
Elements of Classical Computer Vision

CS 410/510: CV & DL

Outline
• Insights from the Visual System

• Brief History of CV

• Image Pre-Processing

• Convolution & Feature Extraction

• Edge and Keypoint Detection

• Descriptors

• Video Tracking with Correlation Filters

• Segmentation: K-means, GMM, Graph Cut

• Motion Estimation: Optical Flow

• Facial Recognition: EigenFace

• Real-Time Face Detection: Viola-Jones

Insights from the Visual System
• Vision is our most acute and also our most studied sense. From the inception of Computer Vision (CV), the

organization of the visual cortex has served as the inspiration for the most successfully deep learning

networks.

• What we see through our eyes is only a very small part of the world around us. At any given time, our eyes

are sampling only a fraction of the surrounding light field. Even within this fraction, most of the resolution is

dedicated to the center of gaze which has the highest concentration of ganglion cells.

• In the eye, a tiny pit located in the macula of the retina that provides the clearest vision of all. Only in

the fovea are the layers of the retina spread aside to let light fall directly on the cones, the cells that give the

sharpest image.

• Information processing in the visual system starts in the retina, where photo receptors convert light into

electrical signals. There are generally two types of ganglion cells in the retina (see image), on-center and off-

center.

Insights from the Visual System

• From the retina, this sensory information travels the lateral geniculate nucleus (LGN) to the visual cortex (V1). V1

is known to process simple visual forms, such as edges and corners (see next slides).

• V1 transmits information to two primary neural pathways, called the ventral stream and the dorsal stream.

• The ventral stream begins with V1, goes through visual area V2, then through visual area V4 (processes

intermediate visual forms, feature groups, etc.) and to the inferior temporal cortex (high-level object descriptions).

The ventral stream, sometimes called the "What Pathway", is associated with form recognition and object

representation. It is also associated with storage of long-term memory.

• The dorsal stream begins with V1, goes through Visual area V2, then to the dorsomedial area (DM/V6) and medial

temporal area (MT/V5) and to the posterior parietal cortex. The dorsal stream, sometimes called the "Where

Pathway" or "How Pathway", is associated with motion, representation of object locations, and control of the eyes

and arms.

Insights from the Visual System

• In perhaps the most influential set of experiments in the history of CV, David Hubel and Torsten Wiesel (Nobel

prize recipients in 1981) laid the groundwork for understanding the hierarchical nature of the mammalian visual

system by demonstrating how complex representations of visual information are built from simple cells in the

primary visual cortex.

• In one experiment (1959) they inserted a microelectrode into the primary visual cortex of an anesthetized cat. They

then projected patterns of light and dark on a screen in front of the cat. They found that some neurons fired rapidly

when presented with lines at one angle, while others responded best to another angle. Some of these neurons

responded to light patterns and dark patterns differently. Hubel and Wiesel called these neurons “simple cells.” Still

other neurons, which they termed complex cells, detected edges regardless of where they were placed in the

receptive field of the neuron.

• The visual information relayed to V1 is not coded in terms of spatial (or optical) imagery but rather are better

described as edge detection. In this way, each cortical neuron in the visual cortex can be thought of as a visual

feature detector, which only becomes active when it receives inputs above a certain threshold for its preferred feature

in a particular patch of the visual field.

Brief History of CV
• When CV began in the early 1970s, it was initially viewed as the visual perception

component of an ambitious agenda to mimic human intelligence and to endow robots

with intelligent behavior.

• At the time, it was believed by some of the early pioneers in AI and robotics than solving

the “visual input” problem would be an easy step along the path to solving AGI.

• Famously, Minsky at MIT asked his undergraduate student to “spend the summer linking

a camera to a computer and getting the compute to describe what it saw” – five decades

later, we are still working on this problem.

Brief History of CV

• 1980s: More attention on mathematical rigor and quantitative image and scene analysis.

Development of image pyramids; stereo image analysis; Canny edge detection; snakes;

incorporation of Markov Random Fields; Kalman filters.

• 1970s: Inception of CV; high-level attempt to recover 3D structure of the world

from images as steppingstone toward systems of visual understanding; early

codification of optical flow, edge extraction, motion estimation, polyhedral

modeling.

Brief History of CV

• 2000s: Increased interplay between CV and graphics; image stitching; computational

photography algorithms (HDR image capture); texture synthesis; BoW in CV (representation of

visual features as words); real-time face detection (Viola-Jones); interactive segmentation (graph

cuts).

• 1990s: Physics-based vision, optical flow methods; multi-view stereo algorithms,

including stereo correspondence; tracking algorithms (particle filters); image

segmentation (normalized cuts); facial recognition, statistical learning (Eigenface);

feature extraction, invariance (SIFT); invention of CNNs.

• 2010s: Dominance of DL in CV (AlexNet); efficient training of very deep DL models (ResNet)

introduction of large-scale image datasets (ImageNet); incremental development of CNN architectures

(VGG, Inception); generative models (GANs); real-time localization (YOLO); object localization (R-CNN);

pixel-level segmentation (Mask R-CNN); CNN architecture optimization (NAS); emergence of compact DL

models (SqueezeNet); computational creativity (GauGAN); refined hierarchical models (CapsNet); graph

convolution nets (GCNs).

Brief History of CV

http://nvidia-research-mingyuliu.com/gaugan

• Image data are almost always preprocessed prior to ingestion into a model; such preprocessing steps can

benefit feature extraction, model performance/convergence, etc.

• The general goal of preprocessing is to remove as much unwanted variation in the data as possible while

retaining the aspects of the image that are critical to the task at hand. Preprocessing must be applied with

care.

• Note that the choice of preprocessing technique(s) can have a large influence on the performance of

a CV algorithm. Many CV algorithms are sensitive to the application of preprocessing; oftentimes

preprocessing improves performance and/or the stability of various CV algorithms.

Pre-Processing

Image normalization

There are many related techniques for image normalization. The (2) most common being:

Where 𝐼𝑚𝑎𝑥 𝐼𝑚𝑖𝑛 denote the maximum(minimum) pixel intensity in the image; (newMin, newMax) denotes

the pixel intensity range of the transformed image.

Image standardization (also: whitening)

Image standardization is applied by subtracting the mean intensity and dividing by the standard deviation of

pixel intensities (wrt each channel for an RGB image):

• Standardization helps ensure that each pixel has a similar data distribution.

Pre-Processing

()min

max max min

 and
ij

ij ij ij

x newMax newMin
x x x I newMin

I I I

−
 − +

−

ij

ij

x I
x

I

−

Histogram Equalization

Histogram equalization (HA) is used to modify the statistics of the intensity values so that all of their

moments take predefined values. HA forces the distribution of pixel intensities to be flat.

• HA is useful in images with backgrounds and foregrounds that are both bright or dark. In medical imaging,

this can lead to better views of, say, bone structure in x-rays, and to better detail in over and under-exposed

images. (+) HA is computationally cheap; (-) HA is indiscriminate, may increase signal/amplify noise.

Pre-Processing

Histogram Equalization

(1) Compute histogram of the original intensities h (for 8-bit image k here ranges over {0,1,2,…, 𝐾 = 255}):

where δ ∙ denotes the Dirac delta function (i.e., when argument is zero, δ= 1; otherwise δ= 0); I and 𝐽 are

the image dimensions (check that you understand this is simply a mathematical formulation of the histogram

of a greyscale image).

Pre-Processing

1 1

I J

k ij

i j

h x k
= =

 = −

Histogram Equalization

(1) Compute histogram of the original intensities h (for 8-bit image k here ranges over {0,1,2,…, 𝐾 = 255}):

where δ ∙ denotes the Dirac delta function (i.e., when argument is zero, δ= 1; otherwise δ= 0); I and 𝐽 are

the image dimensions (check that you understand this is simply a mathematical formulation of the histogram

of a greyscale image).

(2) Determine the cumulative proportion c of pixels that are less than or each to each intensity level:

Pre-Processing

1 1

I J

k ij

i j

h x k
= =

 = −

1

k

l

l
k

h

c
IJ

==

Histogram Equalization

(1) Compute histogram of the original intensities h (for 8-bit image k here ranges over {0,1,2,…, 𝐾 = 255}):

where δ ∙ denotes the Dirac delta function (i.e., when argument is zero, δ= 1; otherwise δ= 0); I and 𝐽 are

the image dimensions (check that you understand this is simply a mathematical formulation of the histogram

of a greyscale image).

(2) Determine the cumulative proportion c of pixels that are less than or each to each intensity level:

(3) Finally, use the cumulative histogram as a look up table to compute the transformed value so that:

• For instance, if 𝑥𝑖𝑗 = 90 (pixel has intensity 90), and suppose 𝑐90 = 0.29, then the transformed pixel value

would be: 𝐾 ∙ 𝑐𝑥𝑖𝑗 = 255 ∙ 0.29 = 74.

Pre-Processing

1 1

I J

k ij

i j

h x k
= =

 = −

1

k

l

l
k

h

c
IJ

==

 (where is the max intensity, e.g., 255)
ijij xx K c K K =

Convolution

• A convolution is a mathematical operation of two functions (e.g., 𝑓 and 𝑔) that produces

A third function: (𝑓 ∗ 𝑔) that expresses how the shape of one is modified by the other.

• More formally, the convolution (in continuous domains) is defined as the integral of the product of the

two functions; one can conceptualize 𝑓 as a signal and 𝑔 as a “windowed” sample, i.e., filter (cf. signal

processing):

Notice that if 𝑓(𝑡) is a unit impulse δ(𝑡), we get: . The inverse of the

convolution operation is known as deconvolution.

Convolution and Feature Extraction

() () ()() :f g t f g t d = −

() () ()() : ()g t g t d g t = − =

Convolution

• A convolution is a mathematical operation of two functions (e.g., 𝑓 and 𝑔) that produces

A third function: (𝑓 ∗ 𝑔) that expresses how the shape of one is modified by the other.

• More formally, the convolution (in continuous domains) is defined as the integral of the product of the two

functions; one can conceptualize 𝑓 as a signal and 𝑔 as a “windowed” sample, i.e., filter (cf. signal processing):

Notice that if 𝑓(𝑡) is a unit impulse δ(𝑡), we get: . The inverse of the

convolution operation is known as deconvolution.

• At a high-level, one can think of the resultant convolution waveform (𝑓 ∗ 𝑔) as the response signal when we

sample 𝑓 using the filter 𝑔.

Convolution and Feature Extraction

() () ()() : ()g t g t d g t = − =

() () ()() :f g t f g t d = −

Convolution

• In CV, we primarily consider convolution operations in discrete domains.

• Given an image X, with individual pixel intensities 𝑥𝑖𝑗 , the 2D convolution of X with a filter 𝐹 with entries

𝑓𝑚𝑛 where 𝑚 ∈ −𝑀, . . . , 𝑀 and n ∈ −𝑁,… ,𝑁 amounts to computing:

Convolution and Feature Extraction

, ,

M N

ij i m j n m n

m M n N

x x f− −

=− =−

Convolution

• In CV, we primarily consider convolution operations in discrete domains.

• Given an image X, with individual pixel intensities 𝑥𝑖𝑗 , the 2D convolution of X with a filter 𝐹 with entries

𝑓𝑚𝑛 where 𝑚 ∈ −𝑀, . . . , 𝑀 and n ∈ −𝑁,… ,𝑁 amounts to computing:

In the animation above, for instance, −𝑀, . . . , 𝑀 = −1,0,1 , and −𝑀, . . . , 𝑀 = −1,0,1 . (We deal with

issues of padding, stride, etc., later).

