
1

Chapter 4: Part I

Greedy
Algorithms

CS 350 Winter 2018

A few more exercises from Ch. 3

3

Chapter 3: #3.6

Suppose that for a connected graph G=(V,E), BFS and DFS, each rooted

at u, produce the same tree, T. Prove that G=T (i.e., G cannot contain

any edges that don’t belong to T).

4

Chapter 3: #3.6

Suppose that for a connected graph G=(V,E), BFS and DFS, each rooted

at u, produce the same tree, T. Prove that G=T (i.e., G cannot contain

any edges that don’t belong to T).

Pf. (by contradiction) Where to start?

5

Chapter 3: #3.6

Suppose that for a connected graph G=(V,E), BFS and DFS, each rooted

at u, produce the same tree, T. Prove that G=T (i.e., G cannot contain

any edges that don’t belong to T).

Pf. (by contradiction)

Assume not, and suppose that G has an edge e=(u,v) that doesn’t not

belong to T.

But then the distance between node u and v is at most 1 (why?). This

leads to a contradiction…(where?).

6

Chapter 3: #3.7

Claim: Let G be a graph on n nodes, where n is an even number. If every

node of G has degree at least n/2, then G is connected.

True or False? (How would we check?)

7

Chapter 3: #3.7

Claim: Let G be a graph on n nodes, where n is an even number. If every

node of G has degree at least n/2, then G is connected.

True or False? (How would we check?) Try it out yourself.

8

Chapter 3: #3.7

Claim: Let G be a graph on n nodes, where n is an even number. If every

node of G has degree at least n/2, then G is connected.

True or False? (How would we check?) Try it out yourself.

Pf. (by contradiction) Suppose not.

Let G have at least two connected components with the property that

every node has degree at least n/2.

Now suppose v is a vertex in a component S with minimum size.

Then |S| ≤ n/2. Now derive a contradiction!

4.0 Classic Greedy Problems

10

A Greedy Template
Greedy(input I)

begin

while (solution is not complete) do

Select the best element x in the

remaining input I;

Put x next in the output;

Remove x from the remaining input;

endwhile

End

(*) The notion of "best" has to be defined in each problem separately.

(*) Therefore, the essence of each greedy algorithm is the selection

policy.

(*) Idea: At each step we myopically optimize some underlying criterion.

(*) One can often design many different greedy algorithms for the

same problem, each one locally, incrementally optimizing some different

measure (i.e. a heuristic) on its way to a solution.

(*) Some advantages: greedy algorithms can be extremely simple and

intuitive and yet quite powerful – even optimal!

11

A Greedy Template

(2) Basic Methods for proving that a greedy algorithm produces an

optimal solution:

(1) Show that it “stays ahead”: meaning, we show that it does better

than any other algorithm at each step.

(2) Use an “exchange argument”: one considers any possible solution to

the problem and gradually transforms it into the solution found by

the greedy algorithm – without hurting its quality.

Some classic greedy problems: selection sort, knapsack problem,

interval scheduling, optimal caching, MST (minimum spanning tree),

shortest path problems, Huffman codes, clustering.

12

Selection Sort

Idea: The algorithm divides the input list into two parts: the sublist of

items already sorted, which is built up from left to right at the front

(left) of the list, and the sublist of items remaining to be sorted that

occupy the rest of the list.

Initially, the sorted sublist is empty and the unsorted sublist is the

entire input list. The algorithm proceeds by finding the smallest (or

largest, depending on sorting order) element in the unsorted sublist,

exchanging (swapping) it with the leftmost unsorted element (putting it

in sorted order), and moving the sublist boundaries one element to the

right.

