
1

Chapter 6

Dynamic Programming

CS 350: Winter 2018

2

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some local

criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve each sub-

problem independently, and combine solution to sub-problems to form solution to

original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-

problems, and build up solutions to larger and larger sub-problems; typically each

subproblem is solved just once, and the solution is stored (i.e. cached).

The next time the same subproblem occurs, instead of recomputing its solution,

one simply looks up the previously computed solution, thereby saving computation

time at the expense of a (hopefully) modest expenditure in storage space. Each

of the subproblem solutions is indexed in some way, typically based on the values

of its input parameters, so as to facilitate its lookup. The technique of storing

solutions to subproblems instead of recomputing them is called memoization.

3

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.

Dynamic programming = planning over time.

Secretary of Defense was hostile to mathematical research.

Bellman sought an impressive name to avoid confrontation.

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

"it's impossible to use dynamic in a pejorative sense"

"something not even a Congressman could object to"

4

Dynamic Programming Applications

Areas.

Bioinformatics.

Control theory.

Information theory.

Operations research.

Computer science: theory, graphics, AI, compilers, systems, ….

Some famous dynamic programming algorithms.

Unix diff for comparing two files.

Viterbi for hidden Markov models.

Smith-Waterman for genetic sequence alignment.

Bellman-Ford for shortest path routing in networks.

Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

6

Weighted Interval Scheduling

Weighted interval scheduling problem.

Job j starts at sj, finishes at fj, and has weight or value vj .

Two jobs compatible if they don't overlap.

Goal: find maximum weight subset of mutually compatible jobs.

Time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10

7

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

Consider jobs in ascending order of finish time.

Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary

weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1

8

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1  f2  . . .  fn .

Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

9

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting

of job requests 1, 2, ..., j.

Case 1: OPT selects job j.

– collect profit vj

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

Case 2: OPT does not select job j.

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1



OPT(j)
0 if j 0

max v j  OPT(p(j)), OPT(j1)  otherwise





optimal substructure

10

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {

if (j = 0)

return 0

else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

}

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

This algorithm can take
exponential time in the
worst-case, due to the
potential redundancy in the
recursive calls.

demo-activity-selection.ppt#1. Activity%20Selection%20(Interval%20Scheduling)

11

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of

redundant sub-problems  exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows

like Fibonacci sequence.

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

12

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

for j = 1 to n

M[j] = empty

M[0] = 0

M-Compute-Opt(j) {

if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

return M[j]

}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;

lookup as needed.

13

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

Sort by finish time: O(n log n).

Computing p() : O(n log n) via sorting by start time.

M-Compute-Opt(j): each invocation takes O(1) time and either

– (i) returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

Progress measure  = # nonempty entries of M[].

– initially  = 0, throughout   n.

– (ii) increases  by 1  at most 2n recursive calls.

Overall running time of M-Compute-Opt(n) is O(n). ▪

Remark. O(n) if jobs are pre-sorted by start and finish times.

14

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.

What if we want the solution itself?

A. Do some post-processing.

of recursive calls  n  O(n).

Run M-Compute-Opt(n)

Run Find-Solution(n)

Find-Solution(j) {

if (j = 0)

output nothing

else if (vj + M[p(j)] > M[j-1])

print j

Find-Solution(p(j))

else

Find-Solution(j-1)

}

15

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {

M[0] = 0

for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])

}

6.3 Segmented Least Squares

17

Segmented Least Squares

Least squares.

Foundational problem in statistic and numerical analysis.

Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn).

Find a line y = ax + b that minimizes the sum of the squared error:

Solution. Calculus  min error is achieved when



SSE  (yi  axi b)2

i1

n





a 
n xi yi  (xi)i (yi)ii

n xi
2
 (xi)

2
ii

, b 
yi  a xiii

n

x

y

18

Segmented Least Squares

Segmented least squares.

Points lie roughly on a sequence of several line segments.

Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and

parsimony?

x

y

goodness of fit

number of lines

19

Segmented Least Squares

Segmented least squares.

Points lie roughly on a sequence of several line segments.

Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment

– the number of lines L

Tradeoff function: E + c L, for some constant c > 0.

x

y

20

Dynamic Programming: Multiway Choice

Notation.

OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.

e(i, j) = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):

Last segment uses points pi, pi+1 , . . . , pj for some i.

Cost = e(i, j) + c + OPT(i-1).



OPT(j)
0 if j 0

min
1 i  j

e(i, j)  c  OPT(i1)  otherwise







21

Segmented Least Squares: Algorithm

Running time. O(n3).

Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using

previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {

M[0] = 0

for j = 1 to n

for i = 1 to j

compute the least square error eij for

the segment pi,…, pj

for j = 1 to n

M[j] = min 1  i  j (eij + c + M[i-1])

return M[n]

}

can be improved to O(n2) by pre-computing various statistics

6.4 Knapsack Problem

23

Knapsack Problem

Knapsack problem.

Given n objects and a "knapsack."

Item i weighs wi > 0 kilograms and has value vi > 0.

Knapsack has capacity of W kilograms.

Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.

Ex: { 5, 2, 1 } achieves only value = 35  greedy not optimal.

1

value

18

22

28

1

weight

5

6

6 2

7

#

1

3

4

5

2
W = 11

24

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, …, i.

Case 1: OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 }

Case 2: OPT selects item i.

– accepting item i does not immediately imply that we will have to

reject other items

– without knowing what other items were selected before i,

we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

25

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

Case 1: OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 } using weight limit w

Case 2: OPT selects item i.

– new weight limit = w – wi

– OPT selects best of { 1, 2, …, i–1 } using this new weight limit



OPT(i, w)

0 if i  0

OPT(i1, w) if wi w

max OPT(i1, w), vi  OPT(i1, wwi)  otherwise









26

Input: n, W, w1,…,wN, v1,…,vN

for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 1 to W

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

return M[n, W]

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

27

Knapsack Algorithm

n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT: { 4, 3 }
value = 22 + 18 = 40

28

Knapsack Problem: Running Time

Running time. (n W).

Not polynomial in input size!

"Pseudo-polynomial."

Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm

that produces a feasible solution that has value within 0.01% of

optimum. [Section 11.8]

29

Dynamic Programming Summary

Recipe.

Characterize structure of problem.

Recursively define value of optimal solution.

Compute value of optimal solution.

Construct optimal solution from computed information.

Dynamic programming techniques.

Binary choice: weighted interval scheduling.

Multi-way choice: segmented least squares.

Adding a new variable: knapsack.

Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up: different people have different intuitions.

Viterbi algorithm for HMM also uses
DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy

CKY parsing algorithm for context-free
grammar has similar structure

6.6 Sequence Alignment

31

String Similarity

How similar are two strings?

ocurrance

occurrence

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

32

Applications.

Basis for Unix diff.

Speech recognition.

Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

Gap penalty ; mismatch penalty pq.

Cost = sum of gap and mismatch penalties.

2 + CA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

TC + GT + AG+ 2CA

-

Edit Distance

33

Goal: Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find

alignment of minimum cost.

Def. An alignment M is a set of ordered pairs xi-yj such that each item

occurs in at most one pair and no crossings.

Def. The pair xi-yj and xi'-yj' cross if i < i', but j > j'.

Ex: CTACCG vs. TACATG.

Sol: M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

Sequence Alignment



cost(M)   xi y j
(xi , y j)  M



mismatch

 
i : xi unmatched

  
j : y j unmatched



gap

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6

34

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

Case 1: OPT matches xi-yj.

– pay mismatch for xi-yj + min cost of aligning two strings

x1 x2 . . . xi-1 and y1 y2 . . . yj-1

Case 2a: OPT leaves xi unmatched.

– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

Case 2b: OPT leaves yj unmatched.

– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1



OPT (i, j) 














j if i  0

min

 xi y j
OPT (i1, j 1)

 OPT (i1, j)

 OPT (i, j 1)









otherwise

i if j  0

35

Sequence Alignment: Algorithm

Analysis. (mn) time and space.

English words or sentences: m, n  10.

