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Historical Notes
• Feedforward networks can be seen as efficient non-linear function approximators based on using 

gradient descent to minimize the error in a  function approximation.

•As such, the modern feedforward NN is the culmination of  centuries of  progress on the general 

function approximation task. 

• The chain rule underlying backprop was invented by Leibniz (1796), and due naturally to foundations 

also laid by Newton. 

• Calculus and algebra have been used to solve optimization problems in closed form since their 

inception, but gradient descent was not introduced as a technique for iteratively approximating the 

solution to optimization problems until 19C (Cauchy, 1847). 

Newton CauchyLeibniz Al-Khwarizmi Galois
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Neurons & the Brain



Neurons & the Brain



Hebb’s Postulate 



McCulloch & Pitts Neuron Model (1943)

(3) Components:

(1) Set of weighted inputs {wi} that correspond to synapses

(2) An “adder” that sums the input signals (equivalent to membrane of the cell that collects 

the electrical charge)

(3) An activation function (initially a threshold function) that decides whether the neuron 

fires (“spikes”) for the current inputs. 



McCulloch & Pitts Neuron Model (1943)

Limitations & Deviations of  the M-P Neuron Model:

• Summing is linear.

• No explicit model of  “spike trains” (sequence of  pulses that encodes 

information in biological neuron).

• Threshold value is usually fixed.

• Sequential updating implicit (biological neurons usually update themselves 

asynchronously)

• Weights can be positive (excitatory) or negative (inhibitory); biological 

neurons do not change in this way. 

• Real neurons can have synapses that link back to themselves (e.g. feedback 

loop) – see RNNs (recurrent neural networks). 

• Other biological aspects ignored: chemical concentrations, refractory 

periods, etc. 



Historical Notes
• Beginning in the 1940s, these function approximation techniques were used to motivate ML models 

such as the percepton. However, the earliest models were based on linear models.

• In the 1960s Rosenblatt proved that the perceptron learning rule converges to correct weights 

in a finite number of  steps, provided the training examples are linearly separable.

•Critics including Marvin Minsky point out several of  the flaws of  the linear model family, such as its 

inability to learn the XOR function, which led to a backlash against the entire NN approach. 

• Learning non-linear functions required the development of  a MLP (multi-layer perceptron) and a 

means of  computing the gradient through such a model. Efficient applications of  the chain rule based 

on DP (dynamic programming) began to appear in the 1960s and 1970s. 

Rosenblatt Minsky



Historical Notes
• 1969: Minsky and Papert proved that perceptrons cannot represent non-linearly 

separable target functions.

• However, they showed that adding a fully connected hidden layer makes the 

network more powerful.

– i.e., Multi-layer neural networks can represent non-linear decision surfaces.

• Later it was shown that by using continuous activation functions (rather than 

thresholds), a fully connected network with a single hidden layer can in principle 

represent any function.

• 1986: “rediscovery” of  backprop algorithm: Hinton et al.

• The Universal Approximation Theorem (1989) states that one hidden layer is 

sufficient to approximate any function to arbitrary accuracy with a NN. (we say: 

“NNs are universal function approximators”); RNNs are Turing Complete. 

 

FIGURE 4.10  Schematic of the effective learning shape at each stage of the MLP. 



Universal Approximation Properties
• A linear model, mapping from features to outputs via matrix multiplication, 

can by definition represent only linear functions. It has the advantage of  being 

easy to train because many loss functions result in convex optimization 

problems when applied to linear models. 

• The universal approximation theorem (UAT) states that a feedforward 

network with a linear output layer and at least one hidden layer with any 

“squashing” activation function can approximate any Borel measurable (e.g. a 

continuous function on a closed and bounded subset of  Rn) function from one 

finite-dimensional space to another with any desired non-zero amount of  

error, provided the network is given enough hidden units. 

• The UAT states that regardless of  what function we are trying to learn, we 

know that a sufficiently large MLP will be able to represent this function. We 

are not guaranteed, however, that the training algorithm will be able to learn 

the function. 



Universal Approximation Properties
• The UAT states that regardless of  what function we are trying to learn, we 

know that a sufficiently large MLP will be able to represent this function. We 

are not guaranteed, however, that the training algorithm will be able to learn 

the function. 

• Cybneko (1989) proved UAT for sigmoid activations. 

• Hornik (1991) proved that the network itself  gives rise to universal 

approximation property -- not specific choice of  activation (so no long as 

activation is non-linear). 

• Classical UAT related to depth-bounded networks (e.g. depth-2). Lu et al. 

(2017) proved UAT for width-bound NNs (width: n+4 with RELU, where n is 

the input dimension).



Universal Approximation Properties
• Even if  the MLP is able to represent the function. Learning can fail for (2) different 

reasons:

(1) The optimization algorithm used for training may not be able to find the value of  the 

parameters that corresponds to the desired function. 

(2) The training algorithm might choose the wrong function as a result of  overfitting. 



Universal Approximation Properties

• Feedforward networks provide a universal system for representing functions in the 

sense that, given a function, there exists a feedforward network that approximates the 

function; there is no universal procedure for examining a training set of  specific 

examples and choosing a function that will generalize to points not in the training set. 



Universal Approximation Properties

• Feedforward networks provide a universal system for representing functions in the 

sense that, given a function, there exists a feedforward network that approximates the 

function; there is no universal procedure for examining a training set of  specific 

examples and choosing a function that will generalize to points not in the training set. 

*Note also that the theorem does not prescribe the size of  the network (some bounds can 

be approximated); unfortunately, in the worst case, an exponential number of  hidden units 

may be required. 

*Recall that any time we choose a specific ML algorithm, we are implicitly imposing some 

set of  prior beliefs we have about what kind of  function the algorithm should learn (this is 

the so-called inductive bias of  the learning algorithm); choosing a deep model generally 

indicates that we want to learn a composition of  several simpler functions.



Historical Notes
•The “rediscovery” of  the backpropagation algorithm (Hinton & Rumelhardt) ushered in a very active 

period of  research for MLPs. In particular, “connectionism” took root in the ML community, which 

placed emphasis on connections between neurons as the locus of  learning and memory (cf. 

distributed representation: each concept is represented by many neurons, each  neuron participates 

in the representation of  many concepts. 

http://www.cs.toronto.edu/~bonner/courses/2014s/csc321/lecture

s/lec5.pdf

http://www.jneurosci.org/content/35/13/5180



Historical Notes
• Following the success of  backprop, NN research gained popularity and reached a peak in the early 

1990s. Afterwards, other ML techniques became more popular until the modern deep learning 

renaissance that began in 2006. 

• The core ideas behind modern feedforward nets have not changed substantially since the 1980s. The 

same backprop algorithm and the same approaches to gradient descent are still in use. Most of  the 

improvement in NN performance from 1986-2018 can be attributed to two factors: 



Historical Notes
• Following the success of  backprop, NN research gained popularity and reached an (initial) apex in the 

early 1990s.Afterwards, other ML techniques became more popular until the modern deep learning 

renaissance that began in 2006. 

• The core ideas behind modern feedforward nets have not changed substantially since the 1980s. The 

same backprop algorithm and the same approaches to gradient descent are still in use. Most of  the 

improvement in NN performance from 1986-2018 can be attributed to two factors: 

(1) Larger datasets have reduced the degree to which statistical generalization is a challenge for NNs. 

(2) NNs have come much larger because of  more powerful computer (including the use of  GPUs) 

and better software infrastructure. 



Historical Notes
• Nevertheless, a number of algorithmic changes have also contributed to subsequent 

improvements in the performance of  NNs. 

• One of  these algorithmic changes was the replacement of  mean squared error (MSE) with the 

cross-entropy family of  loss functions. MSE was popular in the 1980s and 1990s but was 

gradually replaced by cross-entropy losses and the principles of  MLE as ideas spread between the 

statistics community and ML community. 