13

Selection SortSorted sublist == ()

Unsorted sublist == (11, 25, 12, 22, 64)

Least element in unsorted list == 11

Sorted sublist == (11)

Unsorted sublist == (25, 12, 22, 64)

Least element in unsorted list == 12

Sorted sublist == (11, 12)

Unsorted sublist == (25, 22, 64)

Least element in unsorted list == 22

14

Selection Sort

/* a[0] to a[n-1] is the array to sort */
2 int i,j;
3 int n;
4
5 /* advance the position through the entire array */
6 /* (could do j < n-1 because single element is also min element) */
7 for (j = 0; j < n-1; j++)
8 {
9 /* find the min element in the unsorted a[j .. n-1] */
10
11 /* assume the min is the first element */
12 int iMin = j;
13 /* test against elements after j to find the smallest */
14 for (i = j+1; i < n; i++)
15 {
16 /* if this element is less, then it is the new minimum */
17 if (a[i] < a[iMin])
18 {
19 /* found new minimum; remember its index */
20 iMin = i;
21 }
22 }
23
24 if (iMin != j)
25 {
26 swap(a[j], a[iMin]);
27 }
28 }

15

Selection Sort

Q: What is the run-time of SS?

Selecting the minimum requires scanning n elements (taking n-1
comparisons) and then swapping it into the first position. Finding the
next lowest element requires scanning the remaining n-1 elements and so
on. Therefore, the total number of comparisons is:

16

Selection Sort

Q: What is the run-time of SS?

Selecting the minimum requires scanning n elements (taking n-1
comparisons) and then swapping it into the first position. Finding the
next lowest element requires scanning the remaining n-1 elements and so
on. Therefore, the total number of comparisons is:

 1 2 ... 1n n

17

Selection Sort

Q: What is the run-time of SS?

Selecting the minimum requires scanning n elements (taking n-1
comparisons) and then swapping it into the first position. Finding the
next lowest element requires scanning the remaining n-1 elements and so
on. Therefore, the total number of comparisons is:

(not the best sorting algorithm available)

1

2 2 2

1

1 1
1 2 ... 1

2 2

n

i

n n
n n n n i n n n O n

18

Knapsack Problem

The knapsack problem is a problem in combinatorial optimization: Given a set of
items, each with a weight and a value, determine the number of each item to
include in a collection so that the total weight is less than or equal to a given limit
and the total value is as large as possible.

https://en.wikipedia.org/wiki/Combinatorial_optimization

19

Knapsack Problem

Problem: John wishes to take n items on a trip

The weight of item i is wi & items are all different (0/1
Knapsack Problem)
The items are to be carried in a knapsack whose weight
capacity is c

When sum of item weights ≤ c, all n items can be carried in
the knapsack
When sum of item weights > c, some items must be left
behind

Which items should be taken/left?

20

Knapsack Problem

John assigns a profit pi to item i
All weights and profits are positive numbers

John wants to select a subset of the n items to take
▪The weight of the subset should not exceed the capacity of
the knapsack (constraint)
▪Cannot select a fraction of an item (constraint)
▪The profit of the subset is the sum of the profits of the
selected items (optimization function)
▪The profit of the selected subset should be maximum
(optimization criterion)

Let xi = 1 when item i is selected and xi = 0 when item i is not
selected

Because this is a 0/1 Knapsack Problem, you can choose the
item or not choose it.

21

Knapsack Problem

Apply greedy method:
Greedy attempt on capacity utilization

▪Greedy criterion: select items in increasing order of
weight
▪When n = 2, c = 7, w = [3, 6], p = [2, 10],
if only item 1 is selected profit of selection is 2 not
best selection!

Greedy attempt on profit earned
▪Greedy criterion: select items in decreasing order of
profit
▪When n = 3, c = 7, w = [7, 3, 2], p = [10, 8, 6],
if only item 1 is selected profit of selection is 10
not best selection!

Moral: Greedy is not always best – other methods, including dynamic
programming and genetic algorithms are better for this problem;
knapsack problem is in general very difficult (NP-complete).

4.1.1 Interval Scheduling

23

Interval Scheduling

Interval scheduling.

Job j starts at sj and finishes at fj.

Two jobs compatible if they don't overlap.

Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

24

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order.

Take each job provided it's compatible with the ones already taken.

[Earliest start time] Consider jobs in ascending order of sj.

[Earliest finish time] Consider jobs in ascending order of fj.

[Shortest interval] Consider jobs in ascending order of fj - sj.