• Here is a numerical example of 2D convolution:

Convolution and Feature Extraction

, ,

M N

ij i m j n m n

m M n N

x x f− −

=− =−

X

F
X F

Gaussian Filter

• One can introduce common filter types with respect to the discrete convolution operation.

Define the 2D Gaussian filter:

Convolution and Feature Extraction

()

2 2

22

2

1
,

2

x y

g x y e

+
−

=

Gaussian Filter

• One can introduce common filter types with respect to the discrete convolution operation.

Define the 2D Gaussian filter:

• Here is an example of discretized 5 ×5 Gaussian filter (σ= 1, with binning applied):

• Applying a Gaussian filter to an image has the effect of reducing noise; oftentimes Gaussian filters are used

in CV as a pre-processing step to enhance image structure at varying scales. Notice that because the Gaussian

filter is isotropic it is not orientation-selective.

Convolution and Feature Extraction

()

2 2

22

2

1
,

2

x y

g x y e

+
−

=

normalization
 constant

1 4 7 4 1

4 16 26 16 4
1

7 26 41 26 7
273

4 16 26 16 4

1 4 7 4 1

Gaussian blur

Derivative of Gaussian Filter

• Just as one can use a Gaussian filter to blur an image and hence remove pixilation artifacts, the derivative of

a Gaussian (DoG) filter can be used for basic edge detection.

Consider the partial derivatives of the Gaussian filter:

Convolution and Feature Extraction

1 0 1

2 0 2

1 0 1

x

−

= −

 −

g

1 2 1

0 0 0

1 2 1

y

=

 − − −

g

Gaussian DoG

()
()

2 2

22
2 2

,
,

2

x y

x

x g x yg x
g g x y e

x N N

+
− − −

= = =

()
()

2 2

22
2 2

,
,

2

x y

y

y g x yg y
g g x y e

y N N

+
− − −

= = =

Derivative of Gaussian Filter

• Just as one can use a Gaussian filter to blur an image and hence remove pixilation artifacts, the derivative of

a Gaussian (DoG) filter can be used for basic edge detection.

Consider the partial derivatives of the Gaussian filter:

• On their own, the DoG filters: 𝒈𝑥 and 𝒈𝑦 provide vertical and horizontal edge detectors, respectively.

Convolution and Feature Extraction

1 0 1

2 0 2

1 0 1

x

−

= −

 −

g

1 2 1

0 0 0

1 2 1

y

=

 − − −

g

Gaussian DoG

()
()

2 2

22
2 2

,
,

2

x y

x

x g x yg x
g g x y e

x N N

+
− − −

= = =

()
()

2 2

22
2 2

,
,

2

x y

y

y g x yg y
g g x y e

y N N

+
− − −

= = =

Derivative of Gaussian Filter

• On their own, the DoG filters: 𝒈𝑥 and 𝒈𝑦 provide vertical and horizontal edge detectors, respectively.

• In combination, one can create a Sobel filter (edge detector), by defining the filter as:

Convolution and Feature Extraction

1 0 1

2 0 2

1 0 1

x

−

= −

 −

g

1 2 1

0 0 0

1 2 1

y

=

 − − −

g

() ()
22

x y = + X G X g X g

() ()
22

x y = + X G X g X g

Laplacian Filter

• The second derivative (i.e., the Laplacian operator) of the Gaussian filter gives rise to the Laplacian filter,

defined:

Convolution and Feature Extraction

2 (,) xx yyg x y g g = +

Laplacian Filter

• The second derivative (i.e., the Laplacian operator) of the Gaussian filter gives rise to the Laplacian filter,

defined:

Computing each second partial derivative of the Gaussian yields:

Thus,

Convolution and Feature Extraction

()
() () ()

()

()
() () ()

()

2 2

2 2 2 4 4 2

2 2

2 2 2 4 4 2

, , , 1 1
, ,

, , , 1 1
, ,

xx

yy

x g x y g x y x g x yg g g x
g g x y g x y

x x N N N N

y g x y g x y y g x yg g g y
g g x y g x y

y y N N N N

− −
= = = + = −

− −
= = = + = −

()
2 2

2

4 2

1
(,) 1 ,

x y
g x y g x y

N

 +
 = −

2 (,) xx yyg x y g g = + ()

2 2

22

2

1
,

2

x y

g x y e

+
−

=

Laplacian Filter

• The second derivative (i.e., the Laplacian operator) of the Gaussian filter gives rise to the Laplacian filter,

defined:

Two commonly used (3 × 3) discrete variants of the Laplacian filter are:

• The Laplacian filter detects sudden intensity transitions in the image and highlights the edges; the Laplacian is

therefore commonly used as an edge/feature detector (sometimes known as a “zero cross” feature detector).

Note that the Laplacian filter is sensitive to noise – for this reason one typically applies a Gaussian blur prior to

application of the Laplacian operator.

Convolution and Feature Extraction

()
2 2

2

4 2

1
(,) 1 ,

x y
g x y g x y

N

 +
 = −

2

0 1 0

1 4 1

0 1 0

−

 = − −

 −

g
2

1 1 1

1 8 1

1 1 1

− − −

 = − −

 − − −

g

Gabor Filters

• Another common family of filters, Gabor filters, are defined as a product of Gaussian and sinusoid

functions. As such, Gabor filters are selective for both scale and orientation.

Gabor filters are parametrized by the standard deviation σ of the Gaussian, and the phase φ, orientation ω, and

wavelength λ of the sine wave:

• Notice that Gabor filters closely resemble the features discovered by Hubel and Wiesel to which “simple

cells” in the visual cortex were responsive.

Convolution and Feature Extraction

Image with bank of Gabor filter

activations shown

(Left) Primitive filters “discovered” by AlexNet

CNN architecture; notice the close resemblance with

Gabor filters (Right)

2 2

22
2

1 2 (cos[] sin[])
sin

2

m n

mn

m n
f e

+
− +

= +

Canny Edge Detection

• Canny edge detection (1986) is a classic edge detection algorithm know by all CV practitioners; it is still in

wide use today.

• At its core, Canny edge detection is an intuitive and relatively simple algorithm, following (5) key steps:

(1) We first apply a Gaussian filter to reduce noise in the input image.

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123

https://ieeexplore.ieee.org/document/4767851

Canny Edge Detection

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123

Canny Edge Detection

(2) Using the Sobel kernels, 𝒈𝑥 and 𝒈𝑦, we next calculate the magnitude and slope of the input image gradient

using:

This process yields a gradient intensity map.

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123

Canny Edge Detection

() ()
22

(,) arctan

x y

y

x

x y

 = +

=

X G X g X g

g

g

Canny Edge Detection

(3) Step (2) generates a general gradient intensity map – however, many of the rendered contours are thick and

often noisy. To help produce more distinct, thin contour lines, we apply a process called non-maximum

suppression.

• The basic idea is a as follows: we use the gradient intensity map – specifically the angle θ(𝑥, 𝑦) generated

from the Sobel kernel (notice that the angle θ yields a vector that “points” in the direction of the highest

gradation of low intensity transitioning to high intensity).

• The orientation of an edge contour is orthogonal (generally) to the gradient angle θ.

Canny Edge Detection

Canny Edge Detection

(3) Non-maximum suppression (NMS)

• If the current pixel under consideration for non-maximum suppression does not have the maximum gradient

intensity compared to the neighboring pixels along the gradient vector induce by θ, this pixel is suppressed

(i.e., we set the intensity to zero). The effect of non-maximum suppression is to thin contour lines.

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123

Canny Edge Detection

Pixel (i,j) is under consideration for NMS; looking at the

neighboring pixels along the edge contour, we suppress

the intensity of pixel (i,j), because it is not the maximum

along the edge contour.

Canny Edge Detection

(4) Double Thresholding

• Following NMS, we apply double thresholding. In this step we are provided two parameters: (minValue,

maxValue); using these parameters, we identify pixels as either: strong, weak or irrelevant as edge pixels.

• Any pixel values above maxValue are identified as true edge pixels; intensities below minValue are discarded

from consideration as edge pixels. Finally, pixels falling in the range (minValue, maxValue) are considered

“weak” and subject to further analysis using hysteresis (step 5).

Canny Edge Detection

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123

Canny Edge Detection

(5) Edge Refinement with Hysteresis

• Finally, the hysteresis consists of transforming weak pixels into strong ones, if and only if at least one of the

pixels around the one being processed is designated strong.

Canny Edge Detection

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123

Canny Edge Detection Summary

Canny Edge Detection

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123

(1) Gaussian blur (2) Sobel transform (3) NMS (4) Double Thresholding (5) Hysteresis

1 0 1

2 0 2

1 0 1

x

−

= −

 −

g

1 2 1

0 0 0

1 2 1

y

=

 − − −

g

() ()
22

(,) arctan

x y

y

x

x y

 = +

=

X G X g X g

g

g

• OpenCV (Intel, opencv.org) is a comprehensive, open-source library of CV-related algorithms, available in

C++ and Python. Functionality is broad, including image processing, feature extraction, segmentation, edge

detection, video tracking, segmentation, image stitching, camera calibration, DNN-based algorithms, etc.

• I highly recommend exploring some of the OpenCV tutorials:

https://docs.opencv.org/master/d9/df8/tutorial_root.html

• Every core algorithm mentioned in this lecture series (pre-processing, filter types, Canny, descriptors,

segmentation, tracking, etc.) can be executed in OpenCV (often using just a few lines of code!).

Source code: https://github.com/opencv/opencv

OpenCV

OpenCV

Sobel

Transform

Canny edge

detection

SIFT

descriptor

SIFT Descriptor
• Oftentimes, we are interested in identifying “interesting points” (i.e., keypoints) in an image;

these points can be leveraged in edge detection, keypoint matching, image stitching, pose

classification, object tracking, and related CV problems.

• The scale invariant feature transform (SIFT, 1999) descriptor is a common, robust method used

to detect and describe local features in images. SIFT descriptors are 128-dimensional vectors

that summarize unique visual features within a patch centered at a keypoint pixel.

https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

SIFT Descriptor
(1) Scale-space extrema detection: In order for the SIFT detector to be scale-invariant,

we first generate a scale-space of an image.

• The goal of the scale-space calculation is to generate a multi-scale Laplacian

(more accurately: an approximation of the Laplacian) for the original image.

SIFT Descriptor
(1) Scale-space extrema detection: In order for the SIFT detector to be scale-invariant,

we first generate a scale-space of an image.

• The goal of the scale-space calculation is to generate a multi-scale Laplacian

(more accurately: an approximation of the Laplacian) for the original image.

• The first step toward this end is to convolve a Gaussian kernel at different scales with the

input image. Concretely, we produce different “octaves”; within each octave we use

different σ parameters to generate smoothing at different scales; we generate different

octaves by halving the size of the input image for each successive octave.

• Next, we compute the difference of Gaussians (for pairs in each octave); the difference

of Gaussians is a well-known approximation to the Laplacian of an image.

SIFT Descriptor
(1) Scale-space extrema detection: In order for the SIFT detector to be scale-invariant,

we first generate a scale-space of an image.

• Then we determine a set of candidate keypoints. One pixel in each image is compared

with its 8 neighbors as well as the 9 pixels in the next scale and the 9 pixels in the previous

scale; in this way, a total of 26 pixels are compared. If the pixel under consideration is an

extremum in relation to this set, it is designated as a candidate keypoint.

