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Insights from the Visual System
• Vision is our most acute and also our most studied sense. From the inception of  Computer Vision (CV), the 

organization of  the visual cortex has served as the inspiration for the most successfully deep learning 

networks. 

• What we see through our eyes is only a very small part of  the world around us. At any given time, our eyes 

are sampling only a fraction of  the surrounding light field. Even within this fraction, most of  the resolution is 

dedicated to the center of  gaze which has the highest concentration of ganglion cells.

• In the eye, a tiny pit located in the macula of  the retina that provides the clearest vision of  all. Only in 

the fovea are the layers of  the retina spread aside to let light fall directly on the cones, the cells that give the 

sharpest image.

• Information processing in the visual system starts in the retina, where photo receptors convert light into 

electrical signals. There are generally two types of  ganglion cells in the retina (see image), on-center and off-

center.



Insights from the Visual System

• From the retina, this sensory information travels the lateral geniculate nucleus (LGN) to the visual cortex (V1). V1 

is known to process simple visual forms, such as edges and corners (see next slides). 

• V1 transmits information to two primary neural pathways, called the ventral stream and the dorsal stream. 

• The ventral stream begins with V1, goes through visual area V2, then through visual area V4 (processes 

intermediate visual forms, feature groups, etc.) and to the inferior temporal cortex (high-level object descriptions). 

The ventral stream, sometimes called the "What Pathway", is associated with form recognition and object 

representation. It is also associated with storage of  long-term memory. 

• The dorsal stream begins with V1, goes through Visual area V2, then to the dorsomedial area (DM/V6) and medial 

temporal area (MT/V5) and to the posterior parietal cortex. The dorsal stream, sometimes called the "Where 

Pathway" or "How Pathway", is associated with motion, representation of  object locations, and control of  the eyes 

and arms.



Insights from the Visual System

• In perhaps the most influential set of  experiments in the history of  CV, David Hubel and Torsten Wiesel (Nobel 

prize recipients in 1981) laid the groundwork for understanding the hierarchical nature of  the mammalian visual 

system by demonstrating how complex representations of  visual information are built from simple cells in the 

primary visual cortex. 

• In one experiment (1959) they inserted a microelectrode into the primary visual cortex of  an anesthetized cat. They 

then projected patterns of  light and dark on a screen in front of  the cat. They found that some neurons fired rapidly 

when presented with lines at one angle, while others responded best to another angle. Some of  these neurons 

responded to light patterns and dark patterns differently. Hubel and Wiesel called these neurons “simple cells.” Still 

other neurons, which they termed complex cells, detected edges regardless of  where they were placed in the 

receptive field of  the neuron.

• The visual information relayed to V1 is not coded in terms of  spatial (or optical) imagery but rather are better 

described as edge detection. In this way, each cortical neuron in the visual cortex can be thought of  as a visual 

feature detector, which only becomes active when it receives inputs above a certain threshold for its preferred feature 

in a particular patch of  the visual field. 



Brief  History of  CV
• When CV began in the early 1970s, it was initially viewed as the visual perception 

component of  an ambitious agenda to mimic human intelligence and to endow robots 

with intelligent behavior.

• At the time, it was believed by some of  the early pioneers in AI and robotics than solving 

the “visual input” problem would be an easy step along the path to solving AGI. 

• Famously, Minsky at MIT asked his undergraduate student to “spend the summer linking 

a camera to a computer and getting the compute to describe what it saw” – five decades 

later, we are still working on this problem. 



Brief  History of  CV

• 1980s: More attention on mathematical rigor and quantitative image and scene analysis. 

Development of  image pyramids; stereo image analysis; Canny edge detection; snakes; 

incorporation of  Markov Random Fields; Kalman filters.

• 1970s: Inception of  CV; high-level attempt to recover 3D structure of  the world 

from images as steppingstone toward systems of  visual understanding; early 

codification of  optical flow, edge extraction, motion estimation, polyhedral 

modeling. 



Brief  History of  CV

• 2000s: Increased interplay between CV and graphics; image stitching; computational 

photography algorithms (HDR image capture); texture synthesis; BoW in CV (representation of  

visual features as words); real-time face detection (Viola-Jones); interactive segmentation (graph 

cuts). 

• 1990s: Physics-based vision, optical flow methods; multi-view stereo algorithms, 

including stereo correspondence; tracking algorithms (particle filters); image 

segmentation (normalized cuts); facial recognition, statistical learning (Eigenface); 

feature extraction, invariance (SIFT); invention of  CNNs.  



• 2010s: Dominance of  DL in CV (AlexNet); efficient training of  very deep DL models (ResNet) 

introduction of  large-scale image datasets (ImageNet); incremental development of  CNN architectures 

(VGG, Inception); generative models (GANs); real-time localization (YOLO); object localization (R-CNN); 

pixel-level segmentation (Mask R-CNN); CNN architecture optimization (NAS); emergence of  compact DL 

models (SqueezeNet); computational creativity (GauGAN); refined hierarchical models (CapsNet); graph 

convolution nets (GCNs). 

Brief  History of  CV

http://nvidia-research-mingyuliu.com/gaugan



• Image data are almost always preprocessed prior to ingestion into a model; such preprocessing steps can 

benefit feature extraction, model performance/convergence, etc. 

• The general goal of  preprocessing is to remove as much unwanted variation in the data as possible while 

retaining the aspects of  the image that are critical to the task at hand. Preprocessing must be applied with 

care. 

• Note that the choice of  preprocessing technique(s) can have a large influence on the performance of  

a CV algorithm. Many CV algorithms are sensitive to the application of  preprocessing; oftentimes 

preprocessing improves performance and/or the stability of  various CV algorithms. 

Pre-Processing



Image normalization

There are many related techniques for image normalization. The (2) most common being: 

Where 𝐼𝑚𝑎𝑥 𝐼𝑚𝑖𝑛 denote the maximum(minimum) pixel intensity in the image; (newMin, newMax) denotes 

the pixel intensity range of  the transformed image. 

Image standardization (also: whitening)

Image standardization is applied by subtracting the mean intensity and dividing by the standard deviation of  

pixel intensities (wrt each channel for an RGB image):

• Standardization helps ensure that each pixel has a similar data distribution. 
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Histogram Equalization

Histogram equalization (HA) is used to modify the statistics of  the intensity values so that all of their 

moments take predefined values. HA forces the distribution of  pixel intensities to be flat. 

• HA is useful in images with backgrounds and foregrounds that are both bright or dark. In medical imaging, 

this can lead to better views of, say, bone structure in x-rays, and to better detail in over and under-exposed 

images. (+) HA is computationally cheap; (-) HA is indiscriminate, may increase signal/amplify noise. 

Pre-Processing



Histogram Equalization

(1) Compute histogram of  the original intensities h (for 8-bit image k here ranges over {0,1,2,…, 𝐾 = 255}):

where δ ∙ denotes the Dirac delta function (i.e., when argument is zero, δ= 1; otherwise δ= 0); I and 𝐽 are 

the image dimensions (check that you understand this is simply a mathematical formulation of  the histogram 

of  a greyscale image).  

Pre-Processing

1 1

I J

k ij

i j

h x k
= =

 = − 



Histogram Equalization

(1) Compute histogram of  the original intensities h (for 8-bit image k here ranges over {0,1,2,…, 𝐾 = 255}):

where δ ∙ denotes the Dirac delta function (i.e., when argument is zero, δ= 1; otherwise δ= 0); I and 𝐽 are 

the image dimensions (check that you understand this is simply a mathematical formulation of  the histogram 

of  a greyscale image).  

(2) Determine the cumulative proportion c of  pixels that are less than or each to each intensity level: 
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Histogram Equalization

(1) Compute histogram of  the original intensities h (for 8-bit image k here ranges over {0,1,2,…, 𝐾 = 255}):

where δ ∙ denotes the Dirac delta function (i.e., when argument is zero, δ= 1; otherwise δ= 0); I and 𝐽 are 

the image dimensions (check that you understand this is simply a mathematical formulation of  the histogram 

of  a greyscale image).  

(2) Determine the cumulative proportion c of  pixels that are less than or each to each intensity level: 

(3) Finally, use the cumulative histogram as a look up table to compute the transformed value so that: 

• For instance, if  𝑥𝑖𝑗 = 90 (pixel has intensity 90), and suppose 𝑐90 = 0.29, then the transformed pixel value 

would be: 𝐾 ∙ 𝑐𝑥𝑖𝑗 = 255 ∙ 0.29 = 74.
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    (where  is the max intensity, e.g., 255)
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Convolution

• A convolution is a mathematical operation of  two functions (e.g., 𝑓 and 𝑔) that produces

A third function: (𝑓 ∗ 𝑔) that expresses how the shape of  one is modified by the other. 

• More formally, the convolution (in continuous domains) is defined as the integral of  the product of  the 

two functions; one can conceptualize 𝑓 as a signal and 𝑔 as a “windowed” sample, i.e., filter (cf. signal 

processing):

Notice that if  𝑓(𝑡) is a unit impulse δ(𝑡), we get:                            . The inverse of  the 

convolution operation is known as deconvolution. 

Convolution and Feature Extraction
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Convolution

• A convolution is a mathematical operation of  two functions (e.g., 𝑓 and 𝑔) that produces

A third function: (𝑓 ∗ 𝑔) that expresses how the shape of  one is modified by the other. 

• More formally, the convolution (in continuous domains) is defined as the integral of  the product of  the two 

functions; one can conceptualize 𝑓 as a signal and 𝑔 as a “windowed” sample, i.e., filter (cf. signal processing):

Notice that if  𝑓(𝑡) is a unit impulse δ(𝑡), we get:                            . The inverse of  the 

convolution operation is known as deconvolution. 

• At a high-level, one can think of  the resultant convolution waveform (𝑓 ∗ 𝑔) as the response signal when we 

sample 𝑓 using the filter 𝑔.

Convolution and Feature Extraction
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Convolution

• In CV, we primarily consider convolution operations in discrete domains. 

• Given an image X, with individual pixel intensities 𝑥𝑖𝑗 , the 2D convolution of  X with a filter 𝐹 with entries 

𝑓𝑚𝑛 where 𝑚 ∈ −𝑀, . . . , 𝑀 and n ∈ −𝑁,… ,𝑁 amounts to computing:

Convolution and Feature Extraction
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Convolution

• In CV, we primarily consider convolution operations in discrete domains. 