• The use of  cross-entropy losses greatly improved the performance of  models with sigmoid and 

softmax outputs, which had previously suffered from saturation and slow learning when using 

MSE. 



Historical Notes
• The other major algorithmic change that has greatly improved the performance of  

feedforward networks was the replacement of  sigmoid hidden units with piecewise linear 

hidden units, such as rectified linear units (RELUs). Rectification using the max{0,z} function 

was introduced in early NN models. 

• As of  the early 2000s, rectified linear units were avoided due to the belief  that activation 

functions with non-differentiable points must be avoided. 

• For small datasets, Jarrett et al. (2009) observed that using rectifying non-linearities is even 

more important than learning the weights of  the hidden layers. Random weights are sufficient 

to propagate useful information through a rectified linear network, enabling the classifier layer 

at the top to learn how to map different feature vectors to class identities. 



Historical Notes

• RELUs are also of  historical interest because they show that neuroscience has continued to have 

an influence on the development of  deep learning algorithms. Glorot et al. (2011) motivated 

RELUs from biological considerations. The half-rectifying non-linearity was intended to captured 

these properties of  biological neurons: 

(1) For some inputs, biological neurons are completely inactive.

(2) For some inputs, a biological neuron’s output is proportional to its inputs.

(3) Most of  the time, biological neurons operate in the regime where they are inactive (i.e. they 

should have sparse activations).



Neurons & the Brain 
– Human brain contains ~1011 neurons

– Each individual neuron connects to ~104 neuron

– ~1014 total synapses!



Historical Notes



A “two”-layer neural network

(activation represents

classification)

(internal representation)

(activations represent

feature vector for one training 

example)

inputs      

hidden layer

output layer

•Input layer—It contains those units (artificial neurons) which receive input from the outside 

world on which network will learn, recognize about or otherwise process.

•Output layer—It contains units that respond to the information about how it’s learned any task.

•Hidden layer—These units are in between input and output layers. The job of  hidden layer is to 

transform the input into something that output unit can use in some way.

Most neural networks are fully connected that means to say each hidden neuron is fully connected to 

the every neuron in its previous layer(input) and to the next layer (output) layer.



A Neural Network “Zoo”



Neural network notation

(activation 

represents

classification)

(internal 

representation)

(activations represent

feature vector for one 

training example)

xi : activation of input node i. 

hj : activation of hidden node j. 

ok : activation of output node k. 

wji : weight from node i to node j. 

σ : “sigmoid function”.  

For each node j in hidden layer,

For each node k in output layer, 

hj = s w jixi +w j0
iÎ input layer
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Sigmoid function:



(*) Backpropagation is one particular instance of  a larger paradigm of  optimization 

algorithms know as Gradient Descent (also called “hill climbing”). 

(*) There exists a large array of  nuanced methodologies for efficiently training NNs 

(particularly DNNs), including the use of  regularization, momentum, dropout, 

batch normalization, pre-training regimes, initialization processes, etc. 

(*) Traditionally, the backpropagation algorithm has been used to efficiently train a 

NN; more recently the Adam stochastic optimization method (2014) has eclipsed 

backpropagation in practice: https://arxiv.org/abs/1412.6980

Gradient Descent 



DNNs Learn Hierarchical Feature Representations 



Backpropagation 
• Backpropagation is the engine behind most (but not all) deep learning training algorithms. 

Backpropagation consists of  two alternating steps: 

(1) Forward step: Propagate the input vector through the network (this consists primarily of  

dot product operations followed by non-linear activation operations). 

(2) Backward step: Using the output computed in step (1); the “error” (according to some 

prescribed loss function) is propagated backward through the network. The backward 

step assigns an attribution value to the edges in the network based on the loss 

calculated. 



Backpropagation 
• Backpropagation is the engine behind most (but not all) deep learning training algorithms. 

Backpropagation consists of  two alternating steps: 

(1) Forward step: Propagate the input vector through the network (this consists primarily of  

dot product operations followed by non-linear activation operations). 

(2) Backward step: Using the output computed in step (1); the “error” (according to some 

prescribed loss function) is propagated backward through the network. The backward 

step assigns an attribution value to the edges in the network based on the loss 

calculated. 

(*) For an alternative to backpropagation methods, see, for example: ELM “extreme learning 

machines” methodologies (which are considered controversial in mainstream ML. 

https://www.researchgate.net/publication/264273594_Extreme_learning_machines



Backpropagation: Computational 

Graphs 
•  A neural network (NN can be modeled as a computational graph, in which a unit of  

computation is the neuron. 

• NNs are fundamentally more powerful than their building blocks because the parameters of  

these models are learned jointly to create a highly optimized composition function of  these 

models. In addition, the non-linear activations between the different layers enhance the 

expressive power of  the network. 



Backpropagation: Computational 

Graphs 
•  A neural network (NN) is a computational graph, in which a unit of  computation is the neuron. 

• A multi-layer NN evaluates compositions of  functions computed at individual nodes. For instance, a 

path of  length 2 in the NN in which the activation function g(∙) follows a basic affine transformation (i.e., 

matrix multiplication plus a “bias” shift) results in the composition: 

• Weight updates are traditionally computed using gradient descent (or a related variant), in which case, 

one applies the chain rule of  differential calculus with respect to the the various function compositions 

defined across the layers of  the network. 



Computational Graph: Example 
•  Next, we consider a simple example of  learning the XOR function in 2D. 

• (Right image, left-side) Every unit in computational graph is 

shown; (Right image right-side) More compactly, each node 

represents a layer. 



Computational Graph: Example 
•  Next, we consider a simple example of  learning the XOR function in 2D. 

• (Left) XOR represented in original space (notice the data are not linearly separable); 

(Right) By introducing non-linearity, the data are linearly separable in the learned space. 

• (Right image, left-side) Every unit in computational graph is 

shown; (Right image right-side) More compactly, each node 

represents a layer. 



Computational Graph: Example 
• Denote the ith element activation:  ℎ𝑖 = 𝑔 𝒙𝑇𝑊:,𝑖 + 𝑐𝑖 , where 𝑔 is our activation function –

here we’ll use the standard RELU depicted below, defined: 𝑔 𝑧 = 𝑚𝑎𝑥 0, 𝑧

• Notice that the complete (mathematical) specification of  our network is given as: 



Computational Graph: Example 
• Denote the ith element activation:  ℎ𝑖 = 𝑔 𝒙𝑇𝑊:,𝑖 + 𝑐𝑖 , where 𝑔 is our activation function –

here we’ll use the standard RELU depicted below, defined: 𝑔 𝑧 = 𝑚𝑎𝑥 0, 𝑧

• Notice that the complete (mathematical) specification of  our network is given as: 

𝑓 𝒙;𝑾, 𝒄,𝒘, 𝑏 = 𝒘𝑇𝑚𝑎𝑥 0,𝑾𝑇𝑥 + 𝑐 + 𝑏

𝑿𝑾 =

0
1
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0
1
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2 2

⟶𝑿𝑾+ 𝒄 =
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1
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−1
0
0

2 1

⟶𝑚𝑎𝑥 0,𝑾𝑇𝑥 + 𝑐 ⟶
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2 1

⟶𝒘𝑇𝑚𝑎𝑥 0,𝑾𝑇𝑥 + 𝑐 + 𝑏 =

0
1
1
0

Predicted output over XOR dataset. 

• Let: 𝑾 =
1 1
1 1

, 𝒄 =
0
−1

, 𝒘 =
1
−2

, 𝑏 = 0, 𝑿 =

0
1
1

0
0
0

1 1

(XOR input)



Computational Graph: Example 
•  Some example computation graphs: 

(a) 𝑧 = 𝑥𝑦

(b) 𝑦 = 𝜎 𝒙𝑇𝒘+ 𝑏 (logistic regression)

(c) 𝐇 = max{0, 𝑿𝑾+ 𝒃}

(d) linear regression model with regularization (L2 weight decay penalty), i.e., ො𝑦 = 𝒘𝒙 +

λ σ𝑖𝑤𝑖
2 .