Computational biology: m = n = 100,000. 10 billions ops OK, but 10GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, , ) {

for i = 0 to m

M[i, 0] = i

for j = 0 to n

M[0, j] = j

for i = 1 to m

for j = 1 to n

M[i, j] = min([xi, yj] + M[i-1, j-1],

 + M[i-1, j],

 + M[i, j-1])

return M[m, n]

}

6.7 Sequence Alignment in Linear Space

37

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.

Compute OPT(i, •) from OPT(i-1, •).

No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and

O(mn) time.

Clever combination of divide-and-conquer and dynamic programming.

Inspired by idea of Savitch from complexity theory.

38

Edit distance graph.

Let f(i, j) be shortest path from (0,0) to (i, j).

Observation: f(i, j) = OPT(i, j) (can prove this by induction on i+j)

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0







xi y j

39

Edit distance graph.

Let f(i, j) be shortest path from (0,0) to (i, j).

Can compute f (•, j) for any j in O(mn) time and O(m) space.

*Note: we want to recover solution for best alignment in the end; this

will require O(m+n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

j

40

Edit distance graph.

Let g(i, j) be shortest path from (i, j) to (m, n).

Can compute by reversing the edge orientations and inverting the

roles of (0, 0) and (m, n)

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0







xi y j

41

Edit distance graph.

Let g(i, j) be shortest path from (i, j) to (m, n).

Can compute g(•, j) for any j in O(mn) time and O(m) space. (just like

we did for f()).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

j

42

Observation 1. The cost of the shortest path that uses (i, j) is

f(i, j) + g(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

43

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).

Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

n / 2

q

44

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

Align xq and yn/2.

Conquer: recursively compute optimal alignment in each piece.

Sequence Alignment: Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

q

n / 2

m-n

45

Theorem. Let T(m, n) = max running time of algorithm on strings of

length at most m and n. T(m, n) = O(mn log n).

Remark. Analysis is not tight because two sub-problems are of size

(q, n/2) and (m - q, n/2). In next slide, we save log n factor.

Sequence Alignment: Running Time Analysis Warmup



T(m, n)  2T(m, n/2)  O(mn)  T(m, n)  O(mn logn)

46

Theorem. Let T(m, n) = max running time of algorithm on strings of

length m and n. T(m, n) = O(mn).

Pf. (by induction on n)

O(mn) time to compute f(•, n/2) and g (•, n/2) and find index q.

T(q, n/2) + T(m - q, n/2) time for two recursive calls.

Choose constant c so that:

Base cases: m = 2 or n = 2.

Inductive hypothesis: T(m, n)  2cmn.

Sequence Alignment: Running Time Analysis

cmn

cmncqncmncqn

cmnnqmccqn

cmnnqmTnqTnmT

2

2/)(22/2

)2/,()2/,(),(











T(m, 2)  cm

T(2, n)  cn

T(m, n)  cmn  T(q, n /2)  T(m q, n /2)

47

#1: Let G=(V,E) be an undirected graph with n nodes. Recall that a

subset of the nodes is called an independent set if no two of them are

joined by an edge. Finding large independent sets is difficult in general

(NP-hard); but here we’ll see that it can be done efficiently if the

graph is “simple” enough.

Call a graph G a path if its nodes can be written as v1,v2,…,vn, with an

edge between vi and vj iff the indices differ by one. With each node vi,

we associate a positive integer weight wi.

Goal: Find an independent set in a path G whose total weight is as large

as possible.

Kleinberg 6.1 (HW)

48

#1: Goal: Find an independent set in a path G whose total weight is as

large as possible.

(a) Give an example to show that the following algorithm doesn’t always

find an independent set of max total weight.

Algo: “heaviest-first”

{

S=empty set

while (some node remains in G)

{

Pick node with max weight and add it to S; delete this node and

its neighbors

}

}

Kleinberg 6.1 (HW)

49

#1: Goal: Find an independent set in a path G whose total weight is as

large as possible.

(c) Give an algorithm that takes an n-node path G with weights and

returns an independent set of maximum total weight. The running time

should be polynomial in n, independent of the values of the weights.

(Use a DP structure; start with a recursion.)

