A.I.: Informed Search Algorithms

Chapter III: Part Deux

Outline

- Best-first search
- Greedy best-first search
- A^{*} search
- Heuristics

Overview

- Informed Search: uses problem-specific knowledge.
- General approach: **best-first search**; an instance of TREE-SEARCH (or GRAPH-SEARCH) – where a search strategy is defined by picking the order of node expansion.
- With best-first, node is selected for expansion based on evaluation function f(n).
- Evaluation function is a *cost estimate*; expand lowest cost node first (same as uniform-cost search but we replace *g* with *f*).

Overview (cont'd)

- The choice of *f* determines the search strategy (one can show that best-first tree search includes DFS as a special case).
- Often, for best-first algorithms, f is defined in terms of a **heuristic function**, h(n).

h(n) = estimated cost of the cheapest path from the state at node*n*to a*goal state*. (for goal state: <math>h(n)=0)

• Heuristic functions are the most common form in which additional knowledge of the problem is passed to the search algorithm.

Overview (cont'd)

• Best-First Search algorithms constitute a large family of algorithms, with different evaluation functions.

Each has a heuristic function h(n)

• Example: in route planning the estimate of the cost of the cheapest path might be the straight line distance between two cities.

Recall:

- g(n) = cost from the initial state to the current state n.
- *h*(*n*) = estimated cost of the cheapest path from node *n* to a goal node.
- f(n) = evaluation function to select a node for expansion (usually the lowest cost node).

Best-First Search

- Idea: use an evaluation function f(n) for each node
 f(n) provides an estimate for the total cost.
 →Expand the node n with smallest f(n).
- <u>Implementation</u>:

Order the nodes in the frontier increasing order of cost.

- Special cases:
 - Greedy best-first search
 - A^* search

Greedy best-first search

- Evaluation function f(n) = h(n) (*heuristic*), the estimate of cost from *n* to *goal*.
- We use the straight-line distance heuristic: $h_{SLD}(n) = \text{straight-line distance from } n$ to Bucharest.
- Note that the heuristic values cannot be computed from the problem description itself!
- In addition, we require **extrinsic knowledge** to understand that h_{SLD} is correlated with the actual road distances, making it a useful heuristic.
- Greedy best-first search expands the node that appears to be closest to goal.

Romania with step costs in km

O radea	Straight-line distance
71	to Bucharest
Neamt	Arad 366
	Bucharest 0
75 Zerind 151	Craiova 160
	Dobreta 242
Arad D 140	Eforie 161
	92 Fagaras 176
Siblu 99 Fagaras	Giurgiu 77
118	Vaslui Hirsova 151
80 -	/ Iasi 226
Timisoara Rimnicu Viicea	Lugoj 244
111 211	/142 Mehadia 241 Neamt 234
11 Lugoj 97 Pitesti	
70 1	
146 400 85	Hirsova Dimeter Vilen
Mehadia 146 101 85	Urziceni Rimnicu Vikea 193
75 /138 7	86 Sibiu 253
120 Buchares	1
Dobreta	Urziceni 30
Craiova	Eforie Vaslui 199
🖬 Giurgiu	Zerind 374

Greedy best-first search

- GBFS is *incomplete*!
- Why?

• Graph-Search version is, however, complete in *finite* spaces.

Properties of greedy best-first search

- <u>Complete?</u> No can get stuck in loops, e.g., Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow
- <u>Time?</u> O(b^m), (in worst case) but a good heuristic can give dramatic improvement (*m* is max depth of search space).
- <u>Space?</u> O(b^m) -- keeps all nodes in memory.
- <u>Optimal?</u> No (not guaranteed to render lowest cost solution).

A* Search

- Most widely-known form of best-first search.
- It evaluates nodes by combining *g*(*n*), the cost to reach the node, and *h*(*n*), the cost to get from the node to the goal:

f(n) = g(n) + h(n) (estimated cost of cheapest solution <u>through n</u>).

- A reasonable strategy: try node with the lowest g(n) + h(n) value!
- Provided heuristic meets some basic conditions, A* is both complete and optimal.

Admissible heuristics

- A heuristic *h(n)* is admissible if for every node *n*,
 h(n) ≤ *h*^{*}(*n*), where *h*^{*}(*n*) is the true cost to reach the goal state from *n*.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic.
- Example: *b_{SLD}(n)* (never overestimates the actual road distance)
- Theorem: If *h(n)* is admissible, A^{*} using TREE-SEARCH is optimal.

Optimality of A* (proof)

 Suppose some suboptimal goal G₂ has been generated and is in the frontier. Let n be an unexpanded node in the frontier such that n is on a shortest path to an optimal goal G.

