
1

Chapter 3

Graphs

CS 350 Winter 2018

3.0 Outline

(i) Graphs

(ii) BFS & DFS

(iii) Connectivity and Graph Traversals

(iv) Testing Bipartiteness

(v) DAGS

3.1 Basic Definitions and Applications

4

Undirected Graphs

Undirected graph. G = (V, E)

V = nodes.

E = edges between pairs of nodes.

Captures pairwise relationship between objects.

Graph size parameters: n = |V|, m = |E|.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }

n = 8

m = 11

5

Some Graph Applications

transportation

Graph

street intersections

Nodes Edges

highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires

6

World Wide Web

Web graph.

Node: web page.

Edge: hyperlink from one page to another.

cnn.com

cnnsi.comnovell.comnetscape.com timewarner.com

hbo.com

sorpranos.com

7

Social Network

Social network graph.

Node: people.

Edge: relationship between two people.

8

Ecological Food Web

Food web graph.

Node = species.

Edge = from prey to predator.

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

9

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge.

Two representations of each edge.

Space proportional to n2.

Checking if (u, v) is an edge takes (1) time.

Identifying all edges takes (n2) time.

1 2 3 4 5 6 7 8

1 0 1 1 0 0 0 0 0

2 1 0 1 1 1 0 0 0

3 1 1 0 0 1 0 1 1

4 0 1 0 1 1 0 0 0

5 0 1 1 1 0 1 0 0

6 0 0 0 0 1 0 0 0

7 0 0 1 0 0 0 0 1

8 0 0 1 0 0 0 1 0

10

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

Two representations of each edge.

Space proportional to m + n.

Checking if (u, v) is an edge takes O(deg(u)) time.

Identifying all edges takes (m + n) time.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7

11

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes

v1, v2, …, vk-1, vk with the property that each consecutive pair vi, vi+1 is

joined by an edge in E.

Def. A path is simple if no multi-edges or loops.

Q: What is the maximum number of edges possible in a simple graph?

Def. An undirected graph is connected if for every pair of nodes u and

v, there is a path between u and v.

12

Cycles

Def. A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the

first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

13

Trees

Def. An undirected graph is a tree if it is connected and does not

contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the

following statements imply the third.

G is connected.

G does not contain a cycle.

G has n-1 edges.

Q: How would we prove this

Theorem?

14

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge

away from r.

Importance. Models hierarchical structure.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r

15

Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.

16

Rooted Tree

3.2 Graph Traversal

18

Connectivity

s-t connectivity problem. Given two node s and t, is there a path

between s and t?

s-t shortest path problem. Given two node s and t, what is the length

of the shortest path between s and t?

Applications.

Google Maps.

Maze traversal.

Kevin Bacon number.

Fewest number of hops in a communication network.

19

Breadth First Search (BFS)

BFS intuition. Explore outward from s in all possible directions, adding

nodes one "layer" at a time.

BFS algorithm.

L0 = { s }.

L1 = all neighbors of L0.

L2 = all nodes that do not belong to L0 or L1, and that have an edge

to a node in L1.

Li+1 = all nodes that do not belong to an earlier layer, and that have

an edge to a node in Li.

Theorem. For each i, Li consists of all nodes at distance exactly i

from s. There is a path from s to t iff t appears in some layer.

Q: How would we prove this?

s L1 L2 L n-1

20

Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of

G. Then the level of x and y differ by at most 1.

(Proof by contradiction)

L0

L1

L2

L3

21

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if

the graph is given by its adjacency representation. (NB: the data

structure/graph representation matters for algorithm efficiency!)

Pf.

Easy to prove O(n2) running time:

– at most n lists L[i]

– each node occurs once at most on each list; for loop runs n

times

– when we consider node u, there are n incident edges (u, v),

and we spend O(1) processing each edge

Actually runs in O(m + n) time:

– when we consider node u, there are deg(u) incident edges (u, v)

– total time processing edges is uV deg(u) = 2m

“First Theorem of Graph Theory”:

uV deg(u) = 2m

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

22

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.

23

Connected Component

Connected component. Find all nodes reachable from s.

Theorem. Upon termination, R is the connected component containing s.

