Elements of Classical Computer Vision
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Insights from the Visual System

* Vision is our most acute and also our most studied sense. From the inception of Computer Vision (CV), the
organization of the visual cortex has served as the inspiration for the most successfully deep learning
networks.
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* What we see through our eyes is only a very small part of the world around us. At any given time, our eyes
are sampling only a fraction of the surrounding light field. Even within this fraction, most of the resolution is
dedicated to the center of gaze which has the highest concentration of ganglion cells.

* In the eye, a tiny pit located in the macula of the retina that provides the clearest vision of all. Only in
the fovea are the layers of the retina spread aside to let light fall directly on the cones, the cells that give the
sharpest image.

* Information processing in the visual system starts in the retina, where photo receptors convert light into
electrical signals. There are generally two types of ganglion cells in the retina (see image), on-center and off-
center.




Insights from the Visual System

Dorsal
Pathway

Primary Visual
Cortex (V1)

75

‘v \//en/tra/l_j//
/ =/

Pathway

* From the retina, this sensory information travels the lateral geniculate nucleus (LGN) to the visual cortex (V1). V1
is known to process simple visual forms, such as edges and corners (see next slides).

* V1 transmits information to two primary neural pathways, called the ventral stream and the dorsal stream.

* The ventral stream begins with V1, goes through visual area V2, then through visual area V4 (processes
intermediate visual forms, feature groups, etc.) and to the inferior temporal cortex (high-level object descriptions).
The ventral stream, sometimes called the "What Pathway", is associated with form recognition and object
representation. It is also associated with storage of long-term memory.

* The dorsal stream begins with V1, goes through Visual area V2, then to the dorsomedial area (DM/V6) and medial
temporal area (MT/V5) and to the posterior parietal cortex. The dorsal stream, sometimes called the "Where
Pathway" or "How Pathway", is associated with motion, representation of object locations, and control of the eyes

and arms.



Insights from the Visual System
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* In perhaps the most influential set of experiments in the history of CV, David Hubel and Torsten Wiesel (Nobel
prize recipients in 1981) laid the groundwork for understanding the hierarchical nature of the mammalian visual
system by demonstrating how complex representations of visual information are built from simple cells in the

primary visual cortex.

* In one experiment (1959) they inserted a microelectrode into the primary visual cortex of an anesthetized cat. They
then projected patterns of light and dark on a screen in front of the cat. They found that some neurons fired rapidly
when presented with lines at one angle, while others responded best to another angle. Some of these neurons
responded to light patterns and dark patterns differently. Hubel and Wiesel called these neurons “simple cells.” Still
other neurons, which they termed complex cells, detected edges regardless of where they were placed in the
receptive field of the neuron.

* The visual information relayed to V1 is not coded in terms of spatial (or optical) imagery but rather are better
described as edge detection. In this way, each cortical neuron in the visual cortex can be thought of as a visual
feature detector, which only becomes active when it receives inputs above a certain threshold for its preferred feature

in a particular patch of the visual field.



Briet History ot CV

* When CV began in the early 1970s, it was 1nitially viewed as the visual perception
component of an ambitious agenda to mimic human intelligence and to endow robots
with intelligent behavior.

* At the time, it was believed by some of the early pioneers in Al and robotics than solving
the “visual input” problem would be an easy step along the path to solving AGI.

* Famously, Minsky at MIT asked his undergraduate student to “spend the summer linking
a camera to a computer and getting the compute to describe what it saw” — five decades
later, we are still working on this problem.
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Briet History ot CV

* 1970s: Inception of CV; high-level attempt to recover 3D structure of the world
from images as steppingstone toward systems of visual understanding; early
codification of optical flow, edge extraction, motion estimation, polyhedral
modeling.
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* 1980s: More attention on mathematical rigor and quantitative image and scene analysis.
Development of image pyramids; stereo image analysis; Canny edge detection; snakes;
incorporation of Markov Random Fields; Kalman filters.
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Briet History ot CV

* 1990s: Physics-based vision, optical flow methods; multi-view stereo algorithms,
including stereo correspondence; tracking algorithms (particle filters); image
segmentation (normalized cuts); facial recognition, statistical learning (Eigenface);
feature extraction, invariance (SIFT); invention of CNN:gs.

Keypoint descriptor

* 2000s: Increased interplay between CV and graphics; image stitching; computational
photography algorithms (HDR image capture); texture synthesis; BoW in CV (representation of
visual features as words); real-time face detection (Viola-Jones); interactive segmentation (graph

cuts).
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Briet History ot CV

* 2010s: Dominance of DL in CV (AlexNet); efficient training of very deep DL models (ResNet)
introduction of large-scale image datasets (ImageNet); incremental development of CNN architectures
(VGG, Inception); generative models (GANs); real-time localization (YOLO); object localization (R-CNN);
pixel-level segmentation (Mask R-CNN); CNN architecture optimization (INAS); emergence of compact DL
models (SqueezeNet); computational creativity (GauGAN)); refined hierarchical models (CapsNet); graph
convolution nets (GCNs).
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Pre—Processing

* Image data are almost always preprocessed prior to ingestion into a model; such preprocessing steps can
benefit feature extraction, model performance/convergence, etc.

* The general goal of preprocessing is to remove as much unwanted variation in the data as possible while
retaining the aspects of the image that are critical to the task at hand. Preprocessing must be applied with

care.

* Note that the choice of preprocessing technique(s) can have a large influence on the performance of
a CV algorithm. Many CV algorithms are sensitive to the application of preprocessing; oftentimes
preprocessing improves petformance and/or the stability of vatious CV algorithms.
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Pre-Processing

Image normalization

There are many related techniques for image normalization. The (2) most common being:

X; newMax —newMin :
X <—— | and |X; <—(xij - Imin) +newMin

max Imax I Imin

Whete gy (Inin) denote the maximum(minimum) pixel intensity in the image; (newMin, newMax) denotes
the pixel intensity range of the transformed image.

Image standardization (also: whitening)

Image standardization is applied by subtracting the mean intensity and dividing by the standard deviation of
pixel intensities (wrt each channel for an RGB image):

X X =1,
- |

o

e Standardization helps ensure that each pixel has a similar data distribution.



Pre-Processing

Histogram Equalization

Histogram equalization (HA) is used to modify the statistics of the intensity values so that all of their
moments take predefined values. HA forces the distribution of pixel intensities to be flat.

Original Image

Histogram Equalization

* HA is useful in images with backgrounds and foregrounds that are both bright or dark. In medical imaging,
this can lead to better views of, say, bone structure in x-rays, and to better detail in over and under-exposed
images. (+) HA is computationally cheap; (-) HA is indiscriminate, may increase signal/amplify noise.
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Pre-Processing

Histogram Equalization

(1) Compute histogram of the original intensities h (for 8-bit image K hete ranges over {0,1,2,..., K = 255}):
L3
he=>">"5% k]
i=1 j=1
where 8[+] denotes the Dirac delta function (i.e., when argument is zero, 8= 1; otherwise = 0); [ and J are

the image dimensions (check that you understand this is simply a mathematical formulation of the histogram
of a greyscale image).



Pre-Processing

Histogram Equalization

(1) Compute histogram of the original intensities h (for 8-bit image K hete ranges over {0,1,2

h, = ZI:ZJ:5[XH _k]

N

..., K =255

where 8[+] denotes the Dirac delta function (i.e., when argument is zero, 8= 1; otherwise = 0); [ and J are

the image dimensions (check that you understand this is simply a mathematical formulation of the histogram
of a greyscale image).

(2) Determine the cumulative proportion ¢ of pixels that are less than or each to each intensity level:
k
2N
=

T



Pre-Processing

Histogram Equalization

(1) Compute histogram of the original intensities h (for 8-bit image Kk here ranges over {0,1,2,..., K = 255}):

I3
h=>">65%-k|
i-1 j-1
where 8[-] denotes the Dirac delta function (i.e., when argument is zero, = 1; otherwise 8= 0); I and J are

the image dimensions (check that you understand this is simply a mathematical formulation of the histogram
of a greyscale image).

(2) Determine the cumulative proportion ¢ of pixels that are less than or each to each intensity level:
K

2N

C = 1=1
SN

(3) Finally, use the cumulative histogram as a look up table to compute the transformed value so that:

X; < K -C,, (where K is the max intensity, e.g., K = 255)

* For instance, if X;; = 90 (pixel has intensity 90), and suppose cgg = 0.29, then the transformed pixel value
would be: K - Cij = 255-0.29 = 74.

HJN”WHM




Convolution and Feature Extraction

Convolution

* A convolution is a mathematical operation of two functions (e.g., f and g) that produces

A third function: (f * g) that expresses how the shape of one is modified by the other.

* More formally, the convolution (in continuous domains) is defined as the integral of the product of the
two functions; one can conceptualize f as a signal and g as a “windowed” sample, i.e., filter (¢ signal
processing):

(f=g)(t) ::j f(r)g(t—-7)dr

Notice that if f(t) is a unit impulse 6(t), we get:(5*g)(t) = j&(r)g (t—7)dz=g(t) - The inverse of the

convolution operation 1s known as deconvolution.



Convolution and Feature Extraction

Convolution

* A convolution is a mathematical operation of two functions (e.g., f and g) that produces

A third function: (f * g) that expresses how the shape of one is modified by the other.

* More formally, the convolution (in continuous domains) is defined as the integral of the product of the two
functions; one can conceptualize f as a signal and g as a “windowed” sample, i.e., filter (cf. signal processing):

(f=g)(t) ::j f(r)g(t—-7)dr

Notice that if f(t) is a unit impulse 8(t), we get: (6=g)(t)= .[5(7)9 (t—7)dz =g(t). The inverse of the

convolution operation 1s known as deconvolution.

* At a high-level, one can think of the resultant convolution waveform (f * g) as the response signal when we

sample f using the filter g.
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Convolution and Feature Extraction

Convolution

* In CV, we primarily consider convolution operations in discrete domains.

T

* Given an image X, with individual pixel intensities x;;, the 2D convolution of X with a filter F with entries
finn where m € {—M, ..., M} and n € {—N, ..., N} amounts to computing:

M N
Xij ST Z Xi—m,j—n 1:m,n
-N

m=—M n=



Convolution and Feature Extraction

Convolution

* In CV, we primarily consider convolution operations in discrete domains.

* Given an image X, with individual pixel intensities x;;, the 2D convolution of X with a filter F with entries
fimn where m € {—M,...,M} and n € {—N, ..., N} amounts to computing:

Z lemjnmn

m=—M n=—N

In the animation above, for instance {—M, ..., M} = {—1,0,1}, and {—M, ..., M} = {—1,0,1}. (We deal with
issues of padding, stride, etc., later).
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Convolution and Feature Extraction

Gaussian Filter

* One can introduce common filter types with respect to the discrete convolution operation.

Define the 2D Gaussian filter:

_X +y

1 2
9(0y)= e *

2o




Convolution and Feature Extraction

Gaussian Filter

* One can introduce common filter types with respect to the discrete convolution operation.

0.2

Define the 2D Gaussian filter: 0.5 .
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* Here is an example of discretized 5 X5 Gaussian filter (o= 1, with binning applied): [
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* Applying a Gaussian filter to an image has the effect of reducing noise; oftentimes Gaussian filters are used
in CV as a pre-processing step to enhance image structure at varying scales. Notice that because the Gaussian
filter is isotropic it 1s not orientation-selective.
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Convolution and Feature Extraction

Derivative of Gaussian Filter

* Just as one can use a Gaussian filter to blur an image and hence remove pixilation artifacts, the derivative of
a Gaussian (DoG) filter can be used for basic edge detection.
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Convolution and Feature Extraction

Derivative of Gaussian Filter

* Just as one can use a Gaussian filter to blur an image and hence remove pixilation artifacts, the derivative of
a Gaussian (DoG) filter can be used for basic edge detection.

Consider the partial derivatives of the Gaussian filter: / !- |
Gaussian
2., \2 1 0
0 e[
6, =B g(y)=ge =X g
OX N 27zo N'c 1 0
X2+y2
o -Boluy) o ) 32
J G N 270 N'c? g,=|0 0
— & 7 =

* On their own, the DoG filters: g, and g, provide vertical and horizontal edge detectors, respectively.

LI

Horizontal edges



Convolution and Feature Extraction

Derivative of Gaussian Filter

* On their own, the DoG filters: g, and g,, provide vertical and hotizontal edge detectors, respectively.