Kleinberg 6.1 (HW)

50

#1: Goal: Find an independent set in a path G whose total weight is as

large as possible.

(c) Give an algorithm that takes an n-node path G with weights and

returns an independent set of maximum total weight. The running time

should be polynomial in n, independent of the values of the weights.

Let Si denote an independent set on {v1,..,vi}, and let Xi denote its

weight. Define X0=0 and note that X1=w1.

Now for i>1, either vi belong to Si or it doesn’t. What is a natural

recursion?

Kleinberg 6.1 (HW)

51

#1: Goal: Find an independent set in a path G whose total weight is as

large as possible.

(c) Give an algorithm that takes an n-node path G with weights and

returns an independent set of maximum total weight. The running time

should be polynomial in n, independent of the values of the weights.

Let Si denote an independent set on {v1,..,vi}, and let Xi denote its

weight. Define X0=0 and note that X1=w1.

Now for i>1, either vi belongs to Si or it doesn’t. What is a natural

recursion?

If vi belongs to Si, then vi-1 doesn’t (why?); so either Xi=wi+Xi-2 or Xi=Xi-1

(why?).

Kleinberg 6.1 (HW)

52

#1: Goal: Find an independent set in a path G whose total weight is as

large as possible.

(c) Give an algorithm that takes an n-node path G with weights and

returns an independent set of maximum total weight. The running time

should be polynomial in n, independent of the values of the weights.

Let Si denote an independent set on {v1,..,vi}, and let Xi denote its

weight. Define X0=0 and note that X1=w1.

Now for i>1, either vi belongs to Si or it doesn’t. What is a natural

recursion?

If vi belongs to Si, then vi-1 doesn’t (why?); so either Xi=wi+Xi-2 or Xi=Xi-1

(why?).

Hence, Xi=max(Xi-1, wi+Xi-2); what’s the run-time to compute Sn?

Kleinberg 6.1 (HW)

53

#3: Let G=(V,E) be a directed graph with nodes v1,…,vn. We say that G

is an ordered graph if it has the following properties:

(i) Each edge goes from a node with a lower index to a node with a

higher index; i.e., each directed edge has the form (vi,vj) with i<j.

(ii) Each node expect vn has at least one edge leaving it. That is, for

every node vi, i=1,2,…,n-1 there is at least one edge of the form

(vi,vj).

The length of a path is the number of edges it contains. The goal is to

solve:

Given an ordered graph G, find the length of the longest path that

begins at v1 and ends at vn.

Kleinberg 6.3 (HW)

54

#3:The length of a path is the number of edges it contains. The goal is

to solve:

Given an ordered graph G, find the length of the longest path that

begins at v1 and ends at vn.

(b) Give an efficient algorithm that takes an ordered graph G and

returns the length of the lonest path that begins at v1 and end at vn.

Idea: Use DP structure; consider subproblems OPT[i], the length of the

longest path from v1 to vi in ordered graph, G. One caveat: not all nodes

vi necessarily have a path from v1 to vi; let’s use the value “-inf” in this

case.

Kleinberg 6.3 (HW)

55

#3:(b) Give an efficient algorithm that takes an ordered graph G and returns the length of

the lonest path that begins at v1 and end at vn.

Idea: Use DP structure; consider subproblems OPT[i], the length of the longest path from

v1 to vi in ordered graph, G. One caveat: not all nodes vi necessarily have a path from v1 to vi;

let’s use the value “-inf” in this case.

Define OPT[1]=0 (base case); use for loop:

M[1]=0

for i=2,..,n

{

M=-inf

for all edges (j,i) in G

{

if M[j]=!-inf && M<M[j]+1

then M=M[j]+1

/endif

} /end for

M[i]=M

} /endfor

Kleinberg 6.3 (HW)

56

#3:(b) Give an efficient algorithm that takes an ordered graph G and

returns the length of the lonest path that begins at v1 and end at vn.

Idea: Use DP structure; consider subproblems OPT[i], the length of the

longest path from v1 to vi in ordered graph, G. One caveat: not all nodes

vi necessarily have a path from v1 to vi; let’s use the value “-inf” in this

case.