BFS = explore in order of distance from s. (use stack, LIFO)

DFS = explore in a different way: explore until reaching dead-end,

then backtrack. (use queue, FIFO)

s

u v

R

it's safe to add v

Breadth-first search

BFS is a simple strategy in which the root node is expanded first, then
all the successors of the root node are expanded next, then their
successors, etc.

BFS is an instance of the general graph-search algorithm in which the
shallowest unexpanded node is chosen for expansion.

This is achieved by using a FIFO queue for the frontier. Accordingly,
new nodes go to the back of the queue, and old nodes, which are
shallower than the new nodes are expanded first.
NB: The goal test is applied to each node when it is generated.

Breadth-first search

Expand shallowest unexpanded node

Implementation:

frontier is a FIFO queue, i.e., new successors go at end

26

Breadth-first search

Expand shallowest unexpanded node

Implementation:

frontier is a FIFO queue, i.e., new successors go at end

2
7 Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

2
8 Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

14 Jan 2004

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

14 Jan 2004

C
S
3
2
4
3
-
B
l
i
n
d
S
e
a
r
c
h

3
0 Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

14 Jan 2004

C
S
3
2
4
3
-
B
l
i
n
d
S
e
a
r
c
h

3
1 Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

14 Jan 2004

C
S
3
2
4
3
-
B
l
i
n
d
S
e
a
r
c
h

3
2 Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

14 Jan 2004

C
S
3
2
4
3
-
B
l
i
n
d
S
e
a
r
c
h

3
3 Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

14 Jan 2004

C
S
3
2
4
3
-
B
l
i
n
d
S
e
a
r
c
h

3
4 Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

14 Jan 2004

C
S
3
2
4
3
-
B
l
i
n
d
S
e
a
r
c
h

3
5 Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

14 Jan 2004

C
S
3
2
4
3
-
B
l
i
n
d
S
e
a
r
c
h

3
6 Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

14 Jan 2004

C
S
3
2
4
3
-
B
l
i
n
d
S
e
a
r
c
h

3
7 Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

14 Jan 2004

C
S
3
2
4
3
-
B
l
i
n
d
S
e
a
r
c
h

3
8 Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

14 Jan 2004

C
S
3
2
4
3
-
B
l
i
n
d
S
e
a
r
c
h

3
9 Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

14 Jan 2004

C
S
3
2
4
3
-
B
l
i
n
d
S
e
a
r
c
h

4
0 Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

3.4 Testing Bipartiteness

42

Bipartite Graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be

colored red or blue such that every edge has one red and one blue end.

Applications.

Stable marriage: men = red, women = blue.

Scheduling: machines = red, jobs = blue.

a bipartite graph

43

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?

Many graph problems become:

– easier if the underlying graph is bipartite (matching)

– tractable if the underlying graph is bipartite (independent set)

Before attempting to design an algorithm, we need to understand

structure of bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G

44

A Structural Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

(Max number of color classes for a proper coloring of a graph is called

the chromatic number of the graph).

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

45

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

46

A Structural Obstruction to Bipartiteness

In fact, the previous condition is even stronger than previously stated.

A graph G is bipartite iff it cannot contain an odd length cycle.

Pf. We already showed that if G is bipartite, then it cannot contain an

odd cycle.

Q: How do we show the converse?

47

A Structural Obstruction to Bipartiteness

In fact, the previous condition is even stronger than previously stated.

A graph G is bipartite iff it cannot contain an odd length cycle.

Pf. We already showed that if G is bipartite, then it cannot contain an

odd cycle.

Q: How do we show the converse?

48

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers

produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an

odd-length cycle (and hence is not bipartite).

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

49

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers

produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an

odd-length cycle (and hence is not bipartite).

Pf. (i)

Suppose no edge joins two nodes in same layer.

By previous lemma, this implies all edges join nodes in adjacent

layers.

Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Case (i)

L1 L2 L3

50

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers

produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an

odd-length cycle (and hence is not bipartite).

Pf. (ii)

Suppose (x, y) is an edge with x, y in same level Lj.

Let z = lca(x, y) = lowest common ancestor.

Let Li be level containing z.

Consider cycle that takes edge from x to y,

then path from y to z, then path from z to x.