SIFT Descriptor
(2) Keypoint Selection

• At each candidate keypoint, the authors determine whether the keypoint is a low-

contrast point, in which case it is rejected. To discard the keypoints with low contrast, we

compute the second-order Taylor expansion at its local extremum ො𝑥; if the intensity of this

pixel is less than a threshold value (0.3), it is discarded; for D(x,y,σ), the difference of Gaussian

space, compute:

Low-contrast keypoint removal

SIFT Descriptor
(3) Orientation Assignment: This is the key step in achieving invariance to rotation.

• We compute the gradient magnitude m(x,y) and direction θ(x,y) with respect to the

Gaussian-smoothed image L(x,y, σ) for a neighborhood of 36 points (x,y) surrounding the

keypoint where σ is the scale identified with the keypoint:

• From the histogram of the orientations of these 36 surrounding pixels, we assign an

orientation for the keypoint (aligned with the maximum of the orientation histogram).

Next, rotate the gradient directions and locations relative to the keypoint orientation (this

will make the SIFT detector invariant to rotations).

()

2 2(,) ((1,) (1,)) (, 1) (, 1))

, arctan(((, 1) (, 1)) / ((1,) (1)))

m x y L x y L x y L x y L x y

x y L x y L x y L x y L x

= + − − + + − −

= + − − + − −

SIFT Descriptor
(4) Keypoint Descriptor: At this juncture we have identified keypoints in the image, along

with their relative scale and orientation.

• The final step is to compute the 128-dimensional keypoint descriptor. When defining this

descriptor vector, we want it to be distinctive (i.e., specific to the particular keypoint), and

invariant to changes in viewpoint and illumination.

• Using a 16x16 window (divided into 4x4 sub-regions) of rotated gradients (rotated relative to

the keypoint orientation) we construct a histogram (using 8 bins, as shown) for each 4x4

subregion. This yields a 4x4x8=128 dimensional SIFT feature vector.

*Note that illumination invariance can be achieved by thresholding/normalizing this descriptor

vector.

SIFT Descriptor

SIFT Algorithm summary:

(1) Generate scale-space of image using Gaussian smoothing for different σ and different

image sizes; estimate Laplacian from this scale-space using difference of Gaussians;

determine keypoint candidate from local neighborhoods.

(2) Remove low-contrast candidates.

(3) Compute local gradients wrt keypoint; determine orientation of keypoint.

(4) Generate keypoint descriptor: from 16x16 grid of neighboring pixels, generate 8-bin

histograms of each 4x4 subregion (of gradients rotated relative to keypoint

orientation).

SIFT Descriptor: Image Stitching
• Image descriptors (e.g., SIFT), are essential to many CV tasks, including image stitching, image

retrieval, pose estimation, and general image feature extraction.

Image Stitching

• Image stitching is the process of combining multiple photographic images with overlapping fields of view

to produce a cohesive panorama image.

• Using local image descriptors such as SIFT, one can perform keypoint matching between two images by

simply identifying matches based on their nearest neighbors (i.e., L2 distance b/w descriptor vectors).

Finally, we learn a linear transformation (called a Homography matrix in CV) which relates the mapping

between two planes from a single point of reference.

*Note that there are many heuristics to reduce the instance of false matchings in this setting, e.g., checking ratio of closest

distance with second closest distance, and rejecting based on a threshold criterion.

SIFT Descriptor: Image Retrieval
Bag of Visual Worlds (BoVW)

• Using a collection of local descriptors (e.g., SIFT descriptors of keypoints) of an image, we can generate a

“global” description of an image, called a BoVW model.

(1) Given a training set, for each image, we extract the set of SIFT keypoint descriptors (notice that images

can yield different numbers of keypoints, but each will have an associated vector of equal dimension).

Each SIFT vector is of 128-dimensions

SIFT Descriptor: Image Retrieval
Bag of Visual Worlds (BoVW)

• Using a collection of local descriptors (e.g. SIFT descriptors of keypoints) of an image, we can generate a

“global” description of an image, called a BoVW model.

(1) Given a training set, for each image, we extract the set of SIFT keypoint descriptors (notice that images

can yield different numbers of keypoints, but each will have an associated vector of equal dimension).

(2) Collectively, we take all the SIFT keypoint descriptors and perform k-means clustering. The

hyperparameter K (the number of clusters) will represent out visual “vocabulary” size; each centroid

corresponds with a visual “word” in the SIFT representation feature space.

Each SIFT vector is of 128-dimensions

SIFT descriptors

SIFT Descriptor: Image Retrieval
Bag of Visual Worlds (BoVW)
• Using a collection of local descriptors (e.g., SIFT descriptors of keypoints) of an image, we can generate a

“global” description of an image, called a BoVW model.

(3) For each training image we, create a histogram based on the visual vocabulary rendered by k-means in (2).

This per image histogram denotes the frequency of each word in the visual vocabulary

SIFT descriptors

SIFT Descriptor: Image Retrieval
Bag of Visual Worlds (BoVW)
• Using a collection of local descriptors (e.g. SIFT descriptors of keypoints) of an image, we can generate a

“global” description of an image, called a BoVW model.

(3) For each training image we, create a histogram based on the visual vocabulary render by k-means in (2).

This per image histogram denotes the frequency of each word in the visual vocabulary

• Now, from this BoVW model, we can perform image retrieval. Given a query image, we generate its SIFT

features, and then construct the histogram for this test image based on our previously identified visual vocabulary.

Using a basic similarity measure with respect to this histogram (i.e., nearest-neighbor, L2-distance, etc.) we can

generate similar images from the training set.

*Notice that general image classification using hand-crafted features can be executed in a similar manner.

SIFT descriptors

query image BoVW-based

histogram

similarity

measure

retrieved images

HOG Descriptor
• Like the SIFT descriptor, the histogram of oriented gradients (HOG) descriptor attempts to compactly

represent salient features in an image. In general, The HOG descriptor gives a more detailed characterization

of the spatial structure of an image.

The HOG descriptor is simple to calculate:

(1) First*, we apply the Sobel transformation to the input image.

(2) Next, we divide the image (or image patch) uniformly into small cells (e.g., 8x8, 16x16 cells). Within each

of these cells each pixel now has an associated magnitude and direction (from the Sobel transformation).

(3) We then “bin” the direction values of each pixel in the cell using 9 bins (0, 20, 40, …, 160 – direction

signs are ignored; this is known as an “unsigned” gradient).

*Generally, the calculation of the HOG descriptor requires no pre-processing (due to block normalization step).

HOG Descriptor
(1) First*, we apply the Sobel transformation to the input image.

(2) Next, we divide the image (or image patch) uniformly into small cells (e.g. 8x8, 16x16 cells). Within each of these cells each pixel

now has an associated magnitude and direction (from the Sobel transformation).

(3) We then “bin” the direction values of each pixel in the cell using 9 bins (0, 20, 40, …, 160 – direction signs are ignored; this is

known as an “unsigned” gradient).

(4) Finally, for robustness to lighting changes, we generate a normalized block descriptor by concatenating

2x2 (usually, or 3x3) neighborhoods of cells (then normalizing over this entire neighborhood); this yields the

final HOG descriptor.

HOG Descriptor: Object Localization
• We can develop an object localization algorithm using HOG descriptors in combination with a classifier

model.

• Suppose that we train a simple SVM (support vector machine) to classify cars vs non-cars based on the

HOG descriptor of an image patch. Which is to say, we train the SVM on a set of HOG descriptors of

image patches from our training set in order to differentiate cars from non-cars.

HOG Descriptor: Object Localization
• We can develop an object localization algorithm using HOG descriptors in combination with a classifier

model.

• Suppose that we train a simple SVM (support vector machine) to classify cars vs non-cars based on the

HOG descriptor of an image patch. Which is to say, we train the SVM on a set of HOG descriptors of

image patches from our training set in order to differentiate cars from non-cars.

• Using a simple “sliding window” approach -- we extract patches over all regions in an image and compute

their corresponding HOG descriptor. Each of these HOG descriptors is fed into our trained SVM, rendering

a “score map”. The maximum scores (above a threshold) are determined to be locations of a car.

HOG Descriptor SVM Score Map Localization

Video Tracking: Correlation Filter

• Filter- based trackers model the appearance of objects using filters trained on example

images.

• The target is initially selected based on a small tracking window centered on the object in the

first frame. The target is then tracked by correlating the filter over a search window in the

next frame; the location corresponding to the maximum value in the correlation output

indicates the new position of the target.

• When executed efficiently, correlation filter tracking can run in real-time, e.g., Minimum

Output Sum of Squared Error (MOSSE, 2010) tracker, which we review next.

Video Tracking: Correlation Filter
MOSSE Tracker

• We wish to develop a computationally efficient method to define a robust correlation filter for

object tracking.

• To this end, we want to define a correlation filter 𝐻, satisfying:

where G is the Fast Fourier Transform* (FFT) of an idealized correlation output (e.g., a

Gaussian peak), 𝐹 = 𝐹𝐹𝑇(𝑓) the input image patch and H = 𝐹𝐹𝑇(ℎ) of the learned correlation

filter; 𝐻∗ denotes the complex conjugate of 𝐻; ʘ denotes elementwise multiplication.

• The Convolution Theorem** states that correlation is mathematically equivalent to

convolution in the Fourier domain.

*G F H=

*http://www.dsp-book.narod.ru/DSPMW/07.PDF

**https://www.sciencedirect.com/topics/engineering/convolution-theorem

FFT

Video Tracking: Correlation Filter
MOSSE Tracker

• To this end, we want to define a correlation filter 𝐻, satisfying:

Let , a Gaussian correlation.

*G F H=
2 2

2

() ()i ix x y y

iG e

− + −

=

Video Tracking: Correlation Filter
MOSSE Tracker

• To this end, we want to define a correlation filter 𝐻, satisfying:

Let , a Gaussian correlation.

• A reasonable optimization criterion is:

where we wish to minimize the distance between the idealized correlation output 𝐺𝑖 and the

predicted correlation output using the learned filter 𝐻∗, namely: 𝐹𝑖ʘ𝐻
∗ ; note that the sum is

performed over a training dataset of images/patches. The solution to this optimization problem

is the MOSSE tracker.

*G F H=
2 2

2

() ()i ix x y y

iG e

− + −

=

2

*
min | * |i i

H
i

F H G−

Video Tracking: Correlation Filter
MOSSE Tracker

• To this end, we want to define a correlation filter 𝐻, satisfying:

Let , a Gaussian correlation.

• A reasonable optimization criterion is:

where we wish to minimize the distance between the idealized correlation output 𝐺𝑖 and the

predicted correlation output using the learned filter 𝐻∗, namely: 𝐹𝑖ʘ𝐻
∗ ; note that the sum is

performed over a training dataset of images/patches. The solution to this optimization problem

is the MOSSE tracker.

• The authors show that a closed form solution is given by:

where the numerator represents the correlation between the input and the desired output, and

the denominator is the energy spectrum of the input.

*G F H=
2 2

2

() ()i ix x y y

iG e

− + −

=

2

*
min | * |i i

H
i

F H G−

*

*
*

i i

i

i i

i

G F

H
F F

=

Video Tracking: Correlation Filter
MOSSE Tracker

• In practice, one usually extracts several crops of the object of interest from the first several

frames of a video clip (or at minimum – from the first frame); this gives us our training set {Fi}

• Using a Gaussian filter for Gi, we calculate the MOSSE correlation filter:

*

*
*

i i

i

i i

i

G F

H
F F

=

Video Tracking: Correlation Filter
MOSSE Tracker

• In practice, one usually extracts several crops of the object of interest from the first several

frames of a video clip (or at minimum – from the first frame); this gives us our training set {Fi}

• Using a Gaussian filter for Gi, we calculate the MOSSE correlation filter:

• The target is then tracked by correlating the filter over a search window in the next frame;

the location corresponding to the maximum value in the correlation output indicates the new

position of the target.