1 0 -1 1
g.=12 0 =2 g,=|{0 0 O
1L 0 ! -1 2 -1

* In combination, one can create a Sobel filter (edge detector), by defining the filter as:

X*G =\/(X>x=gx)2 +(X>x<gy)2




Convolution and Feature Extraction

Laplacian Filter

* The second derivative (i.e., the Laplacian operator) of the Gaussian filter gives rise to the Laplacian filter,
defined:

VEg(X,Y) =04 +0,,



Convolution and Feature Extraction

Laplacian Filter

* The second derivative (i.e., the Laplacian operator) of the Gaussian filter gives rise to the Laplacian filter,

defined:

V(X Y) =0, +9, 9(xy) =t *
2o
Computing each second partial derivative of the Gaussian yields:
_ dgdg Cog—x-g(xy) -g(xy) xX-g(xy) 1(x 1
Qo =~ 2 g(x,y)—ax T AT N e g(xy)
6909 og —y-9(xy) -g(xy) y-g(xy) 1(y* 1
gW:Wg(X’y):E NIO_Z o N,GZ * N”O_4 =Nm ) g(X’y)

Thus,




Convolution and Feature Extraction

Laplacian Filter

* The second derivative (i.e., the Laplacian operator) of the Gaussian filter gives rise to the Laplacian filter,
defined:

Vig(x,y) = = (1—

N m04

Two commonly used (3 X 3) discrete vatiants of the Laplacian filter are:

0 -1 0 il =1 =1
vig=|-1 4 -1 k= | el
0 -1 0 s S|

* The Laplacian filter detects sudden intensity transitions in the image and highlights the edges; the Laplacian is
therefore commonly used as an edge/feature detector (sometimes known as a “zero cross” feature detector).
Note that the Laplacian filter is sensitive to noise — for this reason one typically applies a Gaussian blur prior to

application of the Laplacian operator. gt inge —




Convolution and Feature Extraction

Gabor Filters

* Another common family of filters, Gabor filters, are defined as a product of Gaussian and sinusoid

functions. As such, Gabor filters are selective for both scale and orientation.

Gabor filters are parametrized by the standard deviation o of the Gaussian, and the phase ¢, orientation w, and
wavelength A of the sine wave:

lh gm0 2(cos[w]m +sin[w]n) Wiy
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* Notice that Gabor filters closely resemble the features discovered by Hubel and Wiesel to which “simple

cells” in the visual cortex were responsive.

Image with bank of Gabor filter

activations shown

(Left) Primitive filters “discovered” by AlexNet
CNN architecture; notice the close resemblance with

Gabor filters (Right)



Canny Edge Detection

Canny Edge Detection

* Canny edge detection (1980) is a classic edge detection algorithm know by all CV practitioners; it is still in

wide use today.

* At its core, Canny edge detection is an intuitive and relatively simple algorithm, following (5) key steps:

(1) We first apply a Gaussian filter to reduce noise in the input image.
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A Computational Approach to Edge Detection

JOHN CANNY, MEMBER, IEEE

comprekensive set of goals for the computation of edge These
goals must be precise enough to delimit the desired behavior of the
detector while making minimal assumptions about the form of the so-
lution. We define detection and localization ria for a class of edges,
and present mathematical forms for these criteria the

detector as input to a program which could isolate simple
geometric solids. More recently the model-based vision
system ACRONYM [3] used an edge detector as the front
end to a sophisticated recognition program. Shape from
motion [29], [13] can be used to infer the structure of

operator impulse response. A third criterion is then added fo ensure
that the detector has only one response to a single edge. We use the

0 to derive detectors for several com-
step edges. On specializing the analysis
ep edges, we find that there is a natural uncertainty principle be-
tween detection and localization performance, which are the two
goals. With this principie we derive a single operator shape which is
optimal at any scale. The optimal detector has @ simple appravimate
implementation in which edges are marked at maxima in gradient mag-
nitude of a Gaussian-smonthed image. We extend this simple detector
using operators of several widths to cope with different signal-lo-noise
ratios in the image. We present a general method, called feature syn-
thesis, for the fi imtegration of i tors.
at different scales. Finally we show that step edge detector perfor-
mance improves considerably as the operator point spread function is
extended along the edge. This detection scheme uses several elongated
aperators ai each poini, and the directional operator sutputs are in-
tegrated with the gradient maximum detector.

Index Terms—Edge detection, feature extraction, image processing.
machine vision, multiscale image analysis.

L. INTRODUCTION
DGE detectors of some kind, particularly step edge
E}ﬂcclﬂn, have been an essential part of many com-
puter vision svstems. The edee detection process serves

three-d | objects from the motion of edge con-
tours or edge points in the image plane. Several modern
theories of stercopsis assume thal images are prepro-
cessed by an edge detector before matching is done [19].
[20]. Beattie [1] describes an edge-based labeling scheme
for low-level image understanding. Finally, some novel
methods have been suggested for the extraction of three-
dimensional information from image contours, namely
shape from contour [27] and shape from texture [31].

In all of these examples there are common criteria rel-
evant to edge detector performance. The first and most
obvious is low error rate. It is important that edges that
occur in the image should not be missed and that there be
no spurious responses. In all the above cases, system per-
formance will be hampered by edge detector errors. The
second criterion is that the edge points be well localized.
That is, the distance between the points marked by the
detector and the **center”” of the true edge should be min-
imized. This is particularly true of stereo and shape from
motion, where small disparities are measured between left
and right images or between images produced at slightly
different times.

In this paper we will develop a mathematical form for
these two criteria which can be used to design detectors
for arhitrary adass W will alen

or that the fire



https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123

Canny Edge Detection

Canny Edge Detection

(2) Using the Sobel kernels, g, and g,,, we next calculate the magnitude and slope of the input image gradient
using:

ko= fxea (xe0)

6(x,y) =arctan ty

X

This process yields a gradient intensity map.
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Canny Edge Detection

Canny Edge Detection

(3) Step (2) generates a general gradient intensity map — however, many of the rendered contours are thick and
often noisy. To help produce more distinct, thin contour lines, we apply a process called non-maximum
suppression.

* The basic idea is a as follows: we use the gradient intensity map — specifically the angle 6(x, y) generated
from the Sobel kernel (notice that the angle 0 yields a vector that “points” in the direction of the highest
gradation of low intensity transitioning to high intensity).
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* The orientation of an edge contour is orthogonal (generally) to the gradient angle 6.




Canny Edge Detection

Canny Edge Detection

(3) Non-maximum suppression (NMS)

w
B
]

Ik

* If the current pixel under consideration for non-maximum suppression does not have the maximum gradient
intensity compared to the neighboring pixels along the gradient vector induce by 6, this pixel is suppressed
(i.e., we set the intensity to zero). The effect of non-maximum suppression 1s to thin contour lines.
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Pixel (1)) is under consideration for NMS; looking at the
neighboring pixels along the edge contour, we suppress
the intensity of pixel (3,]), because it is not the maximum
along the edge contour.
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Canny Edge Detection

Canny Edge Detection
(4) Double Thresholding

* Following NMS, we apply double thresholding. In this step we are provided two parameters: (minValue,
max Value); using these parameters, we identify pixels as either: strong, weak or irrelevant as edge pixels.

Edge 1
/ Real edges
/ Connectivity

Edge 3  Analysis

* Any pixel values above maxValue are identified as true edge pixels; intensities below minValue are discarded
from consideration as edge pixels. Finally, pixels falling in the range (minValue, maxValue) are considered
“weak” and subject to further analysis using hysteresis (step 5).

https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49¢3a2d8123



Canny Edge Detection

Canny Edge Detection
(5) Edge Refinement with Hysteresis

* Finally, the hysteresis consists of transforming weak pixels into strong ones, if and only if at least one of the
pixels around the one being processed is designated strong.
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Canny Edge Detection

Canny Edge Detection Summary

350 ' .

(3) NMS (4) Double Thresholding (5) Hysteresis

(2) Sobel transform
10 -1
gx LY 0 _2 Edge 1
1 0 1 / Real edges
45.3 3 :::::-fm
g9, = 0 0 O Edgk No edges
-1 -2 -1
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6(x,y) = arctan [E—VJ
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OpenCV

* OpenCV (Intel, opencv.org) is a comprehensive, open-source library of CV-related algorithms, available in
C++ and Python. Functionality is broad, including image processing, feature extraction, segmentation, edge
detection, video tracking, segmentation, image stitching, camera calibration, DNN-based algorithms, etc.

* | highly recommend exploring some of the OpenCV tutorials: n
https://docs.opencv.org/master/d9/df8/ tutorial_root.html

OpenCV

* Every core algorithm mentioned in this lecture series (pre-processing, filter types, Canny, descriptors,
segmentation, tracking, etc.) can be executed in OpenCV (often using just a few lines of codel).

Source code: https://github.com/opencv/opencv



OpenCV

import numpy as np
import cv2 as cv

5 ) import cv2
from matplotlib import pyplot as plt import numpy as np
from matplotlib import pyplot as plt Sobel
img = cv.imread('messi5.jpg"',0) img = cv2.imread('dave.jpg',0)

edges = cv.Canny(img,100,200)

laplacian = cv2.lLaplacian(img,cv2.CV_64F) Trans form

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)

plt.subplot(121),plt.imshow(img,cmap = 'gray') sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
plt.title('Original Ilpage ) plt.xtlcks([?), p]‘.t.ytlcks([]) ST SURIAE(2.2.13 Pt DRI Rep = TEEY)
plt.subplot(122),plt.1mshow(edges,cmap = ‘gray ) plt.title('Original’), plt.xticks([]), plt.yticks([])
plt.title('Edge Image'), plt.xticks([]), plt.yticks([]) plt.subplot(2,2,2),plt.imshow(laplacian,cmap = ‘gray’)

plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = ‘gray')
plt.show() plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])

See the result below:
plt.show()

Result:

Canny edge
detection

Original Laplacian

import numpy as np
import cv2 as cv

img = cv.imread('home.jpg")
gray= cv.cvtColor(img,cv.COLOR_BGR2GRAY)

sift = cv.SIFT_create()
kp = sift.detect(gray,None)

img=cv.drawKeypoints(gray,kp,img)

cv.imwrite('sift_keypoints.jpg',img)

SIFT

descriptor




SIF'T Descriptor

* Oftentimes, we are interested in identifying “interesting points” (i.e., keypoints) in an image;
these points can be leveraged in edge detection, keypoint matching, image stitching, pose
classification, object tracking, and related CV problems.

Distinctive Image Features
from Scale-Invariant Keypoints

David G. Lowe
Computer Science Department
University of British Columbia

Vancouver, B.C., Canada
lowe(@cs.ubc.ca

January 5, 2004

Abstract

an object or s . Th atures are invariant to image scale and rotation, and
are shown to provide robust matching across a a substantial range of affine dis-

objects among clutter and occlusion while achieving near real-time performance.

* The scale invariant feature transform (SIFT, 1999) descriptor 1s a common, robust method used
to detect and describe local features in images. SIFT descriptors are 128-dimensional vectors
that summarize unique visual features within a patch centered at a keypoint pixel.

https:/ /www.cs.ubc.ca/~lowe/papers/ijcv04.pdf



SIF'T Descriptor

(1) Scale-space extrema detection: In order for the SIFT detector to be scale-invariant,

we first generate a scale-space of an image.

* The goal of the scale-space calculation is to generate a multi-scale Laplacian
(more accurately: an approximation of the Laplacian) for the original image.



SIF'T Descriptor

(1) Scale-space extrema detection: In order for the SIFT detector to be scale-invariant,

we first generate a scale-space of an image.

* The goal of the scale-space calculation is to generate a multi-scale Laplacian
(more accurately: an approximation of the Laplacian) for the original image.

* The first step toward this end is to convolve a Gaussian kernel at different scales with the
input image. Concretely, we produce different “octaves”; within each octave we use
different o parameters to generate smoothing at different scales; we generate different
octaves by halving the size of the input image for each successive octave.

* Next, we compute the difference of Gaussians (for pairs in each octave); the difference
of Gaussians 1s a well-known approximation to the Laplacian of an image.

Scale
(next
octave)

step o%=2 A

Difference of
Gaussian Gaussian (DOG)



SIF'T Descriptor

(1) Scale-space extrema detection: In order for the SIFT detector to be scale-invariant,

we first generate a scale-space of an image.

* Then we determine a set of candidate keypoints. One pixel in each image is compared
with its 8 neighbors as well as the 9 pixels in the next scale and the 9 pixels in the previous
scale; in this way, a total of 26 pixels are compared. If the pixel under consideration 1s an
extremum in relation to this set, it is designated as a candidate keypoint.

ST T 7T
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Gaussian Difference-of-Gaussian
(DoG)



SIF'T Descriptor

(2) Keypoint Selection

* At each candidate keypoint, the authors determine whether the keypoint is a low-
contrast point, in which case it 1s rejected. To discard the keypoints with low contrast, we
compute the second-order Taylor expansion at its local extremum X; if the intensity of this
pixel is less than a threshold value (0.3), it 1s discarded; for D(x,y,0), the difference of Gaussian
Space, compute:

oDT 1 . 9’D
D(X)ZD+8_X X+ 35X ot

X

Low-contrast keypoint removal



SIF'T Descriptor

(3) Orientation Assignment: This is the key step in achieving invariance to rotation.