• Given an image X, with individual pixel intensities 𝑥𝑖𝑗 , the 2D convolution of  X with a filter 𝐹 with entries 

𝑓𝑚𝑛 where 𝑚 ∈ −𝑀, . . . , 𝑀 and n ∈ −𝑁,… ,𝑁 amounts to computing:

In the animation above, for instance, −𝑀, . . . , 𝑀 = −1,0,1 , and −𝑀, . . . , 𝑀 = −1,0,1 . (We deal with 

issues of  padding, stride, etc., later). 

• Here is a numerical example of  2D convolution: 
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Gaussian Filter 

• One can introduce common filter types with respect to the discrete convolution operation. 

Define the 2D Gaussian filter: 

Convolution and Feature Extraction
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Gaussian Filter 

• One can introduce common filter types with respect to the discrete convolution operation. 

Define the 2D Gaussian filter: 

• Here is an example of  discretized 5 ×5 Gaussian filter (σ= 1, with binning applied):

• Applying a Gaussian filter to an image has the effect of  reducing noise; oftentimes Gaussian filters are used 

in CV as a pre-processing step to enhance image structure at varying scales. Notice that because the Gaussian 

filter is isotropic it is not orientation-selective. 

Convolution and Feature Extraction
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Gaussian blur



Derivative of  Gaussian Filter 

• Just as one can use a Gaussian filter to blur an image and hence remove pixilation artifacts, the derivative of  

a Gaussian (DoG) filter can be used for basic edge detection. 

Consider the partial derivatives of  the Gaussian filter:  
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Derivative of  Gaussian Filter 

• Just as one can use a Gaussian filter to blur an image and hence remove pixilation artifacts, the derivative of  

a Gaussian (DoG) filter can be used for basic edge detection. 

Consider the partial derivatives of  the Gaussian filter:  

• On their own, the DoG filters: 𝒈𝑥 and 𝒈𝑦 provide vertical and horizontal edge detectors, respectively. 
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Derivative of  Gaussian Filter 

• On their own, the DoG filters: 𝒈𝑥 and 𝒈𝑦 provide vertical and horizontal edge detectors, respectively. 

• In combination, one can create a Sobel filter (edge detector), by defining the filter as: 

Convolution and Feature Extraction
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Laplacian Filter 

• The second derivative (i.e., the Laplacian operator) of  the Gaussian filter gives rise to the Laplacian filter, 

defined: 

Convolution and Feature Extraction
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Laplacian Filter 

• The second derivative (i.e., the Laplacian operator) of  the Gaussian filter gives rise to the Laplacian filter, 

defined: 

Computing each second partial derivative of  the Gaussian yields: 

Thus, 
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Laplacian Filter 

• The second derivative (i.e., the Laplacian operator) of  the Gaussian filter gives rise to the Laplacian filter, 

defined: 

Two commonly used (3 × 3) discrete variants of  the Laplacian filter are: 

• The Laplacian filter detects sudden intensity transitions in the image and highlights the edges; the Laplacian is 

therefore commonly used as an edge/feature detector (sometimes known as a “zero cross” feature detector). 

Note that the Laplacian filter is sensitive to noise – for this reason one typically applies a Gaussian blur prior to 

application of  the Laplacian operator. 
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Gabor Filters 

• Another common family of  filters, Gabor filters, are defined as a product of  Gaussian and sinusoid 

functions.  As such, Gabor filters are selective for both scale and orientation. 

Gabor filters are parametrized by the standard deviation σ of  the Gaussian, and the phase φ, orientation ω, and 

wavelength λ of  the sine wave:

• Notice that Gabor filters closely resemble the features discovered by Hubel and Wiesel to which “simple 

cells” in the visual cortex were responsive. 

Convolution and Feature Extraction

Image with bank of  Gabor filter 

activations shown 

(Left) Primitive filters “discovered” by AlexNet 

CNN architecture; notice the close resemblance with 

Gabor filters (Right)
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Canny Edge Detection 

• Canny edge detection (1986) is a classic edge detection algorithm know by all CV practitioners; it is still in 

wide use today. 

• At its core, Canny edge detection is an intuitive and relatively simple algorithm, following  (5) key steps: 

(1) We first apply a Gaussian filter to reduce noise in the input image. 

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123

https://ieeexplore.ieee.org/document/4767851

Canny Edge Detection

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123


Canny Edge Detection 

(2) Using the Sobel kernels, 𝒈𝑥 and 𝒈𝑦, we next calculate the magnitude and slope of  the input image gradient 

using: 

This process yields a gradient intensity map.  

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123

Canny Edge Detection
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Canny Edge Detection 

(3) Step (2) generates a general gradient intensity map – however, many of  the rendered contours are thick and 

often noisy. To help produce more distinct, thin contour lines, we apply a process called non-maximum 

suppression.

• The basic idea is a as follows: we use the gradient intensity map – specifically the angle θ(𝑥, 𝑦) generated 

from the Sobel kernel (notice that the angle θ yields a vector that “points” in the direction of  the highest 

gradation of  low intensity transitioning to high intensity). 

• The orientation of  an edge contour is orthogonal (generally) to the gradient angle θ. 

Canny Edge Detection



Canny Edge Detection 

(3) Non-maximum suppression (NMS)

• If  the current pixel under consideration for non-maximum suppression does not have the maximum gradient 

intensity compared to the neighboring pixels along the gradient vector induce by θ, this pixel is suppressed 

(i.e., we set the intensity to zero). The effect of  non-maximum suppression is to thin contour lines. 

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123

Canny Edge Detection

Pixel (i,j) is under consideration for NMS; looking at the 

neighboring pixels along the edge contour, we suppress 

the intensity of  pixel (i,j), because it is not the maximum 

along the edge contour.  



Canny Edge Detection 

(4) Double Thresholding 

• Following NMS, we apply double thresholding. In this step we are provided two parameters: (minValue, 

maxValue); using these parameters, we identify pixels as either: strong, weak or irrelevant as edge pixels. 

• Any pixel values above maxValue are identified as true edge pixels; intensities below minValue are discarded

from consideration as edge pixels. Finally, pixels falling in the range (minValue, maxValue) are considered 

“weak” and subject to further analysis using hysteresis (step 5). 

Canny Edge Detection

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123



Canny Edge Detection 

(5) Edge Refinement with Hysteresis 

• Finally,  the hysteresis consists of  transforming weak pixels into strong ones, if  and only if  at least one of  the 

pixels around the one being processed is designated strong. 

Canny Edge Detection

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123



Canny Edge Detection Summary 

Canny Edge Detection

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123

(1) Gaussian blur (2) Sobel transform (3) NMS (4) Double Thresholding (5) Hysteresis 
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• OpenCV (Intel, opencv.org) is a comprehensive, open-source library of  CV-related algorithms, available in 

C++ and Python. Functionality is broad, including image processing, feature extraction, segmentation, edge 

detection, video tracking, segmentation, image stitching, camera calibration, DNN-based algorithms, etc. 

• I highly recommend exploring some of  the OpenCV tutorials: 

https://docs.opencv.org/master/d9/df8/tutorial_root.html

• Every core algorithm mentioned in this lecture series (pre-processing, filter types, Canny, descriptors, 

segmentation, tracking, etc.) can be executed in OpenCV (often using just a few lines of  code!). 

Source code: https://github.com/opencv/opencv

OpenCV
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SIFT Descriptor
• Oftentimes, we are interested in identifying “interesting points” (i.e., keypoints) in an image; 

these points can be leveraged in edge detection, keypoint matching, image stitching, pose 

classification, object tracking, and related CV problems. 

• The scale invariant feature transform (SIFT, 1999) descriptor is a common, robust method used 

to detect and describe local features in images. SIFT descriptors are 128-dimensional vectors 

that summarize unique visual features within a patch centered at a keypoint pixel. 

https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf



SIFT Descriptor
(1) Scale-space extrema detection: In order for the SIFT detector to be scale-invariant, 

we first generate a scale-space of  an image. 

• The goal of  the scale-space calculation is to generate a multi-scale Laplacian 

(more accurately: an approximation of  the Laplacian) for the original image. 



SIFT Descriptor
(1) Scale-space extrema detection: In order for the SIFT detector to be scale-invariant, 

we first generate a scale-space of  an image. 

• The goal of  the scale-space calculation is to generate a multi-scale Laplacian 

(more accurately: an approximation of  the Laplacian) for the original image. 

• The first step toward this end is to convolve a Gaussian kernel at different scales with the 

input image. Concretely, we produce different “octaves”; within each octave we use 

different σ parameters to generate smoothing at different scales; we generate different 

octaves by halving the size of  the input image for each successive octave. 

• Next, we compute the difference of  Gaussians (for pairs in each octave); the difference 

of  Gaussians is a well-known approximation to the Laplacian of  an image. 



SIFT Descriptor
(1) Scale-space extrema detection: In order for the SIFT detector to be scale-invariant, 

we first generate a scale-space of  an image. 

• Then we determine a set of  candidate keypoints. One pixel in each image is compared 

with its 8 neighbors as well as the 9 pixels in the next scale and the 9 pixels in the previous 

scale; in this way, a total of  26 pixels are compared. If  the pixel under consideration is an 

extremum in relation to this set, it is designated as a candidate keypoint. 



SIFT Descriptor
(2) Keypoint Selection

• At each candidate keypoint, the authors determine whether the keypoint is a low-

contrast point, in which case it is rejected. To discard the keypoints with low contrast, we 

compute the second-order Taylor expansion at its local extremum ො𝑥; if  the intensity of  this 

pixel is less than a threshold value (0.3), it is discarded; for D(x,y,σ), the difference of  Gaussian 

space, compute: 

Low-contrast keypoint removal 



SIFT Descriptor
(3) Orientation Assignment: This is the key step in achieving invariance to rotation.  

• We compute the gradient magnitude m(x,y) and direction θ(x,y) with respect to the 

Gaussian-smoothed image L(x,y, σ) for a neighborhood of  36 points (x,y) surrounding the 

keypoint where σ is the scale identified with the keypoint:  

• From the histogram of  the orientations of  these 36 surrounding pixels, we assign an 

orientation for the keypoint (aligned with the maximum of  the orientation histogram). 

Next, rotate the gradient directions and locations relative to the keypoint orientation (this 

will make the SIFT detector invariant to rotations). 
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SIFT Descriptor
(4) Keypoint Descriptor: At this juncture we have identified keypoints in the image, along 

with their relative scale and orientation. 

• The final step is to compute the 128-dimensional keypoint descriptor. When defining this 

descriptor vector, we want it to be distinctive (i.e., specific to the particular keypoint), and 

invariant to changes in viewpoint and illumination. 

• Using a 16x16 window (divided into 4x4 sub-regions) of  rotated gradients (rotated relative to 

the keypoint orientation) we construct a histogram (using 8 bins, as shown) for each 4x4 

subregion. This yields a 4x4x8=128 dimensional SIFT feature vector. 

