Chapter 3
Graphs

"\ A\gunh Desi

JON KLEINBERG - EVA TARDOS
CS 350 Winter 2018

3.0 Outline

0) Gr'aphs

@w BFS &DFS

@y Connectivity and Graph Traversals
@ Testing Bipartiteness

w DAGS

3.1 Basic Definitions and Applications

Undirected Graphs

Undirected graph. 6 = (V, E)
.V = nodes.
. E = edges between pairs of nodes.
. Captures pairwise relationship between objects.
. Graph size parameters: n= V|, m = |E|.

(1) (D
. V={1,2,3,45,67,8)
(2—(3)

' E={1-2 1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6)
. -8
()—) @

(6)

m =11

Some Graph Applications

World Wide Web

Web graph.
. Node: web page.

. Edge: hyperlink from one page to another.

cnn.com

netscape.com <+~—hoveltecom—;

chnsi.com

timewarner.com

hbo.com <+——

l
sorpranos.com —

Social Network

Social network graph.
- Node: people.
. Edge: relationship between two people.

‘/md‘
E // \igEdow
josephmarin — ‘ % /
Li{qﬂg!!eaﬂ
- =

birdphone

brianlindenbaum /” (i .\
4’% ’\ pancakesdlife
A 4

‘bzl
e |
hi

> !
\ _iohaygoods

{) e
ahnaﬁt@\!ﬁb /-

Ecological Food Web

Food web graph.
- Node = species.
. Edge = from prey to predator.

\% o vole great egret
fox ' \ oy

northern copperbelly Hue—glll fish

water snake %
\ 5 K R

o0
w e shew

spotted salamander

LoRibb

leopard frog

’f-\m?‘ﬁn
/--‘// \:4;,1_._:;, —

mosquito

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with A, = 1if (u, v) is an edge.
. Two representations of each edge.
. Space proportional to n2.
. Checking if (u, v) is an edge takes ©(1) time.
. Identifying all edges takes ©(n?) time.

123456738
1101100000
211 0111000
3111001011
401 011000
501110100
6/0 0001000
70 0100001
81001 00010

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
. Two representations of each edge.
. Space proportional fo m + n. /
. Checking if (u, v) is an edge takes O(deg(u)) time.
. Identifying all edges takes ®(m + n) time.

degree = number of neighbors of u

®
w | [O1 N w | [w
®
(6
®
~
®

wmeH.-n.—xN
®

0o N o0 O A OWN =

Paths and Connectivity
Def. A path in an undirected graph G = (V, E) is a sequence P of nodes
Vi, Vo, .., Vi1, Vi With the property that each consecutive pair v;, vi,; is
joined by an edge in E.
Def. A path is simple if no multi-edges or loops.

Q: What is the maximum number of edges possible in a simple graph?

Def. Anundirected graph is connected if for every pair of nodes u and
v, there is a path between u and v.

oNNo
.
(=

T W © e

1

Cycles

Def. A cycleis apath vy, v, ..., Vi1, Vi in which v; = v, k> 2, and the
first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

12

Trees

Def. Anundirected graph is a tree if it is connected and does not
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.

. G is connected.

. G does not contain a cycle.

. G has n-1 edges. (3)
- Q: How would we prove this 0 0 o
Theorem? o

13

Rooted Trees

Rooted free. Given a tree T, choose a root node r and orient each edge
away from r.

Importance. Models hierarchical structure.

o o ° @ e ° child of v

a tree the same tree, rooted at 1

14

Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.

gut bacteria
trees
mushrooms
fizh

mammals
birds
dragonflies

beetles

15

Rooted Tree

Program
Files o+ ...

Microsoft Internet & w
Office Explorer

16

3.2 Graph Traversal

Connectivity

s-1 connectivity problem. Given two node s and t, is there a path
between s and t?

s-t shortest path problem. Given two node s and t, what is the length
of the shortest path between s and t?

Applications.
. Google Maps.
. Maze traversal.
. Kevin Bacon number.
. Fewest number of hops in a communication network. OO

S

18

Breadth First Search (BFS)

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

By e
s L — L — ees Lo

BFS algorithm.
o Lo={s}.
. Ly = all neighbors of L,.
. L, = all nodes that do not belong to L, or L, and that have an edge
toanodeinlL,.
. Li,1 = all nodes that do not belong to an earlier layer, and that have
an edge to a node in L,

_
—_—

Theorem. For each i, L; consists of all nodes at distance exactly i
from s. There is a path from s fo t iff t appears in some layer.
Q: How would we prove this?