* We compute the gradient magnitude m(x,y) and direction 6(x,y) with respect to the
Gaussian-smoothed image L(x,y, o) for a neighborhood of 36 points (x,y) surrounding the
keypoint where o is the scale identified with the keypoint:

m(x,y) = J(L(x+1 y) — L(x=1 y))* + L(x, y +1) - L(x, y ~1))’
H(X, y) =arctan((L(x,y+1) —L(x,y—-1)/(L(x+1 y)-L(x-1)))

* From the histogram of the orientations of these 36 surrounding pixels, we assign an
orientation for the keypoint (aligned with the maximum of the orientation histogram).
Next, rotate the gradient directions and locations relative to the keypoint orientation (this
will make the SIFT detector invariant to rotations).
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SIF'T Descriptor

(4) Keypoint Descriptor: At this juncture we have identified keypoints in the image, along
with their relative scale and orientation.

* The final step is to compute the 128-dimensional keypoint descriptor. When defining this
descriptor vector, we want it to be distinctive (i.e., specific to the particular keypoint), and
invariant to changes in viewpoint and illumination.

* Using a 16x16 window (divided into 4x4 sub-regions) of rotated gradients (rotated relative to
the keypoint orientation) we construct a histogram (using 8 bins, as shown) for each 4x4
subregion. This yields a 4x4x8=128 dimensional SIFT feature vector.

16x16 window 128 dimensional vector

Iy 4
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*Note that illumination invatiance can be achieved by thresholding/normalizing this descriptor
vectot.



SIF'T Descriptor
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128-element SIFT feature vector

SIFT Algorithm summary:
(1) Generate scale-space of image using Gaussian smoothing for different o and different

image sizes; estimate Laplacian from this scale-space using difference of Gaussians;
determine keypoint candidate from local neighborhoods.

(2) Remove low-contrast candidates.

(3) Compute local gradients wrt keypoint; determine orientation of keypoint.

(4) Generate keypoint descriptor: from 16x16 grid of neighboring pixels, generate 8-bin
histograms of each 4x4 subregion (of gradients rotated relative to keypoint
orientation).



SIF'T Descriptor: Image Stitching

* Image descriptors (e.g., SIFT), are essential to many CV tasks, including image stitching, image
retrieval, pose estimation, and general image feature extraction.

Image Stitching
* Image stitching is the process of combining multiple photographic images with overlapping fields of view
to produce a cohesive panorama image.

* Using local image descriptors such as SIFT, one can perform keypoint matching between two images by
simply identifying matches based on their nearest neighbors (i.e., L2 distance b/w descriptor vectors).
Finally, we learn a linear transformation (called a Homography matrix in CV) which relates the mapping
between two planes from a single point of reference.

/ x planar surface

*Note that there are many heuristics to reduce the instance of false matchings in this setting, e.g., checking ratio of closest
distance with second closest distance, and rejecting based on a threshold criterion.




SIFT Descriptor: Image Retrieval

Bag of Visual Worlds (BoVW)

* Using a collection of local descriptors (e.g., SIFT descriptors of keypoints) of an image, we can generate a
“global” description of an image, called a BoVW model.

(1) Given a training set, for each image, we extract the set of SIFT keypoint descriptors (notice that images
can yield different numbers of keypoints, but each will have an associated vector of equal dimension).

Each SIFT vector is of 128-dimensions



SIFT Descriptor: Image Retrieval

Bag of Visual Worlds (BoVW)

* Using a collection of local descriptors (e.g. SIFT descriptors of keypoints) of an image, we can generate a
“global” description of an image, called a BoVW model.

(1) Given a training set, for each image, we extract the set of SIFT keypoint descriptors (notice that images
can yield different numbers of keypoints, but each will have an associated vector of equal dimension).

Each SIFT vector is of 128-dimensions

(2) Collectively, we take all the SIFT keypoint descriptors and perform k-means clustering. The
hyperparameter K (the number of clusters) will represent out visual “vocabulary” size; each centroid
corresponds with a visual “word” in the SIFT representation feature space.

SIFT dCSCI’iptOIS Visual vocabulary
)
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SIFT Descriptor: Image Retrieval

Bag of Visual Worlds (BoVW)

¢ Using a collection of local descriptors (e.g., SIFT descriptors of keypoints) of an image, we can generate a
“global” description of an image, called a BoVW model.

(3) For each training image we, create a histogram based on the visual vocabulary rendered by k-means in (2).
This per image histogram denotes the frequency of each word in the visual vocabulary

2 . ) / gig \/:}-&z Enl’

Th @ T LW = Jh@w™

SIFT descrirtors




SIFT Descriptor: Image Retrieval

Bag of Visual Worlds (BoVW)

¢ Using a collection of local descriptors (e.g. SIFT descriptors of keypoints) of an image, we can generate a
“global” description of an image, called a BoVW model.

(3) For each training image we, create a histogram based on the visual vocabulary render by k-means in (2).
This per image histogram denotes the frequency of each word in the visual vocabulary

SIFT deschtors
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* Now, from this BoVW model, we can perform image retrieval. Given a query image, we generate its SIFT
teatures, and then construct the histogram for this test image based on our previously identified visual vocabulary.
Using a basic similarity measure with respect to this histogram (i.e., nearest-neighbor, L.2-distance, etc.) we can

generate similar images from the training set. !
IIIIIIIIH

BoVW-based similarity
histogram measure

retrieved images

query image

*Notice that general image classification using hand-crafted features can be executed in a similar manner.



HOG Descriptor

e Like the SIFT descriptor, the histogram of oriented gradients (HOG) descriptor attempts to compactly
represent salient features in an image. In general, The HOG descriptor gives a more detailed characterization
of the spatial structure of an image.

The HOG descriptor is simple to calculate:

Q)
2)

(3)

First*, we apply the Sobel transformation to the input image.

Next, we divide the image (or image patch) uniformly into small cells (e.g., 8x8, 16x16 cells). Within each
of these cells each pixel now has an associated magnitude and direction (from the Sobel transformation).
We then “bin” the direction values of each pixel in the cell using 9 bins (0, 20, 40, ..., 160 — direction

signs are ignored; this is known as an “unsigned” gradient).
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*Generally, the calculation of the HOG descriptor requires no pre-processing (due to block normalization step).
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HOG Descriptor

(1)  First*, we apply the Sobel transformation to the input image.

(2) Next, we divide the image (or image patch) uniformly into small cells (e.g. 8x8, 16x16 cells). Within each of these cells each pixel
now has an associated magnitude and direction (from the Sobel transformation).

(3) We then “bin” the direction values of each pixel in the cell using 9 bins (0, 20, 40, ..., 160 — direction signs are ignored; this is
known as an “unsigned” gradient).

(4) Finally, for robustness to lighting changes, we generate a normalized block descriptor by concatenating

2x2 (usually, or 3x3) neighborhoods of cells (then normalizing over this entire neighborhood); this yields the

tinal HOG descriptor.




HOG Descriptor: Object Localization

* We can develop an object localization algorithm using HOG descriptors in combination with a classifier

model.
* Suppose that we train a simple SVM (support vector machine) to classify cars vs non-cars based on the

HOG descriptor of an image patch. Which is to say, we train the SVM on a set of HOG descriptors of
image patches from our training set in order to differentiate cars from non-cars.

—| Car/non-car
Classifier

Feature vector from HoG

Feature
extraction




HOG Descriptor: Object Localization

* We can develop an object localization algorithm using HOG descriptors in combination with a classifier
model.

* Suppose that we train a simple SVM (support vector machine) to classify cars vs non-cars based on the
HOG descriptor of an image patch. Which is to say, we train the SVM on a set of HOG descriptors of
image patches from our training set in order to differentiate cars from non-cars.

Feature
extraction

Feature vector from HoG

* Using a simple “sliding window” approach -- we extract patches over all regions in an image and compute
their corresponding HOG descriptor. Each of these HOG descriptors is fed into our trained SVM, rendering
a “score map”’. The maximum scores (above a threshold) are determined to be locations of a car.

HOG Descriptor SVM Score Map Localization




Video Tracking: Correlation Filter

Visual Object Tracking using Adaptive Correlation Filters

David S. Bolme  J. Ross Beveridge  Bruce A. Draper  Yui Man Lui
Computer Science Department
Colorado State University
Fort Collins, CO 80521, USA

bolme@cs.colostate.edu

Low NN TN High

* Filter- based trackers model the appearance of objects using filters trained on example
images.

* The target is initially selected based on a small tracking window centered on the object in the
first frame. The target is then tracked by correlating the filter over a search window in the
next frame; the location corresponding to the maximum value in the correlation output
indicates the new position of the target.

* When executed efficiently, correlation filter tracking can run in real-time, e.g.,, Minimum
Output Sum of Squared Error (MOSSE, 2010) tracker, which we review next.



Video Tracking: Correlation Filter

MOSSE Tracker

* We wish to develop a computationally efficient method to define a robust correlation filter for
object tracking.

* To this end, we want to define a correlation filter H, satisfying:
G=FOH*

where G is the Fast Fourier Transform* (FFT) of an idealized correlation output (e.g., a
Gaussian peak), F = FFT(f) the input image patch and H = FFT (h) of the learned correlation
filter; H™ denotes the complex conjugate of H; O denotes elementwise multiplication.

* The Convolution Theorem™* states that correlation is mathematically equivalent to
convolution in the Fourier domain.

*http:/ /www.dsp-book.narod.ru/DSPMW/07.PDF FFT

**https:/ /www.sciencedirect.com/ topics/engineering/ convolution-theorem



Video Tracking: Correlation Filter

MOSSE Tracker
* To this end, we want to define a correlation filter H, satisfying:

G=F@OH*
(x=%)*+(y=yi)*

Let G=e <  a Gaussian correlation.




Video Tracking: Correlation Filter

MOSSE Tracker
* To this end, we want to define a correlation filter H, satisfying:

G=F@OH*
(x=%)*+(y=yi)*

Let G=e <  a Gaussian correlation.

* A reasonable optimization criterion is:

: T
n.l'*”Z' FOH*-G |

where we wish to minimize the distance between the idealized correlation output G; and the
predicted correlation output using the learned filter H*, namely: F;OH™ ; note that the sum is
performed over a training dataset of images/patches. The solution to this optimization problem

is the MOSSE tracker.



Video Tracking: Correlation Filter

MOSSE Tracker
* To this end, we want to define a correlation filter H, satisfying:

G=F@OH*
(x=%)*+(y=yi)*

Let G=e <  a Gaussian correlation.

* A reasonable optimization criterion is:

: T
n.l'*”Z' FOH*-G |

where we wish to minimize the distance between the idealized correlation output G; and the
predicted correlation output using the learned filter H*, namely: F;OH™ ; note that the sum is

performed over a training dataset of images/patches. The solution to this optimization problem
is the MOSSE tracker.

Y GOR*
:ZFiQFi*

* The authors show that a closed form solution 1s given by: |H*

where the numerator represents the correlation between the input and the desired output, and
the denominator is the energy spectrum of the input.



Video Tracking: Correlation Filter

MOSSE Tracker

* In practice, one usually extracts several crops of the object of interest from the first several
frames of a video clip (or at minimum — from the first frame); this gives us our training set {F.}

* Using a Gaussian filter for G, we calculate the MOSSE correlation filter:

D> GOFR*
:ZFiQFi*

*




Video Tracking: Correlation Filter

MOSSE Tracker

* In practice, one usually extracts several crops of the object of interest from the first several
frames of a video clip (or at minimum — from the first frame); this gives us our training set {F,}

* Using a Gaussian filter for G, we calculate the MOSSE correlation filter:

2.GOFR*
"SFoF*

*

* The target is then tracked by correlating the filter over a search window in the next frame;
the location corresponding to the maximum value in the correlation output indicates the new
position of the target.

G, O F*— INVFFT

G, OF,*— INVFFT




Video Tracking: Correlation Filter

MOSSE Tracker
* During tracking, a target object can often change appearance by changing rotation, scale,
undergoing illumination changes, deforming etc. Therefore, filters to need to quickly adapt in

order to follow objects; the authors apply a running average for this purpose; for the 7th video
frame:

e
B.

A =nG OF *+(1_77)A—1
B=nFEOF *"‘(1_77) B,

where 7 is a learning rate that gauges the importance of the previous frames.




Review Topic:
k-Means



k-Means

* k-means is a very popular (and simple) clustering algorithm used in ML

and data science.

* /A-means clustering aims to partition 7 observations into £ clusters in
which each observation belongs to the cluster with the nearest mean,
serving as a prototype of the cluster. This results 1n a partitioning of the
data space into Voronoi cells.

orno:
Tessellation; 20

points and their
% Voroni cells.




k-Means

* Given a set of observations (X, X,, ..., X_), where each observation is
a d-dimensional real vector, k-means clustering aims to partition the n
observations into k (< n) sets S={S,, S,, ..., S;} so as to minimize
the within-cluster sum of squares (WCSS).



k-Means

* Given a set of observations (X, X,, ..., X_), where each observation is
a d-dimensional real vector, k-means clustering endeavors to partition
the n observations into k (< n) sets S={S, S,, ..., S;} so as to
minimize the within-cluster sum of squares (WCSS).