*Note that illumination invariance can be achieved by thresholding/normalizing this descriptor 

vector. 



SIFT Descriptor

SIFT Algorithm summary:

(1) Generate scale-space of  image using Gaussian smoothing for different σ and different 

image sizes; estimate Laplacian from this scale-space using difference of  Gaussians; 

determine keypoint candidate from local neighborhoods.

(2) Remove low-contrast candidates.

(3) Compute local gradients wrt keypoint; determine orientation of  keypoint.

(4) Generate keypoint descriptor: from 16x16 grid of  neighboring pixels, generate 8-bin 

histograms of  each 4x4 subregion (of  gradients rotated relative to keypoint 

orientation). 



SIFT Descriptor: Image Stitching
• Image descriptors (e.g., SIFT), are essential to many CV tasks, including image stitching, image 

retrieval, pose estimation, and general image feature extraction.

Image Stitching 

• Image stitching is the process of  combining multiple photographic images with overlapping fields of  view 

to produce a cohesive panorama image. 

• Using local image descriptors such as SIFT, one can perform keypoint matching between two images by 

simply identifying matches based on their nearest neighbors (i.e., L2 distance b/w descriptor vectors). 

Finally, we learn a linear transformation (called a Homography matrix in CV) which relates the mapping 

between two planes from a single point of  reference. 

*Note that there are many heuristics to reduce the instance of  false matchings in this setting, e.g., checking ratio of  closest 

distance with second closest distance, and rejecting based on a threshold criterion. 



SIFT Descriptor: Image Retrieval
Bag of  Visual Worlds (BoVW)

• Using a collection of  local descriptors (e.g., SIFT descriptors of  keypoints) of  an image, we can generate a 

“global” description of  an image, called a BoVW model. 

(1) Given a training set, for each image, we extract the set of  SIFT keypoint descriptors (notice that images 

can yield different numbers of  keypoints, but each will have an associated vector of  equal dimension). 

Each SIFT vector is of 128-dimensions



SIFT Descriptor: Image Retrieval
Bag of  Visual Worlds (BoVW)

• Using a collection of  local descriptors (e.g. SIFT descriptors of  keypoints) of  an image, we can generate a 

“global” description of  an image, called a BoVW model. 

(1) Given a training set, for each image, we extract the set of  SIFT keypoint descriptors (notice that images 

can yield different numbers of  keypoints, but each will have an associated vector of  equal dimension). 

(2) Collectively, we take all the SIFT keypoint descriptors and perform k-means clustering. The 

hyperparameter K (the number of  clusters) will represent out visual “vocabulary” size; each centroid 

corresponds with a visual “word” in the SIFT representation feature space. 

Each SIFT vector is of 128-dimensions

SIFT descriptors



SIFT Descriptor: Image Retrieval
Bag of  Visual Worlds (BoVW)
• Using a collection of  local descriptors (e.g., SIFT descriptors of  keypoints) of  an image, we can generate a 

“global” description of  an image, called a BoVW model. 

(3) For each training image we, create a histogram based on the visual vocabulary rendered by k-means in (2). 

This per image histogram denotes the frequency of  each word in the visual vocabulary  

SIFT descriptors



SIFT Descriptor: Image Retrieval
Bag of  Visual Worlds (BoVW)
• Using a collection of  local descriptors (e.g. SIFT descriptors of  keypoints) of  an image, we can generate a 

“global” description of  an image, called a BoVW model. 

(3) For each training image we, create a histogram based on the visual vocabulary render by k-means in (2). 

This per image histogram denotes the frequency of  each word in the visual vocabulary  

• Now, from this BoVW model, we can perform image retrieval. Given a query image, we generate its SIFT 

features, and then construct the histogram for this test image based on our previously identified visual vocabulary. 

Using a basic similarity measure with respect to this histogram (i.e., nearest-neighbor, L2-distance, etc.) we can 

generate similar images from the training set. 

*Notice that general image classification using hand-crafted features can be executed in a similar manner. 

SIFT descriptors

query image BoVW-based 

histogram

similarity 

measure

retrieved images 



HOG Descriptor
• Like the SIFT descriptor, the histogram of  oriented gradients (HOG) descriptor attempts to compactly 

represent salient features in an image. In general, The HOG descriptor  gives a more detailed characterization 

of  the spatial structure of  an image.

The HOG descriptor is simple to calculate: 

(1) First*, we apply the Sobel transformation to the input image. 

(2) Next, we divide the image (or image patch) uniformly into small cells (e.g., 8x8, 16x16 cells). Within each 

of  these cells each pixel now has an associated magnitude and direction (from the Sobel transformation). 

(3) We then “bin” the direction values of  each pixel in the cell using 9 bins (0, 20, 40, …, 160 – direction 

signs are ignored; this is known as an “unsigned” gradient).

*Generally, the calculation of  the HOG descriptor requires no pre-processing (due to block normalization step). 



HOG Descriptor
(1) First*, we apply the Sobel transformation to the input image. 

(2) Next, we divide the image (or image patch) uniformly into small cells (e.g. 8x8, 16x16 cells). Within each of  these cells each pixel 

now has an associated magnitude and direction (from the Sobel transformation). 

(3) We then “bin” the direction values of  each pixel in the cell using 9 bins (0, 20, 40, …, 160 – direction signs are ignored; this is 

known as an “unsigned” gradient).

(4) Finally, for robustness to lighting changes, we generate a normalized block descriptor by concatenating 

2x2 (usually, or 3x3) neighborhoods of  cells (then normalizing over this entire neighborhood); this yields the 

final HOG descriptor. 



HOG Descriptor: Object Localization
• We can develop an object localization algorithm using HOG descriptors in combination with a classifier 

model.  

• Suppose that we train a simple SVM (support vector machine) to classify cars vs non-cars based on the 

HOG descriptor of  an image patch. Which is to say, we train the SVM on a set of  HOG descriptors of  

image patches from our training set in order to differentiate cars from non-cars. 



HOG Descriptor: Object Localization
• We can develop an object localization algorithm using HOG descriptors in combination with a classifier 

model.  

• Suppose that we train a simple SVM (support vector machine) to classify cars vs non-cars based on the 

HOG descriptor of  an image patch. Which is to say, we train the SVM on a set of  HOG descriptors of  

image patches from our training set in order to differentiate cars from non-cars. 

• Using a simple “sliding window” approach  -- we extract patches over all regions in an image and compute 

their corresponding HOG descriptor. Each of  these HOG descriptors is fed into our trained SVM, rendering 

a “score map”. The maximum scores (above a threshold) are determined to be locations of  a car. 

HOG Descriptor SVM Score Map Localization



Video Tracking: Correlation Filter

• Filter- based trackers model the appearance of  objects using filters trained on example 

images. 

• The target is initially selected based on a small tracking window centered on the object in the 

first frame. The target is then tracked by correlating the filter over a search window in the 

next frame; the location corresponding to the maximum value in the correlation output 

indicates the new position of  the target. 

• When executed efficiently, correlation filter tracking can run in real-time, e.g., Minimum 

Output Sum of  Squared Error (MOSSE, 2010) tracker, which we review next. 



Video Tracking: Correlation Filter
MOSSE Tracker

• We wish to develop a computationally efficient method to define a robust correlation filter for 

object tracking. 

• To this end, we want to define a correlation filter 𝐻, satisfying: 

where G is the Fast Fourier Transform* (FFT) of  an idealized correlation output (e.g., a 

Gaussian peak), 𝐹 = 𝐹𝐹𝑇(𝑓) the input image patch and H = 𝐹𝐹𝑇(ℎ) of  the learned correlation 

filter; 𝐻∗ denotes the complex conjugate of  𝐻; ʘ denotes elementwise multiplication. 

• The Convolution Theorem** states that correlation is mathematically equivalent to 

convolution in the Fourier domain. 

*G F H=

*http://www.dsp-book.narod.ru/DSPMW/07.PDF

**https://www.sciencedirect.com/topics/engineering/convolution-theorem

FFT



Video Tracking: Correlation Filter
MOSSE Tracker

• To this end, we want to define a correlation filter 𝐻, satisfying: 

Let                       , a Gaussian correlation. 

*G F H=
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Video Tracking: Correlation Filter
MOSSE Tracker

• To this end, we want to define a correlation filter 𝐻, satisfying: 

Let                       , a Gaussian correlation. 

• A reasonable optimization criterion is: 

where we wish to minimize the distance between the idealized correlation output 𝐺𝑖 and the 

predicted correlation output using the learned filter 𝐻∗, namely: 𝐹𝑖ʘ𝐻
∗ ; note that the sum is 

performed over a training dataset of  images/patches. The solution to this optimization problem 

is the MOSSE tracker. 
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Video Tracking: Correlation Filter
MOSSE Tracker

• To this end, we want to define a correlation filter 𝐻, satisfying: 

Let                       , a Gaussian correlation. 

• A reasonable optimization criterion is: 

where we wish to minimize the distance between the idealized correlation output 𝐺𝑖 and the 

predicted correlation output using the learned filter 𝐻∗, namely: 𝐹𝑖ʘ𝐻
∗ ; note that the sum is 

performed over a training dataset of  images/patches. The solution to this optimization problem 

is the MOSSE tracker. 

• The authors show that a closed form solution is given by:

where the numerator represents the correlation between the input and the desired output, and 

the denominator is the energy spectrum of  the input. 

*G F H=
2 2

2
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Video Tracking: Correlation Filter
MOSSE Tracker

• In practice, one usually extracts several crops of  the object of  interest from the first several 

frames of  a video clip  (or at minimum – from the first frame); this gives us our training set {Fi}

• Using a Gaussian filter for Gi, we calculate the MOSSE correlation filter: 
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*
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Video Tracking: Correlation Filter
MOSSE Tracker

• In practice, one usually extracts several crops of  the object of  interest from the first several 

frames of  a video clip  (or at minimum – from the first frame); this gives us our training set {Fi}

• Using a Gaussian filter for Gi, we calculate the MOSSE correlation filter: 

• The target is then tracked by correlating the filter over a search window in the next frame; 

the location corresponding to the maximum value in the correlation output indicates the new 

position of  the target.

*

*
*
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i
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𝑓1

Frame 1 of  video

𝑔𝑖

1 1*G F INVFFT→

2 2*G F INVFFT→



Video Tracking: Correlation Filter
MOSSE Tracker

• During tracking, a target object can often change appearance by changing rotation, scale, 

undergoing illumination changes, deforming etc. Therefore, filters to need to quickly adapt in 

order to follow objects; the authors apply a running average for this purpose; for the ith video 

frame:

where η is a learning rate that gauges the importance of  the previous frames. 