[Fewest conflicts] For each job j, count the number of

conflicting jobs cj. Schedule in ascending order of cj.

25

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order.

Take each job provided it's compatible with the ones already taken.

Each of these approaches turn out to be sub-optimal!

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

26

Greedy algorithm. Consider jobs in increasing order of finish time.

Take each job provided it's compatible with the ones already taken.

Implementation. O(n log n). (aside: O(n log n) is required due to

sorting step, see: mergesort lecture later in course)

Remember job j* that was added last to A.

Job j is compatible with A if sj fj*.

Sort jobs by finish times so that f1 f2 ... fn.

A

for j = 1 to n {

if (job j compatible with A)

A A {j}

}

return A

set of jobs selected

Interval Scheduling: Greedy Algorithm

27

Claim: A is a compatible set of requests.

(trivial, why?)

Sort jobs by finish times so that f1 f2 ... fn.

A

for j = 1 to n {

if (job j compatible with A)

A A {j}

}

return A

Interval Scheduling: Greedy Algorithm

28

Claim: Solution is optimal.

Notation: let i1,…,ik be the set of requests in A in the order they were

added to A; so |A|=k. Similarly, let j1,…,jm be the set of requests in O,

an optimal set of intervals. Assume the requests in I are also ordered

in the natural left-to-right order of the corresponding finish points.

Sort jobs by finish times so that f1 f2 ... fn.

A

for j = 1 to n {

if (job j compatible with A)

A A {j}

}

return A

Interval Scheduling: Greedy Algorithm

29

Claim: Solution is optimal!

Note: for all indices r ≤ k, it follows that: f(ir) ≤ f(jr), where f()

indicates the finish time of the interval (greediness guarantees -- can

prove this with induction).

Sort jobs by finish times so that f1 f2 ... fn.

A

for j = 1 to n {

if (job j compatible with A)

A A {j}

}

return A

Interval Scheduling: Greedy Algorithm

30

Claim: Solution is optimal! f(ir) ≤ f(jr)

Pf. (By contradiction) If A is not optimal, then an optimal set O must

have more requests, that is we must have m > k…

Sort jobs by finish times so that f1 f2 ... fn.

A

for j = 1 to n {

if (job j compatible with A)

A A {j}

}

return A

Interval Scheduling: Greedy Algorithm

31

Claim: Solution is optimal! (*) f(ir) ≤ f(jr)

Pf. (By contradiction) If A is not optimal, then an optimal set O must

have more requests, that is we must have m > k.

Applying (*) above, with r = k, we get that f(ik) ≤ f(jk).

Since m > k, there is a request jk+1 in O. This request starts after

request jk ends, and hence after ik ends.

So, after deleting all requests that are not compatible with requests:

i1,…,ik, the set of possible rests R still contains jk+1. (contradiction)

Sort jobs by finish times so that f1 f2 ... fn.

A

for j = 1 to n {

if (job j compatible with A)

A A {j}

}

return A

Interval Scheduling: Greedy Algorithm

32

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal. (greedy algorithm “stays ahead”

of an optimal solution)

Pf. (by contradiction)

Assume greedy is not optimal, and let's see what happens.

Let i1, i2, ... ik denote set of jobs selected by greedy.

Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i2 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1

with job ir+1?

job ir+1 finishes before jr+1

33

Interval Scheduling Demo

34

Interval Scheduling

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

0 1 2 3 4 5 6 7 8 9 10 11

35

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

36

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B C

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

37

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

BA

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

38

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B E

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

39

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B ED

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

40

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B E F

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

41

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B E G

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

42

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11

B E H

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11

H

4.1.2 Interval Partitioning

44

Interval Partitioning

Interval partitioning.

Lecture j starts at sj and finishes at fj.

Goal: find minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

1

2

3

4

45

Interval Partitioning

Interval partitioning.

Lecture j starts at sj and finishes at fj.

Goal: find minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

1

2

3

46

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that

contain any given time.

Key observation. Number of classrooms needed depth.

Ex: Depth of schedule below = 3 schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

1

2

3

47

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:

assign lecture to any compatible classroom.

