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Overview

 Recall our previous discussion of  reflex agents. Such agents cannot operate well 

in environments for which the state to action mapping is too large to store or 

would take too long to learn. 

 Problem-solving agents use atomic representations (see Chapter 2), where 

states of  the world are considered as wholes, with no internal structure visible to 

the problem-solving agent. 

 We consider two general classes of  search: (1) uninformed search algorithms for 

which the algorithm is provided no information about the problem other than its 

definition; (2) informed search, where the algorithm is given some guidance. 
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Overview

 Intelligent agents are supposed to maximize their performance measure; 

achieving this is sometimes simplified if  the agent can adopt a goal and aim to 

satisfy it.

 Goals help organize behavior by limiting objectives. We consider a goal to be a set 

of  world states – exactly those states in which the goal is satisfied. 

 Here we consider environments that are known, observable, discrete and 

deterministic (i.e. each action has exactly one corresponding outcome). 

 The process of looking for a sequence of actions that reaches the goal is called 

search. A search algorithm takes a problem as input and returns a solution in 

the form of  an action sequence. 
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Well-defined problems and solutions

 A problem can be defined formally by (5) components: 

 (1) The initial state from which the agent starts.

 (2) A description of possible actions available to the agent: ACTIONS(s)

 (3) A description of  what each action does, i.e. the transition model, specified by 

a function RESULT (s,a)=a’.

 Together, the initial state, actions and transition model implicitly defined the state 

space of  the problem – the set of  all states reachable from the initial state by any 

sequence of  actions. 

 The state space forms a directed network or graph in which the nodes are states

and the edges between nodes are actions. A path in the state space is a sequence

of states connected by a sequence of actions.
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Well-defined problems and solutions

 (4) The goal test, which determines whether a given state is a goal state. 

Frequently the goal test is intuitive (e.g. check if  we arrived at the destination) –

but note that it is also sometimes specified by an abstract property (e.g. “check 

mate”).

 (5) A path cost function that assigns a numeric cost to each path. The problem-

solving agent chooses a cost function that reflects its own performance measure. 

 Commonly (but not always), the cost of a path is additive in terms of the

individual actions along a path. Denote the step cost to take action ‘a’ in state s, 

arriving in s’ as: c(s,a,s’). 

 A key element of successful problem formulation relates to abstraction – the

process of removing (inessential) details from a problem representation.
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Problem-solving agents
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Example: Romania

 On holiday in Romania; currently in Arad.

 Flight leaves tomorrow from Bucharest



 Formulate goal:

 be in Bucharest



 Formulate problem:

 states: various cities

 actions: drive between cities



 Find solution:

 sequence of  cities, e.g., Arad, Sibiu, Fagaras, Bucharest
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Example: Romania
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Problem types

 Deterministic, fully observable  single-state problem
 Agent knows exactly which state it will be in; solution is a sequence



 Non-observable  sensorless problem (conformant problem)
 Agent may have no idea where it is; solution is a sequence



 Nondeterministic and/or partially observable  contingency 
problem
 percepts provide new information about current state

 often interleave search, execution



 Unknown state space  exploration problem
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Example: vacuum world

 Single-state, start in #5. 

Solution?
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Example: vacuum world

 Single-state, start in #5. 

Solution? [Right, Suck]



 Sensorless, start in 

{1,2,3,4,5,6,7,8} e.g., 

Right goes to {2,4,6,8} 

Solution?
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Example: vacuum world

 Sensorless, start in 

{1,2,3,4,5,6,7,8} e.g., 

Right goes to {2,4,6,8} 

Solution?

[Right,Suck,Left,Suck]

 Contingency

 Nondeterministic: Suck may 

dirty a clean carpet

 Partially observable: location, dirt at current location.

 Percept: [L, Clean], i.e., start in #5 or #7

Solution?
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Example: vacuum world

 Sensorless, start in 

{1,2,3,4,5,6,7,8} e.g., 

Right goes to {2,4,6,8} 

Solution?

[Right,Suck,Left,Suck]



 Contingency

 Nondeterministic: Suck may 

dirty a clean carpet

 Partially observable: location, dirt at current location.

 Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]
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Selecting a state space

 Real world is absurdly complex 
 state space must be abstracted for problem solving

 (Abstract) state = set of  real states

 (Abstract) action = complex combination of  real actions
 e.g., "Arad  Zerind" represents a complex set of  possible routes, 

detours, rest stops, etc. 