*

*
*

i i

i

i i

i

G F

H
F F

=

𝑓1

Frame 1 of video

𝑔𝑖

1 1*G F INVFFT→

2 2*G F INVFFT→

Video Tracking: Correlation Filter
MOSSE Tracker

• During tracking, a target object can often change appearance by changing rotation, scale,

undergoing illumination changes, deforming etc. Therefore, filters to need to quickly adapt in

order to follow objects; the authors apply a running average for this purpose; for the ith video

frame:

where η is a learning rate that gauges the importance of the previous frames.

()

()

1

1

*

* 1

* 1

i
i

i

i i i i

i i i i

A
H

B

A G F A

B F F B

−

−

=

= + −

= + −

Review Topic:

k-Means

• k-means is a very popular (and simple) clustering algorithm used in ML

and data science.

• k-means clustering aims to partition n observations into k clusters in

which each observation belongs to the cluster with the nearest mean,

serving as a prototype of the cluster. This results in a partitioning of the

data space into Voronoi cells.

k-Means

Vornoi

Tessellation; 20

points and their

Voroni cells.

• Given a set of observations (x1, x2, …, xn), where each observation is

a d-dimensional real vector, k-means clustering aims to partition the n

observations into k (≤ n) sets S={S1, S2, …, Sk} so as to minimize

the within-cluster sum of squares (WCSS).

k-Means

• Given a set of observations (x1, x2, …, xn), where each observation is

a d-dimensional real vector, k-means clustering endeavors to partition

the n observations into k (≤ n) sets S={S1, S2, …, Sk} so as to

minimize the within-cluster sum of squares (WCSS).

• Formally, the objective is to find:

where μi is the mean of cluster Si.

k-Means

2

1

arg min arg min Var()
i i

k

i i i

i x S x S

S S
=

− =
S S

x μ

• The algorithm itself works by iterative refinement, and is a variant of a

more general algorithm, known as EM (expectation-maximization).

• Given an initial set of k means 𝑚1
(1)
, … ,𝑚𝑘

(1)
(the subscript is the cluster

identification, while superscript is the iteration number) k-means alternates

between the following (2) steps:

k-Means

• The algorithm itself works by iterative refinement, and is a variant of a

more general algorithm, known as EM (expectation-maximization).

• Given an initial set of k means 𝑚1
(1)
, … ,𝑚𝑘

(1)
(the subscript is the cluster

identification, while superscript is the iteration number) k-means alternates

between the following (2) steps:

(I) Assignment Step (i.e., the expectation step):

Assign each observation to the cluster whose mean has the least squared

Euclidean distance, this is intuitively the "nearest" mean. Mathematically, this

means partitioning the observations according to the Voroni tessellation

generated by the means.

Where each datum xp is assigned to exactly one cluster, S(t).

k-Means

() () ()
2 2

: ,1
t t t

i p p i p jS x x m x m j j k= − −

• Given an initial set of k means 𝑚1
(1)
, … ,𝑚𝑘

(1)
k-means alternates between

the following (2) steps:

(I) Assignment Step (i.e., the expectation step):

Assign each observation to the cluster whose mean has the least squared

Euclidean distance, this is intuitively the "nearest" mean. Mathematically, this

means partitioning the observations according to the Voroni tessellation

generated by the means.

(II) Update Step (i.e., the parameter maximization step):

• Calculate the new means to be the centroids of the observations in the

new clusters.

• The algorithm has converged when the assignments no longer change.

There is no guarantee that the optimum is found using this algorithm.

k-Means

() () ()
2 2

: ,1
t t t

i p p i p jS x x m x m j j k= − −

()

()
()

1 1

t
j i

t

i jt
x Si

m x
S

+

=

(I) Assignment Step (i.e., the expectation step):

(II) Update Step (i.e., the parameter maximization step):

k-Means

() () ()
2 2

: ,1
t t t

i p p i p jS x x m x m j j k= − −

()

()
()

1 1

t
j i

t

i jt
x Si

m x
S

+

=

Example: Image segmentation by

k-Means clustering

Review Topic:

GMMs

• A commonly used soft clustering model is the GMM (Gaussian mixture model); with

GMMs, we assume (a priori) that the clusters resemble tightly-packed balls (i.e., Gaussian

distributions).

GMMs

GMMs: Gaussian Distribution Review

GMMs: Gaussian Distribution Review

Main ideas for clustering using GMM:

• Initialization: given a data set, fix k, the number of clusters; initialize the mean (μ) and

covariance matrices (Σ) for the k Gaussian clusters.

• Assign the data points to the k clusters (using a soft clustering) (assignment step/E-

step)

• Update the parameters (i.e. μ, Σ) for each of the clusters. (update step/M-step)

…repeat until stopping condition/convergence

GMMs

Main ideas for clustering using GMM:

• Initialization: given a data set, fix k, the number of clusters; initialize the mean (μ) and

covariance matrices (Σ) for the k Gaussian clusters.

• Assign the data points to the k clusters (using a soft clustering) (assignment step/E-

step)

• Update the parameters (i.e. μ, Σ) and prior class estimates (P(Ci|x) (for each of the

clusters. (update step/M-step)

…repeat until stopping condition/convergence

What makes this problem challenging? There are, ostensibly, many unknowns!

• Strictly speaking, we don’t know the cluster assignments nor any of the Gaussian

distribution parameters.

GMMs

What makes this problem challenging? There are, ostensibly, many unknowns!

• Strictly speaking, we don’t know the cluster assignments nor any of the Gaussian

distribution parameters.

How can we simplify things?

A nice trick…Solve each subproblem separately!

GMMs

What makes this problem challenging? There are, ostensibly, many unknowns!

• Strictly speaking, we don’t know the cluster assignments nor any of the Gaussian

distribution parameters.

How can we simplify things?

A nice trick…Solve each subproblem separately!

(1) For instance, to find the optimal class assignments for each datum, use the current

approximations for the Gaussian parameters distributions (i.e. treat μ and Σ as known

for each cluster, as well as each class prior) and compute the class posterior: P(Ci|x)

using Bayes’ Rule.

(2) Conversely, to find the optimal estimates for μ and Σ for each cluster, in addition to

the class priors, use the current (soft) class posterior assignments and compute the

MLE.

GMMs

(1) For instance, to find the optimal class assignments for each datum, use the current

approximations for the Gaussian parameters distributions (i.e. treat μ and Σ as known

for each cluster, as well as each class prior) and compute the class posterior: P(Ci|x)

using Bayes’ Rule. (assignment step/E-step)

• Given the current estimates of both the parameters of each Gaussian cluster:

(μ1,Σ1),…,(μk,Σk), and the prior for each cluster: P(C1)=π1,…, P(Ck)=πk, we compute the

class posterior P(Ci) using Bayes’ Rule as follows:

GMMs

()
() ()|

|
()

i i

i

P x C P C
P C x

P x
=

(1) For instance, to find the optimal class assignments for each datum, use the current

approximations for the Gaussian parameters distributions (i.e. treat μ and Σ as known

for each cluster, as well as each class prior) and compute the class posterior: P(Ci|x)

using Bayes’ Rule. (assignment step/E-step)

• Given the current estimates of both the parameters of each Gaussian cluster:

(μ1,Σ1),…,(μk,Σk), and the prior for each cluster: P(C1)=π1,…, P(Ck)=πk, we compute the

class posterior P(Ci) using Bayes’ Rule as follows:

GMMs

()
() ()

()
() ()1

1/2/2

| 1 1
| exp

() 22

Ti i

i i i i id

i

P x C P C
P C x x x

P x

−
= − − −

(2) To find the optimal estimates for μ and Σ for each cluster, in addition to the class

priors, use the current (soft) class posterior assignments and compute the MLE. (update

step/M-step)

• Observe that if we knew which points belong to, say cluster i, for a hard clustering, we

can use the standard MLE estimates (from beginning statistics) to estimate the Gaussian

parameters (μ and Σ) for each cluster, in addition to the cluster priors (e.g., P(Ci)). These

standard parameter estimates are given as follows:

cluster prior cluster mean cluster covariance matrix

where above, ni denotes the size of the ith cluster.

GMMs

()()
1 1ˆˆ ˆ ˆ ˆ

j j
i i

T
j j ji

i i i i i

C Ci i

n

n n n

= = = − −
x x

x x x

(2) To find the optimal estimates for μ and Σ for each cluster, in addition to the class

priors, use the current (soft) class posterior assignments and compute the MLE. (update

step/M-step)

• Observe that if we knew which points belong to, say cluster i, for a hard clustering, we

can use the standard MLE estimates (from beginning statistics) to estimate the Gaussian

parameters (μ and Σ) for each cluster, in addition to the cluster priors (e.g. P(Ci). These

standard parameter estimates are given as follows:

cluster prior cluster mean cluster covariance matrix

where above, ni denotes the size of the ith cluster.

(*) However, because we are executing a soft clustering, these parameter update formulae

must incorporate the class posteriors: P(Ci|x), for each i=1,…,k and for each data point x,

respectively.

GMMs: MLE Parameter Estimates

()()
1 1ˆˆ ˆ ˆ ˆ

j j
i i

T
j j ji

i i i i i

C Ci i

n

n n n

= = = − −
x x

x x x

(2) To find the optimal estimates for μ and Σ for each cluster, in addition to the class

priors, use the current (soft) class posterior assignments and compute the MLE. (update

step/M-step)

• Here are the parameter estimate formulas, updated to account for the soft clustering

induced by the class posteriors: P(Ci|x), for each i=1,…,k, for each data point:

cluster prior modified formula cluster mean modified formula

cluster covariance matrix modified formula

GMMs: Modified Parameter Estimates

()
1,..,

1
ˆ ˆ | ji

i i i

j n

n
P C

n n

=

= → = x

()

()
1,..,

1,..,

|
1

ˆ ˆ
|j

i

j j

i

j nj

i i j
Ci i

j n

P C

n P C

=

=

= → =

x

x x

x
x

()()
()()()

()
1,..,

1,..,

ˆ ˆ|
1ˆ ˆˆ ˆ

|j
i

T
j j j

i i i
T j nj j

i i i i j
Ci i

j n

P C

n P C

=

=

− −

 = − − → =

x

x x x

x x
x

Main ideas for clustering using GMM:

• Initialization: given a data set, fix k, the number of clusters; initialize the mean (μ) and

covariance matrices (Σ) for the k Gaussian clusters, and cluster priors (P(Ci)).

(I) Assign the data points to the k clusters (using a soft clustering) (assignment step/E-

step)

(II) Update the parameters (i.e. μ, Σ) for each of the clusters, including the cluster priors.

(update step/M-step)

…repeat until stopping condition/convergence

GMMs: Summary

()
()

() ()1

1/2/2

1 1
| exp

22

T

i i i i id

i

P C x x x

−
 − − −

()
1,..,

1
ˆ | j

i i

j n

P C
n

=

= x

()

()
1,..,

1,..,

|

ˆ
|

j j

i

j n

i j

i

j n

P C

P C

=

=

=

x x

x

()()()

()
1,..,

1,..,

ˆ ˆ|

ˆ
|

T
j j j

i i i

j n

i j

i

j n

P C

P C

=

=

− −

 =

x x x

x

• Demo: https://lukapopijac.github.io/gaussian-mixture-model/

GMMs

GMMs: Image Segmentation

GMMs: Image Segmentation

http://scipy-lectures.org/advanced/image_processing/auto_examples/plot_GMM.html

Review Topic:

Max Flow Min Cut

Ford-Fulkerson Algorithm

Flow network

• Abstraction for material flowing through the edges.