Implementation. O(n log n).

For each classroom k, maintain the finish time of the last job added.

Keep the classrooms in a priority queue.

Sort intervals by starting time so that s1 s2 ... sn.

d 0

for j = 1 to n {

if (lecture j is compatible with some classroom k)

schedule lecture j in classroom k

else

allocate a new classroom d + 1

schedule lecture j in classroom d + 1

d d + 1

}

number of allocated classrooms

48

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible

lectures in the same classroom. (so it produces a compatible assignment)

Theorem. Greedy algorithm is optimal.

Pf.

Let d = number of classrooms that the greedy algorithm allocates.

Classroom d is opened because we needed to schedule a job, say j,

that is incompatible with all d-1 other classrooms.

These d jobs each end after sj.

Since we sorted by start time, all these incompatibilities are caused

by lectures that start no later than sj.

Thus, we have d lectures overlapping at time sj + .

Key observation all schedules use d classrooms.

In summary: The greedy algorithm above schedules every interval on

a resource, using a number of resources (e.g. classroom) equal to the

depth of the set of intervals. This is the optimal number of

resources needed.

4.2 Scheduling to Minimize Lateness

50

Scheduling to Minimizing Lateness

Minimizing lateness problem.

Single resource processes one job at a time.

Job j requires tj units of processing time and is due at time dj.

If j starts at time sj, it finishes at time fj = sj + tj.

Lateness: j = max { 0, fj - dj }.

Goal: schedule all jobs to minimize maximum lateness L = max j.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

51

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order

of processing time tj.

[Earliest deadline first] Consider jobs in ascending order of

deadline dj.

[Smallest slack] Consider jobs in ascending order of slack dj - tj.

52

Greedy template. Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order

of processing time tj.

[Smallest slack] Consider jobs in ascending order of slack dj - tj.

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness: Greedy Algorithms

53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1 d2 … dn

t 0

for j = 1 to n

Assign job j to interval [t, t + tj]

sj t, fj t + tj
t t + tj

output intervals [sj, fj]

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

54

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time. (why?)

Observation. The greedy schedule has no idle time. (why?)

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

55

Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:

i < j but j scheduled before i.

Observation. Greedy schedule has no inversions. (trivial)

Observation. If a schedule (with no idle time) has an inversion, it has

one with a pair of inverted jobs scheduled consecutively.

(proof: Consider an inversion in which a job a is scheduled before a job

b, and da > db. If we advance in the scheduled order of jobs from a to b

one at a time, there has to come a point at which the deadline we see

decreases for the first time (these are consecutive jobs forming an

inversion).

ijbefore swap

fi

inversion

[as before, we assume jobs are numbered so that d1 d2 … dn]

56

Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:

i < j but j scheduled before i.

Claim. Swapping two consecutive, inverted jobs reduces the number of

inversions by one and does not increase the max lateness.

Pf. Let be the lateness before the swap, and let ' be it afterwards.

 'k = k for all k i, j

 'i i
If job j is late:

ij

i j

before swap

after swap

j f j d j (definition)

 fi d j (j finishes at time fi)

 fi di (i j)

 i (definition)

f'j

fi

inversion

57

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.

Pf. Define S* to be an optimal schedule that has the fewest number of

inversions, and let's see what happens.

Can assume S* has no idle time.

If S* has no inversions, then S = S* (since greedy algorithm will

produce this schedule).

If S* has an inversion, let i-j be an adjacent inversion. (guaranteed

adjacent by previous result)

– swapping i and j does not increase the maximum lateness and

strictly decreases the number of inversions (by prior result)

– this contradicts definition of S*

In summary: S* cannot have any inversions, and so S*=S, thus the

greedy schedule is optimal.

58

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the greedy

algorithm, its solution is at least as good as any other algorithm's.

Structural. Discover a simple "structural" bound asserting that every

possible solution must have a certain value. Then show that your

algorithm always achieves this bound.

Exchange argument. Gradually transform any solution to the one found

by the greedy algorithm without hurting its quality.