 For guaranteed realizability, any real state "in Arad“ must get to 
some real state "in Zerind"



 (Abstract) solution = 
 set of  real paths that are solutions in the real world

 Each abstract action should be "easier" than the original 
problem
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Vacuum world state space graph

 States: integer dirt and robot location.

 Actions: Left, Right, Suck.

 Goal test: no dirt at all locations.

 Path cost: 1 per action.
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Example: The 8-puzzle

 States: Locations of  tiles.  (Q: How large is state space?)

 Actions: Move blank left, right, up, down.

 Goal test: s==goal state.    (given)

 Path cost: 1 per move.

[Note: optimal solution of  n-Puzzle family is NP-hard]
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Example: 8-queens

 States: Any arrangement of  0 to 8 queens on the 

board.

 Actions: Add a queen to any empty square.

 Transition Model: Returns the board with a queen added to the 
specified square. 

 Goal Test: 8 queens on the board, none attacking.

 Q: How many possible sequences? (~1.8x1014)

 Revision to problem: arrange queens with one per column, in the 
leftmost n columns, with no queen attacking another. 

 Actions: Add a queen to any square in leftmost empty column (with 
no attacking) reduction to just 2,057 states!
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Example: robotic assembly

 States: Real-valued coordinates of  robot joint angles parts of  the 
object to be assembled.

 Actions: Continuous motions of  robot joints.

 Goal test: Complete assembly.

 Path cost: Time to execute.

 Other examples: TSP (NP-hard), robot navigation, protein folding 
(unsolved). 
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Searching for Solutions

 Recall that a solution is an actions sequence; accordingly, search 
algorithms work by considering various possible action sequences. 

 The possible action sequences starting at the initial state form a 
search tree with the initial state at the root; the branches are actions 
and the nodes correspond to state in the state space of  the problem. 

 To consider taking various actions, we expand the current state –
thereby generating a new set of states.

 In this way, we add branches from the parent node to children 
nodes. 
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Searching for Solutions

 A node with no children is called a leaf; the set of  all leaf  nodes 
available for expansion at any given point is called the frontier. 

 The process of  expanding nodes on the frontier continues until 
either a solution is found or there are no more states to expand. 

 We consider the general TREE-SEARCH algorithm next. 

 All search algorithms share this basic structure; they vary primarily 
according to how they choose which state to expand next – the so-
called search strategy. 

 In general, a TREE-SEARCH considers all possible paths (including 
infinite ones), whereas a GRAPH-SEARCH avoids consideration of  
redundant paths. 
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Tree search algorithms

 Basic idea:

 Offline, simulated exploration of  state space by generating 

successors of  already-explored states (a.k.a.~expanding states)
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Tree search example
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Tree search example
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Tree search example
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Implementation: general tree search
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Searching for Solutions

 Naturally, if  we allow for redundant paths, then a formerly 
tractable problem can become intractable” “Algorithms that forget 
their history are doomed to repeat it.” 

 To avoid exploring redundant paths we can augment the TREE-
SEARCH algorithm with a data structure called the explored set, 
which remembers every expanded node (we discard nodes in
explored set instead of adding them to the frontier). 
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Infrastructure for search algorithms

 Search algorithms require a data structure to keep track of  the 
search tree that is being constructed. 

 Foe each node n of  the tree, we have a structure with (4) 
components: 

 (1) n.STATE: the state in the state space to which the node
corresponds.

 (2) n.PARENT: the node in the search tree that generated this
node.

 (3) n.ACTION: the action that was applied to the parent to 
generate the node. 

 (4) n.PATH-COST: the cost, traditionally denoted g(n), of  the 
path from the initial state to the node, as indicated by the parent 
pointers. 
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Implementation: states vs. nodes

 A state is a (representation of) a physical configuration.

 A node is a data structure constituting part of  a search tree includes 
state, parent node, action, path cost g(x), depth.

 The Expand function creates new nodes, filling in the various fields 
and using the Successor function of  the problem to create the 
corresponding states.
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Infrastructure for search algorithms

 Now that we have nodes (qua data structures), we need to put them somewhere. 

 We use a queue, with operations: 

EMPTY?(queue): returns true only if  no elements

POP(queue): removes the first element of the queue and returns it.

INSERT(element, queue): inserts an element and returns the resulting queue. 

 Recall that queues are characterized by the order in which the store the inserted 
nodes:

FIFO (first-in, first-out): pops the oldest element of  the queue.