Its length is 1 + (j-i) + (j-i), which is odd. ▪

In Summary: Using BFS yields O(m+n) algorithm to check for

Bipartiteness.

z = lca(x, y)

(x, y) path from
y to z

path from
z to x

3.5 Connectivity in Directed Graphs

52

Directed Graphs

Directed graph. G = (V, E)

Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.

Directedness of graph is crucial.

Modern web search engines exploit hyperlink structure to rank web

pages by importance.

53

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is

the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s,

either directly or indirectly.

54

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v

and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually

reachable. (note that if the “underlying” graph is connected will call the

graph merely “connected”).

Lemma. Let s be any node. G is strongly connected iff every node is

reachable from s, and s is reachable from every node.

Pf. Follows from definition.

Pf. Path from u to v: concatenate u-s path with s-v path.

Path from v to u: concatenate v-s path with s-u path. ▪

s

v

u

ok if paths overlap

55

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.

Pf.

Pick any node s.

Run BFS from s in G.

Run BFS from s in Grev.

Return true iff all nodes reached in both BFS executions.

Correctness follows immediately from previous lemma. ▪

reverse orientation of every edge in G

strongly connected not strongly connected

3.6 DAGs and Topological Ordering

57

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (vi, vj) means vi must precede vj.

Def. A topological ordering of a directed graph G = (V, E) is an

ordering of its nodes as v1, v2, …, vn so that for every edge (vi, vj) we

have i < j.

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

58

Precedence Constraints

Precedence constraints. Edge (vi, vj) means task vi must occur before vj.

Applications.

Course prerequisite graph: course vi must be taken before vj.

Compilation: module vi must be compiled before vj. Pipeline of

computing jobs: output of job vi needed to determine input of job vj.

Markov Chains.

59

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

Suppose that G has a topological order v1, …, vn and that G also has a

directed cycle C. Let's see what happens.

Let vi be the lowest-indexed node in C, and let vj be the node just

before vi; thus (vj, vi) is an edge.

By our choice of i, we have i < j.

On the other hand, since (vj, vi) is an edge and v1, …, vn is a

topological order, we must have j < i, a contradiction. ▪

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

60

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

61

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

Suppose that G is a DAG and every node has at least one incoming

edge. Let's see what happens.

Pick any node v, and begin following edges backward from v. Since v

has at least one incoming edge (u, v) we can walk backward to u.

Then, since u has at least one incoming edge (x, u), we can walk

backward to x.

Repeat until we visit a node, say w, twice.

Let C denote the sequence of nodes encountered between

successive visits to w. C is a cycle. ▪

w x u v

62

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)

Base case: true if n = 1.

Given DAG on n > 1 nodes, find a node v with no incoming edges.

G - { v } is a DAG, since deleting v cannot create cycles.

By inductive hypothesis, G - { v } has a topological ordering.

Place v first in topological ordering; then append nodes of G - { v }

in topological order. This is valid since v has no incoming edges. ▪

DAG

v

63

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.

Maintain the following information:

– count[w] = remaining number of incoming edges

– S = set of remaining nodes with no incoming edges

Initialization: O(m + n) via single scan through graph.

Update: to delete v

– remove v from S

– decrement count[w] for all edges from v to w, and add w to S if c

count[w] hits 0

– this is O(1) per edge ▪

64

v1

Topological Ordering Algorithm: Example

Topological order:

v2 v3

v6 v5 v4

v7 v1

65

v2

Topological Ordering Algorithm: Example

Topological order: v1

v2 v3

v6 v5 v4

v7

66

v3

Topological Ordering Algorithm: Example

Topological order: v1, v2

v3

v6 v5 v4

v7

67

v4

Topological Ordering Algorithm: Example

Topological order: v1, v2, v3

v6 v5 v4

v7

68

v5

Topological Ordering Algorithm: Example

Topological order: v1, v2, v3, v4

v6 v5

v7

69

v6

Topological Ordering Algorithm: Example

Topological order: v1, v2, v3, v4, v5

v6

v7

70

v7

Topological Ordering Algorithm: Example

Topological order: v1, v2, v3, v4, v5, v6

v7

71

Topological Ordering Algorithm: Example

Topological order: v1, v2, v3, v4, v5, v6, v7.