19

Breadth First Search

Property. Let T be a BFS tree of 6 = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.

(Proof by contradiction)

S

(@)

20

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if
the graph is given by its adjacency representation. (NB: the data
structure/graph representation matters for algorithm efficiency!)

Pf.
. Easy to prove O(n?) running time:
- at most n lists L[i]
- each node occurs once at most on each list; for loop runs <n
times
- when we consider node u, there are < n incident edges (u, v),
and we spend O(1) processing each edge

. Actually runs in O(m + n) time:
- when we consider node u, there are deg(u) incident edges (u, v)

- total time processing edges is X, deg(u) = 2m

T

wee ", each edge (u, v) is counted exactly twice
First Theorem Of Gr‘aph Theory ' in sum: once in deg(u) and once in deg(v)

Z,cv deg(u) = 2m

21

Connected Component

Connected component. Find all nodes reachable from s.

Loy

Connected component containingnode 1={1,2,3,4,5,6,7,8}.

22

Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v¢R
Add v to R

Endwhile "
it's safe to add v

Theorem. Upon termination, R is the connected component containing s.

. BFS = explore in order of distance from s. (use stack, LIFO)
. DFS = explore in a different way: explore until reaching dead-end,
then backtrack. (use queue, FIFO)

23

Breadth-first search

BES 1s a simple strategy in which the root node is expanded first, then
all the successors of the root node are expanded next, then their
SUCCESSOrs, etc.

BES is an instance of the general graph-search algorithm in which the
shallowest unexpanded node is chosen for expansion.

This is achieved by using a FIFO queue for the frontier. Accordingly,
new nodes go to the back of the queue, and old nodes, which are
shallower than the new nodes are expanded first.

INB: The goal test is applied to each node when it 1s generated.

Breadth-first search

Expand shallowest unexpanded node
Implementation:

o frontier is a FIFO queue, 1.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node
Implementation:

o frontier is a FIFO queue, 1.e., new successors go at end

26

NN

Breadth-first search

Expand shallowest unexpanded node
Implementation:

o fringe 1s a FIFO queue, 1.e., new successors go at end

N

Breadth-first search

Expand shallowest unexpanded node
Implementation:

o fringe 1s a FIFO queue, 1.e., new successors go at end

(4]

PO © © ¢

Depth-first search

Expand deepest unexpanded node

Implementation:
. fringe = LIFO queue, i.e., put successors at front

2©.

14 Jan 2004

WA DNWDOERR

5000 v o 0”mas —— !

Depth-first search

Expand deepest unexpanded node

Implementation:
. fringe = LIFO queue, i.e., put successors at front

O

14 Jan 2004

WA DNWEAERR

5000 v o 0”mas —— !

Depth-first search

Expand deepest unexpanded node

Implementation:
. fringe = LIFO queue, i.e., put successors at front

O

14 Jan 2004

WA DNWDNKER

5000 v o 0”mas —— !

Depth-first search

Expand deepest unexpanded node

Implementation:
. fringe = LIFO queue, i.e., put successors at front

O

14 Jan 2004

WA DNWWKER

5000 v o 0”mas —— !

Depth-first search

Expand deepest unexpanded node

Implementation:
. fringe = LIFO queue, i.e., put successors at front

O

14 Jan 2004

WA DNWBER

>0 T v o0Was T/ — !

Depth-first search

Expand deepest unexpanded node

Implementation:
. fringe = LIFO queue, i.e., put successors at front

O

14 Jan 2004

WA DNWOUG &R

>0 T v o0Was T/ — !

Depth-first search

Expand deepest unexpanded node

Implementation:
. fringe = LIFO queue, i.e., put successors at front

O

14 Jan 2004

WA DNWOO KR

>0 T v o0Was T/ — !

Depth-first search

Expand deepest unexpanded node

Implementation:
. fringe = LIFO queue, i.e., put successors at front

O

14 Jan 2004

WA DNWKAEAR

>0 T v o0Was T/ — !

