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Overview
• Informed Search: uses problem-specific knowledge.

• General approach: best-first search; an instance of  TREE-
SEARCH (or GRAPH-SEARCH) – where a search strategy is 
defined by picking the order of  node expansion. 

• With best-first, node is selected for expansion based on 
evaluation function f(n). 

• Evaluation function is a cost estimate; expand lowest cost node 
first (same as uniform-cost search but we replace g with f). 



Overview (cont’d) 
• The choice of  f determines the search strategy (one can show 

that best-first tree search includes DFS as a special case).

• Often, for best-first algorithms, f  is defined in terms of  a 
heuristic function, h(n). 

h(n) = estimated cost of  the cheapest path from the state at 
node n to a goal state.  (for goal state: h(n)=0)

• Heuristic functions are the most common form in which 
additional knowledge of  the problem is passed to the search 
algorithm. 



Overview (cont’d) 
• Best-First Search algorithms constitute a large family of  

algorithms, with different evaluation functions.

– Each has a heuristic function h(n)

• Example: in route planning the estimate of  the cost of  the 
cheapest path might be the straight line distance between 
two cities.

Recall:

• g(n) = cost from the initial state to the current state n.

• h(n) = estimated cost of  the cheapest path from node n to 
a goal node.

• f(n) = evaluation function to select a node for expansion 
(usually the lowest cost node).



Best-First Search

• Idea: use an evaluation function f(n) for each node

– f(n) provides an estimate for the total cost.

Expand the node n with smallest f(n).

• Implementation:

Order the nodes in the frontier increasing order of  cost.

• Special cases:

– Greedy best-first search

– A* search



Greedy best-first search
• Evaluation function f(n) = h(n) (heuristic), the estimate of  cost 

from n to goal.

• We use the straight-line distance heuristic: hSLD(n) = straight-
line distance from n to Bucharest.

• Note that the heuristic values cannot be computed from the 
problem description itself !

• In addition, we require extrinsic knowledge to understand 
that hSLD is correlated with the actual road distances, making 
it a useful heuristic. 

• Greedy best-first search expands the node that appears to be 
closest to goal.



Romania with step costs in km



Greedy best-first search example



Greedy best-first search example



Greedy best-first search example



Greedy best-first search example



Greedy best-first search

• GBFS is incomplete! 

• Why?

• Graph-Search version is, however, complete in finite spaces.



Properties of  greedy best-first search

• Complete? No – can get stuck in loops, e.g., Iasi 
 Neamt Iasi  Neamt

• Time? O(bm), (in worst case) but a good heuristic 
can give dramatic improvement (m is max depth 
of  search space).

• Space? O(bm) -- keeps all nodes in memory.

• Optimal? No (not guaranteed to render lowest 
cost solution). 



A* Search
• Most widely-known form of  best-first search.

• It evaluates nodes by combining g(n), the cost to reach the 
node, and h(n), the cost to get from the node to the goal:

f(n) = g(n) + h(n) (estimated cost of  cheapest       
solution through n). 

• A reasonable strategy: try node with the lowest g(n) + h(n) 
value! 

• Provided heuristic meets some basic conditions, A* is both 
complete and optimal. 



A* search example

f(n)=g(n)+h(n)



A* search example
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A* search example



A* search example



A* search example



Admissible heuristics
• A heuristic h(n) is admissible if  for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal 

state from n.

• An admissible heuristic never overestimates the cost to 

reach the goal, i.e., it is optimistic.

• Example: hSLD(n) (never overestimates the actual road 

distance)

• Theorem: If  h(n) is admissible, A* using TREE-

SEARCH is optimal.



Optimality of  A* (proof)
• Suppose some suboptimal goal G2 has been generated and is in 

the frontier. Let n be an unexpanded node in the frontier such that 

n is on a shortest path to an optimal goal G.

• f(G2)  = g(G2) since h(G2) = 0 

• g(G2) > g(G) since G2 is suboptimal 

• f(G)   = g(G) since h(G) = 0 

• f(G2)  > f(G) from above 



Optimality of  A* (proof)
• Suppose some suboptimal goal G2 has been generated and is in 

the fringe. Let n be an unexpanded node in the fringe such that n 

is on a shortest path to an optimal goal G.

• f(G2) >  f(G) (from above) 

• h(n) ≤ h*(n) (since h is admissible)

->  g(n) + h(n) ≤ g(n) + h*(n) 

• f(n) ≤ g(n) + h*(n) < f(G) < f(G2)

Hence f(G2) > f(n), and A* will never select G2 for expansion.