( )
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Review Topic:

k-Means



• k-means is a very popular (and simple) clustering algorithm used in ML 

and data science. 

• k-means clustering aims to partition n observations into k clusters in 

which each observation belongs to the cluster with the nearest mean, 

serving as a prototype of  the cluster. This results in a partitioning of  the 

data space into Voronoi cells. 

k-Means 

Vornoi

Tessellation; 20 

points and their 

Voroni cells. 



• Given a set of  observations (x1, x2, …, xn), where each observation is 

a d-dimensional real vector, k-means clustering aims to partition the n 

observations into k (≤ n) sets S={S1, S2, …, Sk} so as to minimize 

the within-cluster sum of  squares (WCSS). 

k-Means 



• Given a set of  observations (x1, x2, …, xn), where each observation is 

a d-dimensional real vector, k-means clustering endeavors to partition 

the n observations into k (≤ n) sets S={S1, S2, …, Sk} so as to

minimize the within-cluster sum of  squares (WCSS). 

• Formally, the objective is to find: 

where μi is the mean of  cluster Si. 

k-Means 

2

1

arg min arg min Var( )
i i

k

i i i

i x S x S

S S
=  

− = 
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• The algorithm itself  works by iterative refinement, and is a variant of  a 

more general algorithm, known as EM (expectation-maximization). 

• Given an initial set of  k means 𝑚1
(1)
, … ,𝑚𝑘

(1)
(the subscript is the cluster 

identification, while superscript is the iteration number) k-means alternates 

between the following (2) steps:

k-Means 



• The algorithm itself  works by iterative refinement, and is a variant of  a 

more general algorithm, known as EM (expectation-maximization). 

• Given an initial set of  k means 𝑚1
(1)
, … ,𝑚𝑘

(1)
(the subscript is the cluster 

identification, while superscript is the iteration number) k-means alternates 

between the following (2) steps:

(I) Assignment Step (i.e., the expectation step): 

Assign each observation to the cluster whose mean has the least squared   

Euclidean distance, this is intuitively the "nearest" mean. Mathematically, this 

means partitioning the observations according to the Voroni tessellation 

generated by the means. 

Where each datum xp is assigned to exactly one cluster, S(t).

k-Means 
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• Given an initial set of  k means 𝑚1
(1)
, … ,𝑚𝑘

(1)
k-means alternates between 

the following (2) steps:

(I) Assignment Step (i.e., the expectation step): 

Assign each observation to the cluster whose mean has the least squared   

Euclidean distance, this is intuitively the "nearest" mean. Mathematically, this 

means partitioning the observations according to the Voroni tessellation 

generated by the means. 

(II)  Update Step (i.e., the parameter maximization step): 

• Calculate the new means to be the centroids of  the observations in the 

new clusters.

• The algorithm has converged when the assignments no longer change. 

There is no guarantee that the optimum is found using this algorithm.

k-Means 
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(I) Assignment Step (i.e., the expectation step): 

(II)  Update Step (i.e., the parameter maximization step): 

k-Means 

( ) ( ) ( ) 
2 2

: ,1
t t t

i p p i p jS x x m x m j j k= −  −   

( )

( )
( )

1 1

t
j i

t

i jt
x Si

m x
S

+



= 



Example:  Image segmentation by 

k-Means clustering



Review Topic: 

GMMs



• A commonly used soft clustering model is the GMM (Gaussian mixture model); with 

GMMs, we assume (a priori) that the clusters resemble tightly-packed balls (i.e., Gaussian 

distributions).

GMMs



GMMs: Gaussian Distribution Review



GMMs: Gaussian Distribution Review



Main ideas for clustering using GMM: 

• Initialization: given a data set, fix k, the number of  clusters; initialize the mean (μ) and 

covariance matrices (Σ) for the k Gaussian clusters. 

• Assign the data points to the k clusters (using a soft clustering)    (assignment step/E-

step) 

• Update the parameters (i.e. μ, Σ) for each of  the clusters.    (update step/M-step) 

…repeat until stopping condition/convergence 

GMMs



Main ideas for clustering using GMM: 

• Initialization: given a data set, fix k, the number of  clusters; initialize the mean (μ) and 

covariance matrices (Σ) for the k Gaussian clusters. 

• Assign the data points to the k clusters (using a soft clustering)    (assignment step/E-

step) 

• Update the parameters (i.e. μ, Σ) and prior class estimates (P(Ci|x) (for each of  the 

clusters.    (update step/M-step) 

…repeat until stopping condition/convergence 

What makes this problem challenging? There are, ostensibly, many unknowns! 

• Strictly speaking, we don’t know the cluster assignments nor any of  the Gaussian 

distribution parameters.  

GMMs



What makes this problem challenging? There are, ostensibly, many unknowns! 

• Strictly speaking, we don’t know the cluster assignments nor any of  the Gaussian 

distribution parameters.  

How can we simplify things? 

A nice trick…Solve each subproblem separately! 
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What makes this problem challenging? There are, ostensibly, many unknowns! 

• Strictly speaking, we don’t know the cluster assignments nor any of  the Gaussian 

distribution parameters.  

How can we simplify things? 

A nice trick…Solve each subproblem separately! 

(1) For instance, to find the optimal class assignments for each datum, use the current 

approximations for the Gaussian parameters distributions (i.e. treat μ and Σ as known 

for each cluster, as well as each class prior) and compute the class posterior: P(Ci|x) 

using Bayes’ Rule. 

(2) Conversely, to find the optimal estimates for μ and Σ for each cluster, in addition to 

the class priors, use the current (soft) class posterior assignments and compute the 

MLE. 

GMMs



(1) For instance, to find the optimal class assignments for each datum, use the current 

approximations for the Gaussian parameters distributions (i.e. treat μ and Σ as known 

for each cluster, as well as each class prior) and compute the class posterior: P(Ci|x) 

using Bayes’ Rule.  (assignment step/E-step)

• Given the current estimates of  both the parameters of  each Gaussian cluster: 

(μ1,Σ1),…,(μk,Σk), and the prior for each cluster: P(C1)=π1,…, P(Ck)=πk, we compute the 

class posterior P(Ci) using Bayes’ Rule as follows: 
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(1) For instance, to find the optimal class assignments for each datum, use the current 

approximations for the Gaussian parameters distributions (i.e. treat μ and Σ as known 

for each cluster, as well as each class prior) and compute the class posterior: P(Ci|x) 

using Bayes’ Rule. (assignment step/E-step)

• Given the current estimates of  both the parameters of  each Gaussian cluster: 

(μ1,Σ1),…,(μk,Σk), and the prior for each cluster: P(C1)=π1,…, P(Ck)=πk, we compute the 

class posterior P(Ci) using Bayes’ Rule as follows: 
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(2) To find the optimal estimates for μ and Σ for each cluster, in addition to the class 

priors, use the current (soft) class posterior assignments and compute the MLE. (update 

step/M-step) 

• Observe that if  we knew which points belong to, say cluster i, for a hard clustering, we 

can use the standard MLE estimates (from beginning statistics) to estimate the Gaussian 

parameters (μ and Σ) for each cluster, in addition to the cluster priors (e.g., P(Ci)). These 

standard parameter estimates are given as follows: 

cluster prior             cluster mean                       cluster covariance matrix 

where above, ni denotes the size of  the ith cluster. 
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(2) To find the optimal estimates for μ and Σ for each cluster, in addition to the class 

priors, use the current (soft) class posterior assignments and compute the MLE. (update 

step/M-step) 

• Observe that if  we knew which points belong to, say cluster i, for a hard clustering, we 

can use the standard MLE estimates (from beginning statistics) to estimate the Gaussian 

parameters (μ and Σ) for each cluster, in addition to the cluster priors (e.g. P(Ci). These 

standard parameter estimates are given as follows: 

cluster prior             cluster mean                       cluster covariance matrix 

where above, ni denotes the size of  the ith cluster. 

(*) However, because we are executing a soft clustering, these parameter update formulae 

must incorporate the class posteriors: P(Ci|x), for each i=1,…,k and for each data point x, 

respectively. 

GMMs: MLE Parameter Estimates
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(2) To find the optimal estimates for μ and Σ for each cluster, in addition to the class 

priors, use the current (soft) class posterior assignments and compute the MLE. (update 

step/M-step) 

• Here are the parameter estimate formulas, updated to account for the soft clustering 

induced by the class posteriors: P(Ci|x), for each i=1,…,k, for each data point:

cluster prior modified formula                           cluster mean modified formula                       

cluster covariance matrix modified formula 

GMMs: Modified Parameter Estimates
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Main ideas for clustering using GMM: 

• Initialization: given a data set, fix k, the number of  clusters; initialize the mean (μ) and 

covariance matrices (Σ) for the k Gaussian clusters, and cluster priors (P(Ci)).

(I) Assign the data points to the k clusters (using a soft clustering)    (assignment step/E-

step) 

(II) Update the parameters (i.e. μ, Σ) for each of  the clusters, including the cluster priors.    

(update step/M-step) 

…repeat until stopping condition/convergence 

GMMs: Summary 
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• Demo: https://lukapopijac.github.io/gaussian-mixture-model/

GMMs



GMMs: Image Segmentation



GMMs: Image Segmentation

http://scipy-lectures.org/advanced/image_processing/auto_examples/plot_GMM.html



Review Topic:

Max Flow Min Cut

Ford-Fulkerson Algorithm



Flow network

• Abstraction for material flowing through the edges.

• G = (V, E) = directed graph, no parallel edges.

• Two distinguished nodes:  s = source, t = sink.

• c(e) = capacity of  edge e.
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Minimum Cut Problem



• Def.  An s-t cut is a partition (A, B) of  V with s  A and t  B.

• Def. The capacity of  a cut (A, B) is:
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cap( A, B)  =  c(e)
e out of A



Minimum Cut Problem
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• Def.  An s-t cut is a partition (A, B) of  V with s  A and t  B.

• Def. The capacity of  a cut (A, B) is:
  

 

cap( A, B)  =  c(e)
e out of A



Capacity = 9 + 15 + 8 + 30
= 62

Minimum Cut Problem



• Min s-t cut problem.  Find an s-t cut of  minimum capacity.
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Minimum Cut Problem



• Def.  An s-t flow is a function that satisfies:

For each e  E: [capacity]

For each v  V – {s, t}: [conservation]

• Def.  The value of  a flow f  is:       
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• Def.  An s-t flow is a function that satisfies:

For each e  E: [capacity]

For each v  V – {s, t}: [conservation]

• Def.  The value of  a flow f  is:       

10

6

6

11

1 10

3 8 8

0

0

0

11

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24

  

 

f (e)
e in to v

 = f (e)
e out of v


  

 

0  f (e)  c(e)

  

 

v( f )  =  f (e)  
e out of s

 .