Backpropagation 
• Recall the Chain Rule of  Calculus:

Let  , then the Chain Rule states: 

:

dz dz dy

dx dy dx
=

( ( )) ( )z f g x f y= =



Backpropagation 
• Recall the Chain Rule of  Calculus:

Let  , then the Chain Rule states: 

• For functions of  several variables, we introduce the analogue of  the derivative, 

termed the partial derivative. Partial derivatives entail computing the derivative of  a 

multivariate function wrt (“with respect to”) a single variable, while treating all other 

variables as constants. Let 𝑓(𝑥, 𝑦, 𝑧, … ); partial derivatives are commonly denoted:

dz dz dy

dx dy dx
=

( ( )) ( )z f g x f y= =

 or equivalently: or ;  recall that in general: = , etc. x x xy yx

f
f D f f

x







Backpropagation 
• We can thus generalize the chain rule to vector-valued functions. Suppose that 𝒙 ∈
ℝ𝑚, 𝒚 ∈ ℝ𝑛; if  𝒚 = 𝑔(𝒙) and z = 𝑓 𝒚 , then: 
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Backpropagation 
• We can thus generalize the chain rule to vector-valued functions. Suppose that 𝒙 ∈
ℝ𝑚, 𝒚 ∈ ℝ𝑛; if  𝒚 = 𝑔(𝒙) and z = 𝑓 𝒚 = 𝑓(𝑔(𝒙)) then: 

• Consider the following example:

Let
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• We can thus generalize the chain rule to vector-valued functions. Suppose that 𝒙 ∈
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Backpropagation 
• The main computational challenge for backpropagation relates to the multivariate 

chain rule. (see pathwise aggregation lemma, next slides) 



Backpropagation 
• The main computational challenge for backpropagation relates to the multivariate 

chain rule. (see pathwise aggregation lemma, next slides) 



Computational Graphs & Backpropagation 
• Here is an example schematic of  symbol-to-symbol computation of  derivatives from a 

computation graph. 

• Another example schematic of  the computational graph used to train a single-layer NN 

using cross-entropy loss and weight decay:



Computational Graphs & Backpropagation 

• Notice that the calculation of  the chain rule along a path in a computational graph typically 

admits of  many redundancies. Let 𝑥 = 𝑓 𝑤 , 𝑦 = 𝑓 𝑥 , 𝑧 = 𝑓 𝑦 :

• Notice that the calculation of  
𝜕𝑧

𝜕𝑤
requires that we compute that value 𝑓 𝑤 many times. 

Naturally, a more efficient approach is to simply compute this value only once and store it in 

order to avoid these redundant calculations. This is the key idea behind applying dynamic 

programming to backpropagation.



Backpropagation 
• Pathwise Aggregation Lemma: Consider a directed acyclic computational graph 

(DAG) in which the ith node contains variable y(i). The local derivative z(i,j) of  the 

directed edge (i,j) in the graph is defined as: 
𝜕𝑦 𝑗

𝜕𝑦 𝑖
. Let a non-null set of  paths P exist 

from variable w in the graph to output node containing variable o. Then, the value of  
𝜕𝑜

𝜕𝑤
is given by computing the product of  the local gradients along each path in P, and 

summing these products over all paths: 

𝜕𝑜

𝜕𝑤
= ෍

𝑝∈𝑃

ෑ

𝑖,𝑗 ∈𝑝

𝑧 𝑖, 𝑗



Backpropagation 
• Pathwise Aggregation Lemma: Consider a directed acyclic computational graph 

(DAG) in which the ith node contains variable y(i). The local derivative z(i,j) of  the 

directed edge (i,j) in the graph is defined as: 
𝜕𝑦 𝑗
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Backpropagation: Dynamic Programming 

• Although the summation discussed previously has an exponential number of  paths, one can 

nonetheless compute it efficiently using dynamic programming. 

• We want to compute the product of  z(i,j) over each path p ε P from source node w to output o

and then add them:

𝑆(𝑤, 𝑜) = ෍

𝑝∈𝑃

ෑ

𝑖,𝑗 ∈𝑝

𝑧 𝑖, 𝑗



Backpropagation: Dynamic Programming 
• Although the summation discussed previously has an exponential number of  paths, one can 

Nevertheless, compute this result efficiently using dynamic programming. 

• We want to compute the product of  z(i,j) over each path p ε P from source node w to 

output o and then add them:

(*) In practice, when using dynamic programming for backpropagation for redundant 

calculations required for enumerating all paths. 

𝑆(𝑤, 𝑜) = ෍

𝑝∈𝑃

ෑ

𝑖,𝑗 ∈𝑝

𝑧 𝑖, 𝑗



Backpropagation: Dynamic Programming 
• Pathwise Aggregation – in this example, explicit computation of  the partial derivative 

of  the output (o) wrt to the input (w), requires “pathwise aggregation” over all 25 =
32 paths in the network! 

𝜕𝑜

𝜕𝑤
= ෍

𝑝∈𝑃

ෑ

𝑖,𝑗 ∈𝑝

𝑧 𝑖, 𝑗



• Notice that the given network represents a DAG (so it admits of  a topological 

ordering), so we can apply dynamic programming (DP) to generate an efficient solution 

for the calculation of: 
𝜕𝑜

𝜕𝑤
. Recall that z i, j =

𝜕𝑦 𝑗

𝜕𝑦 𝑖
.

• We will use a common DP methodology – compute 𝐒 𝐰, 𝒋 for all nodes w in the 

graph beginning with w ≔ 𝑜 (so we traverse right to left); see the formula below for 

the general calculation of  S i, 𝑜 . Note that 𝐀 𝒊 symbolizes the set of  nodes at the 

endpoints of  outgoing edge for each intermediate node 𝑖.  Let S 11,11 = 1 by 

default.

Backpropagation: Dynamic Programming 



• We will use a common DP methodology – compute S w, j for all nodes w in the graph 

beginning with w ≔ 𝑜 (so we traverse right to left); see the formula below for the general 

calculation of  S i, 𝑜 . Note that A 𝑖 symbolizes the set of  nodes at the end points of  

outgoing edge for each intermediate node 𝑖.  Let S 11,11 = 1. 

• Next, we compute S 9,11 = 𝑆 11,11 ∙ 𝑧 9,11 = 1 ∙
𝜕𝑦 11

𝜕𝑦 9
=

𝜕𝑤32

𝜕𝑤16 = 2𝑤16

• Similarly, S 10,11 = 𝑆 11,11 ∙ 𝑧 10,11 = 1 ∙
𝜕𝑦 11

𝜕𝑦 10
=

𝜕𝑤32

𝜕𝑤16 = 2𝑤16
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• We will use a common DP methodology – compute S w, j for all nodes w in the graph 

beginning with w ≔ 𝑜 (so we traverse right to left); see the formula below for the general 

calculation of  S i, 𝑜 . Note that A 𝑖 symbolizes the set of  nodes at the end points of  

outgoing edge for each intermediate node 𝑖.  You should see that S 11,11 = 1. 

