 

= =
  

()
()() ()

2

1

1

2

N
output output

koutput
k

g h t g h
g h

 

 =

  
= − 

  


()() () () ()output output output

k k kg h t g h y t g h  
 = − = −

Backprop Derivation

In Summary…
hE E

w h w



  

 
=

  

() ()output

k ky t g h a 
= −

Backprop Derivation
In Summary…

(*) Recall, a “gradient descent” based weight update has the form:

(*) Cool, but this doesn’t look like the formulas for BP you showed us before.

hE E

w h w



  

 
=

  

() ()output

k ky t g h a 
= −

E
w w

w
 






 −


() ()output

k kw y t g h a   = − −

Backprop Derivation

(*) Recall that g is the sigmoid! So what’s our new formula?

E
w w

w
 






 −


() ()output

k kw y t g h a   = − −

Backprop Derivation
E

w w
w

 






 −


() ()output

k kw y t g h a   = − −

() ()1k k k kw y t y y a = − − −

ds(z)

dz
= s(z)× (1-s(z))

(*) This is the final formula for the BP update for the output layer weights!

Backprop Derivation
E

w w
w

 






 −


() ()output

k kw y t g h a   = − −

() ()1k k k kw y t y y a = − − −

ds(z)

dz
= s(z)× (1-s(z))

(*) This is the final formula for the BP update for the output layer weights!

Hold on a second.

You still need to derive the hidden

layer weight updates!

Backprop Derivation
(*)Short version of input-to-hidden layer weight updates for BP:

We compute:

(*) This formula comes from the fact that each hidden node contributes to

the activation of all the output nodes, and so we need to consider all of these

contributions.

(*) From here, using the chain rule, differential properties of the sigmoid and

the NN topology, it is not difficult (as we did before, analogously), to show:

() ()
1 1

output outputN N
k k

h Ohidden output hidden hidden
k kk

h hE E
k

h h h h  

  
= =

  
= = =
   

 

() () ()
1

1
N

h O

k

a a w     
=

= − 

K

K K

K

Backprop Derivation

(*)This yields the following update rule for vertex :

Derivation complete! (at least for NNs with one hidden layer)

() () ()
1

1
N

h O

k

a a w     
=

= − 

v

() ()
1

1
N

O

k

E
v v

v

v a a w x

 



    



  
=


 −



 
= − −  

 

K

K