4

Max Flow Problem



• Max flow problem.  Find s-t flow of  maximum value.
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• Flow value lemma.  Let f  be any flow, and let (A, B) be any s-t cut.  Then, 

the net flow sent across the cut is equal to the amount leaving s.
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• Flow value lemma.  Let f  be any flow, and let (A, B) be any s-t cut.  Then, 

the net flow sent across the cut is equal to the amount leaving s.
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• Flow value lemma. Let f  be any flow, and let (A, B) be any s-t cut.  Then, the net 

flow sent across the cut is equal to the amount leaving s.
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• Weak duality.  Let f  be any flow, and let (A, B) be any s-t cut.  Then the 

value of  the flow is at most the capacity of  the cut.

Cut capacity = 30    Flow value  30 
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• Corollary. Let f  be any flow, and let (A, B) be any cut.

If  v(f) = cap(A, B), then f  is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity  = 28    Flow value  28
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Greedy algorithm.

• Start with f(e) = 0 for all edge e  E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.
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Greedy algorithm.

• Start with f(e) = 0 for all edge e  E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.
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• The Ford-Fulkerson Algorithm (FFA) computes a maximum flow in an iterative

manner by starting with a valid flow, and then making adjustments that fulfill the

constraints and increase the flow.

Ford-Fulkerson Algorithm



• The Ford-Fulkerson Algorithm (FFA) computes a maximum flow in an iterative

manner by starting with a valid flow, and then making adjustments that fulfill the

constraints and increase the flow.

• To achieve this, FFA utilizes the residual graph. This is a graph generated by

calculating how the flow along each edge can be modified - each edge in the network

graph is replaced by up to two new edges, a forward edge with the same direction that

that signifies how much the flow can be increased, and a backward edge storing how

much the flow can be reduced.

Ford-Fulkerson Algorithm

Flow Graph Residual Graph



• The algorithm starts with an empty flow (which is always valid) and then repeatedly

finds paths in the residual graph from source to target. Adding just enough flow along

the path to saturate one edge (i.e., “bottlenecking”), which is the one with the lowest

capacity, keeps the constraints on the flow fulfilled and strictly increases the flow. These are

called augmenting paths.

• The FFA does not explicitly state how to find the augmenting paths, and so the algorithm

is agnostic to the mechanism used to find an augmenting path (in practice BFS is

commonly used).

Ford-Fulkerson Algorithm



Greedy algorithm. (polynomial time solution)

• Start with f(e) = 0 for all edge e  E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.
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Original edge.  e = (u, v)   E.

Flow f(e), capacity c(e).

Residual edge.

"Undo" flow sent.

e = (u, v) and eR = (v, u).

Residual capacity:

Residual graph:  Gf = (V, Ef ).

Residual edges with positive residual capacity.

Ef = {e : f(e) < c(e)}   {eR : f(e) > 0}.
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c f (e) =
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Ford-Fulkerson Algorithm Demo
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• FFA begins with an empty flow.
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• Choose a valid s-t path. Notice that the path s → 2 is a potential bottleneck, as it has an 

additional capacity of  2 this is currently unused. 

bottleneck
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• The residual graph below shows an augmenting path allowing us to add 2 to the overall 

flow.
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bottleneck
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• The residual graph below shows an augmenting path allowing us 

to add 6 to the overall flow.
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Ford-Fulkerson Algorithm 

• Continuing this process of  adding augmenting paths, we arrive at a flow= 19. One can 

show that this is the maximum flow achievable by appealing to max-flow/min-cut duality. 

Because there exists a cut with capacity also equal to 19, this proves optimality. 



Graph Cuts

• The graph cuts segmentation algorithm (2004) leverages the max-flow min-cut 

theorem and Ford –Fulkerson algorithm for image segmentation. In this way, 

segmentation is regarded as a pixel labeling problem. 

• Boykov et al. define a graph based on an image that includes two types of  edges: (1) n-

links connecting neighboring pixels vertices in a 4-neighborhood system; (2) t-links

that connect the source and sink vertices with all other pixel vertices. 

Graph Cuts Image Segmentation



Graph Cuts

•  Finding the optimal segmentation/cut is tantamount to finding a minimum energy solution: 

where 𝐿 denotes a binary labelling of  pixels (i.e. a cut), R(𝐿) represents a regional term 

incorporating t-link connections, B(𝐿) connotes a boundary term incorporating s-link 

connections; α provides a “smoothness” parameter. 

Graph Cuts Image Segmentation

total energy regional boundary
   term     term

( ) ( ) ( )E L R L B L= +



Graph Cuts

• t-links connect the terminal nodes (s and t nodes) with all other nodes in the graph. 

• 𝑅𝑝 𝑙𝑝 is the penalty for assigning the label 𝑙𝑝 to pixel 𝑝. The weight of  𝑅𝑝 𝑙𝑝 can be obtained by 

comparing the intensity of  pixel 𝑝 with the histogram of  the of  the “object” and “background” 

(reflected by the current object/background segmentation). 

Graph Cuts Image Segmentation
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Graph Cuts

• t-links connect the terminal nodes (s and t nodes) with all other nodes in the graph. 

• 𝑅𝑝 𝑙𝑝 is the penalty for assigning the label 𝑙𝑝 to pixel 𝑝. The weight of  𝑅𝑝 𝑙𝑝 can be obtained by 

comparing the intensity of  pixel 𝑝 with the histogram of  the of  the “object” and “background” 

(reflected by the current object/background segmentation). 

• Thus, for instance, if  𝑃(𝐼𝑝|𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑) is larger than 𝑃(𝐼𝑝|𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) , then 𝑅𝑝(1) will be 

smaller than 𝑅𝑝(0) . This means when the pixel is more likely to be the object, the penalty for 

identifying that pixel as “object” should be smaller than if  we identified it as “background”. 

• In this way, when all pixels have been correctly separated into two subsets, the regional term would 

be minimized. 

Graph Cuts Image Segmentation

total energy regional boundary
   term     term
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Graph Cuts

• n-link edge weights reflect inter-pixel similarities (i.e. in a cohesive image, neighboring pixels are 

likely to have similar hue/brightness values). In more detail: the weight of  an edge should be large 

when pixels are similar and small when they are different. 

Graph Cuts Image Segmentation
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Graph Cuts

• n-link edge weights reflect inter-pixel similarities (i.e. in a cohesive image, neighboring pixels are 

likely to have similar hue/brightness values). In more detail: the weight of  an edge should be large 

when pixels are similar and small when they are different. 

• B(𝐿) energy is computed for all neighboring pixels in the graph ({𝑝, 𝑞} ∈ 𝑁); ), 𝑙𝑖 is the label (i.e. 

“foreground” or “background” for each pixel 𝑖 in the graph); 𝛿 is zero if  neighboring labels agree and 

one otherwise. Finally, when the labels of  adjacent pixels disagree, we compute their inter-pixel 

similarity based on a Gaussian function: 𝐵𝑝𝑞 (where 𝐼𝑖 is the intensity of  the 𝑖th pixel).

*Basic idea for B(L) energy term: Terms that contribute to the B(𝐿) energy are positive when 

neighboring pixels have different labels; the energy of  a particular edge contribution in this case is 

proportional to their similarity. Near a boundary, this energy will be minimal. 

Graph Cuts Image Segmentation

total energy regional boundary
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Interactive Graph Cuts

•  The preceding problem formulation can be solved (efficiently, in polynomial-time) using the 

aforementioned Ford-Fulkerson algorithm (or related variant). In particular, we aim to minimize energy with 

respect to the binary graph labelling (foreground vs background). On its own, the graph cuts algorithm 

provides an effective baseline “unsupervised” image segmentation algorithm. 

• However, one can easily expand (as Boykov et al. have done) the graph cut framework to encompass a 

broader set of  interactive image segmentation problems, wherein a user provides a set of  

foreground/background labels (via clicks, lines, etc.). 

How do we adapt the previous graph cuts algorithm to incorporate interactivity? 

Graph Cuts Image Segmentation

https://www.csd.uwo.ca/~yboykov/Papers/iccv01.pdf



Interactive Graph Cuts

•  The preceding problem formulation can be solved (efficiently, in polynomial-time) using the 

aforementioned Ford-Fulkerson algorithm (or related variant). On its own, the graph cuts algorithm provides an 

effective baseline “unsupervised” image segmentation algorithm. 

• However, one can easily expand the (as Boykov et al. have done) graph cut framework to encompass a 

broader set of  interactive image segmentation problems, wherein a user provides a set of  

foreground/background labels (via clicks, lines, etc.). 

How do we adapt the previous graph cuts algorithm to incorporate interactivity? Simply: 

(1) The calculation of  the regional term can now be based on the histogram of  foreground and background 

labelled pixels. 

(2) The overall energy function can be amended to include “hard constraints” reflecting the user provided 

labels (e.g., for every mislabel produced by the algorithm, the energy function incurs a penalty of  K): 

where N(misclassified) symbolizes the number of  misclassified pixels in the final segmentation with respect 

to the user labels. 

Graph Cuts Image Segmentation
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total energy regional boundary
   term     term
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https://www.csd.uwo.ca/~yboykov/Papers/iccv01.pdf



GrabCut (2004)

https://docs.opencv.org/3.4/d8/d83/tutorial_py_grabcut.html

Interactive Graph Cuts

Graph Cuts Image Segmentation

https://docs.opencv.org/3.4/d8/d83/tutorial_py_grabcut.html


Review Topic: OLS Regression



OLS Regression
• We consider an equivalent – but more elegant – approach to OLS by 

appealing to linear algebra/geometric intuition. 

Consider the problem of  solving the previous system of  linear equations in the 

“overdetermined” case (i.e. m > n, where m is the number of  

equations/measurements, n is the number of  variables). 



OLS Regression
• We consider an equivalent – but more elegant – approach to OLS by 

appealing to linear algebra/geometric intuition. 

Consider the problem of  solving the previous system of  linear equations in the 

“overdetermined” case (i.e. m > n, where m is the number of  

equations/measurements, n is the number of  variables): Ax=b.  
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OLS Regression
• An overdetermined system:

Q: Are we always guaranteed that such a system has a solution (say using 

Gaussian elimination)?  
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OLS Regression
• An overdetermined system:

Q: Are we always guaranteed that such a system has a solution (say using 

Gaussian elimination)?  