* Formally, the objective is to find:

argmmZZHx | —argmln D IS Var(s;)

I=1 XxeS$ Xe$;

where p. is the mean of cluster S..



k-Means

* The algorithm itself works by iterative refinement, and 1s a variant of a
more general algorithm, known as EM (expectation-maximization).

: g 1 1 i
 (Given an initial set of k means mg ), en m,(( ) (the subscript is the cluster

identification, while superscript is the iteration number) k-means alternates
between the following (2) steps:




k-Means

* The algorithm itself works by iterative refinement, and 1s a variant of a
more general algorithm, known as EM (expectation-maximization).

: g 1 1 i
 (Given an initial set of k means mg ), en m,(( ) (the subscript is the cluster

identification, while superscript is the iteration number) k-means alternates
between the following (2) steps:

(I) Assignment Step (i.e., the expectation step):

Assign each observation to the cluster whose mean has the least squared
Euclidean distance, this is intuitively the "nearest”" mean. Mathematically, this
means partitioning the observations according to the Voroni tessellation
generated by the means.

S.(t):{xp:Hx _m®

2

_m®
| —m stp m

ZVj,lsjsk}

Where each datum x is assigned to exactly one cluster, S®.



k-Means

3 o B 1 1
* (iven an initial set of k means mg ), - m,(( ) k-means alternates between
the following (2) steps:

(I) Assignment Step (i.e., the expectation step):

Assign each observation to the cluster whose mean has the least squared
Euclidean distance, this is intuitively the "nearest”" mean. Mathematically, this
means partitioning the observations according to the Voroni tessellation
generated by the means.

2
st = {x ' Hx -m"
PP

ZVj,lngk}

W
stp m

(IT) Update Step (i.c., the parameter maximization step):

e (Calculate the new means to be the centroids of the observations in the
new clusters.

* The algorithm has converged when the assignments no longer change.
There 1s no guarantee that the optimum is found using this algorithm.




k-Means

(I) Assignment Step (i.e., the expectation step):

2

“Vil< j<k

s = !x :pr—mi(t)

0
stp m

(IT) Update Step (i.c., the parameter maximization step):
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Example: Image segmentation by

k-Means clustering




Review Topic:
GMMs



GMDMs

* A commonly used soft clustering model is the GMM (Gaussian mixture model); with
GMMs, we assume (a priori) that the clusters resemble tightly-packed balls (i.e., Gaussian
distributions).

Gaussian Mixture Model




GMDMs: Gaussian Distribution Review

N(x;uv Z) e (27_(_)1)/12|2|1/2 exp {—5(56 - M)Tz_l(m ~ :u)}

202, = ]
. O 10—
=50, =

2= 0.5, = _-

EETE ]
[T ]
o oo

LR~ s i} 1
|

= _2,

@y = (X)
I\




GMDMs: Gaussian Distribution Review

Covariance matrix X =
o2 0

0 o°

v

Covariance matrix X =

v

\ 4

Using different forms of covariance matrix allows for clusters of different shapes



GMMs

Main 1deas for clustering using GMM:

« Initialization: given a data set, fix £, the number of clusters; initialize the mean (w) and
covariance matrices () for the k Gaussian clusters.

- Assign the data points to the k clusters (using a soft clustering) (assignment step/E-
step)

- Update the parameters (i.e. g, X) for each of the clusters. (update step/M-step)

...repeat until stopping condition/convergence



GMMs

Main 1deas for clustering using GMM:

« Initialization: given a data set, fix £, the number of clusters; initialize the mean (p) and
covariance matrices () for the k Gaussian clusters.

- Assign the data points to the k clusters (using a soft clustering) (assignment step/E-
step)

- Update the parameters (i.e. i, 2) and prior class estimates (P(C,|x) (for each of the
clusters. (update step/M-step)

...repeat until stopping condition/convergence

What makes this problem challenging? There are, ostensibly, many unknowns!

- Strictly speaking, we don’t know the cluster assignments nor any of the Gaussian
distribution parameters.




GMMs

What makes this problem challenging? There are, ostensibly, many unknowns!

- Strictly speaking, we don’t know the cluster assignments nor any of the Gaussian
distribution parameters.

How can we simplify things?

A nice trick...Solve each subproblem separately!



GMMs

What makes this problem challenging? There are, ostensibly, many unknowns!

- Strictly speaking, we don’t know the cluster assignments nor any of the Gaussian
distribution parameters.

How can we simplify things?

A nice trick...Solve each subproblem separately!

(1) For instance, to find the optimal class assignments for each datum, use the current

approximations for the Gaussian parameters distributions (i.e. treat p and X as known
for each cluster, as well as each class prior) and compute the class posterior: P(C, | x)
using Bayes’ Rule.

(2) Conversely, to find the optimal estimates for yu and > for each cluster, in addition to

the class priors, use the current (soft) class posterior assignments and compute the
MLE.



GMMs

(1) For instance, to find the optimal class assignments for each datum, use the current
approximations for the Gaussian parameters distributions (i.e. treat p and X as known
for each cluster, as well as each class prior) and compute the class posterior: P(C. | x)
using Bayes’ Rule. (assignment step/E-step)

- Given the current estimates of both the parameters of each Gaussian cluster:

(H1521)5- - (M), and the prior for each cluster: P(C))=n,,..., P(C,)=n,, we compute the
class posterior P(C,) using Bayes’ Rule as follows:

P(Ci|x)= P(Xlsi&;(ci)




GMMs

(1) For instance, to find the optimal class assignments for each datum, use the current
approximations for the Gaussian parameters distributions (i.e. treat p and X as known
for each cluster, as well as each class prior) and compute the class posterior: P(C. | x)
using Bayes’ Rule. (assignment step/E-step)

- Given the current estimates of both the parameters of each Gaussian cluster:

(H1521)5- - (M), and the prior for each cluster: P(C))=n,,..., P(C,)=n,, we compute the
class posterior P(C,) using Bayes’ Rule as follows:

_P(xIG)P(C) 1

1 R
P(Ci|X)— P(x) X 7T (Zﬂ)d/Z‘Z-‘UZ exp[—g(x—yi) 2 (X_ﬂi)}




GMMs

(2) To find the optimal estimates for u and X for each cluster, in addition to the class
priors, use the current (soft) class posterior assignments and compute the MLE. (update
step/M-step)

- Observe that if we knew which points belong to, say cluster z for a hard clustering, we
can use the standard MLE estimates (from beginning statistics) to estimate the Gaussian
parameters (i and X)) for each cluster, in addition to the cluster priors (e.g., P(C)). These
standard parameter estimates are given as follows:

fti:ﬂ leiZXj ii:lZ:(Xj_'&i)(xj_’[li)T

n n; x!eC, n; x!eC,

cluster prior cluster mean cluster covariance matrix

where above, 7, denotes the size of the /th cluster.



GMMs: MIE Parameter Estimates

(2) To find the optimal estimates for p and X for each cluster, in addition to the class
priors, use the current (soft) class posterior assignments and compute the MLE. (update
step/M-step)

- Observe that if we knew which points belong to, say cluster 7 for a hard clustering, we
can use the standard MLE estimates (from beginning statistics) to estimate the Gaussian
parameters (i and X) for each cluster, in addition to the cluster priors (e.g. P(C,). These
standard parameter estimates are given as follows:

A=l A=I X 5 ==Y (K-a)(X-4)

n r"i x)eC, ni xJ eC;
cluster prior cluster mean cluster covariance matrix

where above, 7, denotes the size of the 7th cluster.

(*) However, because we are executing a soft clustering, these parameter update formulae
must incorporate the class posteriors: P(C, | x), for each i=1,... k and for each data point x,

respectively.



GMMs: Modified Parameter Estimates

(2) To find the optimal estimates for p and X for each cluster, in addition to the class
priors, use the current (soft) class posterior assignments and compute the MLE. (update

step/M-step)

- Here are the parameter estimate formulas, updated to account for the soft clustering
induced by the class posteriors: P(C.|x), for each i=1,... k, for each data point:

. 1 | o Z x"P(Ci |xj)
Bl S _ j :[li:_ XJ_)/:li:J:,..,n -
T, " —> T n 4 nP<C.|X ) et ; p(Cilxj)
. J=1,..,n
cluster prior modified formula cluster mean modified formula

WES o SERNELSNRE S-Sl
) R AT

n; xleC

j=1,..,n

cluster covariance matrix modified formula



GMMs: Summary

Main ideas for clustering using GMM:

- Initialization: given a data set, fix £, the number of clusters; initialize the mean (p) and
covariance matrices (X) for the &£ Gaussian clusters, and cluster priors (P(C)).

() Assign the data points to the £ clusters (using a soft clustering) (assignment step/E-
step)

P(Ci |X)oc7zi

o0 -3 (x- ) 5 (x- )|

(27)" [z

(II) Update the parameters (1.e. u, ) for each of the clusters, including the cluster priors.
(update step/M-step)

> p@)| [ ple ) -awa)
- 1 j Ao J=L.n & j=L.n
ﬂi:ﬁj—lz,..,np((:i|x ) |A= 12 P(Ci1x') A j:lz,..“,np(cilxj)

...repeat until stopping condition/convergence



GMDMs

* Demo: https://lukapopijac.github.io/gaussian-mixture-model/




GMMs: Image Segmentation

resulting segmentation using GMM wath C=3W=2 8412 29412 29412 058824 058824

1
08
08
07

b 406

Llos

Segmentation result using GMM with 3
components



GMMs: Image Segmentation

histogram

mpo ndimage
"t matplotlib.pypl
sklearn.mixture

np.random.s

n 1€

1 256

im np. ze

points T'np. .random((2, n**2}))

im[(points[@]) e nt), (points[1]) (np.int)]
im ndimage.c n_Tilter(im, 1/(4.%n))

mask (im im.m )) pe(np.float)

img mask 3.3 np.random. randn( ‘mask.shape)

hist, bin_edges np.hi ram(img, h0)

bin_centers 5%(bin_ es[:-11] bin_edgés[, 1)

classif G o ( 2)
classif.fit(img.reshape((img.size, 1)))

threshold np.mean(classif.means_)
binary_img img threshold

http://scipy-lectures.org/advanced/image_processing/auto_examples/plot_ GMM.html



Review Topic:
Max Flow Min Cut
Ford-Fulkerson Algorithm



Minimum Cut Problem

Flow network
* Abstraction for material flowing through the edges.
* G = (V, E) = directed graph, no parallel edges.
* Two distinguished nodes: s = source, t = sink.

* c(e) = capacity of edge e.

/'@i 9 =/5>\
4 \/
source (s 5 >\3>v\ 8 =\6> 10 sink

15 T 6 T 10
capacity —

10

) 4
4 30 7




Minimum Cut Problem

* Def. An s-t cutis a partition (A, B) of Vwiths € Aandt € B.

* Def. The capacity of a cut (A, B) is: cap(A, B) = X c(e)

e out of A

10

15 15 10
5 8 @ 10 @

/@ 9 I
—0

Capacity =10 +5 + 15
30 @ =30



Minimum Cut Problem

* Def. An s-tcutis a partition (A, B) of Vwiths € Aandt e B.

* Def. The capacity of a cut (A, B) is:cap(A, B) = X c(e)

e out of A

s 5 =\‘3'\ 8 \@ 10 @

4 6 15 10

15
v Capacity =9 + 15 + 8 + 30
4 30 =62




Minimum Cut Problem

* Min s-t cut problem. Find an s-t cut of minimum capacity.

/ﬁ) 9 ®

10

/L 15 15 10

> > =\3\ 8 (? : /@

4 6 15

Capacity = 10 + 8 + 10
4 30 > 7 =28




Max Flow Problem

e Def. An s-t flow is a function that satisfies:

» Foreache € E: 0 < f(e) < c(e) [capacity]
o ForeachveV—-{st}: >Xf(e) = X f(e) [conservation]
eintov e out of v

* Def. The value of a flow f is: v(f) = > f(e).

e out of s
0]
@ 9 ®
4
0 0
10 4 4 15 15 0 10
0 4 4

O,

©)
@
©,

0 0
, 4 0 6 15 0
capacity — 15 10
flow — 0 0

Value = 4

® 30 @



Max Flow Problem

e Def. An s-t flow is a function that satisfies:

» Foreache € E: 0 < f(e) < c(e) [capacity]
o ForeachveV—-{st}: >Xf(e) = X f(e) [conservation]
eintov e out of v

* Def. The value of a flow f is: v(f) = > f(e).

eout of s

6

@ g ®
10 0 6
10 4 4 15 15 0 10
3 8 8

©)
@
©,

O,

capacity — 15
flow — 11 1

® 30 @

Value = 24



Max Flow Problem

* Max flow problem. Find s-t flow of maximum value.

9
@ 9 ®
10 1 9
10 4 0 15 15 0 10
4 8 9

©)
@
©,

O,

4 10
, 4 0 6 15 0
capacity — 15 10
flow — 14 14

Value = 28

® 30 @



Max Flow Problem

* Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then,

the net flow sent across the cut is equal to the amount leaving s.