Other greedy algorithms. Kruskal, Prim, Dijkstra, Huffman, …

4.3 Optimal Caching

60

Caching

(*) Caching is in general the process of storing a small amount of data

in a fast memory so as to reduce the amount of time spent interacting

with a slow memory.

For caching to be as effective as possible, it should generally be the

case that when you go to access a piece of data, it is already in the

cache.

To achieve this, a cache maintenance algorithm determines what to

keep in the cache and what to “evict” from the cache as new data is

brought in.

61

Optimal Offline Caching

Caching.

Cache with capacity to store k items.

Sequence of m item requests d1, d2, …, dm.

Cache hit: item already in cache when requested.

Cache miss: item not already in cache when requested: must bring

requested item into cache, and evict some existing item, if full.

Goal. Eviction schedule that minimizes number of cache misses.

Ex: k = 2, initial cache = a b,

requests: a, b, c, b, c, a, a, b.

Optimal eviction schedule: 2 cache misses.

a b

a b

c b

c b

c b

a b

a

b

c

b

c

a

a ba

a bb

cacherequests

red = cache miss

62

Optimal Offline Caching: Farthest-In-Future

Farthest-in-future. Evict item in the cache that is not requested until

farthest in the future.

Theorem. [Bellady, 1960s] FF is optimal eviction schedule.

Pf. Algorithm and theorem are intuitive; proof is subtle.

a b

g a b c e d a b b a c d e a f a d e f g h ...

current cache: c d e f

future queries:

cache miss eject this one

63

Reduced Eviction Schedules

Def. A reduced schedule is a schedule that only inserts an item into

the cache in a step in which that item is requested.

Intuition. Can transform an unreduced schedule into a reduced one

with no more cache misses.

a x

an unreduced schedule

c

a d c

a d b

a c b

a x b

a c b

a b c

a b c

a

c

d

a

b

c

a

a

a b

a reduced schedule

c

a b c

a d c

a d c

a d b

a c b

a c b

a c b

a

c

d

a

b

c

a

a

a b ca a b ca

64

Reduced Eviction Schedules

Claim. Given any unreduced schedule S, can transform it into a reduced

schedule S' with no more cache misses.

Pf. (by induction on number of unreduced items)

Suppose S brings d into the cache at time t, without a request.

Let c be the item S evicts when it brings d into the cache.

Case 1: d evicted at time t', before next request for d.

Case 2: d requested at time t' before d is evicted. ▪

t

t'

d

c

t

t'

c
S'

d

S

d requested at time t'

t

t'

d

c

t

t'

c
S'

e

S

d evicted at time t',
before next request

e

doesn't enter cache at requested
time

Case 1 Case 2

65

Farthest-In-Future: Analysis (Exchange Argument)

Theorem. FF is optimal eviction algorithm.

Pf. (by induction on number or requests j)

Let S be reduced schedule that satisfies invariant through j requests.

We produce S' that satisfies invariant after j+1 requests.

Consider (j+1)st request d = dj+1.

Since S and SFF have agreed up until now, they have the same cache

contents before request j+1.

Case 1: (d is already in the cache). S' = S satisfies invariant.

Case 2: (d is not in the cache and S and SFF evict the same element).

S' = S satisfies invariant.

Invariant: There exists an optimal reduced schedule S that makes
the same eviction schedule as SFF through the first j+1 requests.

66

j

Farthest-In-Future: Analysis

Pf. (continued)

Case 3: (d is not in the cache; SFF evicts e; S evicts f e).

– begin construction of S' from S by evicting e instead of f

– now S' agrees with SFF on first j+1 requests; we show that having

element f in cache is no worse than having element e

same f same fee

S S'

j same d same fde

S S'

j+1

67

Farthest-In-Future: Analysis

Let j' be the first time after j+1 that S and S' take a different action,

and let g be item requested at time j'.

Case 3a: g = e. Can't happen with Farthest-In-Future since there

must be a request for f before e.

Case 3b: g = f. Element f can't be in cache of S, so let e' be the

element that S evicts.