• Next, we compute S 9,11 = 𝑆 11,11 ∙ 𝑧 9,11 = 1 ∙
𝜕𝑦 11

𝜕𝑦 9
=

𝜕𝑤32

𝜕𝑤16 = 2𝑤16

• Similarly, S 10,11 = 𝑆 11,11 ∙ 𝑧 10,11 = 1 ∙
𝜕𝑦 11

𝜕𝑦 10
=

𝜕𝑤32

𝜕𝑤16 = 2𝑤16

and S 7,11 = 𝑆 9,11 ∙ 𝑧 7,9 + 𝑆 10,11 ∙ 𝑧 7,10 = 2𝑤16 𝜕𝑦 9

𝜕𝑦 7
+

2𝑤16 𝜕𝑦 10

𝜕𝑦 7
= 2𝑤16 𝜕𝑤

16

𝜕𝑤8 + 2𝑤16 𝜕𝑤
16

𝜕𝑤8 = 4𝑤24 + 4𝑤24 = 8𝑤24.

• You should verify that iterating this DP strategy to completion yields: 
𝜕𝑜

𝜕𝑤
= 32𝑤31; 

note that this method avoids exponential path aggregation calculations, as was to be 

shown. 

Backpropagation: Dynamic Programming 



• Automatic Differentiation (AD) is a set of  techniques to numerically evaluate the derivative of  a 

function. Many contemporary ML and DL libraries (e.g., Pytorch, TensorFlow) include AD 

capabilities. 

• Different from symbolic differentiation (i.e., directly using mathematical expression) and 

numerical differentiation (e.g., an iterative algorithm to estimate the derivative of  a function), AD 

replaces the domain of  variables to incorporate derivatives per the chain rule. 

Automatic Differentiation 



• Automatic Differentiation (AD) is a set of  techniques to numerically evaluate the derivative of  a 

function. Many contemporary ML and DL libraries (e.g., Pytorch, TensorFlow) include AD 

capabilities. 

• Different from symbolic differentiation (i.e., directly using mathematical expression) and 

numerical differentiation (e.g., an iterative algorithm to estimate the derivative of  a function), AD 

replaces the domain of  variables to incorporate derivatives per the chain rule. 

• AD computes derivatives through the accumulation of  values during code execution to generate 

numerical derivative evaluations (rather than derivative expressions). 

Automatic Differentiation 

Baydin et al., “Automatic Differentiation: A Survey” (JMLR 2018)



• AD is a deep topic, for brevity we note that at a high-level AD uses the chain rule to compute the 

accumulation of  derivatives. This is done for two fundamental processes: (1) forward accumulation 

(i.e., AD for forward pass through a NN) and (2) reverse accumulation (used for backprop).  

Automatic Differentiation 



• AD is a deep topic, for brevity we note that at a high-level AD uses the chain rule to compute the 

accumulation of  derivatives. This is done for two fundamental processes: (1) forward accumulation 

(i.e., AD for forward pass through a NN) and (2) reverse accumulation (used for backprop).  

• Consider the following example (https://sidsite.com/posts/autodiff/ ):

where we wish to compute 
𝜕𝑑

𝜕𝑎
. Using the product rule we have: 

• Note that if  we wish to compute 
𝜕𝑑

𝜕𝑏
a similar tedious process is required. 

Automatic Differentiation 



• Let’s now contrast the computation of  
𝜕𝑑

𝜕𝑎
using AD. 

• The left image denotes the computational graph for this problem. On the right, we see the AD 

methodology. Consider the derivatives appearing on the edges as local derivatives. 

• The basic idea through reverse accumulation is to begin at the output node of  the computational graph, 

and then consider each path in the computational graph from the output node to the input nodes.  

• We follow two simple rules: (1) add together different path accumulations and (2) multiply local 

derivatives along each path. 

Automatic Differentiation 



• Let’s now contrast the computation of  
𝜕𝑑

𝜕𝑎
using AD. 

• We follow two simple rules: (1) add together different path accumulations and (2) multiply local 

derivatives along each path. 

Automatic Differentiation 

conventional Chain Rule executionAD execution



• Vanilla NNs consist of  chains of  feed-forward layers, with the main considerations being the depth 

of  the network and width of  each layer. 

• In practice, though, NN architectures can be very diverse (see the NN “Zoo”, shown previously). 

Ultimately, NN design should be intentional and developed with consideration for the specific task at 

hand. 

• Special architectures for computer vision called convolutional neural networks (CNNs) are described 

later in our course. FF networks can be generalized to the recurrent neural networks (RNNs) for 

sequence processing, which have their own architectural considerations. 

Architectural Considerations



• Observe that layers need not be connected in a sequential chain; many architectures make use of  

skip connections and residual layers to benefit gradient flow in the network. 

• One can additionally vary the connectivity strategy of  the network. Many specialized networks 

have fewer connections (than dense networks) or they admit of  some other form of  

compression. Note that CNNs utilize parameter sharing to this end.

• Recently, Neural Architecture Search (NAS) has emerged as a new paradigm for automating the 

design of  DNNs.

Architectural Considerations



•  DNNs frequently embody large and unwieldy, overparameterized models. Thus, recent 

research has focused on transforming DNNs into more sustainable network designs. 

• This effort is catalyzed by several factors, including: the desire to conserve memory and 

compute overhead for the deployment of  commercial DL models, energy sustainability, the 

need for greater model interpretability, and the aspiration to port DL models to low compute 

environments, including edge and IOT devices. 

Architectural Considerations



•  DNNs frequently embody large and unwieldy, overparameterized models. Thus, recent 

research has focused on transforming DNNs into more sustainable network designs. 

• This effort is catalyzed by several factors, including: the desire to conserve memory and 

compute overhead for the deployment of  commercial DL models, energy sustainability, the 

need for greater model interpretability, and the aspiration to port DL models to low compute 

environments, including edge and IOT devices. 

• Today there exist a large variety of  DL model compression techniques, due to the desirability 

of  compact models with state-of-the-art functionality. 

• Roughly, these techniques fall into several generic categories, comprising pruning, 

quantization, low-rank and sparse approximations, and knowledge distillation. 

Architectural Considerations



Weight Initialization

• Training algorithms for DNN models are usually iterative and thus require the user 

to specify some initial point from which to begin the iterations. Moreover, training 

deep models is a sufficiently difficult task that most algorithms are strongly affected 

by the choice of  initialization.

• The initial point can determine whether the algorithm converges at all, with 

some initial points being so unstable that the algorithm encounters numerical 

difficulties and fails altogether. When learning does converge, the initial point can 

determine how quickly learning converges and whether it converges to a point 

with high or low cost. 



Weight Initialization

• Modern initialization strategies are usually simple and heuristic; designing improved 

initialization strategies is a difficult task because NN optimization is not yet well 

understood. 

• The most general guideline agreed upon by most practitioners is known as 

“symmetry-breaking.” If  two hidden units with the same activation function are 

connected to the same inputs, then these units have different initial parameters. If  the 

training is deterministic, “symmetric” units will update identically (and hence be 

useless); even if  the training is stochastic, it is usually best to initialize each unit to 

compute a different function from all the other units. 

• Note that the scale of  the initial distribution does have a large effect on both the 

outcome of  the optimization procedure and the ability of  the network to generalize. 



Weight Initialization
• Larger initial weights will yield a strong symmetry-breaking effect, helping to avoid 

redundant units; in addition, they will also potentially help avoid the problem of  

vanishing gradients. Nevertheless, they may conversely exacerbate the exploding 

gradient problem; in RNNs, large initial weights can manifest chaotic behavior. 

* Sparse initialization (Martens, 2010) fixes the number of  non-zero weights for 

initialization; Xavier initialization draws random initial values from a distribution with 

zero mean and variance inversely proportional to the size of  the previous layer in the 

network. 



Weight Initialization

• Another related approach is to initialize the weights to generate random values from a 

Gaussian distribution with zero mean and small standard deviation (e.g. 10-2). This will 

result in small random values that are both positive and negative. 