• G = (V, E) = directed graph, no parallel edges.

• Two distinguished nodes: s = source, t = sink.

• c(e) = capacity of edge e.

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

capacity

source sink

Minimum Cut Problem

• Def. An s-t cut is a partition (A, B) of V with s A and t B.

• Def. The capacity of a cut (A, B) is:

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 10 + 5 + 15
= 30

A

cap(A, B) = c(e)
e out of A

Minimum Cut Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

• Def. An s-t cut is a partition (A, B) of V with s A and t B.

• Def. The capacity of a cut (A, B) is:

cap(A, B) = c(e)
e out of A

Capacity = 9 + 15 + 8 + 30
= 62

Minimum Cut Problem

• Min s-t cut problem. Find an s-t cut of minimum capacity.

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Capacity = 10 + 8 + 10
= 28

Minimum Cut Problem

• Def. An s-t flow is a function that satisfies:

For each e E: [capacity]

For each v V – {s, t}: [conservation]

• Def. The value of a flow f is:

4

0

0

0

0 0

0 4 4

0

0

0

Value = 4
0

f (e)
e in to v

 = f (e)
e out of v

0 f (e) c(e)

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

v(f) = f (e)
e out of s

 .

4

Max Flow Problem

• Def. An s-t flow is a function that satisfies:

For each e E: [capacity]

For each v V – {s, t}: [conservation]

• Def. The value of a flow f is:

10

6

6

11

1 10

3 8 8

0

0

0

11

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24

f (e)
e in to v

 = f (e)
e out of v

0 f (e) c(e)

v(f) = f (e)
e out of s

 .

4

Max Flow Problem

• Max flow problem. Find s-t flow of maximum value.

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 28

Max Flow Problem

• Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then,

the net flow sent across the cut is equal to the amount leaving s.

10

6

6

11

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24

f (e)
e out of A

 − f (e)
e in to A

 = v(f)

4

A

Max Flow Problem

• Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then,

the net flow sent across the cut is equal to the amount leaving s.

10

6

6

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

f (e)
e out of A

 − f (e)
e in to A

 = v(f)

Value = 6 + 0 + 8 - 1 + 11
= 24

4

11

A

Max Flow Problem

• Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net

flow sent across the cut is equal to the amount leaving s.

10

6

6

11

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

f (e)
e out of A

 − f (e)
e in to A

 = v(f)

Value = 10 - 4 + 8 - 0 + 10
= 24

4

A

Max Flow Problem

• Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the

value of the flow is at most the capacity of the cut.

Cut capacity = 30 Flow value 30

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 30

A

Flows and Cuts

• Corollary. Let f be any flow, and let (A, B) be any cut.

If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28 Flow value 28

10

9

9

14

4 10

4 8 9

1

0 0

0

14

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0A

Flows and Cuts

Greedy algorithm.

• Start with f(e) = 0 for all edge e E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

Towards a Max Flow Algorithm

Greedy algorithm.

• Start with f(e) = 0 for all edge e E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.

s

1

2

t

20

Flow value = 20

10

10 20

30

0 0

0 0

0

X

X

X

20

20

20

Towards a Max Flow Algorithm

• The Ford-Fulkerson Algorithm (FFA) computes a maximum flow in an iterative

manner by starting with a valid flow, and then making adjustments that fulfill the

constraints and increase the flow.

Ford-Fulkerson Algorithm

• The Ford-Fulkerson Algorithm (FFA) computes a maximum flow in an iterative

manner by starting with a valid flow, and then making adjustments that fulfill the

constraints and increase the flow.

• To achieve this, FFA utilizes the residual graph. This is a graph generated by

calculating how the flow along each edge can be modified - each edge in the network

graph is replaced by up to two new edges, a forward edge with the same direction that

that signifies how much the flow can be increased, and a backward edge storing how

much the flow can be reduced.

Ford-Fulkerson Algorithm

Flow Graph Residual Graph

• The algorithm starts with an empty flow (which is always valid) and then repeatedly

finds paths in the residual graph from source to target. Adding just enough flow along

the path to saturate one edge (i.e., “bottlenecking”), which is the one with the lowest

capacity, keeps the constraints on the flow fulfilled and strictly increases the flow. These are

called augmenting paths.

• The FFA does not explicitly state how to find the augmenting paths, and so the algorithm

is agnostic to the mechanism used to find an augmenting path (in practice BFS is

commonly used).

Ford-Fulkerson Algorithm

Greedy algorithm. (polynomial time solution)

• Start with f(e) = 0 for all edge e E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

locally optimality global optimality

Ford-Fulkerson Algorithm

Original edge. e = (u, v) E.

Flow f(e), capacity c(e).

Residual edge.

"Undo" flow sent.

e = (u, v) and eR = (v, u).

Residual capacity:

Residual graph: Gf = (V, Ef).

Residual edges with positive residual capacity.

Ef = {e : f(e) < c(e)} {eR : f(e) > 0}.

u v17

6

capacity

u v11

residual capacity

6

residual capacity

flow

c f (e) =
c(e)− f (e) if e E

f (e) if eR E

Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

G:
capacity

Ford-Fulkerson Algorithm

s

2

3

4

5 t0/10 0/9

0/8

0/4

0/10

0/100/60/2

0/10G:

Flow value = 0

flow capacity

Ford-Fulkerson Algorithm

• FFA begins with an empty flow.

s

2

3

4

5 t

8/10 8/8

8/10

G:

s

2

3

4

5 t10 9

4

1062

Gf:

10 8

10

Flow value = 8

capacity

flow

Ford-Fulkerson Algorithm

• Choose a valid s-t path. Notice that the path s → 2 is a potential bottleneck, as it has an

additional capacity of 2 this is currently unused.

bottleneck

s

2

3

4

5 t

8/10 8/8

8/10

G:

Flow value = 8

capacity

flow

Ford-Fulkerson Algorithm

• The residual graph below shows an augmenting path allowing us to add 2 to the overall

flow.

s

2

3

4

5 t10

4

106

Gf:

8

8

8

9

22

2

s

2

3

4

5 t

10/10

2/9
10/10

2/2

G:

s

2

3

4

5 t10

4

106

Gf:

8

8

8

9

22

2

Flow value = 10

Ford-Fulkerson Algorithm

s

2

3

4

5 t

10/10

2/9
10/10

2/2

G:

s

2

3

4

5 t10

4

106

Gf:

8

8

8

9

22

2

Flow value = 10

Ford-Fulkerson Algorithm

bottleneck

s

2

3

4

5 t6/10

10/10

8/9

8/8

10/10

6/106/62/2

G:

s

2

3

4

5 t

4

2

Gf:

10

810

2

10 7

106

Flow value = 16

Ford-Fulkerson Algorithm

• The residual graph below shows an augmenting path allowing us

to add 6 to the overall flow.

s

2

3

4

5 t10

10

9

8

4

10

1062

10

3

9

9 9 10

7

0

G:
6

Flow value = 19Cut capacity = 19

Ford-Fulkerson Algorithm

• Continuing this process of adding augmenting paths, we arrive at a flow= 19. One can

show that this is the maximum flow achievable by appealing to max-flow/min-cut duality.

Because there exists a cut with capacity also equal to 19, this proves optimality.

Graph Cuts

• The graph cuts segmentation algorithm (2004) leverages the max-flow min-cut

theorem and Ford –Fulkerson algorithm for image segmentation. In this way,

segmentation is regarded as a pixel labeling problem.

• Boykov et al. define a graph based on an image that includes two types of edges: (1) n-

links connecting neighboring pixels vertices in a 4-neighborhood system; (2) t-links

that connect the source and sink vertices with all other pixel vertices.

Graph Cuts Image Segmentation

Graph Cuts

• Finding the optimal segmentation/cut is tantamount to finding a minimum energy solution:

where 𝐿 denotes a binary labelling of pixels (i.e. a cut), R(𝐿) represents a regional term

incorporating t-link connections, B(𝐿) connotes a boundary term incorporating s-link

connections; α provides a “smoothness” parameter.

Graph Cuts Image Segmentation

total energy regional boundary
 term term

() () ()E L R L B L= +

Graph Cuts

• t-links connect the terminal nodes (s and t nodes) with all other nodes in the graph.

• 𝑅𝑝 𝑙𝑝 is the penalty for assigning the label 𝑙𝑝 to pixel 𝑝. The weight of 𝑅𝑝 𝑙𝑝 can be obtained by

comparing the intensity of pixel 𝑝 with the histogram of the of the “object” and “background”

(reflected by the current object/background segmentation).

Graph Cuts Image Segmentation

total energy regional boundary
 term term

() () ()E L R L B L= +

()()

(1) ln (|)

(0) ln (|)

p p

p P

p p

p p

R L R l

R P I foreground

R P I background

=

= −

= −

Graph Cuts

• t-links connect the terminal nodes (s and t nodes) with all other nodes in the graph.

• 𝑅𝑝 𝑙𝑝 is the penalty for assigning the label 𝑙𝑝 to pixel 𝑝. The weight of 𝑅𝑝 𝑙𝑝 can be obtained by

comparing the intensity of pixel 𝑝 with the histogram of the of the “object” and “background”

(reflected by the current object/background segmentation).

• Thus, for instance, if 𝑃(𝐼𝑝|𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑) is larger than 𝑃(𝐼𝑝|𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) , then 𝑅𝑝(1) will be

smaller than 𝑅𝑝(0) . This means when the pixel is more likely to be the object, the penalty for

identifying that pixel as “object” should be smaller than if we identified it as “background”.

• In this way, when all pixels have been correctly separated into two subsets, the regional term would

be minimized.

Graph Cuts Image Segmentation

total energy regional boundary
 term term

() () ()E L R L B L= +

()()

(1) ln (|)

(0) ln (|)

p p

p P

p p

p p

R L R l

R P I foreground

R P I background

=

= −

= −

Graph Cuts

• n-link edge weights reflect inter-pixel similarities (i.e. in a cohesive image, neighboring pixels are

likely to have similar hue/brightness values). In more detail: the weight of an edge should be large

when pixels are similar and small when they are different.

Graph Cuts Image Segmentation

total energy regional boundary
 term term

() () ()E L R L B L= +

()

()

()

2

2

,

2

() ,

0 if
, { , } N, ,

1 if

p q

pq p q

p q N

I I

p q

pq p q

p q

B L B l l

l l
B e p q l l

l l

−
−

=

=
 =

Graph Cuts

• n-link edge weights reflect inter-pixel similarities (i.e. in a cohesive image, neighboring pixels are

likely to have similar hue/brightness values). In more detail: the weight of an edge should be large

when pixels are similar and small when they are different.

• B(𝐿) energy is computed for all neighboring pixels in the graph ({𝑝, 𝑞} ∈ 𝑁);), 𝑙𝑖 is the label (i.e.

“foreground” or “background” for each pixel 𝑖 in the graph); 𝛿 is zero if neighboring labels agree and

one otherwise. Finally, when the labels of adjacent pixels disagree, we compute their inter-pixel

similarity based on a Gaussian function: 𝐵𝑝𝑞 (where 𝐼𝑖 is the intensity of the 𝑖th pixel).

*Basic idea for B(L) energy term: Terms that contribute to the B(𝐿) energy are positive when

neighboring pixels have different labels; the energy of a particular edge contribution in this case is

proportional to their similarity. Near a boundary, this energy will be minimal.