LIFO (last-in, first-out, i.e. a stack) pops the newest element. 

PRIORITY QUEUE: pops element with highest “priority.”
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Search strategies

 A search strategy is defined by picking the order of  node expansion

 Strategies are evaluated along the following dimensions:
 completeness: does it always find a solution when one exists?

 time complexity: number of  nodes generated

 space complexity: maximum number of  nodes in memory

 optimality: does it always find a least-cost solution?

 Time and space complexity are measured in terms of  
 b: maximum branching factor of  the search tree

 d: depth of  the least-cost solution

 m: maximum depth of  the state space (may be ∞)

 The size of  the state space graph (|V|+|E|)
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Search strategies

 In more detail:

 Time and space complexity are always considered with respect to some
measure of the problem difficult (e.g. |V| + |E|).

 In A.I., the state space graph is often represented implicitly by the initial state, 
actions and transition model (i.e. we don’t always store it explicitly).

 Search algorithm complexity is frequently expressed in terms of:

b: branching factor (maximum number of  successors of  any node)

d: depth (of  the shallowest goal node)

m: maximum length of any path in the state space.

 To assess the effectiveness of  a search algorithm, we can consider just the search 
cost, which typically depends on time complexity (and/or memory usage); total 
cost combines search cost and path cost of  the solution. 
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Uninformed search strategies

 Uninformed search strategies use only the information available in 

the problem definition.

 Breadth-first search

 Uniform-cost search

 Depth-first search

 Depth-limited search

 Iterative deepening search
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Breadth-first search

 BFS is a simple strategy in which the root node is expanded first, 

then all the successors of  the root node are expanded next, then 

their successors, etc. 

 BFS is an instance of the general graph-search algorithm in which

the shallowest unexpanded node is chosen for expansion. 

 This is achieved by using a FIFO queue for the frontier. 

Accordingly, new nodes go to the back of the queue, and old

nodes, which are shallower than the new nodes are expanded

first.

 NB: The goal test is applied to each node when it is generated.
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Breadth-first search

 Expand shallowest unexpanded node

 Implementation:

 frontier is a FIFO queue, i.e., new successors go at end
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Breadth-first search

 Expand shallowest unexpanded node

 Implementation:

 frontier is a FIFO queue, i.e., new successors go at end
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Breadth-first search

 Expand shallowest unexpanded node

 Implementation:

 fringe is a FIFO queue, i.e., new successors go at end
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Breadth-first search

 Expand shallowest unexpanded node

 Implementation:

 fringe is a FIFO queue, i.e., new successors go at end
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Properties of  BFS

 Complete? Yes (if  b is finite)

 Time? 1+b+b2+b3+… +bd = O(bd)

 Space? O(bd) (keeps every node in memory)

 Optimal? Yes (if  cost = 1 per step)

 Space is the bigger problem (more than time)
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Uniform-cost search

 Expand least-cost unexpanded node

 Implementation:

 frontier = queue ordered by path cost

 Equivalent to breadth-first if  step costs all equal

 Complete? Yes, if  step cost ≥ ε

 Time? # of  nodes with g ≤ cost of  optimal solution, O(bceiling(C*/ ε))
where C* is the cost of  the optimal solution

 Space? # of  nodes with g ≤ cost of  optimal solution, O(bceiling(C*/ ε))

 Optimal? Yes – nodes expanded in increasing order of  g(n)
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Depth-first search

 DFS always expands the deepest node in the current frontier of  the 

search tree. The search proceeds immediately to the deepest level fo

the search tree, where the nodes have no successors.

 As those nodes are expended, they are dropped from the frontier, so 

then the search “backs up” to the next deepest node that still has

unexplored successors. 

 DFS is an instance of  the general graph-search algorithm which uses 

a LIFO queue. This means that the most recently generated node is 

chosen for expansion. 
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Depth-first search

 Expand deepest unexpanded node

 Implementation:

 frontier = LIFO queue, i.e., put successors at front
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Depth-first search

 Expand deepest unexpanded node

 Implementation:

 fringe = LIFO queue, i.e., put successors at front
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Depth-first search

 Expand deepest unexpanded node

 Implementation:

 frontier = LIFO queue, i.e., put successors at front
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Depth-first search

 Expand deepest unexpanded node

 Implementation:

 frontier = LIFO queue, i.e., put successors at front
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Depth-first search