Define OPT[1]=0 (base case); use for loop:

for i=2,..,n

{

M=-inf

for all edges (j,i) in G

{

if M=!-inf && M<M[j]+1 What’s the run time?

then M=M[j]+1

/endif

} /end for

M[i]=M

} /endfor

Kleinberg 6.3 (HW)

57

#3:(b) Give an efficient algorithm that takes an ordered graph G and

returns the length of the lonest path that begins at v1 and end at vn.

Idea: Use DP structure; consider subproblems OPT[i], the length of the

longest path from v1 to vi in ordered graph, G. One caveat: not all nodes

vi necessarily have a path from v1 to vi; let’s use the value “-inf” in this

case.

Define OPT[1]=0 (base case); use for loop:

for i=2,..,n

{

M=-inf

for all edges (j,i) in G

{

if M=!-inf && M<M[j]+1 What’s the run time? O(n2)

then M=M[j]+1

/endif

} /end for

M[i]=M

} /endfor

Kleinberg 6.3 (HW)

58

Kleinberg 6.6 (HW)

59

#11: Suppose you’re consulting for a company that manufactures PC equipment

and ships it to distributors all over the country. For each of the next n weeks,

they have a projected supply si of equipment (measured in pounds), which has to

be shipped by an air freight carrier.

Each week’s supply can be carried by one of two air freight companies: A or B.

(*) Company A charges a fixed rate r per pound (so it costs r*si to ship a week’s

supply si).

(*) Company B makes contracts for a fixed amount c per week, independent of

the weight. However, contracts with company B must be made in blocks of four

consecutive weeks at a time.

Kleinberg 6.11 (HW)

60

#11: Suppose you’re consulting for a company that manufactures PC equipment

and ships it to distributors all over the country. For each of the next n weeks,

they have a projected supply si of equipment (measured in pounds), which has to

be shipped by an air freight carrier.

Each week’s supply can be carried by one of two air freight companies: A or B.

(*) Company A charges a fixed rate r per pound (so it costs r*si to ship a week’s

supply si).

(*) Company B makes contracts for a fixed amount c per week, independent of

the weight. However, contracts with company B must be made in blocks of four

consecutive weeks at a time.

A schedule, for the PC company, is a choice of air freight company (A or B) for

each of the n weeks, with the restriction that company B, whenever it is chosen,

must be chosen for blocks of four contiguous weeks at a time. The cost of a

schedule is the total amount paid to company A and B.

Kleinberg 6.11 (HW)

61

#11: Give a polynomial-time algorithm that takes a sequence of supply

values s1, s2,….,sn and returns a schedule of minimum cost.

Example. Suppose r=1, c=10, and the sequence of values is:

11,9,9,12,12,12,12,9,9,11.

Then the optimal schedule would be to choose company A for first three weeks,

then company B for a block of four consecutive weeks, and then company A for

the final three weeks.

How to use DP structure to solve?

Kleinberg 6.11 (HW)

62

#11: Give a polynomial-time algorithm that takes a sequence of supply

values s1, s2,….,sn and returns a schedule of minimum cost.

How to use DP structure to solve?

Let OPT[i] denote the minimum cost of a solution for weeks 1 through i. In an

optimal solution, we either use company A or B for the ith week.

If we use company A, we pay r*si and behave optimally up through week i-1; else

we use company B and pay 4c for this contract, and we behave optimally through

week i-4.

Kleinberg 6.11 (HW)

63

#11: Give a polynomial-time algorithm that takes a sequence of supply

values s1, s2,….,sn and returns a schedule of minimum cost.

How to use DP structure to solve?

Let OPT[i] denote the minimum cost of a solution for weeks 1 through i. In an

optimal solution, we either use company A or B for the ith week.

If we use company A, we pay r*si and behave optimally up through week i-1; else

we use company B and pay 4c for this contract, and we behave optimally through

week i-4.

In summary, our recursion is as follows: OPT[i]= min(r*si+OPT(i-1), 4c+OPT(i-4)).

What’s the runtime?

Kleinberg 6.11 (HW)