– if e' = e, S' accesses f from cache; now S and S' have same cache

– if e' e, S' evicts e' and brings e into the cache; now S and S'

have the same cache

same e same f

S S'

j'

Note: S' is no longer reduced, but can be transformed into
a reduced schedule that agrees with SFF through step j+1

must involve e or f (or both)

68

Farthest-In-Future: Analysis

Let j' be the first time after j+1 that S and S' take a different action,

and let g be item requested at time j'.

Case 3c: g e, f. S must evict e.

Make S' evict f; now S and S' have the same cache. ▪

same g same g

S S'

j'

otherwise S' would take the same action

same e same f

S S'

j'

must involve e or f (or both)

69

Caching Perspective

Online vs. offline algorithms.

Offline: full sequence of requests is known a priori.

Online (reality): requests are not known in advance.

Caching is among most fundamental online problems in CS.

LIFO. Evict page brought in most recently.

LRU. Evict page whose most recent access was earliest.

Theorem. FF is optimal offline eviction algorithm.

Provides basis for understanding and analyzing online algorithms.

LRU is k-competitive. [Section 13.8]

LIFO is arbitrarily bad.

FF with direction of time reversed!

4.4 Shortest Paths in a Graph

shortest path from Princeton CS department to Einstein's house

71

Shortest Path Problem

Shortest path network.

Directed graph G = (V, E).

Source s, destination t.

Length e = length of edge e.

Shortest path problem: find shortest directed path from s to t.

Cost of path s-2-3-5-t
= 9 + 23 + 2 + 16
= 50.

cost of path = sum of edge costs in path

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

72

Dijkstra's Algorithm

Dijkstra's algorithm.

Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.

Initialize S = { s }, d(s) = 0.

Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = (v).

(Note: (v) represents a “temporary” distance label the algorithm

runs)

,)(min)(
:),(

e
Suvue

udv

s

v

u

d(u)

S

e

shortest path to some u in explored
part, followed by a single edge (u, v)

73

Dijkstra's Shortest Path Algorithm

Find shortest path from s to t.

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

74

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

distance label

S = { }

PQ = { s, 2, 3, 4, 5, 6, 7, t }

75

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

distance label

S = { }

PQ = { s, 2, 3, 4, 5, 6, 7, t }

min

76

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

distance label

S = { s }

PQ = { 2, 3, 4, 5, 6, 7, t }

decrease key

X

X

X

77

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

distance label

S = { s }

PQ = { 2, 3, 4, 5, 6, 7, t }

X

X

X

min

78

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2 }

PQ = { 3, 4, 5, 6, 7, t }

X

X

X

79

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2 }

PQ = { 3, 4, 5, 6, 7, t }

X

X

X

decrease key

X 33

80

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2 }

PQ = { 3, 4, 5, 6, 7, t }

X

X

X

X 33

min

81

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 6 }

PQ = { 3, 4, 5, 7, t }

X

X

X

X 33

44
X

X

32

82

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 6 }

PQ = { 3, 4, 5, 7, t }

X

X

X

44
X

min

X 33X

32

83

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 6, 7 }

PQ = { 3, 4, 5, t }

X

X

X

44
X

35X

59 X

24

X 33X

32

84

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 6, 7 }

PQ = { 3, 4, 5, t }

X

X

X

44
X

35X

59 X

min

X 33X

32

85

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 6, 7 }

PQ = { 4, 5, t }

X

X

X

44
X

35X

59 XX51

X 34

X 33X

32

86

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 6, 7 }

PQ = { 4, 5, t }

X

X

X

44
X

35X

59 XX51

X 34

min

X 33X

32

24

87

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 5, 6, 7 }

PQ = { 4, t }

X

X

X

44
X

35X

59 XX51

X 34

24

X50

X45

X 33X

32

88

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 5, 6, 7 }

PQ = { 4, t }

X

X

X

44
X

35X

59 XX51

X 34

24

X50

X45

min

X 33X

32

89

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 4, 5, 6, 7 }

PQ = { t }

X

X

X

44
X

35X

59 XX51

X 34

24

X50

X45

X 33X

32

90

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 4, 5, 6, 7 }

PQ = { t }

X

X

X

44
X

35X

59 XX51

X 34

X50

X45

min

X 33X

32

24

91

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 4, 5, 6, 7, t }

PQ = { }

X

X

X

44
X

35X

59 XX51

X 34

X50

X45

X 33X

32

92

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 4, 5, 6, 7, t }

PQ = { }

X

X

X

44
X

35X

59 XX51

X 34

X50

X45

X 33X

32

93

Dijkstra's Algorithm: Proof of Correctness

For each node u S, d(u) is the length of the shortest s-u path.