Graph Cuts Image Segmentation

total energy regional boundary
 term term

() () ()E L R L B L= +

()

()

()

2

2

,

2

() ,

0 if
, { , } N, ,

1 if

p q

pq p q

p q N

I I

p q

pq p q

p q

B L B l l

l l
B e p q l l

l l

−
−

=

=
 =

Interactive Graph Cuts

• The preceding problem formulation can be solved (efficiently, in polynomial-time) using the

aforementioned Ford-Fulkerson algorithm (or related variant). In particular, we aim to minimize energy with

respect to the binary graph labelling (foreground vs background). On its own, the graph cuts algorithm

provides an effective baseline “unsupervised” image segmentation algorithm.

• However, one can easily expand (as Boykov et al. have done) the graph cut framework to encompass a

broader set of interactive image segmentation problems, wherein a user provides a set of

foreground/background labels (via clicks, lines, etc.).

How do we adapt the previous graph cuts algorithm to incorporate interactivity?

Graph Cuts Image Segmentation

https://www.csd.uwo.ca/~yboykov/Papers/iccv01.pdf

Interactive Graph Cuts

• The preceding problem formulation can be solved (efficiently, in polynomial-time) using the

aforementioned Ford-Fulkerson algorithm (or related variant). On its own, the graph cuts algorithm provides an

effective baseline “unsupervised” image segmentation algorithm.

• However, one can easily expand the (as Boykov et al. have done) graph cut framework to encompass a

broader set of interactive image segmentation problems, wherein a user provides a set of

foreground/background labels (via clicks, lines, etc.).

How do we adapt the previous graph cuts algorithm to incorporate interactivity? Simply:

(1) The calculation of the regional term can now be based on the histogram of foreground and background

labelled pixels.

(2) The overall energy function can be amended to include “hard constraints” reflecting the user provided

labels (e.g., for every mislabel produced by the algorithm, the energy function incurs a penalty of K):

where N(misclassified) symbolizes the number of misclassified pixels in the final segmentation with respect

to the user labels.

Graph Cuts Image Segmentation

()()

(1) ln (|)

(0) ln (|)

p p

p P

p p

p p

R L R l

R P I foreground

R P I background

=

= −

= −

total energy regional boundary
 term term

() () () ()E L R L B L K N misclassified= + +

https://www.csd.uwo.ca/~yboykov/Papers/iccv01.pdf

GrabCut (2004)

https://docs.opencv.org/3.4/d8/d83/tutorial_py_grabcut.html

Interactive Graph Cuts

Graph Cuts Image Segmentation

https://docs.opencv.org/3.4/d8/d83/tutorial_py_grabcut.html

Review Topic: OLS Regression

OLS Regression
• We consider an equivalent – but more elegant – approach to OLS by

appealing to linear algebra/geometric intuition.

Consider the problem of solving the previous system of linear equations in the

“overdetermined” case (i.e. m > n, where m is the number of

equations/measurements, n is the number of variables).

OLS Regression
• We consider an equivalent – but more elegant – approach to OLS by

appealing to linear algebra/geometric intuition.

Consider the problem of solving the previous system of linear equations in the

“overdetermined” case (i.e. m > n, where m is the number of

equations/measurements, n is the number of variables): Ax=b.

0

1

1 0 1

1 1 5

1 2 10

1 3 22

1 4 38

 =

OLS Regression
• An overdetermined system:

Q: Are we always guaranteed that such a system has a solution (say using

Gaussian elimination)?

0

1

1 0 1

1 1 5

1 2 10

1 3 22

1 4 38

 =

0 1

1 0 1

1 1 5

1 2 10

1 3 22

1 4 38

 + =

A =x b

OLS Regression
• An overdetermined system:

Q: Are we always guaranteed that such a system has a solution (say using

Gaussian elimination)?

Definitely not! *Short answer: because we cannot guarantee that the vector b

resides in the column space of A (col(A))!

Next, let’s consider this situation from a geometric perspective.

(*) Recall that the col(A):= the span of the column vectors of A.

0

1

1 0 1

1 1 5

1 2 10

1 3 22

1 4 38

 =

0 1

1 0 1

1 1 5

1 2 10

1 3 22

1 4 38

 + =

A =x b

OLS Regression
• An overdetermined system:

0

1

1 0 1

1 1 5

1 2 10

1 3 22

1 4 38

 =

0 1

1 0 1

1 1 5

1 2 10

1 3 22

1 4 38

 + =

A =x b

col(A)

OLS Regression
• An overdetermined system:

0

1

1 0 1

1 1 5

1 2 10

1 3 22

1 4 38

 =

0 1

1 0 1

1 1 5

1 2 10

1 3 22

1 4 38

 + =

A =x b

col(A)

(*) Issue: if

Then overdetermined

system: Ax=b is

insoluble.

()col Ab

OLS Regression
• An overdetermined system:

0

1

1 0 1

1 1 5

1 2 10

1 3 22

1 4 38

 =

0 1

1 0 1

1 1 5

1 2 10

1 3 22

1 4 38

 + =

A =x b

col(A)

(*) A resolution: The best we can

hope to do is to minimize the

distance r (i.e. the residual)

between b and any vector in col(A).

Namely, we want:

(this formula should look familiar)

2 2
argmin argmin A= −

x x

r b x

OLS Regression

col(A)

(*)We want:

(Let’s denote the solution vector x*)

An astute observation: The residual vector r achieves a minimum when it is

orthogonal to col(A)!

2
argmin A−

x

b x

OLS Regression

col(A)

(*)We want:

(Let’s denote the solution vector x*)

An astute observation: The residual vector r achieves a minimum when it is

orthogonal to col(A)!

This implies:

2
argmin A−

x

b x

() ()* 0 ()
T

A A for all− =x b x x

OLS Regression

col(A)

(*)We want:

(Let’s denote the solution vector x*)

An astute observation: The residual vector r achieves a minimum when it is

orthogonal to col(A)!

This implies:

2
argmin A−

x

b x

() ()* 0 ()
T

A A for all− =x b x x

()* 0 ()T TA A for all− =x b x x

OLS Regression

col(A)

(*)We want:

(Let’s denote the solution vector x*)

An astute observation: The residual vector r achieves a minimum when it is

orthogonal to col(A)!

This implies:

This indicates that the vector: AT(b-Ax*) is perpendicular to every vector x in

the space. What can we claim about this vector?

2
argmin A−

x

b x

() ()* 0 ()
T

A A for all− =x b x x

()* 0 ()T TA A for all− =x b x x

OLS Regression

This indicates that the vector: AT(b-Ax*) is perpendicular to every vector x in

the space. What can we claim about this vector?

(*) Consequently:

() ()* 0 ()
T

A A for all− =x b x x

()* 0 ()T TA A for all− =x b x x

()* 0TA A− =b x

OLS Regression
Now we solve for x*.

()* 0TA A− =b x

OLS Regression
Now we solve for x*.

()* 0TA A− =b x

* 0T TA A A− =b x

OLS Regression
Now we solve for x*.

()* 0TA A− =b x

* 0T TA A A− =b x

*T TA A A=b x

OLS Regression
Now we solve for x*.

()* 0TA A− =b x

* 0T TA A A− =b x

*T TA A A=b x
(These are the normal

equations in matrix form!)

OLS Regression
Now we solve for x*.

(*) This implies that OLS has a unique, closed form solution when ATA is

non-singular (i.e. invertible).

(*) When ATA is singular, it is common practice to use the Moore-Penrose

pseudoinverse: A+.

()* 0TA A− =b x

* 0T TA A A− =b x

*T TA A A=b x

()
1

* T TA A A
−

=x b

OLS Regression
Now we solve for x*.

(*) This completes our derivation of the OLS solutions using linear algebra!

()* 0TA A− =b x

* 0T TA A A− =b x

*T TA A A=b x

()
1

* T TA A A
−

=x b

Motion Estimation: Optical Flow

• Motion is an intrinsic property of the world, and an essential aspect of our visual

experience. Motion estimation can be used successfully in a wide variety of CV-related

applications, including: object tracking, camera stabilization, scene understanding, and

3D scene reconstruction.

Motion Estimation: Optical Flow

• The goal of optical flow estimation* (OF) is to compute an approximation to the

motion field from time-varying image intensities.

• Next, we present the classic optical flow estimation algorithm* (Beauchemin et al.,

1995).

*https://dl.acm.org/doi/abs/10.1145/212094.212141

(, ,)I x y t (, ,)I x y t t+

Motion Estimation: Optical Flow

• A common starting point for OF is to assume that pixel intensities are translated

(without alteration) from one frame to the next, so that:

holds, where 𝐼(𝑥, 𝑦, 𝑡) is the image intensity at time 𝑡, 𝑢, 𝑣 is a displacement vector.

Naturally, this brightness constancy assumption rarely holds exactly, but is nevertheless

plausible under stable conditions.

With this assumption, we wish to estimate (dense) optical flow at each pixel (𝑥, 𝑦):
∆𝑥

∆𝑡
and

∆𝑦

∆𝑡
.

*The version of OF given here is for grayscale images, but the method is easily adapted

for RGB images.

(, ,) (, ,)I x y t I x x y y t t= + + +

Motion Estimation: Optical Flow

•Next, we use the multi-variate Taylor series approximation to calculate the

linearization of 𝐼 ∆𝑥, ∆𝑦, 𝑡 :

(, ,) (, ,)I x y t I x x y y t t= + + +

Motion Estimation: Optical Flow

•Next, we use the multi-variate Taylor series approximation to calculate the

linearization of 𝐼 ∆𝑥, ∆𝑦, 𝑡 :

This yields:

(, ,) (, ,)I x y t I x x y y t t= + + +

(, ,) (, ,) higher order terms...
I I I

I x x y y t t I x y t x y t
x y t

+ + + = + + +

0 (, ,) (, ,)
I I I

I x x y y t t I x y t x y t
x y t

= + + + − +

Motion Estimation: Optical Flow

•Next, we use the multi-variate Taylor series approximation to calculate the

linearization of 𝐼 ∆𝑥, ∆𝑦, 𝑡 :

This yields:

Dividing through by ∆𝑡, we have:

(, ,) (, ,)I x y t I x x y y t t= + + +

(, ,) (, ,) higher order terms...
I I I

I x x y y t t I x y t x y t
x y t

+ + + = + + +

0 (, ,) (, ,)
I I I

I x x y y t t I x y t x y t
x y t

= + + + − +

0

x yV V

I x I y I

x t y t t

+ + =

Motion Estimation: Optical Flow

•Next, we use the multi-variate Taylor series approximation to calculate the

linearization of 𝐼 ∆𝑥, ∆𝑦, 𝑡 :

This yields:

Dividing through by ∆𝑡, we have:

This equation can be notated equivalently:

where we wish to solve for OF 𝑉𝑥, 𝑉𝑦 ;

𝐼𝑡 denotes the image derivative which can

be approximated using the Sobel transformation.

(, ,) (, ,)I x y t I x x y y t t= + + +

(, ,) (, ,) higher order terms...
I I I

I x x y y t t I x y t x y t
x y t

+ + + = + + +

0 (, ,) (, ,)
I I I

I x x y y t t I x y t x y t
x y t

= + + + − +

0

x yV V

I x I y I

x t y t t

+ + =

x x y y t

t

x

x y t

y

I V I V I

I V I

V
I I I

V

+ = −

 = −

 = −

Motion Estimation: Optical Flow

• We wish to solve the equation above for OF 𝑉𝑥, 𝑉𝑦 ; however, this requires solving for two

unknowns (with only one equation), an underdetermined system.

• In the Lucas-Kanade method (1981) for approximating optical flow, we consider 3x3

patches of pixels around the current pixel. This gives rise to a system of 9 equations and 2

unknowns, an overdetermined system:

• We can approximate the solution to this system using the standard least-squares solution.