>fe) — Xf(e) = v(f)

e out of A einto A

10

10 4 15 15 0 10

(@)

15

au
@



Max Flow Problem

* Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then,

the net flow sent across the cut is equal to the amount leaving s.

>fe) — Xf(e) = v(f)

e out of A einto A

6
0 10

10 “~ :
10

4 4
3 8 8
5 8 10 @

A
1 10

4 0 0
15
11\

6
9
0
15

/a@

6 10

Value=6+0+8-1+11

11
30 =24
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Max Flow Problem

* Flow value lemma. et f be any flow, and let (A, B) be any s-t cut. Then, the net

flow sent across the cut 1s equal to the amount leaving s.

>fe) — Xf(e) = v(f)

e out of A einto A
6
; 9 ®
10 0 6
10 4 4 15 15 0 10
3 8 8
3 8 >ﬁ> 10
A
1 10
4 0 15 0
15 6 10
11
11 Value=10-4+8-0+10

30 > 7 =24




Flows and Cuts

* Weak duality. Letf be any flow, and let (A, B) be any s-t cut. Then the

value of the flow is at most the capacity of the cut.

Cut capacity = 30 = Flow value < 30

/@ 9 ®
10 4 15 15 10
—G
4

5

5 6 15 10

Capacity = 30
\‘@ 50 @ pacty



Flows and Cuts

* Corollary. Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f 1s a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity =28 = Flow value <28

9
9 B
10 1 9
10 4 0 15 15 0 10
4 8 9
5 8 >@ﬁ 10
4 10
A 4 0 6 15 0 10




Towards a Max Flow Algorithm

Greedy algorithm.
e Start with f(e) = O for all edge e € E.
* Find an s-t path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

0 0

20 10
30 O

10 20

0 \é/ 0 Flow value = O



Towards a Max Flow Algorithm

Greedy algorithm.
e Start with f(e) = O for all edge e € E.
* Find an s-t path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

20 X 0

20 10
30 B 20

10 20

0 \é/ X 20 Flow value = 20



Ford-Fulkerson Algorithm

* The Ford-Fulkerson Algorithm (FFA) computes a maximum flow in an iterative

manner by starting with a valid flow, and then making adjustments that fulfill the

constraints and increase the flow.




Ford-Fulkerson Algorithm

* The Ford-Fulkerson Algorithm (FFA) computes a maximum flow in an iterative

manner by starting with a valid flow, and then making adjustments that fulfill the

constraints and increase the flow.

* To achieve this, FFA utilizes the residual graph. This is a graph generated by

calculating how the flow along each edge can be modified - each edge in the network

graph is replaced by up to two new edges, a forward edge with the same direction that
that signifies how much the flow can be increased, and a backward edge storing how

much the flow can be reduced.

Flow Graph Residual Graph



Ford-Fulkerson Algorithm

Flow Graph Residual Graph

* The algorithm starts with an empty flow (which is always valid) and then repeatedly

finds paths in the residual graph from source to target. Adding just enough flow along
the path to saturate one edge (i.e., “bottlenecking”), which is the one with the lowest
capacity, keeps the constraints on the flow fulfilled and strictly increases the flow. These are

called augmenting paths.

* The FFA does not explicitly state how to find the augmenting paths, and so the algorithm
s agnostic to the mechanism used to find an augmenting path (in practice BES is

commonly used).



Ford-Fulkerson Algorithm

Greedy algorithm. (polynomial time solution)

e Start with f(e) = O for all edge e € E.
* Find an s-t path P where each edge has f(e) < c(e).
* Augment flow along path P.

* Repeat until you get stuck.
N

locally optimality 7 global optimality




Ford-Fulkerson Algorithm

Original edge. ¢ = (u,v) € E. Y capacity
» Flow f(e), capacity c(e). @ 17 @
6
h flow
Residual edge.

» 'Undo" flow sent.
resudual capacity

» €= (u,v)and e} = (v, u).

» Residual capacity: @>'< 11 /O

. (©) :{c(e)— fle) ifeecE

f(e) if eR e E ™ residual capacity

Residual graph: G, = (V, E;).
» Residual edges with positive residual capacity.

E; = {e:fle) <cle)} U {el:f(e) > 0}.



Ford-Fulkerson Algorithm Demo



Ford-Fulkerson Algorithm

2 4 =<‘D\
$ capacity
\ ,




Ford-Fulkerson Algorithm

flow capacity

7
0/10

0/10\—{0

Flow value = O

* FFA begins with an empty flow.



Ford-Fulkerson Algorithm

flow
capacity

* Choose a valid s-t path. Notice that the path S = 2 is a potential bottleneck, as it has an
additional capacity of 2 this is currently unused.

e 4 g ﬁ Flow value = 8
Gf:




Ford-Fulkerson Algorithm

flow
capacity

@/ -3 \@

* The residual graph below shows an augmenting path allowing us to add 2 to the overall
tlow.

< Flow value = 8

nN
nN
(00
(@)}
—
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Ford-Fulkerson Algorithm

10/10

2 4 >4 Flow value = 10
Gf: 8
2 2 8 6 10

2
8



Ford-Fulkerson Algorithm

G:
10/10
@/
bottleneck
2 4 >4 Flow value = 10
Gf: 8
2 2 8 6 10

2
8



Ford-Fulkerson Algorithm

10/10 272 8/8 6/6 6/10

@4 6/10 —»@ 8 /9\;@ 10/10\_.@

* The residual graph below shows an augmenting path allowing us
to add 6 to the overall flow.

2 4 (4
Gf: \
10 2 8 6 10
®/ - _>@,\ 7§<— 10
2

Flow value = 16




Ford-Fulkerson Algorithm

3
2 4 "
G 10 7 O
10 20 8 66 10
: l 9 \ 0
s 10 (3 9 ~(5) 10 —
Cut capacity = 19 Flow value = 19

* Continuing this process of adding augmenting paths, we arrive at a flow= 19. One can
show that this is the maximum flow achievable by appealing to max-flow/ min-cut duality.
Because there exists a cut with capacity also equal to 19, this proves optimality.



Graph Cuts Image Segmentation

Graph Cuts and Efficient N-D Image Segmentation
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Original image

Abstract. Combinatorial graph cut algorithms have been successfully applied to a wide range of problems in
vision and graphics. This paper focusses on possibly the simplest application of graph-cuts: segmentation of objects
in image data. Despite its simplicity, this application epitomizes the best features of combinatorial graph cuts
methods in vision: global optima, practical efficiency, numerical robustness, ability to fuse a wide range of visual

Graph Cuts
* The graph cuts segmentation algorithm (2004) leverages the max-flow min-cut

theorem and Ford —Fulkerson algorithm for image segmentation. In this way,

segmentation is regarded as a pixel labeling problem.

* Boykov et al. define a graph based on an image that includes two types of edges: (1) n-
links connecting neighboring pixels vertices in a 4-neighborhood system; (2) t-links
that connect the source and sink vertices with all other pixel vertices.



Graph Cuts Image Segmentation

Graph Cuts
* Finding the optimal segmentation/cut is tantamount to finding a minimum energy solution:

E(L) =a R(L) + B(L)

total energy regional boundary
term term

where L denotes a binary labelling of pixels (i.e. a cut), R(L) reptresents a regional term
incorporating t-link connections, B(L) connotes a boundary term incorporating s-link
connections; o provides a “smoothness” parameter.

object

P 7
L 7
7
S background
Original image

Segmented image



Graph Cuts Image Segmentation

Graph Cuts
E(L) =aR(L)+ B(L)
total energy regional boundary
term term

* t-links connect the terminal nodes (S and t nodes) with all other nodes in the graph.

R(L)=2 R, (1,)

peP

R (1) =-InP(l | foreground)
R,(0) =—InP(l |background)

‘R, (lp) is the penalty for assigning the label Ly to pixel p. The weight of Rp(lp) can be obtained by
comparing the intensity of pixel p with the histogram of the of the “object” and “background”
(reflected by the current object/background segmentation).



Graph Cuts Image Segmentation

Graph Cuts
E(L) =aR(L)+ B(L)
total energy regional boundary
term term

* t-links connect the terminal nodes (S and t nodes) with all other nodes in the graph.

R(L)=2 R, (1,)

peP

R (1) =-InP(l | foreground)
R,(0) =—InP(l |background)

‘R, (lp) is the penalty for assigning the label Ly to pixel p. The weight of Rp(lp) can be obtained by
comparing the intensity of pixel p with the histogram of the of the “object” and “background”
(reflected by the current object/background segmentation).

* Thus, for instance, if P(I,|foreground) is larger than P(I,|background) , then Ry, (1) will be
smaller than Ry, (0) . This means when the pixel is more likely to be the object, the penalty for
identifying that pixel as “object” should be smaller than if we identified it as “background”.

* In this way, when all pixels have been correctly separated into two subsets, the regional term would
be minimized.



Graph Cuts Image Segmentation

Graph Cuts
E(L) =aR(L)+ B(L)
total energy regional boundary
term term

* n-link edge weights reflect inter-pixel similarities (i.e. in a cohesive image, neighboring pixels are
likely to have similar hue/brightness values). In more detail: the weight of an edge should be large
when pixels are similar and small when they are different.

B(L) = Z qu'g(lp'IQ)
{p,q}eN
(o) 0if I =I
2572 = . |
B, e AP ateN, 5(Ip’| )_{1 if 1) =1,




Graph Cuts Image Segmentation

Graph Cuts
E(L) =aR(L)+ B(L)
total energy regional boundary
term term

* n-link edge weights reflect inter-pixel similarities (i.e. in a cohesive image, neighboring pixels are
likely to have similar hue/brightness values). In more detail: the weight of an edge should be large
when pixels are similar and small when they are different.

B(L) = Z By, '5(Ip'|q)

{p.a}eN

() 0if I =I,
Byce * . {p.qkeN, 5(Ip’| ): 1if | =1
p q

* B(L) energy is computed for all neighboring pixels in the graph ({p, q} € N); ), [; is the label (i.e.
“foreground” or “background” for each pixel i in the graph); § is zero if neighboring labels agree and
one otherwise. Finally, when the labels of adjacent pixels disagree, we compute their inter-pixel
similarity based on a Gaussian function: B, (where [; is the intensity of the ith pixel).

*Basic idea for B(L) energy term: Terms that contribute to the B(L) energy are positive when
neighboring pixels have different labels; the energy of a particular edge contribution in this case is
proportional to their similarity. Near a boundary, this energy will be minimal.



Graph Cuts Image Segmentation

Interactive Graph Cuts

* The preceding problem formulation can be solved (efficiently, in polynomial-time) using the
aforementioned Ford-Fulkerson algorithm (or related variant). In particular, we aim to minimize energy with
respect to the binary graph labelling (foreground vs background). On its own, the graph cuts algorithm
provides an effective baseline “unsupervised” image segmentation algorithm.

* However, one can easily expand (as Boykov ¢ 4/. have done) the graph cut framework to encompass a
broader set of interactive image segmentation prob’ ’ ides a set of

foreground/background labels (via clicks, lines, etc.).

Interactive Gra ph(
for Optimal Bous dna.keg 2

https:/ /www.csd.uwo.ca/~yboykov/Papers/iccv01.pdf

How do we adapt the previous graph cuts algorithm to incorporate interactivity?



Graph Cuts Image Segmentation

Interactive Graph Cuts
* The preceding problem formulation can be solved (efficiently, in polynomial-time) using the

aforementioned Ford-Fulkerson algorithm (or related variant). On its own, the graph cuts algorithm provides an
effective baseline “unsupervised” image segmentation algorithm.

* However, one can easily expand the (as Boykov ¢ /. have done) graph cut framework to encompass a

broader set of interactive image segmentation problems, wherein a user provides a set of
foreground/background labels (via clicks, lines, etc.).

https:/ /www.csd.uwo.ca/~yboykov/Papers/iccv01.pdf

How do we adapt the previous graph cuts algorithm to mcorporate iﬁteracﬁvﬁj? Simply:
(1) The calculation of the regional term can now be based on the histogram of foreground and background

labelled pixels. R(L) = Z R ( | )
- p\'p

{” R, (1) —InP(l, | foreground )7~ .
*<|R,(0)=—InP(l,|background) !

= —J
— -
I T

——-__~

total energy regional boundary —————————
term term

where N(misclassified) symbolizes the number of misclassified pixels in the final segmentation with respect
to the user labels.



Graph Cuts Image Segmentation

GrabCut (2004)

https://docs.opencv.org/3.4/d8/d83 /tutorial py grabcut.html

No User
Interaction

“GrabCut” — Interactive Foreground Extraction using lterated Graph Cuts

Carsten Rother* Andrew Blake*

Vladimir Kolmogorov*
Microsoft Research Cambridge, UK

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

Abstract

The problem of efficient, interactive foreground/background scg-
mentation in still images is of great practical importance in im-
age editing. Classical image scgmentation tools use cither texture
(colour) information, ¢.g. Magic Wand, or edge (contrast) infor-
mation, e.g. Intelligent Scissors. Recently. an approach based on
optimization by graph-cut has been developed which successfully
combines both types of information. In this paper we extend the
graph-cut approach in three respects. First, we have developed a
more powerful, iterative version of the optimisation. Secondly, the
power of the iterative algorithm is used to simplify substantially the
user interaction needed for a given quality of result. Thirdly, a ro-
bust algorithm for “border matting” has been developed to estimate
simultancously the alpha-matte around an object boundary and the
colours of foreground pixels. We show that for moderately difficult
examples the proposed method outperforms competitive tools.