• One problem with this initialization is that it is not sensitive to the number of  

inputs to a specific neuron. For example, if  one neuron has only 2 inputs and 

another has 100 inputs, the output of  the latter is far more sensitive to the average 

weight because of  the additive effect of  more inputs (which will manifest itself  through 

a much larger gradient).

https://www.deeplearning.ai/ai-notes/initialization/index.html



Weight Initialization

(*) It can be shown that the variance of  outputs scales with the number of  inputs, and 

therefore the standard deviation scales with the square root of  the number of  inputs. 

• To balance this fact, each weight can be initialized by a value drawn from 𝑁 0,
1

𝑟
, 

where r indicates the number of  inputs to that neuron. 

• Xavier initialization is somewhat more sophisticated, so that initial weights are 

drawn from 𝑁 0,
2

𝑟𝑖𝑛+𝑟𝑜𝑢𝑡
, where rin and rout are the fan-in and fan-out values of  a 

particular neuron, respectively. 

https://www.deeplearning.ai/ai-notes/initialization/index.html



Challenges for DNN Optimization
• Traditionally, ML implementations avoid the difficulty of  general optimization by carefully 

designing the objective function and constraints to ensure that the optimization problem is 

convex. 

• When training NNs, however, we must confront the general non-convex case. 

Convex Function Non-Convex Function



Challenges for DNN Optimization: Local Minima

• For a convex function, any local minimum is guaranteed to be a global minimum. 

• With non-convex functions, such as with loss functions of  NNs, it is possible to have 

many local minima. Moreover, nearly any DNN is essentially guaranteed to have a very 

large number of  local minimal (even uncountably many). 

• One of  the chief  reasons for the presence of  many local minima for NNs, is due to 

the problem of  model identifiability. A model is said to be identifiable if  a sufficiently 

large training set can rule out all but one setting of  the mode’s parameters. 



Challenges for DNN Optimization: Local Minima

• Models with latent variables (e.g. hidden neurons) are not in general identifiable

because we can obtain equivalent models by exchanging latent variables with one 

another. 

• Local minima are problematic if  they correspond with high cost (vis-à-vis the global 

minimum). *Note that local minima are typically less problematic for DNN training 

than saddle  points (this concept is not always well-appreciated by ML 

practitioners). 



Challenges for DNN Optimization: Plateaus, Saddle Points

• For many high-dimensional, non-convex functions, local minima (and maxima) are in 

fact rare compared to saddle points. 

• Some points around a saddle point have greater cost than the saddle point, while 

others have lowers cost. At a saddle point, the Hessian matrix has both positive and 

negative eigenvalues. 

• Why are saddle points more common than local extrema in high dimensions? The 

basic intuition is this: in order to render a local extreme value, all of the eigenvalues 

must be of  the same sign (naturally, this is very unlikely – all things being equal – in 

high dimensions). 



Challenges for DNN Optimization: Plateaus, Saddle Points

• For first-order optimization, saddle points are not necessarily a significant problem 

(Goodfellow); however, for second-order methods, they clearly constitute a problem. 

• Degenerate locations such as plateaus can pose major problems for all

numerical algorithms. 



Challenges for DNN Optimization: Cliffs, Exploding and 

Vanishing Gradients 
• NNs with many layers often have extremely steep regions resembling cliffs in the parameter space. This is 

due to the multiplication of  several large weights together. On the face of  an extremely steep cliff  structure, 

the gradient update step can alter the parameters drastically. 

• Gradient clipping, a heuristic technique, can help avoid this issue. When the traditional gradient descent 

algorithm proposes making a large step, the gradient clipping heuristic intervenes to reduce the step size, 

thereby making it less likely to go outside the region where the gradient indicates the direction of  

approximately steepest descent. 



Challenges for DNN Optimization: Cliffs, Exploding and 

Vanishing Gradients 
• NNs with many layers often have extremely steep regions resembling cliffs in the parameter space. This is 

due to the multiplication of  several large weights together. On the face of  an extremely steep cliff  structure, 

the gradient update step can alter the parameters drastically. 

• Gradient clipping, a heuristic technique, can help avoid this issue. When the traditional gradient descent 

algorithm proposes making a large step, the gradient clipping heuristic intervenes to reduce the step size, 

thereby making it less likely to go outside the region where the gradient indicates the direction of  

approximately steepest descent. 

• When the computational graph for a NN becomes very large (e.g. RNNs), the issue of  

exploding/vanishing gradients can arise. Vanishing gradients make it difficult to known which direction 

the parameters should move to improve the cost function, while exploding gradients can make learning 

unstable. 

*LSTMs, RELU, and ResNet (Microsoft) have been applied to solve the vanishing gradient problem. 



Challenges for DNN Optimization: Hill-Climbing

• Potentially compounding this problem, many activation functions have small derivatives. 

• The specific choice of  activation function often has a considerable effect on the severity of  the vanishing 

gradient problem. 

• In recent years, the sigmoid and tanh activation functions have been increasingly supplanted by the ReLU

and the hard tanh functions (see subsequent slides on variants of  the ReLU activation).

(*) NB: The computational requirements to generate the derivate of  a piecewise linear function are naturally 

significantly less than that required for a transcendental function (e.g. ex) – where a sigmoid is defined as the 

composition of  a transcendental function. 



Cross-Entropy Loss
• As mentioned, cross-entropy loss is generally preferred to MSE, particularly for classification 

problems with DNNs.  

Cross-entropy loss is defined:

Where c refers to one hot encoded classes (or labels), whereas p refers to softmax applied probabilities

( ) ( ) ( )log 1 log 1i i i iE c p c p= − + − −



Cross-Entropy Loss
• As mentioned, cross-entropy loss is generally preferred to MSE, particularly for classification 

problems with DNNs.  

Cross-entropy loss is defined:

Where c refers to one hot encoded classes (or labels), whereas p refers to softmax applied probabilities

(2) Properties make cross-entropy a natural loss function:

(1) E ≥ 0; all individual terms are negative and there is a minus outside. 

(2) If  the neuron's actual output is close to the desired output for all training inputs, x, then the cross-

entropy will be close to zero. To demonstrate this, we assume (WLOG) that the desired outputs c are 

all either 0 or 1. Suppose for example that c = 0 and p ≈ 0, for some input x (so the neuron has done 

well on this input). The first term in E vanishes, while the second term is close to zero; a similar 

analysis holds when c = 1 and p ≈ 1. 

( ) ( ) ( )log 1 log 1i i i iE c p c p= − + − −



Cross-Entropy Loss
• Cross-entropy loss is defined:

One can show that, for example, that the partial derivative of  the cross-entropy loss function is:

*(σ denotes the sigmoid function) Which indicates that the gradient is larger (i.e. learning is faster) the 

larger the error; in addition, the cross-entropy loss function does not in general “bottom out” like the 

MSE loss. 

( ) ( ) ( )log 1 log 1i i i iE c p c p= − + − −

( )( )j

xj

E
x z y

w



= −






RELU & Their Generalizations
• Rectified linear units use the activation function g(z) = max{0, z}.

• These units are easy to optimize because they are so similar to linear units; the only difference being 

the RELU is zero across half  of  its domain. This makes the derivatives through a RELU remain large 

whenever the unit is active. 

• The gradients are therefore not only large but consistent.

RELUs are typically used on top of  an affine transformation:

•One drawback of  RELU: is that they cannot learn via gradient-based methods on examples for which 

their activation is zero; various generalizations of  RELUs guarantee they receive gradient everywhere.

*affine transformations preserve points, straight lines, planes, and parallelism. 

( )Tg= +h W x b



RELU & Their Generalizations
(3) Generalizations of  RELUs are based on using a non-zero slope αi when zi < 0:

(1) Absolute value rectification fixes αi = -1, to obtain g(z)=|z|; this method has been used for 

object recognition from images, where it makes sense to seek features that are invariant under polarity 

reversal of  the input illumination. 

