A.I.: Informed Search Algorithms

Chapter III: Part Deux
Outline

• Best-first search
• Greedy best-first search
• A* search
• Heuristics
Overview

• **Informed Search**: uses problem-specific knowledge.

• General approach: **best-first search**; an instance of TREE-SEARCH (or GRAPH-SEARCH) – where a search strategy is defined by picking the order of node expansion.

• With best-first, node is selected for expansion based on **evaluation function** $f(n)$.

• Evaluation function is a **cost estimate**; expand lowest cost node first (same as uniform-cost search but we replace g with f).
Overview (cont’d)

• The choice of f determines the search strategy (one can show that best-first tree search includes DFS as a special case).

• Often, for best-first algorithms, f is defined in terms of a heuristic function, $h(n)$.

\[
h(n) = \text{estimated cost of the cheapest path from the state at node } n \text{ to a goal state. (for goal state: } h(n)=0)\]

• Heuristic functions are the most common form in which additional knowledge of the problem is passed to the search algorithm.
• Best-First Search algorithms constitute a large family of algorithms, with different evaluation functions.
 – Each has a heuristic function \(h(n) \)

• Example: in route planning the estimate of the cost of the cheapest path might be the straight line distance between two cities.

Recall:
• \(g(n) = \) cost from the initial state to the current state \(n \).
• \(h(n) = \) estimated cost of the cheapest path from node \(n \) to a goal node.
• \(f(n) = \) evaluation function to select a node for expansion (usually the lowest cost node).
Best-First Search

• Idea: use an evaluation function $f(n)$ for each node
 – $f(n)$ provides an estimate for the total cost.
 \Rightarrow Expand the node n with smallest $f(n)$.

• Implementation:
 Order the nodes in the frontier increasing order of cost.

• Special cases:
 – Greedy best-first search
 – A^* search
Greedy best-first search

- Evaluation function $f(n) = h(n)$ (heuristic), the estimate of cost from n to goal.

- We use the straight-line distance heuristic: $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}.$

- Note that the heuristic values cannot be computed from the problem description itself!

- In addition, we require extrinsic knowledge to understand that h_{SLD} is correlated with the actual road distances, making it a useful heuristic.

- Greedy best-first search expands the node that appears to be closest to goal.
Romania with step costs in km
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Greedy best-first search

- GBFS is **incomplete**!
- Why?
- Graph-Search version is, however, complete in *finite* spaces.
Properties of greedy best-first search

• Complete? **No** – can get stuck in loops, e.g., Iasi \(\rightarrow \) Neamt \(\rightarrow \) Iasi \(\rightarrow \) Neamt \(\rightarrow \)

• Time? \(O(b^m) \), (in worst case) but a good heuristic can give dramatic improvement (\(m \) is max depth of search space).

• Space? \(O(b^m) \) -- keeps all nodes in memory.

• Optimal? **No** (not guaranteed to render lowest cost solution).
A* Search

• Most widely-known form of best-first search.

• It evaluates nodes by combining $g(n)$, the cost to reach the node, and $h(n)$, the cost to get from the node to the goal:

$$f(n) = g(n) + h(n)$$ (estimated cost of cheapest solution through n).

• A reasonable strategy: try node with the lowest $g(n) + h(n)$ value!

• Provided heuristic meets some basic conditions, A* is both complete and optimal.
A* search example

\[f(n) = g(n) + h(n) \]
A* search example
Admissible heuristics

- A heuristic $h(n)$ is **admissible** if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the **true** cost to reach the goal state from n.

- An admissible heuristic **never overestimates** the cost to reach the goal, i.e., it is **optimistic**.

- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)

- **Theorem:** If $h(n)$ is admissible, A^* using TREE-SEARCH is optimal.
Optimality of A* (proof)

• Suppose some suboptimal goal G_2 has been generated and is in the frontier. Let n be an unexpanded node in the frontier such that n is on a shortest path to an optimal goal G.

- $f(G_2) = g(G_2)$ since $h(G_2) = 0$
- $g(G_2) > g(G)$ since G_2 is suboptimal
- $f(G) = g(G)$ since $h(G) = 0$
- $f(G_2) > f(G)$ from above
Optimality of A^* (proof)

- Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

 \[
 f(G_2) > f(G) \quad \text{(from above)}
 \]
 \[
 h(n) \leq h^*(n) \quad \text{(since h is admissible)}
 \]

 \[
 \Rightarrow g(n) + h(n) \leq g(n) + h^*(n)
 \]
 \[
 f(n) \leq g(n) + h^*(n) < f(G) < f(G_2)
 \]

 Hence $f(G_2) > f(n)$, and A^* will never select G_2 for expansion.
Consistent Heuristics

• A heuristic is **consistent** (or **monotonic**) if for every node n, every successor n' of n generated by any action a:

\[h(n) \leq c(n,a,n') + h(n') \]

• If h is **consistent**, we have:

\[
\begin{align*}
 f(n') &= g(n') + h(n') \\
 &= g(n) + c(n,a,n') + h(n') \\
 &\geq g(n) + h(n) \\
 &= f(n)
\end{align*}
\]

i.e., $f(n)$ is **non-decreasing along any path**.