CR Categories: 133 [Computer Graphics]: Picture/Image
Generation—Display algorithms; 13.6 [Computer Graphics):
Methodology and Techniques—I h 14.6 [Im-

Interactive Graph Cuts

free of colour bleeding from the source background. In general,
degrees of interactive effort range from editing individual pixels, at
the labour-intensive extreme, to merely touching foreground and/or
background in a few locations.

1.1 Previous approaches to interactive matting

In the following we describe briefly and compare several state of
the art interactive tools for : Magic Wand, Intell
Scissors, Graph Cut and Level Sets and for matting: Bayes Matting
and Knockout. Fig. 2 shows their results on a matting task, together
with degree of user interaction required to achieve those results.

Magic Wand  starts with a user-specified point or region to com-
pute a region of connected pixels such that all the selected pixels
fall within some adjustable tolerance of the colour statistics of the
specified region. While the user interface is straightforward, finding
the correct tolerance level is often cumbersome and sometimes im-
possible. Fig. 2a shows the result using Magic Wand from Adobe
Photoshop 7 [Adobe Systems Incorp. 2002]. Because the distri-
bution in colour space of foreground and background pixels have a

s ilarabile naselin o eaticFarntnres ameantatine So et achimmd

o
h

Figure 8: Results using GrabCut. The first row shows the original images with superimposed user input (red rectangle). The second row
displays all user interactions: red (background brush), white (foreground brush) and yellow (matting brush). The degree of user interaction
increases from left to right. The results obtained by GrabCutare visualized in the third row. The last row shows zoomed portions of the
respective result which documents that the recovered alpha mattes are smooth and free of background bleeding.

Figure 6. Kidney in a 3D MRI angio data.


https://docs.opencv.org/3.4/d8/d83/tutorial_py_grabcut.html

Review Topic: OLS Regression



OLS Regression

* We consider an equivalent — but more elegant — approach to OLS by
appealing to linear algebra/geometric intuition.

Consider the problem of solving the previous system of linear equations in the
“overdetermined” case (i.e. 7 > n, where 7 1s the number of
equations/measurements, n is the number of variables).



OLS Regression

* We consider an equivalent — but more elegant — approach to OLS by
appealing to linear algebra/geometric intuition.

Consider the problem of solving the previous system of linear equations in the
“overdetermined” case (i.e. 7 > n, where 7 1s the number of
equations/measurements, n is the number of vatiables): Ax=b.

X y EUSSOR Bl
0 1 11 5
1 1 2{%}: 10
i ;(2) 1 3tAd |
an il 4 38



OLS Regression

* An overdetermined system:

1 0] K 1 0 1

1 1 5 1 1 5

12{%}:10 G|+ 5| 2|=|10

1 3 |tAd |5 1 3| |22

1 4 38 E A 08
Ax=Db

Q: Are we always guaranteed that such a system has a solution (say using
Gaussian elimination)?



OLS Regression

* An overdetermined system:

[ O ER 1] 0] [1]

i1 if 5 1 1

1 2 |:'BO:|= 10 Bo|l|+ /4| 2]=|10

1 3 tAd |5 1 3| |22

1 4 38 1] [4] [38
Ax=Db

Q: Are we always guaranteed that such a system has a solution (say using
Gaussian elimination)?

Definitely not! #*Short answer: because we cannot guarantee that the vector b
resides in the column space of A (co/(A))!

Next, let’s consider this situation from a geometric perspective.

(*) Recall that the col(A):= the span of the column vectors of A.



OLS Regression

* An overdetermined system:

|Le O N 1 0
(i 5 1 1
1l 4 |:'BO:|= 10 Bo| 1|+ 5| 2
1 3 ZAIpY 1 3
| 38 £ T
Ax=Db

|

b |

|

0 I

, o

Yy = Azx

col(A)




OLS Regression

* An overdetermined system:

[l @ N 1 0
i 5 1 1
1 2 |:'BO:|= 10 Bo|l|+ /4| 2]=|10
1 3 tAd |5 1 3| |22
1 4 38 1] [4] [38]
Ax=Db
(*) Issue: if b ¢ col(A)
Then overdetermined
b | system: Ax=b is
! insoluble.
pan
|
v =
Yy = Azx

col(A)




OLS Regression

* An overdetermined system:

[ile @ N 1 0

i1 if 5 1 1

1 2 |:'BO:|= 10 Bo|l|+ /4| 2]=|10

1 3 tAd |5 1 3| |22

1 4 38 1] [4] [38
Ax=Db

(*) A resolution: The best we can
L pmmmm __ hope to do is to minimize the

. r=b— Az > distancer (i.e. the residual)
oo " between b and any vector in col(A).

|
/{ | Namely, we want:
1 h

col(d)y Y= Az arginin||r||2 = arginin||b— Ax||2

(this formula should look familiar)



OLS Regression

- -
-
- ~~
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col(A y Az (Let's denote the solution vector x*)

An astute observation: The residual vector r achieves a minimum when it is
orthogonal to col(A)!




OLS Regression
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argmin b — AXH2
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col(A y Az (Let's denote the solution vector x*)

An astute observation: The residual vector r achieves a minimum when it is
orthogonal to col(A)!

This implies: (Ax)' (b—Ax*)=0  (forall x)
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An astute observation: The residual vector r achieves a minimum when it is
orthogonal to col(A)!

This implies: (Ax)' (b—Ax*)=0  (forall x)

x' A"(b—Ax*)=0  (forall x)



OLS Regression

| iz B I,/’/(’*)We want:
argmin b — AXH2
X

-
~ -
- -
-~ — =

col(A y Az (Let’s denote the solution vector x*)

An astute observation: The residual vector r achieves a minimum when it is
orthogonal to col(A)!

This implies: (Ax)' (b—Ax*)=0  (forall x)

x' A"(b—Ax*)=0  (forall x)

This indicates that the vector: AT(b-Ax*) is perpendicular to every vector X in
the space. What can we claim about this vector?




OLS Regression

(Ax)' (b—Ax*)=0  (forall x)
x A" (b—Ax*)=0  (forall x)

This indicates that the vector: AT(b-Ax*) is perpendicular to every vector X in

the space. What can we claim about this vector?

(*) Consequently: A' (b o AX*) =0



OLS Regression

Now we solve for x*.

AT (b— AX*) =0



OLS Regression

Now we solve for x*.

AT (b— AX*) =0
A'b—- A" Ax*=0



OLS Regression

Now we solve for x*.

AT (b— AX*) =0
A'b—- A" Ax*=0

A'b=A" Ax*



OLS Regression

Now we solve for x*.

AT (b— AX*) =0
A'b—- A" Ax*=0

Tl _ AT * . (These are the normal
A'b=A AXx equations in matrix form!)



OLS Regression

Now we solve for x*.

A" (b—Ax*)=0
A'Tb—A"Ax*=0
A'b = A" Ax*

x<=(ATA)" ATb

(*) This implies that OLS has a unique, closed form solution when ATA is
non-singular (i.e. znvertible).

(*) When ATA is singular, it is common practice to use the Moore-Penrose
psendoinverse: AT



OLS Regression

Now we solve for x*.

AT (b— AX*) =0
A'b— A" Ax*=0
A'b=A" Ax*

x<=(ATA)" ATb

(*) This completes our derivation of the OLS solutions using linear algebral

**drops the Mic and Walks off
stage™** |




Motion Estimation: Optical Flow

* Motion is an intrinsic property of the world, and an essential aspect of our visual
experience. Motion estimation can be used successfully in a wide variety of CV-related
applications, including: object tracking, camera stabilization, scene understanding, and

3D scene reconstruction.



Motion Estimation: Optical Flow

* The goal of optical flow estimation* (OF) is to compute an approximation to the
motion field from time-varying image intensities.

* Next, we present the classic optical flow estimation algorithm* (Beauchemin et al.,
1995).

0/ Q °
\4 Q@
] T
(X, Y,1) 1(X,y,t+At)

*https://dl.acm.org/doi/abs/10.1145/212094.212141



Motion Estimation: Optical Flow

./' \ .
-1 .

e A common starting point for OF is to assume that pixel intensities are translated
(without alteration) from one frame to the next, so that:

(X, y,t)=1(X+AX,y+Ay,t+Atl)

holds, where I(x, y, t) is the image intensity at time t, {u, V) is a displacement vector.
Naturally, this brightness constancy assumption rarely holds exactly, but 1s nevertheless
plausible under stable conditions.

With this assumption, we wish to estimate (dense) optical flow at each pixel (x, y):

Ax A
— and —y.

*The version of OF given here is for grayscale images, but the method is easily adapted
for RGB images.



Motion Estimation: Optical Flow

"

. C (XY ) = (X AX, Y + Ay, t+ AL)

I(x,y,1) I(x,y,t+Ar)

*Next, we use the multi-variate Taylor series approximation to calculate the

linearization of I(Ax, Ay, t):



Motion Estimation: Optical Flow

"

. C (XY ) = (X AX, Y + Ay, t+ AL)

I(x,y,1) I(x,y,t+Ar)

*Next, we use the multi-variate Taylor series approximation to calculate the

linearization of I(Ax, Ay, t):

| (X+AX, Y+ Ay, t+At) =1(X,y,t) +a—|Ax+6—|Aya—lAt+ higher order terms...
OX oy ~ ot
This yields:

ol ol ol
O=1(X+AX,y+Ay,t+At)—-1(X,Vy,t) * —AX+—Ay — At
( y +Ay )= 1(x,y,1) > & =



Motion Estimation: Optical Flow

"

; :, X YY) = (X AX, Y+ Ay, E+AL)

-

I(x,y,1) I(x,y,t+Ar)
*Next, we use the multi-variate Taylor series approximation to calculate the
linearization of I(Ax, Ay, t):
ol , 0

| (X+AX, Y+ Ay, t+At) =1(X,y,t) +2—|Ax+@Ay | At + higher order terms...
X

at
This yields:
ol ol 0ol
0=1(X+AX, y+ Ay, t+At)—1(X,y,t) = — AX+ — Ay — At
OX oy ~ ot

L e . ol AX+5| Ay+8|_o
Aiditily Baromgln oy A%, WELuwes 2ot oy At ot
Vv

V, y



Motion Estimation: Optical Flow

"

; :, X YY) = (X AX, Y+ Ay, E+AL)

-

I(x,y,1) I(x,y,t+Ar)

*Next, we use the multi-variate Taylor series approximation to calculate the

linearization of I(Ax, Ay, t):
ol ol

| (X+AX, Y+ Ay, t+At) =1(X,y,t)+ Z—IAX+ @Ay At + higher order terms...
X

at
This yields:
ol ol 0ol
0=1(X+AX, y+ Ay, t+At)—1(X,y,t) = — AX+ — Ay — At
OX oy ~ ot

ol Ax ol Ay ol
+ +—=0
OX At oy At ot
V

V

Dividing through by At, we have:

X y

This equation can be notated equivalently: LV + 1V, ==,
VIV =—1,

where we wish to solve for OF (Vx, Vy>, [I | ] V, e

I denotes the image derivative which can e, -

be approximated using the Sobel transformation.



Motion Estimation: Optical Flow

N W A Lo
[ X y] vV |t o
bl I(x,y,1) I(x,y,t+Ar)

* We wish to solve the equation above for OF (Vx, Vy>, however, this requires solving for two
unknowns (with only one equation), an underdetermined system.

* In the Lucas-Kanade method (1981) for approximating optical flow, we consider 3x3
patches of pixels around the current pixel. This gives rise to a system of 9 equations and 2
unknowns, an overdetermined system:

=—| |, = Sobel Transform (or other derivative estimate)

(P ly(po{v} ()

1, ()

L(pe) 1,(Po) |-
) e ’ ox1

* We can approximate the solution to this system using the standard least-squares solution.



Motion Estimation: Optical Flow

* We can approximate the solution to this system using the standard least-squares
solution.

1L(p) ly(pl)[v} 1 (p)

1.(Py)

X N =

b

E!:.'z %Izlﬂ{ I- {%zlﬂ

.