 Expand deepest unexpanded node

 Implementation:

 frontier = LIFO queue, i.e., put successors at front
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Depth-first search

 Expand deepest unexpanded node

 Implementation:

 frontier = LIFO queue, i.e., put successors at front
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Depth-first search

 Expand deepest unexpanded node

 Implementation:

 frontier = LIFO queue, i.e., put successors at front
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Depth-first search

 Expand deepest unexpanded node

 Implementation:

 frontier = LIFO queue, i.e., put successors at front
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Depth-first search

 Expand deepest unexpanded node

 Implementation:

 frontier = LIFO queue, i.e., put successors at front
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Depth-first search

 Expand deepest unexpanded node

 Implementation:

 frontier = LIFO queue, i.e., put successors at front
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Depth-first search

 Expand deepest unexpanded node

 Implementation:

 frontier = LIFO queue, i.e., put successors at front
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Depth-first search

 Expand deepest unexpanded node

 Implementation:

 frontier = LIFO queue, i.e., put successors at front
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Properties of  depth-first search

 Complete? No: fails in infinite-depth spaces, spaces with 

loops

 Modify to avoid repeated states along path

 complete in finite spaces

 Time? O(bm): terrible if  m is much larger than d

 but if  solutions are dense, may be much faster than breadth-first

 Space? O(bm), i.e., linear space!

 Optimal? No
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Depth-limited search

 The failure of  DFS in infinite state spaces can be alleviated by 

suppling DFS with a pre-determined depth limit l, i.e., nodes at 

depth l have no successors. 
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Iterative deepening search

 Iterative deepening search is a general strategy, often used in 

combination with DFS tress search, that finds the best depth limit. 

 It does this by gradually increasing the limit – first 0, then 1, then

2, and so on – until a goal is found; this will occur when the depth 

limit reaches d, the depth of  the shallowest goal node. 

 Note that iteratively deepening search may seem wasteful because 

states are generated multiple times, but this, in fact, turns out not to 

be too costly (the reason is that most of  the nodes are in the bottom 

level for a constant branching factor). 
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Iterative deepening search

 Number of  nodes generated in a depth-limited search to depth d
with branching factor b: 

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

 Number of  nodes generated in an iterative deepening search to 
depth d with branching factor b: 

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

 For b = 10, d = 5,
 NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

 NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

 Overhead = (123,456 - 111,111)/111,111 = 11%
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Iterative deepening search
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Iterative deepening search l =0
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Iterative deepening search l =1
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Iterative deepening search l =2
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Iterative deepening search l =3
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Properties of  iterative deepening search

 Complete? Yes

 Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

 Space? O(bd)

 Optimal? Yes, if  step cost = 1



64

Bidirectional search

 The main idea with bidirectional search is to run two simultaneous

searches – one forward from the initial state and the other backward 

from the goal – hope that the two searches meet in the middle. 

 Key: bd/2+bd/2 << bd.

 Replace goal test with check to see whether frontiers intersect.

 Time complexity (with BFS in both directions): O(bd/2); space 

complexity: O(bd/2); space requirement is a serious weakness.

 Also, it is not always a simple matter to “search backward” – goal 

state could be abstract.
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Summary of  algorithms
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Repeated states

 Failure to detect repeated states can turn a linear 

problem into an exponential one!
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Graph search
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Summary

 Before an agent can start searching for solutions, a goal must be 

identified and a well-defined problem formulated. 

 Problem formulation usually requires abstracting away real-world 

details to define a state space that can feasibly be explored

 A problem consists of  (5) parts: initial state, actions, transition 

model, goal test function and path cost function. 

 The environment of  the problem is represented by the state space. 

A path through the state space from the initial state to a goal state is 

a solution. 

 TREE-SEARCH considers all possible paths; GRAPH-SEARCH 

avoids consideration of  redundant paths. 
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Summary

 Search algorithms are judged on the basis of completeness, optimality,

time complexity and space complexity. Complexity depends on b, the 

branching factor in the state space and d, the depth of  the shallowest 

solution. 

 Uniformed search methods have access only the problem definition, 

including: 

BFS – expands the shallowest nodes first

Uniform-cost search – expands the node with the lowest path cost, g(n). 

DFS – expands the deepest unexpanded node first (depth-limited search adds 

a depth bound).

Iterative Deepening Search – calls DFS with increasing depth limits until a

goal is found.

Bidirectional Search – can reduce time complexity but not always

applicable.