- $f(G_2) = g(G_2)$
- $g(G_2) > g(G)$
- f(G) = g(G)
- $f(G_2) > f(G)$

since $h(G_2) = 0$ since G_2 is suboptimal since h(G) = 0from above

Optimality of A* (proof)

 Suppose some suboptimal goal G₂ has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $h(n) \leq h^*(n)$ (since h is admissible)
- -> $g(n) + h(n) \le g(n) + h^*(n)$ • $f(n) \le g(n) + h^*(n) < f(G) < f(G_2)$

Hence $f(G_2) > f(n)$, and A^{*} will never select G₂ for expansion.

Consistent Heuristics

• A heuristic is consistent (or monotonic) if for every node *n*, every successor *n'* of *n* generated by any action *a*:

 $b(n) \leq c(n,a,n') + b(n')$

- If *b* is **consistent**, we have:
- f(n') = g(n') + h(n')= g(n) + c(n,a,n') + h(n') $\geq g(n) + h(n)$ = f(n)

i.e., *f(n)* is non-decreasing along any path.
Theorem: If *h(n)* is consistent, A* using GRAPH-SEARCH is optimal.

Optimality of A*

- A^* expands nodes in order of increasing f value.
- Gradually adds "f-contours" of nodes.
- Contour *i* has all nodes with $f=f_i$, where $f_i < f_{i+1}$.
- That is to say, nodes inside a given contour have f-costs less than or equal to contour value.

Properties of A*

- <u>Complete:</u> Yes (unless there are infinitely many nodes with $f \leq f(G)$).
- <u>Time:</u> Exponential.
- <u>Space:</u> Keeps all nodes in memory, so also exponential.
- Optimal: Yes (provided *h* admissible or consistent).
- <u>Optimally Efficient</u>: Yes (no algorithm with the same heuristic is guaranteed to expand fewer nodes).
- NB: Every consistent heuristic is also admissible (Pearl).
 Q: What about the converse?

Admissible Heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- *h₂(n)* = total Manhattan distance (i.e. 1-norm)
 (i.e., no. of squares from desired location of each tile)
 Q: Why are these admissible heuristics?

Admissible Heuristics

E.g., for the 8-puzzle:

- $h_1(n) =$ number of misplaced tiles
- $h_2(n) =$ total Manhattan distance
- (i.e., no. of squares from desired location of each tile)

Start State

Goal State

- $\underline{h}_{\underline{1}}(\underline{S}) = \underline{?} 8$
- $h_2(S) = ? 3 + 1 + 2 + 2 + 3 + 3 + 2 = 18$

Dominance

- If $h_2(n) \ge h_1(n)$ for all *n* (both admissible), then h_2 dominates h_1 .
- Essentially, domination translates directly into efficiency: " b_2 is better for search.
- A* using h_2 will never expand more nodes than A* using h_1 .
- Typical search costs (average number of nodes expanded):

d=12 IDS = 3,644,035 nodes $A^*(h_1) = 227$ nodes $A^*(h_2) = 73$ nodes *d*=24 IDS = too many nodes $A^*(h_1) = 39,135$ nodes $A^*(h_2) = 1,641$ nodes (IDS=iterative deepening search)

Memory Bounded Heuristic Search: Recursive BFS (best-first)

- How can we solve the memory problem for A* search?
- Idea: Try something like depth-first search, but let's <u>not forget</u> <u>everything about the branches we have partially explored</u>.
- We remember the best f-value we have found so far in the branch we are deleting.

Memory Bounded Heuristic Search: Recursive BFS Best alternative over frontier no

- RBFS changes its mind very often in practice. This is because f=g+h become more accurate (less optimistic) as we approach the goal. Hence, higher level nodes have smaller f-values and will be explored first.
- Problem: We should keep
- in memory whatever we can.

Simple Memory-Bounded A*

- This is like A*, but <u>when memory is full</u> we delete the worst node (largest f-value).
- Like RBFS, we remember the best descendent in the branch we delete.
- If there is a tie (equal f-values) we delete the oldest nodes first.
- Simple-MBA* finds the optimal *reachable* solution given the memory constraint (reachable means path from root to goal fits in memory).
- Can also use **iterative deepening** with A* (IDA*).
- Time can still be exponential.

Relaxed Problems

- A problem with fewer restrictions on the actions is called a relaxed problem.
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem. (why?)
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.

Summary

- Informed search methods may have access to a heuristic function h(n) that estimates the cost of a solution from n.
- The generic **best-first search** algorithm selects a node for expansion according to an **evaluation function**.
- **Greedy best-first search** expands nodes with minimal h(n). It is not optimal, but is often efficient.
- A* search expands nodes with minimal f(n)=g(n)+h(n).
- A* s complete and optimal, provided that h(n) is admissible (for TREE-SEARCH) or consistent (for GRAPH-SEARCH).
- The space complexity of A* is still prohibitive.
- The performance of heuristic search algorithms depends on the quality of the *h(n)* function.
- One can sometimes construct good heuristics by **relaxing** the problem definition.