Consistent Heuristics
• A heuristic is consistent (or monotonic) if  for every node n, 

every successor n' of  n generated by any action a:

h(n) ≤ c(n,a,n') + h(n')

• If  h is consistent, we have:

f(n') = g(n') + h(n') 

= g(n) + c(n,a,n') + h(n') 

≥ g(n) + h(n) 

= f(n)

i.e., f(n) is non-decreasing along any path.

Theorem: If  h(n) is consistent, A* using GRAPH-SEARCH is 
optimal.



Optimality of  A*

• A* expands nodes in order of  increasing f  value.

• Gradually adds "f-contours" of  nodes. 

• Contour i has all nodes with f=fi, where fi < fi+1. 

• That is to say, nodes inside a given contour have f-costs less 

than or equal to contour value.



Properties of  A*

• Complete: Yes (unless there are infinitely many nodes with 

f  ≤ f(G) ).

• Time: Exponential.

• Space: Keeps all nodes in memory, so also exponential.

• Optimal: Yes (provided h admissible or consistent).

• Optimally Efficient: Yes (no algorithm with the

same heuristic is guaranteed to expand fewer nodes).

• NB: Every consistent heuristic is also admissible (Pearl).

Q: What about the converse? 



Admissible Heuristics
E.g., for the 8-puzzle:

• h1(n) = number of  misplaced tiles

• h2(n) = total Manhattan distance (i.e. 1-norm) 

(i.e., no. of  squares from desired location of  each tile)

Q: Why are these admissible heuristics?

• h1(S) = ? 

• h2(S) = ?



Admissible Heuristics
E.g., for the 8-puzzle:

• h1(n) = number of  misplaced tiles

• h2(n) = total Manhattan distance

(i.e., no. of  squares from desired location of  each tile)

• h1(S) = ? 8

• h2(S) = ? 3+1+2+2+2+3+3+2 = 18 



Dominance
• If  h2(n) ≥ h1(n) for all n (both admissible), then h2 dominates

h1 .

• Essentially, domination translates directly into efficiency: “h2 is 
better for search.

• A* using h2 will never expand more nodes than A* using h1. 

• Typical search costs (average number of  nodes expanded):

d=12 IDS = 3,644,035 nodes  

A*(h1) = 227 nodes 
A*(h2) = 73 nodes 

d=24 IDS = too many nodes
A*(h1) = 39,135 nodes 
A*(h2) = 1,641 nodes 

(IDS=iterative deepening search) 



Memory Bounded Heuristic Search: 

Recursive BFS (best-first)

• How can we solve the memory problem for A* search?

• Idea: Try something like depth-first search, but let’s not forget 

everything about the branches we have partially explored.

• We remember the best f-value we have found so far in the branch we are 

deleting. 



Memory Bounded Heuristic Search: 

Recursive BFS

• RBFS changes its mind very 

often in practice. This is because 

f=g+h become more accurate

(less optimistic) as we approach 

the goal. Hence, higher level nodes

have smaller f-values and

will be explored first.

• Problem: We should keep 

• in memory whatever we can.

Best alternative

over frontier nodes,

which are not children:

i.e. do I want to back up?



Simple Memory-Bounded A*

• This is like A*, but when memory is full we delete the worst 

node (largest f-value).

• Like RBFS, we remember the best descendent in the branch 

we delete.

• If  there is a tie (equal f-values) we delete the oldest nodes first.

• Simple-MBA* finds the optimal reachable solution given the 

memory constraint (reachable means path from root to goal 

fits in memory). 

• Can also use iterative deepening with A* (IDA*).

• Time can still be exponential. 



Relaxed Problems
• A problem with fewer restrictions on the actions is called 

a relaxed problem.

• The cost of  an optimal solution to a relaxed problem is 
an admissible heuristic for the original problem. (why?) 

• If  the rules of  the 8-puzzle are relaxed so that a tile can 
move anywhere, then h1(n) gives the shortest solution.

• If  the rules are relaxed so that a tile can move to any 
adjacent square, then h2(n) gives the shortest solution.



Summary 
• Informed search methods may have access to a heuristic

function h(n) that estimates the cost of a solution from n.

• The generic best-first search algorithm selects a node for 
expansion according to an evaluation function.

• Greedy best-first search expands nodes with minimal h(n). 
It is not optimal, but is often efficient. 

• A* search expands nodes with minimal f(n)=g(n)+h(n).

• A* s complete and optimal, provided that h(n) is admissible 
(for TREE-SEARCH) or consistent (for GRAPH-SEARCH).

• The space complexity of A* is still prohibitive.

• The performance of  heuristic search algorithms depends on 
the quality of  the h(n) function.

• One can sometimes construct good heuristics by relaxing the 
problem definition. 