(R 1,(p)

—

X

- %i:i; il [i%lzlﬂ

X



on Estimation: Optical Flow

b4
4 e I
> . 1
— Thg S - r (b
- = __75;37“ - -‘w’-;:hll_‘ .‘ ,. -b----l'
R YL
-' 4 -
"R
< S
-
S -

Dense Optical Flow in OpenCV

Lucas-Kanade method computes optical flow for a sparse feature set (in our example, comers
detected using Shi-Tamasi algorithm). OpenCV provides anather algarithm to find the dense optical
flow. It computes the optical flow for all the points in the frame. It is based on Gunner Farneback's

0 CV algorithm which is explained in “Two-Frame Motian Estimation Based on Polynomial Expansion® by
pe n Gunner Famneback In 2003,

Below sample shows how to find the dense optical flow using above algorithm, We get a 2-channel
D array with optical flow vectors, (u

result for better visualization, Direction comesponds to Hue value of the image, Magnitude
corresponds to Value plane. See the code below:

We find thelr magnitude and direction. We color code the

OpenCV-Python Tutorials

deccagture| “viest. wed®)

v2.COLOR_peR2GRAY)

et
Video Analysis
Mearshif and Camehif
Optical Flows
Gl

2, COLN_BGRAGRAY)

Optical o

’"{:J;“ https://opencv-python-
ey tutroals.readthedocs.io/en/latest/py_tutorials/py_video/py_lucas_kanade/py_lucas_kanade.html

Camera Callbration and 3D




Review Topic: PCA/SVD



SVD

* Definition: Let A be an » x 7 matrix with singular values, 0; = 0, =...=2 0, > 0 and

6)
Ty il m
orthogonal matﬁx V and an » x n diagonal matrix X of the form:

A=UzV'

Note: the columns of U are called /ef? singular vectors of A, and the columns of V are called

0, o 0, = 0. Then there exist an 7 x 7 orthogonal matrix U, and 7 x #

right singular vectors of A. The matrices U and V are not uniquely determined by A

(*) NB: rank(A) = r. 5 T
_ rXT| - rxd
A —
n xXd nxr
U Y vT

nXxd nxd dxd



* Definition: Let A be an » x 7 matrix with singular values, 0; = 0, =...=2 0, > 0 and
Or,1_0r,2_  _0n= 0. Then there exist an # x 7 orthogonal matrix U, and 7 x #
orthogonal matrix V, and an » x 7 diagonal matrix X of the form:

A=UXV'

* Every matrix has a singular value decomposition!

Definition: For an 7 x n» matrix A, the singular values of A are the square roots of the

cigenvalues of ATA. They are denoted:

Oy O

It is conventional to arrange the singular values in decreasing order, whence: o B

n



SVD

-~

5 VT
X rxXd
T 4 ey | ]
A:UZV nxd o nxr
Example: e 1 1 0
10 01 U »  yT

- - nxd nxd dxd

ATA=

o
P, O O
o
o
P, O O

i, =1 (0) T
0 0 1|




-~

5 VT
T A B _ rXT| I?"Xd_
A:UZV nxd o nxr
Example:
:{1 1 o} | sy
0 01 nxd nxd dxd
(1 0] (1 1 0]
ATA=|1 0{11 O}—l 1 0
¥ 0 0 1|
@ /) [opsoRer

eigenvalues(AT A) A =2,4,=11,=0

has eigenvalues A,=3 and A,=1. Consequently, the singular values of A are:



SVD

A=UXV'
Example:

1 10
A =

0 01

(1 0] il ik, )
ATA—lOFlO}—llO

- 0 0 1|

0 1 LN L

eigenvalues(AT A) A =2,4,=11,=0

These vectors are orthogonal, so now we normalize them:

(1/J2 0 —1/+2]

0 1 0

1/2 0 1/42 |

A

nxd

c:c:%|

o — O

eigenvectors( A A):| 1

o O O

-~

5 VT
rXT| . rxd |
Yy VT
nxd dxd
_0_ __l_
0Of,| 1




Example: A= |:

0 01

SVD

eigenvalues(AT A) A =2,4=,1=0

eigenvectors( ATA):

17 [0
1 ] O ]

To find U we compute:

1

u =—

0,

110

1
Av, = —
1 \/E{o 0 1

}

T A
1 1 O} A:UZV nxd
-1 (1/42 0 -1/+2]
1 V=[1/42 0 1/42
| 0 1 0
(1/42
1/2 :F}, u, iAVZ:}{
0 0 o, 1

_ 0
nxr
-
n xd
kG
>=| 0 1
0O O
0
110
0
0 0 1
_1

\o))

>

n X d

o O O

-~

Irxd_

dxd
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f} vT
A N rXT| L rxd |
U
T —
M' A:UZV n X d nxr
U- b3 VT

nxd nxd dxd

Pz ™ 0f42 0l

0 0 1|=UxVT

—1/32 142 0]

o +— O
o O O

110][100
A= _ 3
{001}{010}0




SVD

Geometric Interpretation: In general, X can be regarded as a scaling matrix, and U, V can

be viewed as rotation matrices. T
A=UXV

Thus the expression UXV can be intuitively interpreted as a composition of three
successive geometrical transformations: a rotation or reflection, a scaling and another
rotation or reflection. 4

T3€3

¥
v 2 [ )
~— i P
Y2 f2
LY
A Y
€y - 084 d’
i . f’ Ty

J’lf \_
-~ .

N — d

___*__‘___h__‘_‘q‘ﬁih
T e

Tally |
s

As shown 1n the figure, the singular values can be interpreted as the semiaxes of an
ellipse in 2D. This concept can be generalized to #-dimensional Euclidean space, with the
singular values of any 7 X 7 square matrix being viewed as the semiaxes of an 7-
dimensional ellipsoid.

As in PCA, these coordinate axes provide a natural framework for determining a
dimensionality reduction scheme that captures maximal variation.



SVD: Outer Product Form

* SVD factorization yields a useful method for “low rank approximations/dimensionality
reduction of data.

Theorem: For a given SVD decomposition of an 7 x 7 matrix A, we can express A in the
so-called outer product form:

i T T
A=oUyV, +..+0o,U.V,

Where 0; = 0, =...=2 0, > 0 denote the singular values of A;u and v are the
corresponding /lf? singular and right singular vectors.

(*) Note that the condition number of a matrix A 1s defined as the ratio of the largest and
the smallest singular values of A. Matrices with large condition numbers are called ill-
conditioned (this has a significant impact on the stability of many different kinds of

numerical algorithms in linear algebra).
Gmax

cond(A) =
O

min



SVD: Outer Product Form

Example:

|

0 O

|

L

11
0 0

- T T
A=oUyV, +..+0o,U.V,

1
0

1

2

0 O
0

1 0
O

o +— O

OOO

T™awe 2 e oY

0 0 1

-1/42 1/42 0

—UzVv'

O}«/Em[l/ﬁ 1/42 o]+1m[o 0 1]



SVD: Outer Product Form for
Image Compression

* Consider the task of compressing a grayscale image of dimension 340 x 280; each pixel
is in the range [0, 255].

* We can store this image in a 340 x 280 dimension matrix, but transmitting and
manipulating these 95,200 numbers 1s very expensive.

* Let’s use SVD for efficient image compression. Recall that the small singular values in
the SVD of a matrix correspond with “less informative” data features.




SVD: Outer Product Form for

Image Compression

* Suppose we have the SVD of A expressed in outer product form:

A=oUV, +..+0UV

r--r-r

* For the original 340 x 280 image shown, we have r = 280 (why?).
o Define: A, =oUV, +...+o UV, K<r

as the k-rank approximation to A.




SVD: Outer Product Form for
Image Compression

* Suppose we have the SVD of A expressed in outer product form:

A=oUV, +..+0UV

r--r-r

* For the original 340 x 280 image shown, we have r = 280 (why?).
o Define: A, =oUV, +...+o UV, K<r
as the k-rank approximation to A.

(*) It for example, we use a k = 20 rank approximation tor
A (i.e. we use the largest 20 singular values), the storage/
computational overhead is reduced from 95,200 numbers
to 12,420!




SVD: Outer Product Form for

Image Compression

k=4

P B e —————
Orignial, k = r = 28 k

b T T —
A =ouyv, +..+oUyV,, k=32

(*) Here, using the SVD-based, low-
rank approximation to A, the fidelity
of the image 1s very strong — even
after discarding roughly 85% of the
image datal




PCA

* Here 1s the PCA algorithm:

(1) Write N data points X,=(X;;,Xy;,- - -,X)p;) 25 TOW VECtOTS.

(2) Put these vectors into the data matrix X (of size N x M).

(3) Center the data by subtracting off the mean of each column, place into matrix B.

1

(4) Computer the covariance matrix: Cl=—= BBT

T
(5) Computer the ezgenvalues and eigenvectors ot C, so: C=VDV

where D is the diagonal matrix of eigenvalues; V 1s the matrix of corresponding eigenvectors.

(6) Sort of the columns of D into order of decreasing eigenvalues, and apply the same order to the
columns of V.

(7) Reject those with eigenvalues less than some given threshold, leaving I. dimensions in the data.



Facial Recognition: EigenFace

* Sirovich and Kirby (1987) developed an early (now classic) algorithm for facial
recognition: “Face recognition using eigenfaces” (Eigenface).

Face Recognition Using Eigenfaces

Matthew A. Turk and Alex P. Pentland

Vision and Modeling Group, The Media Laboratory
Massachusetts Institute of Technology

ssach

It 1s a very simple yet effective algorithm (simplified version):

(1) Determine the SVD of the mean-centered covariance matrix of the (training)
dataset of face images (all front facing) — i.e., perform PCA. We only retain the

eigenvectors associated with the largest eigenvalues (usually ~100 or so).
(2) The eigenvectors produced from SVD form a basis set of for the training data.

(3) For facial recognition — given a test datum (i.e., new face image); we project this

image into the eigenspace spanned by the basis set. From the weights produced by
this projection, we compare the weights (wrt basis set) of all training images; the
nearest neighbor (per L2, etc.) of the test image in the training set corresponds with
the recognized face.

https://sites.cs.ucsb.edu/~mturk/Papers/mturk-CVPRI1.pdf



Facial Recognition: FigenFace

* In more detail:

To create a set of eigenfaces, one must:

1. Prepare a training set of face images. The pictures constituting the training set should have been taken under the same lighting conditions, and must be normalized to have the eyes and mouths aligned across all images. They must
also be all resampled to a commaon pixel resolution (r x ¢). Each image is treated as one vectar, simply by concatenating the rows of pixels in the original image, resulting in a single column with r x ¢ elements. For this implementation,
it is assumed that all images of the training set are stored in a single matrix T, where each column of the matrix is an image.

N

Subtract the mean. The average image a has to be calculated and then subtracted from each original image in T.

w

Calculate the eigenvectors and eigenvalues of the covariance matrix §. Each eigenvector has the same dimensionality (number of components) as the original images, and thus can itself be seen as an image. The eigenvectors of this
covariance matrix are therefore called eigenfaces. They are the directions in which the images differ from the mean image. Usually this will be a computationally expensive step (if at all possible), but the practical applicability of
eigenfaces stems from the possibility to compute the eigenvectors of S efficiently, without ever computing $ explicitly, as detailed below.

-~

. Choose the principal components. Sort the eigenvalues in descending order and arrange eigenvectors accordingly. The number of principal components k is determined arbitrarily by setting a threshold € on the total variance. Total
variance ¥ = (A1 + Aa+...+Ay), n = number of components.

(A1 + Aot +M)

e - 3

5. k is the smallest number that satisfies

eigenface 0 eigenface 1 eigenface 2 eigenface 3

' . ‘ |
eigenface 4 eigenface 5 eigenface 6 |gen!a:e
1 T T “
C=-BB —-C=VDV . E . s

N elgiace 8 eigenface 9 eigenface 10

-

(W, Wy, Wy, ..y W )

“
-

O

Training dataset

Nearest neighbor
training image
https:/ /sites.cs.ucsb.edu/ ~mturk/Papers/mturk-CVPRI1.pdf (in Eigenspace)

Test image



Topic Review:
Boosting and Adaboost



Model Combination Schemes: Boosting

* With boosting, we actively try to generate complementary base-learners by training the
learners sequentially, so that the next learner trains on the mistakes of the previous
learners.

* Boosting combines complementary weak learners (meaning their accuracy 1s above
chance, but they are nonetheless relatively inexpensive to train).

(X) f (\) -f, \/(x) f (A) f ( \’) f, ‘"(.\‘)
F, (x)=sign( Zj:(.\)) F, (x)=sign( 2:[,(\7)

b Bagging a Boosting

“Intro to Boosting”: https://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf



Model Combination Schemes: Boosting

* As a basic schematic for boosting, consider a boosting algorithm (this is how the original 1990 Schapire
paper worked) that combines three weak learners to generate a strong learnet.

* Given a training set, we randomly partition it into three subsets: X, X, and X;; use X, to train d,. Then
take X, and feed it to d,;. Next, we use every instance misclassified by d, in combination with many
instances on which d, is correct from X,, and together form the training set for d,.

* Lastly, we take X; and feed it to d, and d,; the instances on which d; and d, disagree form the training
set of dj.

deta | SH ¢
=
SIS
e < e
_

(*) During testing, we take a datum and give it to d; and d,; if they agree this is the prediction; otherwise,
the response of dj is taken as the output.

new data —> , :,> prediction




Model Combination Schemes: AdaBoost

* A very popular boosting method known as AdaBoost* (short for adaptive boosting) was
developed by Freund and Schapire in 1996 (later won the Gdde/ prize).