( ) ( ) ( ), max 0, min 0,i i i ii
h g z z= = +z α



RELU & Their Generalizations
(3) Generalizations of  RELUs are based on using a non-zero slope αi when zi < 0:

(1) Absolute value rectification fixes αi = -1, to obtain g(z)=|z|; this method has been used for 

object recognition from images, where it makes sense to seek features that are invariant under polarity 

reversal of  the input illumination. 

(2) Leaky RELU fixes αi to a small value like 0.01.

• Note that the gradient of  a standard ReLU is zero for negative values of  its argument. While this 

inactivity is arguably biological-plausible -- since in real brains, neuron firing is often sporadic and 

followed by refractory periods (see previous slides) -- it can nevertheless lead to undesirable, 

pathological behavior for artificial NNs. 

• In artificial NNs, zero outputs can cause some ReLU units to be “knocked out”, in which case they 

can reach a state in which they are never further updated during training. Such a neuron can be 

considered dead, which is a kind of  permanent “brain damage” in biological parlance. 

(*) The problem of  dying neurons can be partially ameliorated by the leaky ReLU. 

( ) ( ) ( ), max 0, min 0,i i i ii
h g z z= = +z α



RELU & Their Generalizations
(3) Generalizations of  RELUs are based on using a non-zero slope αi when zi < 0:

(1) Absolute value rectification fixes αi = -1, to obtain g(z)=|z|; this method has been used for 

object recognition from images, where it makes sense to seek features that are invariant under poliartiy

reversal of  the input illumination. 

(2) Leaky RELU fixes αi to a small value like 0.01.

(3) Maxout units (Goodfellow, 2013); instead of  applying an element-wise function g(z), maxout units 

divide z into groups of  k values. Each maxout unit then outputs the maximum element of  one of  

those groups. 

This provides a way of  learning a piecewise linear function that responds to multiple directions in the 

input x space.  Each maxout unit can learn a piecewise linear, convex function with up to k pieces; 

maxout units can thus be seen as learning the activation function itself  rather than just the relationship 

between units; with enough k, a maxout unit can learn to approximate any convex function with 

arbitrary fidelity. 

( ) ( ) ( ), max 0, min 0,i i i ii
h g z z= = +z α



“Swish” Activations

• Of  note, swish activation introduces a non-monotonic “bump” for 𝑥 < 0 (the shape of  this 

bump is modulated by the parameter β), as this regularizes large initial negative parameter weights. 

• Non-monotonic feature increases the “expressivity” of  activations; smoothness helps improve 

network optimization efficiency by making output space smoother and thus easier to traverse for 

optimization. 

• In 2018 Google Brain introduced “swish” activation functions 

(https://arxiv.org/pdf/1710.05941.pdf); swish a smooth, non-monotonic function 

matching/outperforming RELU in experiments.  

( ) ( )
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Feature Preprocessing
• There are two general forms of  feature preprocessing:

(1) Additive preprocessing and mean-centering. It can be useful to mean-center the data to remove 

certain types of  bias effects (recall that PCA does this); mean-centering is often paired with standardization. 

(*) If  it is desirable for all feature values to be non-negative (e.g. χ2 test for feature selection), then one can 

simply add the absolute value of  the maximum negative feature to the data set. 



Feature Preprocessing
(1) Additive preprocessing and mean-centering. It can be useful to mean-center the data to remove 

certain types of  bias effects (recall that PCA does this); mean-centering is often paired with standardization. 

(2) Feature normalization. Standardization is a default feature normalization technique: 

This assumes that each feature is drawn from a standard normal Gaussian (i.e., N(0,1)). 

(*) Another, common form of  feature normalization is min-max normalization: 

This data transformation maps the dataset to [0,1]. 

(*) In general, feature normalization often ensures better performance, as it safeguards against ill-

conditioning (where the loss function is more sensitive to some parameters vs. others). 

i
i

x
x





−


( )min

max( ) min( )

i

i

x x
x

x x

−


−



Feature Preprocessing: Whitening
• Whitening is a linear data transformation that transforms a vector of  random variables with known 

covariance matrix into a set of  new variables whose covariance is the identity matrix (i.e. this procedure 

produces decorrelated variables with variances equal to 1). This procedure is called “whitening” because it 

changes the input vector into a white noise vector.

• Suppose X is a random column vector with non-singular covariance matrix M and mean equal to zero 

(that is to say, assume the data has been mean-centered). 

Then the transformation Y=WX for the whitening matrix where W satisfies: WWT=M-1 yields the 

whitened random vector Y with unit diagonal covariance matrix. 



Feature Preprocessing: Whitening
• Whitening is a linear data transformation that transforms a vector of  random variables with known 

covariance matrix into a set of  new variables whose covariance is the identity matrix (i.e. this procedure 

produces decorrelated variables with variances equal to 1). (this procedure is called “whitening” because it 

changes the input vector into a white noise vector).

• Suppose X is a random column vector with non-singular covariance matrix M and mean equal to zero 

(that is to say, assume the data has been mean-centered). 

Then the transformation Y=WX for the whitening matrix where W satisfies: WWT=M-1 yields the 

whitened random vector Y with unit diagonal covariance matrix. 

(*) Note that the choice of  the whitening matrix W is not unique. Common choices include: W=M-1/2

(Mahalanobis whitening), Choleksy decomposition-based whitening, where W=M-1 and the eigen-system 

of  M (PCA whitening). 

( )( )
TT T T T TCov Y E YY E WX WX E WXX W WW E XX      = = = =      
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Feature Preprocessing: Whitening



Data Augmentation
• The best way to make an ML model generalize better is to train it on more data. Of  course, data are 

limited/expensive. 

• One way to get around this problem is to generate synthetic data and add it to the training set. 

• This approach is easiest for classification. A classifier needs to take a complicated, high-dimensional 

input x and summarize it with a single category identity y. This means that the main task facing a 

classifier is to be invariant to a wide variety of  transformations; we can generate new (x, y) pairs easily 

by transforming the x inputs in our training set. 



Data Augmentation
• The best way to make an ML model generalize better is to train it on more data. Of  course, data are 

limited/expensive. 

• One way to get around this problem is to generate synthetic data and add it to the training set. 

• This approach is easiest for classification. A classifier needs to take a complicated, high-dimensional 

input x and summarize it with a single category identity y. This means that the main task facing a 

classifier is to be invariant to a wide variety of  transformations; we can generate new (x, y) pairs easily 

by transforming the x inputs in our training set. 

• Dataset augmentation has been particularly effective for object recognition; operations like 

translating the training images a few pixels in each direction can often greatly improve generalization; 

many operations such as rotating the image or scaling the image are also quite effective (one needs to 

be careful that the transformation does not alter the correct image class). 

• Injecting noise in the input to a NN can also be seen as a form of  data augmentation; one way to 

improve the robustness of  a NN is to simply train them with random noise applied to their inputs. 



Early Stopping
• When training large models with sufficient representation capacity to overfit the task, we often 

observe that training error decreases steadily over time, but validation set error begins to rise again. 

• This means we can obtain a model with better validation set error (and hopefully better test error) by 

returning to the parameter setting at the point in time with the lowest validation set error. Every time 

the error on the validation set improves, we store a copy of  the model parameters; when the training 

terminates, we return these parameters, rather than the latest parameters. 

* This strategy is known as early stopping; it is one of  the most common forms of  regularization 

used in deep learning.



Dropout

• Dropout (Srivastava et al., 2014) provides a computationally inexpensive but powerful method of  regularizing a 

broad family of  models (it is akin to bagging). 

• Dropout trains the ensemble consisting of  all subnetworks that can be formed by removing non-output units from 

an underlying base network. Recall that to learn with bagging, we define k different models, construct k different 

datasets by sampling from the training set with replacement, and then train model i on dataset i. Dropout aims to 

approximate this process, but with an exponentially large number of  NNs. 