Depth-first search

Expand deepest unexpanded node

Implementation:
. fringe = LIFO queue, i.e., put successors at front

O

14 Jan 2004

WA DNWOREAR

>0 T v o0Was T/ — !

Depth-first search

Expand deepest unexpanded node

Implementation:
. fringe = LIFO queue, i.e., put successors at front

O

14 Jan 2004

WA DNWUOLERR

>0 T v o0Was T/ — !

Depth-first search

Expand deepest unexpanded node

Implementation:
. fringe = LIFO queue, i.e., put successors at front

O

14 Jan 2004

WA DNWDOOB

>0 T v o0Was T/ — !

Depth-first search

Expand deepest unexpanded node

Implementation:
. fringe = LIFO queue, i.e., put successors at front

O

14 Jan 2004

3.4 Testing Bipartiteness

Bipartite Graphs

Def. Anundirected graph G = (V, E) is bipartite if the nodes can be
colored red or blue such that every edge has one red and one blue end.

Applications.

. Stable marriage: men = red, women = blue.
. Scheduling: machines = red, jobs = blue.

a bipartite graph

42

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?
. Many graph problems become:
- easier if the underlying graph is bipartite (matching)
- tractable if the underlying graph is bipartite (independent set)
. Before attempting to design an algorithm, we need to understand
structure of bipartite graphs.

a bipartite graph 6 another drawing of G

43

A Structural Obstruction to Bipartiteness

Lemma. If agraph G is bipartite, it cannot contain an odd length cycle.
Pf. Not possible to 2-color the odd cycle, let alone 6.

(Max number of color classes for a proper coloring of a graph is called
the chromatic number of the graph).

bipartite not bipartite
(2-colorable) (not 2-colorable)

44

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

«— b5-cycle C

bipartite not bipartite
(2-colorable) (not 2-colorable)

45

A Structural Obstruction to Bipartiteness

In fact, the previous condition is even stronger than previously stated.

A graph G is bipartite iff it cannot contain an odd length cycle.

Pf. We already showed that if G is bipartite, then it cannot contain an
odd cycle.

Q: How do we show the converse?

46

A Structural Obstruction to Bipartiteness

In fact, the previous condition is even stronger than previously stated.

A graph G is bipartite iff it cannot contain an odd length cycle.

Pf. We already showed that if G is bipartite, then it cannot contain an
odd cycle.

Q: How do we show the converse?

Q Let X={v e V(H): filv)iseven} and Y={v € V(H): f(v)is odd}

O An edge v,v’ within X (or Y) would create a closed odd walk
using a shortest u, v-path, the edge v, v’ within X (or Y) and

the reverse of a shortest u, v’-path.

2
U@ fg A closed odd walk using
\é\v 1) ashortestu, v-path,
2) theedgeyv, v'within X(or ¥), and
3) thereverse ofa shortestu, v’-path.

47

Bipartite Graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

~ O O O
<Z—”/;i>\<2)
Ly L, Ls L L, L,
Case (i) Case (ii)

48

Bipartite Graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (i)
. Suppose no edge joins Two nodes in same layer.

. By previous lemma, this implies all edges join nodes in adjacent
layers.

. Bipartition: red = nodes on odd levels, blue = nodes on even levels.

49

Bipartite Graphs

Lemma. Let G be a connected graph, and let Ly, ..., L, be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (ii)
. Suppose (x, y) is an edge with x, y in same level L;.
. Let z = lca(x, y) = lowest common ancestor.
. Let L, be level containing z.
. Consider cycle that takes edge from x foy,
then path fromy to z, then path from z to x.
» Itslengthis 1 + (j-i) + (j-i), which is odd. =

(x,y) path from path from
y to z Zto x

» In Summary: Using BFS yields O(m+n) algorithm to check for
Bipartiteness.

3.5 Connectivity in Directed Graphs

Directed Graphs

Directed graph. 6 = (V, E)
. Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.
. Directedness of graph is crucial.
. Modern web search engines exploit hyperlink structure to rank web
pages by importance.

52

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is
the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s,
either directly or indirectly.

53

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v
and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually
reachable. (note that if the "underlying” graph is connected will call the
graph merely "connected"”).

Lemma. Let s be any node. G is strongly connected iff every node is
reachable from s, and s is reachable from every node.