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

72

Example: HW #3.1

73

Example: HW #3.1

Consider the fact that a topological ordering must start with a
and end with f. Why?

74

Example: HW #3.1

So, we have: a __ __ __ __ f

What can go in the middle?

75

Example: HW #3.1

So, we have: a __ __ __ __ f

What can go in the middle? Note that b must precede c and d
must precede e. Why?

76

Example: HW #3.1

So, we have (2) cases:

a b __ __ __ f

And

a d __ __ __ f

How many valid orderings exist for each case?

77

Example: HW #3.1

So, we have (2) cases:

a b __ __ __ f

And

a d __ __ __ f

How many valid orderings exist for each case?

Three. Why?

78

Example: HW #3.1

Final answer: 6 topological orderings exist.

79

Example: HW #3.2

Q: (Cycle Detection) Give an O(m+n) algorithm to detect whether
a given undirected graph contains a cycle.

Where should we start?

80

Example: HW #3.2

Q: (Cycle Detection) Give an O(m+n) algorithm to detect whether
a given undirected graph contains a cycle.

Where should we start?

Start with BFS from any node, say, s in G. This process produces
a tree (specifically: a tree rooted at s).

If G=T then we return false. Why?

81

Example: HW #3.2

Q: (Cycle Detection) Give an O(m+n) algorithm to detect whether
a given undirected graph contains a cycle.

Where should we start?

Start with BFS from any node, say, s in G. This process produces
a tree (specifically: a tree rooted at s).

If G=T then we return false. Why?

Otherwise, we locate an edge in G that is not in T. How would this
step be implemented efficiently?

82

Example: HW #3.2

Q: (Cycle Detection) Give an O(m+n) algorithm to detect whether
a given undirected graph contains a cycle.

Where should we start?

Start with BFS from any node, say, s in G. This process produces
a tree (specifically: a tree rooted at s).

If G=T then we return false. Why?

Otherwise, we locate an edge in G that is not in T. How would this
step be implemented efficiently?

Adding this edge to T produces a cycle (why?), and thus we return
true in this case.

83

Example: HW #3.5

Q: A binary tree is a rooted tree in which each node has at most
two children.

Show by induction that in any binary tree, the number of nodes with
two children is exactly one less than the number of leaves.

84

Example: HW #3.5

Q: A binary tree is a rooted tree in which each node has at most
two children.

Show by induction that in any binary tree, the number of nodes with
two children is exactly one less than the number of leaves.

First, convince yourself that this seems intuitively correct.

85

Example: HW #3.5

Q: A binary tree is a rooted tree in which each node has at most
two children.

Show by induction that in any binary tree, the number of nodes with
two children is exactly one less than the number of leaves.

Pf. Base case: n=1 (trivial).

Inductive Hypothesis: Suppose that n2_children(T)=nleaves(T)-1 for all
trees with n=k nodes.

Consider a tree T with n=k+1 nodes.

Let v be a leaf in T (guaranteed to exist – why?)

86

Example: HW #3.5

Q: A binary tree is a rooted tree in which each node has at most
two children.

Show by induction that in any binary tree, the number of nodes with
two children is exactly one less than the number of leaves.

Pf. Base case: n=1 (trivial).

Inductive Hypothesis: Suppose that n2_children(T)=nleaves(T)-1 for all
trees with n=k nodes.

Consider a tree T with n=k+1 nodes.

Let v be a leaf in T denote u as the parent of v. Call T* the tree:
T-v.

87

Example: HW #3.5
Q: A binary tree is a rooted tree in which each node has at most
two children.

Show by induction that in any binary tree, the number of nodes
with two children is exactly one less than the number of leaves.

Pf. Base case: n=1 (trivial).

Inductive Hypothesis: Suppose that n2_children(T)=nleaves(T)-1 for all
trees with n=k nodes.

Consider a tree T with n=k+1 nodes.

Let v be a leaf in T denote u as the parent of v. Call T* the tree:
T-v.

Case 1: If node u had no other children, then u is now a leaf in T*,
and nleaves(T*) = nleaves(T), and n2_children(T*)= n2_children(T).

By the inductive hypothesis, n2_children(T)=nleaves(T)-1, as was to be
shown.

Now you finish the proof by providing case 2.