1 1 1

9 9 9
2 1

9 19 2

() () ()

, Sobel Transform (or other derivative estimate)

() () ()

x y t

x

t

y

x y t

I p I p I p
V

I
V

I p I p I p

= −

x

x y t

y

V
I I I

V

 = −

Motion Estimation: Optical Flow

• We can approximate the solution to this system using the standard least-squares

solution.

T T

1 1 1

9 9 9

A A A

() () ()

() () ()

x y t

x

y

x y t
x

bA

xx x x y x t

yx y y y y t

x
b

x x x x y

y x y y y

x

I p I p I p
V

V
I p I p I p

VI I I I I I

VI I I I I I

V I I I I

V I I I I

= −

 −
→ =

−

→ =

1

x t

y t

I I

I I

−

 −

−

Motion Estimation: Optical Flow

https://opencv-python-

tutroals.readthedocs.io/en/latest/py_tutorials/py_video/py_lucas_kanade/py_lucas_kanade.html

Review Topic: PCA/SVD

SVD
• Definition: Let A be an m x n matrix with singular values, σ1 ≥ σ2 ≥…≥ σ𝑟 > 0 and

σ𝑟 + 1 =
σ𝑟 + 2 = ⋯ =

σ𝑛 = 0. Then there exist an m x n orthogonal matrix U, and n x n

orthogonal matrix V, and an m x n diagonal matrix Σ of the form:

Note: the columns of U are called left singular vectors of A, and the columns of V are called

right singular vectors of A. The matrices U and V are not uniquely determined by A.

(*) NB: rank(A) = r.

TA U V=

SVD
• Definition: Let A be an m x n matrix with singular values, σ1 ≥ σ2 ≥…≥ σ𝑟 > 0 and

σ𝑟 + 1 =
σ𝑟 + 2 = ⋯ =

σ𝑛 = 0. Then there exist an m x n orthogonal matrix U, and n x n

orthogonal matrix V, and an m x n diagonal matrix Σ of the form:

• Every matrix has a singular value decomposition!

Definition: For an m x n matrix A, the singular values of A are the square roots of the

eigenvalues of ATA. They are denoted:

It is conventional to arrange the singular values in decreasing order, whence:

TA U V=

1,..., n

1 2 ... n

SVD

Example:

TA U V=
1 1 0

0 0 1

1 0 1 1 0
1 1 0

1 0 1 1 0
0 0 1

0 1 0 0 1

T

A

A A

=

= =

SVD

Example:

has eigenvalues λ1=3 and λ2=1. Consequently, the singular values of A are:

TA U V=

() 1 2 3: 2, 1, 0Teigenvalues A A = = =

1 1 0

0 0 1

1 0 1 1 0
1 1 0

1 0 1 1 0
0 0 1

0 1 0 0 1

T

A

A A

=

= =

1 1

2 2

3

1

= =

= =

SVD

Example:

These vectors are orthogonal, so now we normalize them:

TA U V=

() 1 2 3: 2, 1, 0Teigenvalues A A = = = ()
1 0 1

: 1 , 0 , 1

0 1 0

Teigenvectors A A

−

1/ 2 0 1/ 2 2 0 0

1/ 2 0 1/ 2 , 0 1 0

0 1 0 0 0 0

V

 −

= =

1 1 0

0 0 1

1 0 1 1 0
1 1 0

1 0 1 1 0
0 0 1

0 1 0 0 1

T

A

A A

=

= =

SVD

Example:

To find U we compute:

TA U V=

() 1 2 3: 2, 1, 0Teigenvalues A A = = =

()
1 0 1

: 1 , 0 , 1

0 1 0

Teigenvectors A A

−

1/ 2 0 1/ 2 2 0 0

1/ 2 0 1/ 2 , 0 1 0

0 1 0 0 0 0

V

 −

= =

1 1 2 2

1 2

1/ 2 0
1 1 0 1 1 1 0 01 1 1 1

1/ 2 , 0
0 0 1 0 0 0 1 112

0 1

u Av u Av

= = = = = =

1 1 0

0 0 1
A

=

SVD

Example:

TA U V=

2 0 0 1/ 2 1/ 2 0
1 1 0 1 0 0

0 1 0 0 0 1
0 0 1 0 1 0

0 0 0 1/ 2 1/ 2 0

TA U V

= = =

−

SVD

TA U V=

Geometric Interpretation: In general, Σ can be regarded as a scaling matrix, and U, V can

be viewed as rotation matrices.

Thus the expression UΣV can be intuitively interpreted as a composition of three

successive geometrical transformations: a rotation or reflection, a scaling and another

rotation or reflection.

As shown in the figure, the singular values can be interpreted as the semiaxes of an

ellipse in 2D. This concept can be generalized to n-dimensional Euclidean space, with the

singular values of any n × n square matrix being viewed as the semiaxes of an n-

dimensional ellipsoid.

As in PCA, these coordinate axes provide a natural framework for determining a

dimensionality reduction scheme that captures maximal variation.

SVD: Outer Product Form

• SVD factorization yields a useful method for “low rank” approximations/dimensionality

reduction of data.

Theorem: For a given SVD decomposition of an m x n matrix A, we can express A in the

so-called outer product form:

Where σ1 ≥ σ2 ≥…≥ σ𝑟 > 0 denote the singular values of A; u and v are the

corresponding left singular and right singular vectors.

(*) Note that the condition number of a matrix A is defined as the ratio of the largest and

the smallest singular values of A. Matrices with large condition numbers are called ill-

conditioned (this has a significant impact on the stability of many different kinds of

numerical algorithms in linear algebra).

1 1 1 ...T T

r r r = + +A u v u v

max

min

()cond A

=

SVD: Outer Product Form

1 1 1 ...T T

r r r = + +A u v u v

Example:

1 1 0 1 0

2 1/ 2 1/ 2 0 1 0 0 1
0 0 1 0 1

A

 = = +

2 0 0 1/ 2 1/ 2 0
1 1 0 1 0 0

0 1 0 0 0 1
0 0 1 0 1 0

0 0 0 1/ 2 1/ 2 0

TA U V

= = =

−

SVD: Outer Product Form for

Image Compression
• Consider the task of compressing a grayscale image of dimension 340 x 280; each pixel

is in the range [0, 255].

• We can store this image in a 340 x 280 dimension matrix, but transmitting and

manipulating these 95,200 numbers is very expensive.

• Let’s use SVD for efficient image compression. Recall that the small singular values in

the SVD of a matrix correspond with “less informative” data features.

SVD: Outer Product Form for

Image Compression
• Suppose we have the SVD of A expressed in outer product form:

• For the original 340 x 280 image shown, we have r = 280 (why?).

• Define:

as the k-rank approximation to A.

1 1 1 ...T T

r r r = + +A u v u v

1 1 1 ... ,T T

k k k k k r = + + A u v u v

SVD: Outer Product Form for

Image Compression
• Suppose we have the SVD of A expressed in outer product form:

• For the original 340 x 280 image shown, we have r = 280 (why?).

• Define:

as the k-rank approximation to A.

(*) If for example, we use a k = 20 rank approximation for

A (i.e. we use the largest 20 singular values), the storage/

computational overhead is reduced from 95,200 numbers

to 12,420!

1 1 1 ...T T

r r r = + +A u v u v

1 1 1 ... ,T T

k k k k k r = + + A u v u v

SVD: Outer Product Form for

Image Compression

1 1 1 ... , 32T T

k k k k k = + + =A u v u v

(*) Here, using the SVD-based, low-

rank approximation to A, the fidelity

of the image is very strong – even

after discarding roughly 85% of the

image data!

PCA
• Here is the PCA algorithm:

(1) Write N data points xi=(x1i,x2i,…,xMi) as row vectors.

(2) Put these vectors into the data matrix X (of size N x M).

(3) Center the data by subtracting off the mean of each column, place into matrix B.

(4) Computer the covariance matrix:

(5) Computer the eigenvalues and eigenvectors of C, so:

where D is the diagonal matrix of eigenvalues; V is the matrix of corresponding eigenvectors.

(6) Sort of the columns of D into order of decreasing eigenvalues, and apply the same order to the

columns of V.

(7) Reject those with eigenvalues less than some given threshold, leaving L dimensions in the data.

T=C VDV

1 T

N
=C BB

Facial Recognition: EigenFace

https://sites.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf

• Sirovich and Kirby (1987) developed an early (now classic) algorithm for facial

recognition: “Face recognition using eigenfaces” (Eigenface).

It is a very simple yet effective algorithm (simplified version):

(1) Determine the SVD of the mean-centered covariance matrix of the (training)

dataset of face images (all front facing) – i.e., perform PCA. We only retain the

eigenvectors associated with the largest eigenvalues (usually ~100 or so).

(2) The eigenvectors produced from SVD form a basis set of for the training data.

(3) For facial recognition – given a test datum (i.e., new face image); we project this

image into the eigenspace spanned by the basis set. From the weights produced by

this projection, we compare the weights (wrt basis set) of all training images; the

nearest neighbor (per L2, etc.) of the test image in the training set corresponds with

the recognized face.

Facial Recognition: EigenFace

https://sites.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf

• In more detail:

Training dataset

Nearest neighbor

training image

(in Eigenspace)

1 T TC
N

= → =C BB VDV

1 2 3, , ,..., kw w w w
1 2 3, , ,..., kw w w w

PCA

Test image

Basis set

Topic Review:

Boosting and Adaboost

Model Combination Schemes: Boosting

• With boosting, we actively try to generate complementary base-learners by training the

learners sequentially, so that the next learner trains on the mistakes of the previous

learners.

• Boosting combines complementary weak learners (meaning their accuracy is above

chance, but they are nonetheless relatively inexpensive to train).

“Intro to Boosting”: https://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf

Model Combination Schemes: Boosting
• As a basic schematic for boosting, consider a boosting algorithm (this is how the original 1990 Schapire

paper worked) that combines three weak learners to generate a strong learner.

• Given a training set, we randomly partition it into three subsets: X1, X2 and X3; use X1 to train d1. Then

take X2 and feed it to d1. Next, we use every instance misclassified by d1 in combination with many

instances on which d1 is correct from X2, and together form the training set for d2.

• Lastly, we take X3 and feed it to d1 and d2; the instances on which d1 and d2 disagree form the training

set of d3.

(*) During testing, we take a datum and give it to d1 and d2; if they agree this is the prediction; otherwise,

the response of d3 is taken as the output.

Model Combination Schemes: AdaBoost

• A very popular boosting method known as AdaBoost* (short for adaptive boosting) was

developed by Freund and Schapire in 1996 (later won the Gödel prize).

(*) Adaboost uses the same training set over and over and thus the data set need not be

large, but the classifiers should be simple so that they do no overfit. AdaBoost can also

combine an arbitrary number of base learners – not just three.

(*) Adaboost combines different weak learners (i.e. hypotheses), where the training error

is close but less than 50%, to produce a strong learner (i.e. with training error close to

zero).

*https://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf

Given examples S and learning algorithm L, with | S | = N

• Initialize probability distribution over examples w1(i) = 1/N .

• Repeatedly run L on training sets St S to produce h1, h2, ... , hK.

– At each step, derive St from S by choosing examples

probabilistically according to probability distribution wt . Use

St to learn ht.

• At each step, derive wt + 1 by giving more probability to examples

that were misclassified at step t.

• The final ensemble classifier H is a weighted sum of the ht’s, with

each weight being a function of the corresponding ht’s error on its

training set.