Definitely not! *Short answer: because we cannot guarantee that the vector b

resides in the column space of  A (col(A))! 

Next, let’s consider this situation from a geometric perspective. 

(*) Recall that the col(A):= the span of  the column vectors of  A.
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OLS Regression
• An overdetermined system:
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OLS Regression
• An overdetermined system:
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(*) Issue: if

Then overdetermined 

system: Ax=b is 

insoluble.  

( )col Ab



OLS Regression
• An overdetermined system:
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(*) A resolution: The best we can 

hope to do is to minimize the 

distance r (i.e. the residual) 

between b and any vector in col(A). 

Namely, we want: 

(this formula should look familiar)

2 2
argmin argmin A= −

x x

r b x



OLS Regression

col(A)

(*)We want:

(Let’s denote the solution vector x*) 

An astute observation: The residual vector r achieves a minimum when it is 

orthogonal to col(A)!

2
argmin A−
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b x



OLS Regression

col(A)

(*)We want:

(Let’s denote the solution vector x*) 

An astute observation: The residual vector r achieves a minimum when it is 

orthogonal to col(A)!

This implies: 
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OLS Regression

col(A)

(*)We want:

(Let’s denote the solution vector x*) 

An astute observation: The residual vector r achieves a minimum when it is 

orthogonal to col(A)!

This implies: 
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OLS Regression

col(A)

(*)We want:

(Let’s denote the solution vector x*) 

An astute observation: The residual vector r achieves a minimum when it is 

orthogonal to col(A)!

This implies: 

This indicates that the vector: AT(b-Ax*) is perpendicular to every vector x in 

the space. What can we claim about this vector? 

2
argmin A−

x

b x

( ) ( )* 0 ( )
T

A A for all− =x b x x

( )* 0 ( )T TA A for all− =x b x x



OLS Regression

This indicates that the vector: AT(b-Ax*) is perpendicular to every vector x in 

the space. What can we claim about this vector? 

(*) Consequently: 

( ) ( )* 0 ( )
T

A A for all− =x b x x

( )* 0 ( )T TA A for all− =x b x x

( )* 0TA A− =b x



OLS Regression
Now we solve for x*. 

( )* 0TA A− =b x



OLS Regression
Now we solve for x*. 

( )* 0TA A− =b x
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OLS Regression
Now we solve for x*. 

( )* 0TA A− =b x

* 0T TA A A− =b x

*T TA A A=b x



OLS Regression
Now we solve for x*.

( )* 0TA A− =b x

* 0T TA A A− =b x

*T TA A A=b x
(These are the normal 

equations in matrix form!) 



OLS Regression
Now we solve for x*.

(*) This implies that OLS has a unique, closed form solution when ATA is 

non-singular (i.e. invertible). 

(*) When ATA is singular, it is common practice to use the Moore-Penrose 

pseudoinverse: A+.

( )* 0TA A− =b x

* 0T TA A A− =b x

*T TA A A=b x
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* T TA A A
−

=x b



OLS Regression
Now we solve for x*.

(*) This completes our derivation of  the OLS solutions using linear algebra! 

( )* 0TA A− =b x

* 0T TA A A− =b x

*T TA A A=b x

( )
1

* T TA A A
−

=x b



Motion Estimation: Optical Flow

• Motion is an intrinsic property of  the world, and an essential aspect of  our visual 

experience. Motion estimation can be used successfully in a wide variety of  CV-related 

applications, including: object tracking, camera stabilization, scene understanding, and 

3D scene reconstruction. 



Motion Estimation: Optical Flow

• The goal of  optical flow estimation* (OF) is to compute an approximation to the 

motion field from time-varying image intensities. 

• Next, we present the classic optical flow estimation algorithm* (Beauchemin et al., 

1995).

*https://dl.acm.org/doi/abs/10.1145/212094.212141

( , , )I x y t ( , , )I x y t t+ 



Motion Estimation: Optical Flow

• A common starting point for  OF is to assume that pixel intensities are translated 

(without alteration) from one frame to the next, so that: 

holds, where 𝐼(𝑥, 𝑦, 𝑡) is the image intensity at time 𝑡, 𝑢, 𝑣 is a displacement vector. 

Naturally, this brightness constancy assumption rarely holds exactly, but is nevertheless 

plausible under stable conditions. 

With this assumption, we wish to estimate (dense) optical flow at each pixel (𝑥, 𝑦):
∆𝑥

∆𝑡
and 

∆𝑦

∆𝑡
.

*The version of  OF given here is for grayscale images, but the method is easily adapted 

for RGB images.  

( , , ) ( , , )I x y t I x x y y t t= +  +  + 



Motion Estimation: Optical Flow

•Next, we use the multi-variate Taylor series approximation to calculate the 

linearization of  𝐼 ∆𝑥, ∆𝑦, 𝑡 :

( , , ) ( , , )I x y t I x x y y t t= +  +  + 



Motion Estimation: Optical Flow

•Next, we use the multi-variate Taylor series approximation to calculate the 

linearization of  𝐼 ∆𝑥, ∆𝑦, 𝑡 :

This yields: 

( , , ) ( , , )I x y t I x x y y t t= +  +  + 

( , , ) ( , , ) higher order terms...
I I I

I x x y y t t I x y t x y t
x y t

  
+  +  +  = +  +   +

  

0 ( , , ) ( , , )
I I I

I x x y y t t I x y t x y t
x y t

  
= +  +  +  −   +  

  



Motion Estimation: Optical Flow

•Next, we use the multi-variate Taylor series approximation to calculate the 

linearization of  𝐼 ∆𝑥, ∆𝑦, 𝑡 :

This yields: 

Dividing through by ∆𝑡, we have:

( , , ) ( , , )I x y t I x x y y t t= +  +  + 

( , , ) ( , , ) higher order terms...
I I I

I x x y y t t I x y t x y t
x y t

  
+  +  +  = +  +   +

  

0 ( , , ) ( , , )
I I I

I x x y y t t I x y t x y t
x y t

  
= +  +  +  −   +  

  

0

x yV V

I x I y I
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Motion Estimation: Optical Flow

•Next, we use the multi-variate Taylor series approximation to calculate the 

linearization of  𝐼 ∆𝑥, ∆𝑦, 𝑡 :

This yields: 

Dividing through by ∆𝑡, we have:

This equation can be notated equivalently: 

where we wish to solve for OF 𝑉𝑥, 𝑉𝑦 ;

𝐼𝑡 denotes the image derivative which can

be approximated using the Sobel transformation. 

( , , ) ( , , )I x y t I x x y y t t= +  +  + 

( , , ) ( , , ) higher order terms...
I I I

I x x y y t t I x y t x y t
x y t

  
+  +  +  = +  +   +

  

0 ( , , ) ( , , )
I I I

I x x y y t t I x y t x y t
x y t

  
= +  +  +  −   +  

  

0

x yV V

I x I y I

x t y t t

    
+ + =

    

x x y y t

t

x

x y t

y

I V I V I

I V I

V
I I I

V

+ = −

  = −

 
  = −  

 



Motion Estimation: Optical Flow

• We wish to solve the equation above for OF 𝑉𝑥, 𝑉𝑦 ; however, this requires solving for two 

unknowns (with only one equation), an underdetermined system. 

• In the Lucas-Kanade method (1981) for approximating optical flow, we consider 3x3 

patches of  pixels around the current pixel. This gives rise to a system of  9 equations and 2 

unknowns, an overdetermined system: 

• We can approximate the solution to this system using the standard least-squares solution.

1 1 1

9 9 9
2 1

9 19 2

( ) ( ) ( )

,    Sobel Transform (or other derivative estimate)

( ) ( ) ( )

x y t

x

t

y

x y t

I p I p I p
V

I
V

I p I p I p




   
    

= −     
      

x

x y t

y

V
I I I

V

 
  = −  

 



Motion Estimation: Optical Flow

• We can approximate the solution to this system using the standard least-squares 

solution. 

T T

1 1 1

9 9 9

A A A

( ) ( ) ( )

( ) ( ) ( )

x y t

x

y

x y t
x

bA

xx x x y x t

yx y y y y t

x
b

x x x x y

y x y y y

x

I p I p I p
V

V
I p I p I p

VI I I I I I

VI I I I I I

V I I I I

V I I I I

   
    

= −    
      

   − 
→ =    

−    

 
→ = 
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x t

y t
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−

  −
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Motion Estimation: Optical Flow

https://opencv-python-

tutroals.readthedocs.io/en/latest/py_tutorials/py_video/py_lucas_kanade/py_lucas_kanade.html



Review Topic: PCA/SVD



SVD
•  Definition: Let A be an m x n matrix with singular values,   σ1 ≥ σ2 ≥…≥ σ𝑟 > 0 and    

σ𝑟 + 1 =
σ𝑟 + 2 = ⋯ =

σ𝑛 = 0. Then there exist an m x n orthogonal matrix U, and n x n 

orthogonal matrix V, and an m x n diagonal matrix Σ of  the form:

Note: the columns of  U are called left singular vectors of  A, and the columns of  V are called 

right singular vectors of  A. The matrices U and V are not uniquely determined by A.

(*) NB: rank(A) = r. 

TA U V= 



SVD
•  Definition: Let A be an m x n matrix with singular values,   σ1 ≥ σ2 ≥…≥ σ𝑟 > 0 and    

σ𝑟 + 1 =
σ𝑟 + 2 = ⋯ =

σ𝑛 = 0. Then there exist an m x n orthogonal matrix U, and n x n 

orthogonal matrix V, and an m x n diagonal matrix Σ of  the form:

• Every matrix has a singular value decomposition! 