(*) Adaboost uses the same training set over and over and thus the data set need not be
large, but the classifiers should be simple so that they do no overfit. AdaBoost can also
combine an arbitrary number of base learners — not just three.

(*) Adaboost combines different weak learners (1.e. hypotheses), where the training error
is close but less than 50%, to produce a strong learner (i.e. with training error close to
ZEr0).

*https://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf



AdaBoost: Algorithm Sketch

Given examples § and learning algorithm I, with | § | = N

Initialize probability distribution over examples w,(?) = 1/ .

* Repeatedly run L on training sets S, S to produce 5y, by, ... , by

— At each step, derive S, from § by choosing examples
probabilistically according to probability distribution w,. Use
S, to learn 5,

* At each step, dertve w,, | by giving more probability to examples
that were misclassified at step #

* The final ensemble classifier H is a weighted sum of the /s, with
each weight being a function of the corresponding /s error on its
training set.



AdaBoost: Algorithm

o Given S = {(x1, ), - (XnpVn)t Where x € X 3, € {+1, -1}

* Initialize w,(?) = 1/N. (Uniform distribution over data)



AdaBoost: Algorithm

e Fors=1,., K

— Select new training set ., from S with replacement, according to w,

— Train . on S, to obtain hypothesis 4,

— Compute the training error &,of 5, on §:

e, =aw,(j) dy,  h,(x,)), where

1 ifyj 1 ht(xj)
0 otherwise

A, 2 hx )=t
T




AdaBoost: Algorithm

— Compute new weights on data:
For/;=1to N

)= WD) exp-ayh(x)
/

t

w,,, (i

where Z, 1s a normalization factor chosen so that w,,, will be a

probability distribution:

Z = aw, (i) exp(-ayh,(x,)

i=1



AdaBoost: Algorithm
* Atthe end of Kiterations of this algorithm, we have
0 D B s

We also have

oy, O, . . . 0, where

e Ensemble classifier:

H(x)=sgn é_atht (x)

=1

* Note that hypotheses with higher accuracy on their training sets are
weighted more strongly.



AdaBoost: Data Example
S={x,,X,,X;,X,, X;, X4, X7, Xg, }

where { x,, X,, X5, X, } are class +1

{x:, X, X, Xg | are class —1

A= e
w, = {1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8}

S, = {x(, X, Xy, Xo, X5, X, X, Xg) (notice some repeats)

Train classifier on S, to get 5,

Run 4, on S. Suppose classifications are: {1, —1, =1, =1, =1, =1, -1, -1}

N
* Calculate error: g = éwt (Nay, L h(x;) = %(3) =375

J=L



AdaBoost: Data Example

S={x,,X,,X;,X,,X;, X4, X7, Xg, }

where { x,, X,, X;, X, } are class +1

{x:, X, X, Xg | are class —1

p= 1%
w, = {1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8}

S, = {Xq, Xy, Xy, Xz, Xe, X, X4, Xg} (NOtice some repeats)

Train classifier on §; to get 4,

Run 4, on S. Suppose classifications are: {1, =1, =1, =1, =1, =1, =1, -1}

N
» Calculate error: g = Qw, (/) Ay, L h(x,)=?

jA



Calculate a’: 1 21 e O

ﬂ
Calculate new w 5
w.. () = ) exp(-ayh,(x,))
1+l Zt
ey w,(1) =
VAVz (2)= . (2) h
. w,(3) =
o w,(4)=
R, W, (5) =
VAVz (6)= \ (6) 2
V:V2 (7)= e .
foh w,(8) =

Z, = éwz (1) =



®1_p0
Calculate o a = %mgl ! = .255
e € g

Calculate new w

2 o ld) SGEIIRS)

Zt
w, (1) = (.125)exp(-.255(1)(1)) = 0.1 w,(1)=0.1/.98=0.102
W, (2) = (.125)exp(-.255(1)(-1)) = 0.16 w,(2)=0.163
W, (3) = (.125)exp(-.255(1)(-1)) = 0.16 w,(3) =0.163
w,(4) = (.125)exp(-.255(1)(-1)) = 0.16 w,(4)=0.163
W, (5) = (.125)exp(-.255(-1)(-1)) = 0.1 w,(5) = 0.102
w,(6) =(.125)exp(-.255(-1)(-1))=0.1 w,(6) =0.102
W, (7) = (.125)exp(-.255(-1)(-1)) = 0.1 w,(7) = 0.102
w,(8) =(.125)exp(-.255(-1)(-1)) = 0.1 w,(8) = 0.102

Z, = éﬁ’z (1) =.98



t=2

w, = {0.102, 0.163, 0.163, 0.163, 0.102, 0.102, 0.102, 0.102}
Sy = {x1, Xp, Xp, X3, X4, Xy, Xy, Xg§

Learn classifier on S, to get h,

Run h,on S. Suppose classifications are: {1, 1,1, 1,1, 1,1, 1}

Calculate error:

e, =aw,()aly, L h(x,))

j=1

=(.102) " 4=0.408



G o 1 &81-¢0
g a, =—Ing~——":=.186
2 8 e g

Calculate w’s:

Wt+1(i = Wt(l) exp(_azyihz(xi))

/
- ‘ w,(1)=0.08/.973=0.082
(1) = (.102)exp(-.186(1)(L)) = 0.08
w,(1) = (:102) exp( 1)) w.(2)= 0139

w,(2) = (.163)exp(-.186(1)(1)) = 0.135
Ww,(3)= (163)exp(-.186()(1) = 0.135  Wa(3)=0.139
w,(4) = (.163)exp(-.186(1)(1)) = 0.135 w,(4)=0.139
w,(5) = (.102)exp(-.186(-1)(1)) = 0.122  W,(5)=0.125
w,(6) = (.102)exp(-.186(-1)(1)) = 0.122  w,(6)=0.125
w,;(7)=(.102)exp(-.186(-1)(1)) =0.122  w,(7)=0.125
W, (8) =(.102)exp(-.186(-1)(1))=0.122  w (8)=0.125

Z,=aw,(i)=.973



w; = 10.082,0.139, 0.139, 0.139, 0.125, 0.125, 0.125, 0.125}
S; = 1%y, X3, X3, X3, X5, X, X7, Xgf

Run classifier on S5 to get h,

Run h;on S. Suppose classifications are: {1,1, =1, 1, =1, -1, 1, =1}

Calculate error:

e,=aw,()dy, T h(x,))

ja

= (.139) +(.125) = 0.264



Calculate a5:

139160
9

=.512

Ensemble classifier:

H(x)=sgn éatht (x)

=1

=5gn (255" /,(x)+.186 " ,(x)+.512 " h,(x))



Exampl | Actual | h, h, h,
e class

X4 1 1 1 il
X, il -1 1 1
X3 1 -1 1 -1
X, 1 1 1 1
Xs -1 -1 1 -1
Xg -1 | 1 -1
X -1 1 1 1
Xg i -1 1 -1

H(x) =sgnAah,(x)

t=1

=sgn (.255' h(x)+.186 " h,(x)+.512" hg(x))

Recall the training set:
S={x,,X,,X;,X,,X;, X4, X7, Xg, }

where { Xy, X5, X3, X, } are class

+1

{Xs, X, X7, Xg } @re class -1



AdaBoost: Summary

* Given S = {(Xy, Vs - &pp V)t Wherex € Xjy, € {+1, -1}
* Initialize w,;(i) = 1/N. (Uniform distribution over data)
e Forsr=1,.,K

1. Select new training set S, from S with replacement, according to w,

1. Train L. on S, to obtain hypothesis 4,

1. Compute the training error &of 5, on §:
N
o .
e=aw,() dy; *h(x,)),
j=1
T 1ify 1h(x)

where oy, 1 h,(x,)) =1
T O otherwise

If &> 0.5,abandon 4, and go to step 1



4. Compute coetficient:

1, 81-g0
a =—Ing +
2 e € g

5. Compute new weights on data:
For;=1to N

): W, (l) exp(_atyiht (Xi))

Wz+1 (l Z

t

where Z,1s a normalization factor chosen so that w,,; will be a probability distribution:

Z,= aw, (i) exp(-ayh,(x,)

i=1

At the end of K iterations of this algorithm, we have h;, h,, ..., h,and o, a,, . .. ,0

Ensemble classifier: K
H(x)=sgnaah,(x)

=1



AdaBoost: Overview

* Adaboost seems to reduce both bias and variance and it does not seem to overfit for increasing

K.

Why does it work?

Schapire et al. explain that the success of AdaBoost 1s due 1o its property of increase the margin. Recall
from SVMs, that if the margin increases, the training instances are better separated, and an error

is less likely.

Adaboost: Margin Maximizer

Boosting

20
Test error

15
Train error 1

5

0

10 100 1000

1.0-

margin 0.5




AdaBoost: Overview

*In AdaBoost, although different base-learners have slightly different training sets, this
difference is not left to chance as in bagging, but is a function of the error of the

previous base-learner. The actual performance of boosting on a particular problem is
naturally dependent on the data and base-learner.

* In order to be effective, there should be enough training data and the base-learner
should be weak but not too weak, as boosting is particularly susceptible to noise and
outliers (since boosting focuses on examples are hard to classity).

* For this reason, boosting can be used to identify outliers and noise in a dataset.

(*) AdaBoost has also been generalized to regression.



Case Study of Adaboost:
Viola-Jones Face Detection Algorithm

* P. Viola and M. J. Jones, Robust real-time face detection* International Journal of

Computer Vision, 2004.

* First face-detection algorithm to work well in real-time (e.g., on digital cameras); it
has been very influential in computer vision (16k+ citations); makes use of

Adaboost.

S Viola:
Y MIT/Amazon

*https:/ /www.cs.cmu.edu/~efros/courses/LBMV07 /Papers/viola-cvpr-01.pdf



e Positive: Faces scaled and

* Negative: Much larger

Viola-Jones: Training Data

aligned to a base resolution

of 24 by 24 pixels.

number of non-faces.

Figure 8. Example of frontal upright face images used for training.



Features

(a) Edge Features

(1) Tane Features

-1

(c) Four-rectangle features

* Use rectangle features at multiple sizes and location

in an image subwindow (candidate face). From http://makematics.com/research/viola-jones/

For each feature f] .

/= é intensity(pixel b) - é intensity(pixel w)

bTblack pixels w T white pixels

Possible number of features per 24 x 24 pixel subwindow > 180,000.



Detecting ftaces

Given a new image:
* Scan image using subwindows at all locations and at different scales

* For each subwindow, compute features and send them to an ensemble
classifier (learned via boosting). If classifier 1s positive (“face”), then
detect a face at this location and scale.



Viola-Jones Face Detection Algorithm

* Preprocessing: Viola & Jones use a clever pre-processing step that
allows the rectangular features to be computed very quickly. (See their
paper for description. )

* They use a variant of AdaBoost to both select a small set of features
and train the classifier.



Viola-Jones Face Detection Algorithm

Base (“weak) classifiers:

For each feature ]]‘ '

Litp, f(x)<pgq,
-1 otherwise

h'd

where x is a 24 x 24-pixel subwindow of an image, 0;is the threshold that
best separates the data using feature /;, and p;is either -1 or 1.

Such features are called decision stumps.



Viola-Jones Face Detection Algorithm

Boosting algorithm:

e Given example images (x1,¥1),...,(Zn,yn) Where
y; = 0,1 for negative and positive examples respec-
tively.

e Initialize weights wi; = 5—, 21 for y; = 0,1 respec-
tively, where m and [ are the number of negatives and
positives respectively.



Viola-Jones Face Detection Algorithm

Boosting algorithm:

e Fort=1,...,T:

1. Normalize the weights,

)

D i1 Wt

so that wy 1s a probability distribution.

Wit 5 £

2. For each feature, j, train a classifier h; which
1s restricted to using a single feature. The
error 1s evaluated with respect to we, €5 =

> wi [hi(x:) — il

3. Choose the classifier, h; , with the lowest error ¢; .



Viola-Jones Face Detection Algorithm

Boosting algorithm:

4. Update the weights:

1—e;
Wit1,; = We,iB; °
where e; = 0 if example x; 1s classified cor-

rectly, e; = 1 otherwise, and 5; = 1:t :

e The final strong classifier is:

h(x) = { 1 Y ahe(z) > 530,

| 0 otherwise

where &, = Ini
b

) Note that only the top T features are used.



Viola-Jones Face Detection Algorithm
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https:/ /www.youtube.com/watch?v=k3bJUPOct08

https:/ /www.youtube.com/watch?v=cOtwACI]Ym8


https://www.youtube.com/watch?v=k3bJUP0ct08
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Figure 5. The first and second features selected by AdaBoost. The
two features are shown in the top row and then overlayed on a typ-
ical training face in the bottom row. The first feature measures the
difference in intensity between the region of the eyes and a region
across the upper cheeks. The feature capitalizes on the observation
that the eye region is often darker than the cheeks. The second feature
compares the intensities in the eye regions to the intensity across the
bridge of the nose.