Pf. = Follows from definition.

Pf. < Path from u to v: concatenate u-s path with s-v path.
Path from v to u: concatenate v-s path wi'rh\s-u path.

e

ok if paths overlap

54

Theorem. Can determine if G is strongly connected in O(m + n) time.
Pf.

[u}

[u}

Strong Connectivity: Algorithm

Pick any node s.

Run BFS from s in 6. reverse orientation of every edge in G

Run BFS from s in G,

Return true iff all nodes reached in both BFS executions.
Correctness follows immediately from previous lemma. =

N\ N\

strongly connected not strongly connected

55

3.6 DAGs and Topological Ordering

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (v, v;) means v; must precede v;.

Def. A topological ordering of a directed graph 6 = (V, E) is an
ordering of its nodes as vy, v,, ..., v, So that for every edge (v, vJ-) we
have i < j.

a DAG a topological ordering

57

Precedence Constraints

Precedence constraints. Edge (v;, v;) means task v; must occur before v

j.
Applications.
. Course prerequisite graph: course v; must be taken before v;.
. Compilation: module v; must be compiled before v;. Pipeline of
computing jobs: output of job v; heeded to determine input of job v;.

- Markov Chains.

58

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

[u}

Suppose that G has a topological order vy, ..., v, and that G also has a
directed cycle C. Let's see what happens.

Let v, be the lowest-indexed node in C, and let v; be the node just
before v;; thus (v, v;) is an edge.

By our choice of i, we havei < j.

On the other hand, since (vj, v;)isanedge and vy, .., v, is a
topological order, we must have j < i, a contradiction.

the directed cycle C

@Oé—{g ¢ %O@

the supposed topological order: vy, .

59

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.
Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

60

Directed Acyclic Graphs

Lemma. If GisaDAG, then G has a hode with no incoming edges.

Pf. (by contradiction)

[u}

Suppose that G is a DAG and every node has at least one incoming
edge. Let's see what happens.

Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to u.
Then, since u has at least one incoming edge (X, u), we can walk
backward to x.

Repeat until we visit a node, say w, twice.

Let C denote the sequence of nodes encountered between
successive visits tow. Cis a cycle.

61

Directed Acyclic Graphs

Lemma. If Gis a DAG, then G has a topological ordering.

Pf. (by induction on n)

[u}

[u}

u}

Base case: trueif n=1.

Given DAG on n > 1 nodes, find a node v with no incoming edges.

G - {v}isaDAG, since deleting v cannot create cycles.

By inductive hypothesis, G - { v } has a topological ordering.

Place v first in topological ordering; then append nodes of 6 - { v }
in topological order. This is valid since v has no incoming edges. =

To compute a topological ordering of G:

Find a node v with no incoming edges and order it first
Delete v from G

Recursively compute a topological ordering of G—{v}

and append this order after v

62

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.

. Maintain the following information:
- count [w] = remaining number of incoming edges
- S = set of remaining nodes with no incoming edges

. Initialization: O(m + n) via single scan through graph.

. Update: to delete v
- remove v from S
- decrement count [w] for all edges from v fow, andaddw to S if ¢

count [w] hits O

- this is O(1) per edge

63

Topological Ordering Algorithm

: Example

Topological order:

64

Topological Ordering Algorithm

: Example

Topological order: v,

65

Topological Ordering Algorithm: Example

Topological order: vy, v,

66

Topological Ordering Algorithm: Example

Topological order: vy, v,, v5

67

Topological Ordering Algorithm: Example

Topological order: vy, v,, v3, V4

68

Topological Ordering Algorithm: Example

Topological order: vy, v,, V3, V4, Vs

69

Topological Ordering Algorithm: Example

Topological order: vy, v,, v3, V4, V5, V¢

70

Topological Ordering Algorithm: Example

Topological order: vy, v,, v3, V4, V5, V¢, V7.

71

Example: HW #3.1

Figure 3.10 How many topo-
logical orderings does this
graph have?

72

Example: HW #3.1

Figure 3.10 How many topo-
logical orderings does this
graph have?

Consider the fact that a topological ordering must start with a
and end with f. Why?

73

Example: HW #3.1

Figure 3.10 How many topo-
logical orderings does this
graph have?

So, we have: a f

What can go in the middle?