Definition: For an m x n matrix A, the singular values of  A are the square roots of  the 

eigenvalues of  ATA. They are denoted: 

It is conventional to arrange the singular values in decreasing order, whence: 

TA U V= 

1,..., n 

1 2 ... n    



SVD

Example: 

TA U V= 
1 1 0

0 0 1

1 0 1 1 0
1 1 0

1 0 1 1 0
0 0 1

0 1 0 0 1

T

A

A A

 
=  

 

   
    

= =    
       



SVD

Example:

has eigenvalues λ1=3 and  λ2=1. Consequently, the singular values of  A are: 

TA U V= 

( ) 1 2 3: 2, 1, 0Teigenvalues A A   = = =

1 1 0

0 0 1

1 0 1 1 0
1 1 0

1 0 1 1 0
0 0 1

0 1 0 0 1

T

A

A A

 
=  

 

   
    

= =    
       

1 1

2 2

3

1

 

 

= =

= =



SVD

Example: 

These vectors are orthogonal, so now we normalize them: 

TA U V= 

( ) 1 2 3: 2, 1, 0Teigenvalues A A   = = = ( )
1 0 1

: 1 , 0 , 1

0 1 0

Teigenvectors A A

−     
     
     
          

1/ 2 0 1/ 2 2 0 0

1/ 2 0 1/ 2 , 0 1 0

0 1 0 0 0 0

V

 −  
   

=  =   
   
    

1 1 0

0 0 1

1 0 1 1 0
1 1 0

1 0 1 1 0
0 0 1

0 1 0 0 1

T

A

A A

 
=  

 

   
    

= =    
       



SVD

Example: 

To find U we compute: 

TA U V= 

( ) 1 2 3: 2, 1, 0Teigenvalues A A   = = =

( )
1 0 1

: 1 , 0 , 1

0 1 0

Teigenvectors A A

−     
     
     
          

1/ 2 0 1/ 2 2 0 0

1/ 2 0 1/ 2 , 0 1 0

0 1 0 0 0 0

V

 −  
   

=  =   
   
    

1 1 2 2

1 2

1/ 2 0
1 1 0 1 1 1 0 01 1 1 1

1/ 2 , 0
0 0 1 0 0 0 1 112

0 1

u Av u Av
 

   
         

= = = = = =         
             

1 1 0

0 0 1
A

 
=  

 



SVD

Example: 

TA U V= 

2 0 0 1/ 2 1/ 2 0
1 1 0 1 0 0

0 1 0 0 0 1
0 0 1 0 1 0

0 0 0 1/ 2 1/ 2 0

TA U V

   
      

= = =       
       

−   



SVD

TA U V= 

Geometric Interpretation: In general, Σ can be regarded as a scaling matrix, and U, V can 

be viewed as rotation matrices. 

Thus the expression UΣV can be intuitively interpreted as a composition of  three 

successive geometrical transformations: a rotation or reflection, a scaling and another 

rotation or reflection. 

As shown in the figure, the singular values can be interpreted as the semiaxes of  an 

ellipse in 2D. This concept can be generalized to n-dimensional Euclidean space, with the 

singular values of  any n × n square matrix being viewed as the semiaxes of  an n-

dimensional ellipsoid. 

As in PCA, these coordinate axes provide a natural framework for determining a 

dimensionality reduction scheme that captures maximal variation. 



SVD: Outer Product Form 

•  SVD factorization yields a useful method for “low rank” approximations/dimensionality 

reduction of  data.

Theorem: For a given SVD decomposition of  an m x n matrix A, we can express A in the 

so-called outer product form: 

Where σ1 ≥ σ2 ≥…≥ σ𝑟 > 0 denote the singular values of  A; u and v are the 

corresponding left singular and right singular vectors. 

(*) Note that the condition number of  a matrix A is defined as the ratio of  the largest and 

the smallest singular values of  A. Matrices with large condition numbers are called ill-

conditioned (this has a significant impact on the stability of  many different kinds of

numerical algorithms in linear algebra). 

1 1 1 ...T T

r r r = + +A u v u v

max

min

( )cond A



=



SVD: Outer Product Form 

1 1 1 ...T T

r r r = + +A u v u v

Example: 

 
1 1 0 1 0

2 1/ 2 1/ 2 0 1 0 0 1
0 0 1 0 1

A
     

 = = +      
     

2 0 0 1/ 2 1/ 2 0
1 1 0 1 0 0

0 1 0 0 0 1
0 0 1 0 1 0

0 0 0 1/ 2 1/ 2 0

TA U V

   
      

= = =       
       

−   



SVD: Outer Product Form for 

Image Compression  
• Consider the task of  compressing a grayscale image of  dimension 340 x 280; each pixel 

is in the range [0, 255]. 

• We can store this image in a 340 x 280 dimension matrix, but transmitting and 

manipulating these 95,200 numbers is very expensive. 

•  Let’s use SVD for efficient image compression. Recall that the small singular values in 

the SVD of  a matrix correspond with “less informative” data features. 



SVD: Outer Product Form for 

Image Compression  
• Suppose we have the SVD of  A expressed in outer product form:

• For the original 340 x 280 image shown, we have r = 280 (why?).  

•  Define:

as the k-rank approximation to A. 

1 1 1 ...T T

r r r = + +A u v u v

1 1 1 ... ,T T

k k k k k r = + + A u v u v



SVD: Outer Product Form for 

Image Compression  
• Suppose we have the SVD of  A expressed in outer product form:

• For the original 340 x 280 image shown, we have r = 280 (why?).  

•  Define:

as the k-rank approximation to A. 

(*) If  for example, we use a k = 20 rank approximation for 

A (i.e. we use the largest 20 singular values), the storage/

computational overhead is reduced from 95,200 numbers 

to 12,420! 

1 1 1 ...T T

r r r = + +A u v u v

1 1 1 ... ,T T

k k k k k r = + + A u v u v



SVD: Outer Product Form for 

Image Compression  

1 1 1 ... , 32T T

k k k k k = + + =A u v u v

(*) Here, using the SVD-based, low-

rank approximation to A, the fidelity 

of  the image is very strong – even 

after discarding roughly 85% of  the 

image data!



PCA
•  Here is the PCA algorithm: 

(1) Write N data points xi=(x1i,x2i,…,xMi) as row vectors.

(2) Put these vectors into the data matrix X (of  size N x M).

(3) Center the data by subtracting off  the mean of  each column, place into matrix B. 

(4) Computer the covariance matrix: 

(5) Computer the eigenvalues and eigenvectors of  C, so: 

where D is the diagonal matrix of  eigenvalues; V is the matrix of  corresponding eigenvectors. 

(6) Sort of  the columns of  D into order of  decreasing eigenvalues, and apply the same order to the 

columns of  V. 

(7) Reject those with eigenvalues less than some given threshold, leaving L dimensions in the data. 

T=C VDV

1 T

N
=C BB



Facial Recognition: EigenFace

https://sites.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf

• Sirovich and Kirby (1987) developed an early (now classic) algorithm for facial 

recognition: “Face recognition using eigenfaces” (Eigenface). 

It is a very simple yet effective algorithm (simplified version): 

(1) Determine the SVD of  the mean-centered covariance matrix of  the (training) 

dataset of  face images (all front facing) – i.e., perform PCA. We only retain the 

eigenvectors associated with the largest eigenvalues (usually ~100 or so). 

(2) The eigenvectors produced from SVD form a basis set of  for the training data. 

(3) For facial recognition – given a test datum (i.e., new face image); we project this 

image into the eigenspace spanned by the basis set. From the weights produced by 

this projection, we compare the weights (wrt basis set) of  all training images; the 

nearest neighbor (per L2, etc.) of  the test image in the training set corresponds with 

the recognized face. 



Facial Recognition: EigenFace

https://sites.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf

• In more detail: 

Training dataset

Nearest neighbor 

training image

(in Eigenspace)

1 T TC
N

= → =C BB VDV

1 2 3, , ,..., kw w w w
1 2 3, , ,..., kw w w w   

PCA

Test image

Basis set



Topic Review: 

Boosting and Adaboost



Model Combination Schemes: Boosting

• With boosting, we actively try to generate complementary base-learners by training the 

learners sequentially, so that the next learner trains on the mistakes of  the previous 

learners. 

• Boosting combines complementary weak learners (meaning their accuracy is above 

chance, but they are nonetheless relatively inexpensive to train).

“Intro to Boosting”: https://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf



Model Combination Schemes: Boosting
• As a basic schematic for boosting, consider a boosting algorithm (this is how the original 1990 Schapire 

paper worked) that combines three weak learners to generate a strong learner. 

• Given a training set, we randomly partition it into three subsets: X1, X2 and X3; use X1 to train d1. Then 

take X2 and feed it to d1. Next, we use every instance misclassified by d1 in combination with many 

instances on which d1 is correct from X2, and together form the training set for d2.

• Lastly, we take X3 and feed it to d1 and d2; the instances on which d1 and d2 disagree form the training 

set of  d3. 

(*) During testing, we take a datum and give it to d1 and d2; if  they agree this is the prediction; otherwise, 

the response of  d3 is taken as the output. 



Model Combination Schemes: AdaBoost

• A very popular boosting method known as AdaBoost* (short for adaptive boosting) was 

developed by Freund and Schapire in 1996 (later won the Gödel prize).

(*) Adaboost uses the same training set over and over and thus the data set need not be 

large, but the classifiers should be simple so that they do no overfit. AdaBoost can also 

combine an arbitrary number of  base learners – not just three.

(*) Adaboost combines different weak learners (i.e. hypotheses), where the training error 

is close but less than 50%, to produce a strong learner (i.e. with training error close to 

zero). 

*https://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf



Given examples S and learning algorithm L, with | S | = N

• Initialize probability distribution over examples w1(i) = 1/N . 

• Repeatedly run L on training sets St  S to produce h1, h2, ... , hK.  

– At each step, derive St from S by choosing examples 

probabilistically according to probability distribution wt .   Use 

St to learn ht. 

• At each step, derive wt + 1 by giving more probability to examples 

that were misclassified at step t. 

• The final ensemble classifier H is a weighted sum of  the ht’s, with 

each weight being a function of  the corresponding ht’s error on its 

training set. 

AdaBoost: Algorithm Sketch



• Given S = {(x1, y1), ..., (xN, yN)} where x  X, yi  {+1, −1}

• Initialize w1(i) = 1/N.   (Uniform distribution over data)

AdaBoost: Algorithm



• For t = 1, ..., K: 

– Select new training set St from S with replacement, according to wt

– Train L on St to obtain hypothesis ht

– Compute the training error t of   ht on S :

– Compute coefficient

et = wt

j=1

N

å ( j) d(y j ¹ ht (x j )) ,  where

d(y j ¹ ht (x j )) =
1 if y j ¹ ht (x j )

0 otherwise   

ì
í
ï

îï
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AdaBoost: Algorithm



– Compute new weights on data:

For i = 1 to N

where Zt is a normalization factor chosen so that wt+1 will be a 

probability distribution:

wt+1(i) =
wt (i) exp(-atyiht (xi ))

Zt

Zt = wt (i) exp(-atyiht (xi ))
i=1

N

å

AdaBoost: Algorithm



• At the end of  K iterations of  this algorithm, we have 

h1, h2, . . . , hK

We also have 

1, 2, . . . ,K,  where

• Ensemble classifier: 

• Note that hypotheses with higher accuracy on their training sets are 

weighted more strongly. 