Theorem: If $h(n)$ is consistent, A^* using GRAPH-SEARCH is optimal.
Optimality of A*

- A* expands nodes in order of increasing f value.
- Gradually adds "f-contours" of nodes.
- Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$.
- That is to say, nodes inside a given contour have f-costs less than or equal to contour value.
Properties of A^*

- **Complete:** Yes (unless there are infinitely many nodes with $f \leq f(G)$).
- **Time:** Exponential.
- **Space:** Keeps all nodes in memory, so also exponential.
- **Optimal:** Yes (provided h admissible or consistent).
- **Optimally Efficient:** Yes (no algorithm with the same heuristic is guaranteed to expand fewer nodes).

- **NB:** Every consistent heuristic is also admissible (Pearl).

Q: What about the converse?
Admissible Heuristics

E.g., for the 8-puzzle:

- \(h_1(n) = \) number of misplaced tiles
- \(h_2(n) = \) total Manhattan distance (i.e. 1-norm) (i.e., no. of squares from desired location of each tile)

Q: Why are these admissible heuristics?

- \(h_1(S) = \) ?
- \(h_2(S) = \) ?
Admissible Heuristics

E.g., for the 8-puzzle:

- \(h_1(n) \) = number of misplaced tiles
- \(h_2(n) \) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

- \(h_1(S) = ? \ 8 \)
- \(h_2(S) = ? \ 3+1+2+2+2+3+3+2 = 18 \)
Dominance

- If $h_2(n) \geq h_1(n)$ for all n (both admissible), then h_2 dominates h_1.

- Essentially, domination translates directly into efficiency: “h_2 is better for search.
- A* using h_2 will never expand more nodes than A* using h_1.

- Typical search costs (average number of nodes expanded):

 \begin{align*}
 d=12 \quad &\text{IDS} = 3,644,035 \text{ nodes} \\
 &A^*(h_1) = 227 \text{ nodes} \\
 &A^*(h_2) = 73 \text{ nodes} \\
 d=24 \quad &\text{IDS} = \text{too many nodes} \\
 &A^*(h_1) = 39,135 \text{ nodes} \\
 &A^*(h_2) = 1,641 \text{ nodes} \\
 \end{align*}

(IDS=iterative deepening search)
Memory Bounded Heuristic Search: Recursive BFS (best-first)

• How can we solve the memory problem for A* search?

• Idea: Try something like depth-first search, but let’s not forget everything about the branches we have partially explored.

• We remember the best f-value we have found so far in the branch we are deleting.
Memory Bounded Heuristic Search: Recursive BFS

- RBFS changes its mind very often in practice. This is because $f = g + h$ become more accurate (less optimistic) as we approach the goal. Hence, higher level nodes have smaller f-values and will be explored first.

- Problem: We should keep in memory whatever we can.
Simple Memory-Bounded A*

- This is like A*, but when memory is full we delete the worst node (largest f-value).
- Like RBFS, we remember the best descendent in the branch we delete.
- If there is a tie (equal f-values) we delete the oldest nodes first.
- Simple-MBA* finds the optimal *reachable* solution given the memory constraint (reachable means path from root to goal fits in memory).
- Can also use iterative deepening with A* (IDA*).
- Time can still be exponential.
Relaxed Problems

• A problem with fewer restrictions on the actions is called a relaxed problem.

• The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem. (why?)

• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.

• If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.
Summary

- **Informed search** methods may have access to a **heuristic function** $h(n)$ that estimates the cost of a solution from n.
- The generic **best-first search** algorithm selects a node for expansion according to an **evaluation function**.
- **Greedy best-first search** expands nodes with minimal $h(n)$. It is not optimal, but is often efficient.
- **A* search** expands nodes with minimal $f(n) = g(n) + h(n)$.
- **A* is complete and optimal**, provided that $h(n)$ is admissible (for TREE-SEARCH) or consistent (for GRAPH-SEARCH).
- The space complexity of **A* is still prohibitive**.
- The performance of heuristic search algorithms depends on the quality of the $h(n)$ function.
- One can sometimes construct good heuristics by **relaxing** the problem definition.