74

Example: HW #3.1

Figure 3.10 How many topo-
logical orderings does this
graph have?

So, we have: a f

What can go in the middle? Note that b must precede c and d
must precede e. Why?

75

Example: HW #3.1

Figure 3.10 How many topo-
logical orderings does this
graph have?

So, we have (2) cases:

ab f
And
ad f

How many valid orderings exist for each case?

76

Example: HW #3.1

Figure 3.10 How many topo-
logical orderings does this

So, we have (2) cases: graph have?

ab f
And
ad f

How many valid orderings exist for each case?

Three. Why?

77

Example: HW #3.1

Figure 3.10 How many topo-
logical orderings does this
graph have?

Final answer: 6 topological orderings exist.

78

Example: HW #3.2

Q: (Cycle Detection) Give an O(m+n) algorithm to detect whether
a given undirected graph contains a cycle.

Where should we start?

79

Example: HW #3.2

Q: (Cycle Detection) Give an O(m+n) algorithm to detect whether
a given undirected graph contains a cycle.

Where should we start?

Start with BFS from any node, say, s in G. This process produces
a tree (specifically: a tfree rooted at s).

If G=T then we return false. Why?

80

Example: HW #3.2

Q: (Cycle Detection) Give an O(m+n) algorithm to detect whether
a given undirected graph contains a cycle.

Where should we start?

Start with BFS from any node, say, s in G. This process produces
a tree (specifically: a tfree rooted at s).

If G=T then we return false. Why?

Otherwise, we locate an edge in G that is not in T. How would this
step be implemented efficiently?

81

Example: HW #3.2

Q: (Cycle Detection) Give an O(m+n) algorithm to detect whether
a given undirected graph contains a cycle.

Where should we start?

Start with BFS from any node, say, s in G. This process produces
a tree (specifically: a tfree rooted at s).

If G=T then we return false. Why?

Otherwise, we locate an edge in G that is not in T. How would this
step be implemented efficiently?

Adding this edge to T produces a cycle (why?), and thus we return
true in this case.

82

Example: HW #3.5

Q: A binary free is a rooted tree in which each node has at most
two children.

Show by induction that in any binary tree, the humber of nodes with
two children is exactly one less than the number of leaves.

83

Example: HW #3.5

Q: A binary tree is a rooted free in which each node has at most
two children.

Show by induction that in any binary tree, the number of nodes with
two children is exactly one less than the number of leaves.

First, convince yourself that this seems intuitively correct.

84

Example: HW #3.5

Q: A binary tree is a rooted tree in which each node has at most
two children.

Show by induction that in any binary tree, the number of nodes with
two children is exactly one less than the number of leaves.

Pf. Base case: n=1 (trivial).

Inductive Hypothesis: Suppose that n, cpidren(T)=Nieaves(T)-1 for all
trees with n=k nodes.

Consider a tree T with n=k+1 nodes.

Let v be a leaf in T (quaranteed to exist - why?)

85

Example: HW #3.5

Q: A binary tree is a rooted tree in which each node has at most
two children.

Show by induction that in any binary tree, the number of nodes with
two children is exactly one less than the number of leaves.

Pf. Base case: n=1 (trivial).

Inductive Hypothesis: Suppose that n, cpidren(T)=Nieaves(T)-1 for all
trees with n=k nodes.

Consider a tree T with n=k+1 nodes.

Let v be a leaf in T denote u as the parent of v. Call T* the tree:
T-v.

86

Example: HW #3.5

Q: A binary free is a rooted tree in which each node has at most
two children.

Show by induction that in any binary tree, the number of nodes
with two children is exactly one less than the number of leaves.

Pf. Base case: n=1 (trivial).

Inductive Hypothesis: Suppose that n, cpidren(T)=Nieaves(T)-1 for all
trees with n=k nodes.

Consider a tree T with n=k+1 nodes.

Let v be a leaf in T denote u as the parent of v. Call T* the tree:
T-v.

Case 1: If node u had no other children, then u is now a leaf in T*,
Cmd nleaves(T*) - nleaves(T): Cmd n2_children(T*): n2_chi|dren(T)°

By the inductive hypothesis, n, hidgren(T)=Nieaves(T)-1, as was to be
shown.

Now you finish the proof by providing case 2. 87