H (x) = sgn at

t=1

K

å ht (x)
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AdaBoost: Algorithm



where { x1, x2, x3, x4 }   are class +1

{x5, x6, x7, x8 } are class −1

t = 1 : 

w1 = {1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8}

S1 = {x1, x2, x2, x5, x5, x6, x7, x8}  (notice some repeats)

Train classifier on S1 to get h1

Run h1 on S.  Suppose classifications are: {1, −1, −1, −1, −1, −1, −1, −1}

• Calculate error: e1 = wt
j=1

N

å ( j)d(y j ¹ ht (x j )) =
1

8
3( ) = .375

S = x1,x2,x3,x4,x5,x6,x7,x8,{ }

AdaBoost: Data Example



where { x1, x2, x3, x4 }   are class +1

{x5, x6, x7, x8 } are class −1

t = 1 : 

w1 = {1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8}

S1 = {x1, x2, x2, x5, x5, x6, x7, x8}  (notice some repeats)

Train classifier on S1 to get h1

Run h1 on S.  Suppose classifications are: {1, −1, −1, −1, −1, −1, −1, −1}

• Calculate error: e1 = wt
j=1

N

å ( j)d(y j ¹ ht (x j )) = ?

S = x1,x2,x3,x4,x5,x6,x7,x8,{ }

AdaBoost: Data Example



Calculate ’s: 

Calculate new w’s: 

a1 =
1

2
ln

1-et
et

æ

è
ç

ö

ø
÷ =

wt+1(i) =
wt (i) exp(-atyiht (xi ))

Zt

ŵ2 (1) =

ŵ2 (2) =

ŵ2 (3) =

ŵ2 (4) =

ŵ2 (5) =

ŵ2 (6) =

ŵ2 (7) =

ŵ2 (8) =

Z1 = ŵ2

i

å (i) =

w2 (1) =

w2 (2) =

w2 (3) =

w2 (4) =

w2 (5) =

w2 (6) =

w2 (7) =

w2 (8) =



Calculate ’s: 

Calculate new w’s: 

   

a1 =
1

2
ln

1-e t
e t

æ 

è 
ç 

ö 

ø 
÷ = .255

wt+1(i) =
wt (i) exp(-atyiht (xi ))

Zt

ŵ2 (1) = (.125)exp(-.255(1)(1)) = 0.1

ŵ2 (2) = (.125)exp(-.255(1)(-1)) = 0.16

ŵ2 (3) = (.125)exp(-.255(1)(-1)) = 0.16

ŵ2 (4) = (.125)exp(-.255(1)(-1)) = 0.16

ŵ2 (5) = (.125)exp(-.255(-1)(-1)) = 0.1

ŵ2 (6) = (.125)exp(-.255(-1)(-1)) = 0.1

ŵ2 (7) = (.125)exp(-.255(-1)(-1)) = 0.1

ŵ2 (8) = (.125)exp(-.255(-1)(-1)) = 0.1

Z1 = ŵ2

i

å (i) = .98

w2 (1) = 0.1/ .98 = 0.102

w2 (2) = 0.163

w2 (3) = 0.163

w2 (4) = 0.163

w2 (5) = 0.102

w2 (6) = 0.102

w2 (7) = 0.102

w2 (8) = 0.102



t = 2

w2 = {0.102, 0.163, 0.163, 0.163, 0.102, 0.102, 0.102, 0.102}

S2 = {x1, x2, x2, x3, x4, x4, x7, x8}

Learn classifier on S2 to get h2

Run h2 on S.  Suppose classifications are: {1, 1, 1, 1, 1, 1, 1, 1}

Calculate error: 

e2 = wt

j=1

N

å ( j)d(y j ¹ ht (x j ))

= (.102)´ 4 = 0.408



Calculate ’s: 

Calculate w’s: 

   

a2 =
1

2
ln

1-e t
e t

æ 

è 
ç 

ö 

ø 
÷ = .186

wt+1(i) =
wt (i) exp(-atyiht (xi ))

Zt

ŵ3(1) = (.102)exp(-.186(1)(1)) = 0.08

ŵ3(2) = (.163)exp(-.186(1)(1)) = 0.135

ŵ3(3) = (.163)exp(-.186(1)(1)) = 0.135

ŵ3(4) = (.163)exp(-.186(1)(1)) = 0.135

ŵ3(5) = (.102)exp(-.186(-1)(1)) = 0.122

ŵ3(6) = (.102)exp(-.186(-1)(1)) = 0.122

ŵ3(7) = (.102)exp(-.186(-1)(1)) = 0.122

ŵ3(8) = (.102)exp(-.186(-1)(1)) = 0.122

Z2 = ŵ2

i

å (i) = .973

w3(1) = 0.08 /.973 = 0.082

w3(2) = 0.139

w3(3) = 0.139

w3(4) = 0.139

w3(5) = 0.125

w3(6) = 0.125

w3(7) = 0.125

w3(8) = 0.125



t =3

w3 = {0.082, 0.139, 0.139, 0.139, 0.125, 0.125, 0.125, 0.125}

S3 = {x2, x3, x3, x3, x5, x6, x7, x8}

Run classifier on S3 to get h3

Run h3 on S.  Suppose classifications are: {1, 1, −1, 1, −1, −1, 1, −1}

Calculate error: 

e3 = wt

j=1

N

å (i)d(y j ¹ ht (x j ))

= (.139)+ (.125) = 0.264



• Calculate ’s: 

• Ensemble classifier:
   

a3 =
1

2
ln

1-e t
e t

æ 

è 
ç 

ö 

ø 
÷ = .512

H (x) = sgn at

t=1

K

å ht (x)

= sgn .255´h1(x)+.186 ´h2 (x)+.512 ´h3(x)( )



H (x) = sgn at

t=1

T

å ht (x)

= sgn .255´h1(x)+.186 ´h2 (x)+.512 ´h3(x)( )

Exampl

e

Actual

class

h1 h2 h3

x1 1 1 1 1

x2 1 −1 1 1

x3 1 −1 1 −1

x4 1 1 1 1

x5 −1 −1 1 −1

x6 −1 −1 1 −1

x7 −1 1 1 1

x8 −1 −1 1 −1

S = x1,x2,x3,x4,x5,x6,x7,x8,{ }

where { x1, x2, x3, x4 }   are class 

+1

{x5, x6, x7, x8 } are class −1

Recall the training set: 



• Given S = {(x1, y1), ..., (xN, yN)} where x  X, yi  {+1, −1}

• Initialize w1(i) = 1/N.   (Uniform distribution over data)

• For t = 1, ..., K: 

1. Select new training set St from S with replacement, according to wt

1. Train L on St to obtain hypothesis ht

1. Compute the training error t of   ht on S :

If   εt > 0.5, abandon ht and go to step 1 

et = wt

j=1

N

å ( j) d(y j ¹ ht (x j )) ,  

where d(y j ¹ ht (x j )) =
1 if y j ¹ ht (x j )

0 otherwise   

ì
í
ï

îï

AdaBoost: Summary



4. Compute coefficient:

5. Compute new weights on data:

For i = 1 to N

where Zt is a normalization factor chosen so that wt+1 will be a probability distribution:

• At the end of  K iterations of  this algorithm, we have h1, h2, . . . , hK , and 1, 2, . . . ,K

• Ensemble classifier: 

wt+1(i) =
wt (i) exp(-atyiht (xi ))

Zt

Zt = wt (i) exp(-atyiht (xi ))
i=1

N

å

H (x) = sgn at

t=1

K

å ht (x)

at =
1

2
ln

1-et
et
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AdaBoost: Overview
• Adaboost seems to reduce both bias and variance and it does not seem to overfit for increasing 

K. 

Why does it work? 

Schapire et al. explain that the success of  AdaBoost is due to its property of  increase the margin. Recall 

from SVMs, that if  the margin increases, the training instances are better separated, and an error 

is less likely. 



AdaBoost: Overview

•In AdaBoost, although different base-learners have slightly different training sets, this 

difference is not left to chance as in bagging, but is a function of  the error of  the 

previous base-learner. The actual performance of  boosting on a particular problem is 

naturally dependent on the data and base-learner. 

• In order to be effective, there should be enough training data and the base-learner 

should be weak but not too weak, as boosting is particularly susceptible to noise and 

outliers (since boosting focuses on examples are hard to classify).

• For this reason, boosting can be used to identify outliers and noise in a dataset. 

(*) AdaBoost has also been generalized to regression.



Case Study of  Adaboost:

Viola-Jones Face Detection Algorithm

• P. Viola and M. J. Jones, Robust real-time face detection.*  International Journal of  

Computer Vision, 2004. 

• First face-detection algorithm to work well in real-time (e.g., on digital cameras); it 

has been very influential in computer vision (16k+ citations); makes use of  

Adaboost. 

*https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf

Viola: 

MIT/Amazon



Viola-Jones: Training Data

• Positive:  Faces scaled and 

aligned to a base resolution 

of  24 by 24 pixels.

• Negative: Much larger 

number of  non-faces.  



Features

From http://makematics.com/research/viola-jones/

• Use rectangle features at multiple sizes and location 

in an image subwindow (candidate face).   

For each feature fj : 

f j = intensity(pixel b)
bÎblack pixels

å - intensity(pixel w)
wÎwhite pixels

å

Possible number of  features per 24 x 24 pixel subwindow > 180,000.  



Detecting faces

Given a new image:

• Scan image using subwindows at all locations and at different scales

• For each subwindow, compute features and send them to an ensemble 

classifier (learned via boosting).  If  classifier is positive (“face”), then 

detect a face at this location and scale.  



• Preprocessing: Viola & Jones use a clever pre-processing step that 

allows the rectangular features to be computed very quickly.   (See their 

paper for description. )

• They use a variant of  AdaBoost to both select a small set of  features 

and  train the classifier.

Viola-Jones Face Detection Algorithm



Base (“weak) classifiers: 

For each feature fj , 

where x is a 24 x 24-pixel subwindow of  an image, θj is the threshold that 

best separates the data using feature fj , and pj is either -1 or 1.  

Such features are called decision stumps.  

hj =
1 if p j f j (x) < p jq j

-1 otherwise
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Viola-Jones Face Detection Algorithm



Boosting algorithm:

Viola-Jones Face Detection Algorithm



Boosting algorithm:

Viola-Jones Face Detection Algorithm



where at = ln
1

bt Note that only the top T features are used.  

Viola-Jones Face Detection Algorithm

Boosting algorithm:



https://www.youtube.com/watch?v=k3bJUP0ct08

https://www.youtube.com/watch?v=c0twACIJYm8

https://www.youtube.com/watch?v=k3bJUP0ct08