• In practice, each time we load an example into a minibatch for training, we randomly sample a different binary 

mask to apply to all input and hidden units in the network; the mask is sampled independently for each unit (e.g. 0.8 

probability for including an input unit and 0.5 for hidden units). 

• In the case of  bagging, the models are all independent; for dropout, the models share parameters. 



Adversarial Training

• Szegedy et al. (2014) found that even NNs that perform at human level accuracy have a nearly 100 percent 

error rate on examples that are intentionally construction by using an optimization procedure to search for an 

input x’ near a data point x such that the model output is very different from x’ (oftentimes such adversarial 

examples are indiscernible to humans). 

• In the context of  regularization, one can reduce the error rate on the original i.i.d. test set via adversarial 

training – training on adversarially perturbed examples from the training set. 

• Goodfellow et al. (2014), showed that one of  the primary cause of  these adversarial examples is excessive 

linearity. NNs are primarily built out of  linear parts, and so the overall function that they implement proves to 

be highly linear as a result. 

• Adversarial training help to illustrate the power of  using a large function family in combination with 

aggressive regularization – a major theme in contemporary deep learning. 



Basic Algorithms: SGD



Basic Algorithms: SGD

• Stochastic Gradient Descent (SGD) and its variants are some of  the most frequently used optimization 

algorithms in ML. Using a minibatch of  i.i.d. samples, one can obtain an unbiased estimate of  the gradient 

(where examples are drawn from the data-generating distribution). 

•A crucial parameter for the SGD algorithm is the learning rate, ε. In practice, it is necessary to gradually 

decrease the learning rate over time. This is because the SGD gradient estimator introduces a source of  noise 

(the random sampling of  m training examples) that does not vanish even when we arrive at a minimum. 

A sufficient condition to guarantee convergence of  SGD is that: 

In practice, it is common to decay the learning rate linearly until iteration τ:

* Note that for SGD, the computation time per update does not grow with the number of  training examples. 

This allows convergence even when the number of  training examples becomes very large. 
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Momentum
• The method of  momentum is designed to accelerate learning, especially in the face of  high curvature, small 

but consistent gradients, or noisy gradients. 

• The momentum algorithm accumulates an exponentially decaying moving average of  past gradients and 

continues to move in their direction. 

• Formally, the momentum algorithm introduces a variable v that plays the role of  velocity – it is the direction 

and speed at which the parameters move through parameter space. The velocity is set to an exponentially 

decaying average of  the negative gradient. 



Momentum
• The method of  momentum is designed to accelerate learning, especially in the face of  high curvature, small 

but consistent gradients, or noisy gradients. 

• The momentum algorithm accumulates an exponentially decaying moving average of  past gradients and 

continues to move in their direction. 

• Formally, the momentum algorithm introduces a variable v that plays the role of  velocity – it is the direction 

and speed at which the parameters move through parameter space. The velocity is set to an exponentially 

decaying average of  the negative gradient. 

• The name momentum derives from a physical analogy, in which the negative gradient is a force moving a 

particle through parameter space, according to Newton’s laws of  motion. If  the only force is the gradient of  

the cost function, then the particle might never come to rest. To resolve this problem, we add one other force, 

proportional to v(t); in physics terminology this force corresponds to viscous drag, as the if  the particle must 

push through a resistant medium such as syrup.  

• The velocity v accumulates the gradient elements; the larger alpha is relative to epsilon, the more previous 

gradients affect the current direction. 



Momentum



• It is well known that the learning rate is reliably one of  the most challenging hyperparameters to set because 

it significantly affects model performance. The cost function is often highly sensitive to some directions in 

parameters space and insensitive to others. 

• While the momentum algorithm mitigates these issues somewhat, it does so at the expense of  introducing 

another hyperparameter. 

• Recently, a number of incremental methods have been introduced that adapt the learning rates of  model 

parameters. 

Algorithms with Adaptive Learning Rates



• The AdaGrad algorithm (Duchi et al, 2011) individually adapts the learning rates of  all model 

parameters by scaling them inversely proportional to the square root of  the sum of  all the historical 

squared values of  the gradient.

• The parameters with the largest partial derivative of  the loss have a correspondingly rapid decrease in their 

learning rate, while parameters with small partial derivates have a relatively small decrease in their learning 

rate. The net effect is greater progress in the more gently sloped directions of  parameter space. 

*Note: empirically, for training DNNs, the accumulation of  squared gradients from the beginning of  training can 

result in premature and excessive decrease in the effective learning rate. 

AdaGrad



• The RMSProp algorithm (Hinton, 2012) modifies AdaGrad to perform better in the non-convex setting by 

changing the gradient accumulation into an exponentially-weighted moving average. Where AdaGrad shrinks 

the learning rate according to the entire history of  the squared gradient, RMSProp uses an exponentially 

decaying average to discard history from the extreme past so that it can converge rapidly after 

finding a convex bowl. 

• Empirically, RMSProp has been to shown to be an effective and practical optimization algorithm for DNNs. 

RMSProp



• Adam (Kingman and Ba, 2014) is another adaptive learning rate optimization algorithm (“adaptive 

moments”). It can be seen as a variant on the combination of  RMSProp and momentum with several 

distinctions. 

• First, in Adam, momentum is incorporated directly as an estimate of  the first-order moment (with 

exponential weighting) of  the gradient. Second, Adam includes bias corrections to the estimates of  both the 

first-order moments (the momentum term) and the (uncentered) second-order moments to account for their 

initialization at the origin. 

• RMSProp also incorporates an estimate of  the (uncentered) second-order moment; however, it lacks the 

correction factor. Thus, unlike in Adam, the RMSProp second-order moment estimate may have high bias 

early in training. *Adam is generally regarded as being fairly robust to the choice of  hyperparameters. 

Adam 



DL Optimization Comparison  

Left: Contours of  a loss surface and time evolution of  different optimization algorithms. 

Notice the "overshooting" behavior of  momentum-based methods, which make the 

optimization look like a ball rolling down the hill. Right: A visualization of  a saddle point in 

the optimization landscape, where the curvature along different dimension has different 

signs (one dimension curves up and another down). Notice that SGD has a very hard time 

breaking symmetry and gets stuck on the top. Conversely, algorithms such as RMSprop will 

see very low gradients in the saddle direction. Due to the denominator term in the RMSprop 

update, this will increase the effective learning rate along this direction, helping RMSProp 

proceed. Images credit: Alec Radford.

https://twitter.com/alecrad


Second-Order Methods

• A number of methods have been proposed in recent years for using second-order derivatives for 

optimization (consider this scenario as incorporating an approximation of  the curvature of  the loss function 

into the optimization problem). 

• Such methods can partially alleviate some of  the problems caused by curvature of  the loss function, 

including cliffs, and the necessity of  many course correction steps for hill climbing.  

• Newton’s method is a classical second-order iterative approximation method. In contrast to first-order 

methods, second-order methods make use of  second derivatives (i.e. the curvature of  the loss function) to 

improve optimization.



Second-Order Methods: Newton’s Method

• Newton’s method is a classical second-order iterative approximation method. In contrast to first-order 

methods, second-order methods make use of  second derivatives (i.e. the curvature of  the loss function) to 

improve optimization.

• Newton’s method is an optimization scheme based on using a second-order Taylor series expansion to 

approximate J(θ) near some point θ0, ignoring derivatives of  higher order: 

Where H is the Hessian of  J wrt θ evaluated at θ0. If  we then solve for the critical point of  this function, we 

obtain the Newton parameter update rule: 
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Second-Order Methods: Newton’s Method

• If  the objective function is convex but not quadratic, this update can be iterated, yielding a training 

algorithm. For surfaces that are not quadratic, as long as the Hessian remains positive definite, Newton’s 

method can be applied iteratively. This implies a two-step procedure: (1) update or compute the inverse 

Hessian; (2) update the parameters according to the equation above. 