Pf. (by induction on |S|)

Base case: |S| = 1 is trivial.

Inductive hypothesis: Assume true for |S| = k 1.

Let v be next node added to S, and let u-v be the chosen edge.

(Claim) The shortest s-u path plus (u, v) is an s-v path of length (v).

Consider any s-v path P. We'll see that it's no shorter than (v).

Let x-y be the first edge in P that leaves S,

and let P' be the subpath to x.

P is already too long as soon as it leaves S.

 (P) (P') + (x,y) d(x) + (x, y) (y) (v)

Nonnegative weights

(triangle inequality)

inductive
hypothesis

defn of (y) Dijkstra chose v
instead of y

S

s

y

v

x

P

u

P'

94

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain

Next node to explore = node with minimum (v).

When exploring v, for each incident edge e = (v, w), update

Efficient implementation. Maintain a priority queue of unexplored

nodes, prioritized by (v).

PQ Operation

Insert

ExtractMin

ChangeKey

Binary heap

log n

log n

log n

Array

n

n

1

IsEmpty 11

Priority Queue

Total m log nn2

Dijkstra

n

n

m

n

 (v) min
e (u,v) : u S

d(u) e .

 (w) min { (w), (v) e }.

95

Edsger W. Dijkstra

The question of whether computers can think is like the
question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a ripple
on the surface of our culture. In their capacity as
intellectual challenge, they are without precedent in the
cultural history of mankind.

The use of COBOL cripples the mind; its teaching should,
therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is the
language of the future for the programming techniques
of the past: it creates a new generation of coding bums.

Extra Slides

Coin Changing

Greed is good. Greed is right. Greed works.
Greed clarifies, cuts through, and captures the
essence of the evolutionary spirit.

- Gordon Gecko (Michael Douglas)

98

Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a method

to pay amount to customer using fewest number of coins.

Ex: 34¢.

Cashier's algorithm. At each iteration, add coin of the largest value

that does not take us past the amount to be paid.

Ex: $2.89.

99

Coin-Changing: Greedy Algorithm

Cashier's algorithm. At each iteration, add coin of the largest value

that does not take us past the amount to be paid.

Q. Is cashier's algorithm optimal?

Sort coins denominations by value: c1 < c2 < … < cn.

S

while (x 0) {

let k be largest integer such that ck x

if (k = 0)

return "no solution found"

x x - ck
S S {k}

}

return S

coins selected

100

Coin-Changing: Analysis of Greedy Algorithm

Theorem. Greedy algorithm is optimal for U.S. coinage: 1, 5, 10, 25, 100.

Pf. (by induction on x)

Consider optimal way to change ck x < ck+1 : greedy takes coin k.

We claim that any optimal solution must also take coin k.

– if not, it needs enough coins of type c1, …, ck-1 to add up to x

– table below indicates no optimal solution can do this

Problem reduces to coin-changing x - ck cents, which, by induction, is

optimally solved by greedy algorithm. ▪

1

ck

10

25

100

P 4

All optimal solutions
must satisfy

N + D 2

Q 3

5 N 1

no limit

k

1

3

4

5

2

-

Max value of coins
1, 2, …, k-1 in any OPT

4 + 5 = 9

20 + 4 = 24

4

75 + 24 = 99

101

Coin-Changing: Analysis of Greedy Algorithm

Observation. Greedy algorithm is sub-optimal for US postal

denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.

Greedy: 100, 34, 1, 1, 1, 1, 1, 1.

Optimal: 70, 70.