AdaBoost: Algorithm Sketch

• Given S = {(x1, y1), ..., (xN, yN)} where x X, yi {+1, −1}

• Initialize w1(i) = 1/N. (Uniform distribution over data)

AdaBoost: Algorithm

• For t = 1, ..., K:

– Select new training set St from S with replacement, according to wt

– Train L on St to obtain hypothesis ht

– Compute the training error t of ht on S :

– Compute coefficient

et = wt

j=1

N

å (j) d(y j ¹ ht (x j)) , where

d(y j ¹ ht (x j)) =
1 if y j ¹ ht (x j)

0 otherwise

ì
í
ï

îï

 −
=

t

t
t

1
ln

2

1

AdaBoost: Algorithm

– Compute new weights on data:

For i = 1 to N

where Zt is a normalization factor chosen so that wt+1 will be a

probability distribution:

wt+1(i) =
wt (i) exp(-atyiht (xi))

Zt

Zt = wt (i) exp(-atyiht (xi))
i=1

N

å

AdaBoost: Algorithm

• At the end of K iterations of this algorithm, we have

h1, h2, . . . , hK

We also have

1, 2, . . . ,K, where

• Ensemble classifier:

• Note that hypotheses with higher accuracy on their training sets are

weighted more strongly.

H (x) = sgn at

t=1

K

å ht (x)

 −
=

t

t
t

1
ln

2

1

AdaBoost: Algorithm

where { x1, x2, x3, x4 } are class +1

{x5, x6, x7, x8 } are class −1

t = 1 :

w1 = {1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8}

S1 = {x1, x2, x2, x5, x5, x6, x7, x8} (notice some repeats)

Train classifier on S1 to get h1

Run h1 on S. Suppose classifications are: {1, −1, −1, −1, −1, −1, −1, −1}

• Calculate error: e1 = wt
j=1

N

å (j)d(y j ¹ ht (x j)) =
1

8
3() = .375

S = x1,x2,x3,x4,x5,x6,x7,x8,{ }

AdaBoost: Data Example

where { x1, x2, x3, x4 } are class +1

{x5, x6, x7, x8 } are class −1

t = 1 :

w1 = {1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8}

S1 = {x1, x2, x2, x5, x5, x6, x7, x8} (notice some repeats)

Train classifier on S1 to get h1

Run h1 on S. Suppose classifications are: {1, −1, −1, −1, −1, −1, −1, −1}

• Calculate error: e1 = wt
j=1

N

å (j)d(y j ¹ ht (x j)) = ?

S = x1,x2,x3,x4,x5,x6,x7,x8,{ }

AdaBoost: Data Example

Calculate ’s:

Calculate new w’s:

a1 =
1

2
ln

1-et
et

æ

è
ç

ö

ø
÷ =

wt+1(i) =
wt (i) exp(-atyiht (xi))

Zt

ŵ2 (1) =

ŵ2 (2) =

ŵ2 (3) =

ŵ2 (4) =

ŵ2 (5) =

ŵ2 (6) =

ŵ2 (7) =

ŵ2 (8) =

Z1 = ŵ2

i

å (i) =

w2 (1) =

w2 (2) =

w2 (3) =

w2 (4) =

w2 (5) =

w2 (6) =

w2 (7) =

w2 (8) =

Calculate ’s:

Calculate new w’s:

a1 =
1

2
ln

1-e t
e t

æ

è
ç

ö

ø
÷ = .255

wt+1(i) =
wt (i) exp(-atyiht (xi))

Zt

ŵ2 (1) = (.125)exp(-.255(1)(1)) = 0.1

ŵ2 (2) = (.125)exp(-.255(1)(-1)) = 0.16

ŵ2 (3) = (.125)exp(-.255(1)(-1)) = 0.16

ŵ2 (4) = (.125)exp(-.255(1)(-1)) = 0.16

ŵ2 (5) = (.125)exp(-.255(-1)(-1)) = 0.1

ŵ2 (6) = (.125)exp(-.255(-1)(-1)) = 0.1

ŵ2 (7) = (.125)exp(-.255(-1)(-1)) = 0.1

ŵ2 (8) = (.125)exp(-.255(-1)(-1)) = 0.1

Z1 = ŵ2

i

å (i) = .98

w2 (1) = 0.1/ .98 = 0.102

w2 (2) = 0.163

w2 (3) = 0.163

w2 (4) = 0.163

w2 (5) = 0.102

w2 (6) = 0.102

w2 (7) = 0.102

w2 (8) = 0.102

t = 2

w2 = {0.102, 0.163, 0.163, 0.163, 0.102, 0.102, 0.102, 0.102}

S2 = {x1, x2, x2, x3, x4, x4, x7, x8}

Learn classifier on S2 to get h2

Run h2 on S. Suppose classifications are: {1, 1, 1, 1, 1, 1, 1, 1}

Calculate error:

e2 = wt

j=1

N

å (j)d(y j ¹ ht (x j))

= (.102)´ 4 = 0.408

Calculate ’s:

Calculate w’s:

a2 =
1

2
ln

1-e t
e t

æ

è
ç

ö

ø
÷ = .186

wt+1(i) =
wt (i) exp(-atyiht (xi))

Zt

ŵ3(1) = (.102)exp(-.186(1)(1)) = 0.08

ŵ3(2) = (.163)exp(-.186(1)(1)) = 0.135

ŵ3(3) = (.163)exp(-.186(1)(1)) = 0.135

ŵ3(4) = (.163)exp(-.186(1)(1)) = 0.135

ŵ3(5) = (.102)exp(-.186(-1)(1)) = 0.122

ŵ3(6) = (.102)exp(-.186(-1)(1)) = 0.122

ŵ3(7) = (.102)exp(-.186(-1)(1)) = 0.122

ŵ3(8) = (.102)exp(-.186(-1)(1)) = 0.122

Z2 = ŵ2

i

å (i) = .973

w3(1) = 0.08 /.973 = 0.082

w3(2) = 0.139

w3(3) = 0.139

w3(4) = 0.139

w3(5) = 0.125

w3(6) = 0.125

w3(7) = 0.125

w3(8) = 0.125

t =3

w3 = {0.082, 0.139, 0.139, 0.139, 0.125, 0.125, 0.125, 0.125}

S3 = {x2, x3, x3, x3, x5, x6, x7, x8}

Run classifier on S3 to get h3

Run h3 on S. Suppose classifications are: {1, 1, −1, 1, −1, −1, 1, −1}

Calculate error:

e3 = wt

j=1

N

å (i)d(y j ¹ ht (x j))

= (.139)+ (.125) = 0.264

• Calculate ’s:

• Ensemble classifier:

a3 =
1

2
ln

1-e t
e t

æ

è
ç

ö

ø
÷ = .512

H (x) = sgn at

t=1

K

å ht (x)

= sgn .255´h1(x)+.186 ´h2 (x)+.512 ´h3(x)()

H (x) = sgn at

t=1

T

å ht (x)

= sgn .255´h1(x)+.186 ´h2 (x)+.512 ´h3(x)()

Exampl

e

Actual

class

h1 h2 h3

x1 1 1 1 1

x2 1 −1 1 1

x3 1 −1 1 −1

x4 1 1 1 1

x5 −1 −1 1 −1

x6 −1 −1 1 −1

x7 −1 1 1 1

x8 −1 −1 1 −1

S = x1,x2,x3,x4,x5,x6,x7,x8,{ }

where { x1, x2, x3, x4 } are class

+1

{x5, x6, x7, x8 } are class −1

Recall the training set:

• Given S = {(x1, y1), ..., (xN, yN)} where x X, yi {+1, −1}

• Initialize w1(i) = 1/N. (Uniform distribution over data)

• For t = 1, ..., K:

1. Select new training set St from S with replacement, according to wt

1. Train L on St to obtain hypothesis ht

1. Compute the training error t of ht on S :

If εt > 0.5, abandon ht and go to step 1

et = wt

j=1

N

å (j) d(y j ¹ ht (x j)) ,

where d(y j ¹ ht (x j)) =
1 if y j ¹ ht (x j)

0 otherwise

ì
í
ï

îï

AdaBoost: Summary

4. Compute coefficient:

5. Compute new weights on data:

For i = 1 to N

where Zt is a normalization factor chosen so that wt+1 will be a probability distribution:

• At the end of K iterations of this algorithm, we have h1, h2, . . . , hK , and 1, 2, . . . ,K

• Ensemble classifier:

wt+1(i) =
wt (i) exp(-atyiht (xi))

Zt

Zt = wt (i) exp(-atyiht (xi))
i=1

N

å

H (x) = sgn at

t=1

K

å ht (x)

at =
1

2
ln

1-et
et

æ

è
ç

ö

ø
÷

AdaBoost: Overview
• Adaboost seems to reduce both bias and variance and it does not seem to overfit for increasing

K.

Why does it work?

Schapire et al. explain that the success of AdaBoost is due to its property of increase the margin. Recall

from SVMs, that if the margin increases, the training instances are better separated, and an error

is less likely.

AdaBoost: Overview

•In AdaBoost, although different base-learners have slightly different training sets, this

difference is not left to chance as in bagging, but is a function of the error of the

previous base-learner. The actual performance of boosting on a particular problem is

naturally dependent on the data and base-learner.

• In order to be effective, there should be enough training data and the base-learner

should be weak but not too weak, as boosting is particularly susceptible to noise and

outliers (since boosting focuses on examples are hard to classify).

• For this reason, boosting can be used to identify outliers and noise in a dataset.

(*) AdaBoost has also been generalized to regression.

Case Study of Adaboost:

Viola-Jones Face Detection Algorithm

• P. Viola and M. J. Jones, Robust real-time face detection.* International Journal of

Computer Vision, 2004.

• First face-detection algorithm to work well in real-time (e.g., on digital cameras); it

has been very influential in computer vision (16k+ citations); makes use of

Adaboost.

*https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf

Viola:

MIT/Amazon

Viola-Jones: Training Data

• Positive: Faces scaled and

aligned to a base resolution

of 24 by 24 pixels.

• Negative: Much larger

number of non-faces.

Features

From http://makematics.com/research/viola-jones/

• Use rectangle features at multiple sizes and location

in an image subwindow (candidate face).

For each feature fj :

f j = intensity(pixel b)
bÎblack pixels

å - intensity(pixel w)
wÎwhite pixels

å

Possible number of features per 24 x 24 pixel subwindow > 180,000.

Detecting faces

Given a new image:

• Scan image using subwindows at all locations and at different scales

• For each subwindow, compute features and send them to an ensemble

classifier (learned via boosting). If classifier is positive (“face”), then

detect a face at this location and scale.

• Preprocessing: Viola & Jones use a clever pre-processing step that

allows the rectangular features to be computed very quickly. (See their

paper for description.)

• They use a variant of AdaBoost to both select a small set of features

and train the classifier.

Viola-Jones Face Detection Algorithm

Base (“weak) classifiers:

For each feature fj ,

where x is a 24 x 24-pixel subwindow of an image, θj is the threshold that

best separates the data using feature fj , and pj is either -1 or 1.

Such features are called decision stumps.

hj =
1 if p j f j (x) < p jq j

-1 otherwise

ì
í
ï

îï

ü
ý
ï

þï

Viola-Jones Face Detection Algorithm

Boosting algorithm:

Viola-Jones Face Detection Algorithm

Boosting algorithm:

Viola-Jones Face Detection Algorithm

where at = ln
1

bt Note that only the top T features are used.

Viola-Jones Face Detection Algorithm

Boosting algorithm:

https://www.youtube.com/watch?v=k3bJUP0ct08

https://www.youtube.com/watch?v=c0twACIJYm8

https://www.youtube.com/watch?v=k3bJUP0ct08