* In deep learning, the surface of  the objective function is usually non-convex; with many features and 

potential saddle points, this is a potential problem for Newton’s Method. 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0

1

2

T T
J J J + −  + − −

θ
θ θ θ θ θ θ θ H θ θ ( )1

0 0* H J−= − 
θ

θ θ θ



Second-Order Methods: Newton’s Method

• If  the objective function is convex but not quadratic, this update can be iterated, yielding a training 

algorithm. For surfaces that are not quadratic, as long as the Hessian remains positive definite, Newton’s 

method can be applied iteratively. This implies a two-step procedure: (1) update or compute the inverse 

Hessian; (2) update the parameters according to the equation above. 

* In deep learning, the surface of  the objective function is usually non-convex; with many features and 

potential saddle points, this is a potential problem for Newton’s Method. 

• Commonly, researchers apply a regularization strategy, for which the update becomes (this regularization is 

used in approximations to Newton’s Method including the Levenberg-Marquardt algorithm): 

• Beyond the challenges of  saddle points, the application of  Newton’s method for training large NNs is 

limited by its significant computational requirements; ostensibly, Newton’s method requires the inversion 

of  a matrix (O(n3)); as a consequence, only networks with a very small number of  parameters can be 

practically trained via Newton’s method. 

(*) In practice, it is common to apply a second-order method using a “Hessian-free” approach, meaning that 

the full Hessian is either approximated with a low-rank matrix or eigen-vector methods are applied (see 

conjugate gradients).
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Second-Order Methods: Newton’s Method



Supplemental Backpropagation Derivation 



• Initialize the network weights w to small random numbers (e.g., 

between −0.05 and 0.05). 

• Until the termination condition is met, Do: 

– For each (x,t)  training set, Do: 

1. Propagate the input forward:

– Input x to the network and compute the activation hj of  

each hidden unit j.

– Compute the activation ok of  each output unit k.

Backpropagation Algorithm



2. Calculate error terms

For each output unit k, calculate error term k :

For each hidden unit j, calculate error term j :

d j ¬ hj (1-hj ) wkj
kÎoutput units

å dk
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2. Calculate error terms

For each output unit k, calculate error term k :

For each hidden unit j, calculate error term j :

d j ¬ hj (1-hj ) wkj
kÎoutput units

å dk

æ

è

ç
ç

ö

ø
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3. Update weights

Hidden to Output layer: For each weight wkj

where 

Input to Hidden layer: For each weight wji

where 

kj kj kjw w w −

Dwkj =hdkhj

ji ji jiw w w −

Dw ji =hd jxi



– Forwards Phase: compute the activation of  each neuron in the 

hidden layers and outputs using: 

– Backwards pass

– Compute the error at the output using:

– Compute the error at the hidden layer(s) using:

– Update the output layer weights using:

where

– Update the hidden layer weights using: 

where

– (If  using sequential updating) randomize the order of  the input 

vectors so that you don’t train in exactly the same order each 

iteration. 

Train until stopping condition satisfied. 

d j ¬ hj (1-hj ) wkj
kÎoutput units
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Dwkj =hdkhj

Dw ji =hd jxi

Backpropagation Algorithm (BP)

hj = s w jixi +w j0
iÎ input layer
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ok = s wkjhj +wk0
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Backprop Example
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“Forward Phase” – output layer
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Hidden weight Updates

“Backward Phase”
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Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9):
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Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9): Hidden 

unit j=1
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Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9):
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0.9):
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1
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1
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Update input-to-hidden weights (learning rate = 0.2; momentum = 0.9): Hidden 

unit j=2

Dw j=2,i=1

1 = (.2) .002( )(1)+ (.9)(0) = .0004

Dw j=2,i=0

1 = (.2) .002( )(1)+ (.9)(0) = .0004
1

2, 0 .1 .0004 .9996j iw = = = − =
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Note:  This is time step 2, so momentum

term will be nonzero… 

Another detailed backprop example: 

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/



(*) Here is a derivation (later slides contain a derivation with 

visuals) of  BP (note our text also has a derivation pp. 101-

108). Time permitting, I’ll walk us through this. If  you require 

further details don’t hesitate to ask for help. 

(*) “Will this be on the exam?” No, but understanding the 

material at this level makes you a better person – moreover, it 

will make your friends envious, your mother will love you 

more, and strangers at cocktail parties will be drawn to you 

like a magnet. You’re welcome. 





Backprop Derivation

What do we need to derive the backpropagation (BP) algorithm?

Only a basic knowledge of  differential Calculus!

(*) Recall that we will use BP to update weights in both the 

hidden layer(s) and the output layer of  our NN. 

(*) We use the chain rule to “propagate” the error back

through the network (following the “forward phase”). 

obligatory backprop 

meme 



Backprop Derivation

(*) We’ll call the current input x (a vector) and the output y; the activation 

function (throughout the network) will be denoted g(∙).

(*) For simplicity, let’s assume the NN contains only a single hidden layer (BP 

extends naturally for more layers); denote the weights of  the network v and 

w, for the first and second layers respectively. 

(*) Recall that “learning” entails tuning the weights of  the network. 



Backprop Derivation

(*) We wish to minimize the error function:

Where y is the output, t is the target; N is the data set size and L is the 

number of  nodes (in a given layer). 

(*) We use gradient descent. In particular, we wish to know how the error 

function changes with respect to the different weights: 

*Note:                  are fixed indices.
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Backprop Derivation

(*) Let                          (the sigmoid function); recall that:  

(*) Using the chain rule, we have: 

where:

The equation above says that the error at the output changes as we vary 

the second-layer weights as a function of  the error change with respect to 

the input to the output neurons and the change in the input with respect to 

the weights. 
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Backprop Derivation

(*) Consider the (2)nd factor: 
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Backprop Derivation

(*) Consider the (2)nd factor: 

(*) Last step holds because                 , except in the case: 
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Backprop Derivation

(*) Consider the (1)st factor, which we short-hand as follows: 

(*) By the chain rule, we have: 

Note: hΚ signifies the value of  the output neuron prior to activation, whereas 

yΚ denotes the value of  the output neuron after activation.
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Backprop Derivation

(*) Consider the (1)st factor, which we short-hand as follows: 

(*) By the chain rule, we have: 

(*) Also, note that:   
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Backprop Derivation

Continuing…
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Backprop Derivation

Continuing…
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Continuing…
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Continuing…
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In Summary…
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Backprop Derivation
In Summary…

(*) Recall, a “gradient descent” based weight update has the form: 

(*) Cool, but this doesn’t look like the formulas for BP you showed us before. 
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Backprop Derivation

(*) Recall that g is the sigmoid! So what’s our new formula?

E
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Backprop Derivation
E

w w
w

 






 −


( ) ( )output

k kw y t g h a   = − −

( ) ( )1k k k kw y t y y a = − − −

   

ds(z)

dz
= s(z)× (1-s(z))

(*) This is the final formula for the BP update for the output layer weights!



Backprop Derivation
E

w w
w

 






 −


( ) ( )output

k kw y t g h a   = − −

( ) ( )1k k k kw y t y y a = − − −

   

ds(z)

dz
= s(z)× (1-s(z))

(*) This is the final formula for the BP update for the output layer weights!

Hold on a second.

You still need to derive the hidden 

layer weight updates! 



Backprop Derivation
(*)Short version of  input-to-hidden layer weight updates for BP: 

We compute: 

(*) This formula comes from the fact that each hidden node contributes to 

the activation of  all the output nodes, and so we need to consider all of  these 

contributions.   

(*) From here, using the chain rule, differential properties of  the sigmoid and 

the NN topology, it is not difficult (as we did before, analogously), to show:
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Backprop Derivation

(*)This yields the following update rule for vertex     :

Derivation complete! (at least for NNs with one hidden layer)
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