
Artificial Intelligence:

Playing with Deep

Reinforcement Learning

https://youtu.be/rbsqaJwpu6A

Demis Hassabis (co-founder of DeepMind)

• Reinforcement learning (RL) is centered around the premise of a subject learning from
interacting with its surroundings. More formally, an agent in (or observing) a particular
state at time t: st , performs action at, receiving a reward, rt.

• Importantly, RL is different from supervised learning. Here there is no ‘external supervisor’
or labeled data per se; instead, an agent is tasked with learning from its own experience.

• Accordingly, there exists a fundamental tradeoff in the domain of RL wherein the agent
must choose between exploration and exploitation; in some instances the agent must exploit
what it already knows in order to obtain a reward – but it must, nevertheless, also explore
its environment in order to make better action selections in the future. This basic tension
makes RL both challenging and potent as a paradigm in AI.

• Another key feature of RL is that it explicitly considers the whole problem of a goal-oriented
agent interacting with an uncertain (moreover: stochastic) environment. By contrast,
oftentimes supervised learning problems implicitly focus on the solution of a sub-problem
(without specification of how the solution to the sub-problem is useful, holistically).

Preliminaries: Reinforcement Learning & Q-Learning

Some Elements of RL

• In addition to the agent and environment, there are (4) key ingredients to RL:

• (1) A policy (usually denoted π) is a mapping, . The policy is the decision-making function for the agent.

• (2) A reward function maps each perceived state (or state-action pair) of the environment to its corresponding reward
value: . Most often the reward function is unknown to the agent.

• (3) A value function specifies what is ‘good’ in the long-run for the agent. In this sense, the value of a state is the total
amount of reward an agent can expect to accumulate over the future, starting from that state.

Formally, , with ‘discount’ .

• (4) A model of the environment, consisting of the triple: . Where S is the ‘state space’
(assumed finite), A is the ‘action space’ (normatively,) and δ is the transition function inherent to the
environment.

• Put simply, the goal of the learning task is to learn an optimal policy, π*,
that maximizes Vπ(s) for all states.

Preliminaries: Reinforcement Learning & Q-Learning (cont’d)

𝜋: 𝑆 → 𝐴

𝑟: 𝑆 × 𝐴 → ℝ; 𝑟 𝑠𝑡 , 𝑎𝑡 = 𝑟𝑡

0 ≤ 𝛾 ≤ 1

𝑆, 𝐴, 𝛿: 𝑆 × 𝐴 → 𝑆
|𝐴| ≪ |𝑆|

 1

0

i

t i t

i

V s E r s s

• At first blush, it seems as though the best strategy for learning the optimal policy, π*, might be to directly learn V*(s).

• To do so, we could solve the recurrence relation:

• This equation is known as the Bellman Equation for Vπ. The Bellman equation averages over all the possibilities, weighting each by its
probability of occurring. It states that the value of the start state must equal the (discounted) value of the expected next state, plus the reward
expected along the way.

• When the agent has complete knowledge of its environment, then, in theory, we could directly solve (or even approximate) for the value
function.

• In this fashion, the optimal policy would be defined as follows: , so that action a is chosen in such a
way so as to maximize the sum of the immediate reward and the discounted expected reward for the successor state.

• The problem, however, with this approach is that it requires full knowledge of the transition and reward functions which are unknown to the
agent.

• Alternatively, a common approach for learning an optimal policy in RL with incomplete environmental knowledge is to use temporal-
difference learning (TD), including Q learning.

Preliminaries: Reinforcement Learning & Q-Learning (cont’d II)

 * argmax , * ,
a

s r s a V s a

 1

0
.

... ,i a a

t i t ss ss

i a s transitionprob of taking
probabilityaction a in state s

V s E r s s s a P R V s

• Define the value of the state-action pair as the mapping: ; let .

• Qπ denotes the action-value for policy π, which is to say, the expected return starting from state s, taking action a and
following policy π henceforth.

• One-step Q learning is defined as the following iterative update:

• Here the learned action-value function, Q, directly approximates Q*, the optimal action-value function, independent of
the policy being followed (we say the method is ‘off-policy’).

• Q learning algorithm schematic:

• Famously, Tesauro (early 1990s) developed TD-Gammon using Q-learning (computed with NN equipped with 50
hidden units; trained originally on 300,00 games against itself); by 1995 TD-Gammon was competitive with best
human players in the world.

Preliminaries: (II) Reinforcement Learning & Q-Learning (cont’d III)

:Q S A 1

0

, ,i

t i t t

i

Q s a E r s s a a

 1 1, , max , ,t t t t t t t t
a

learning rate
old value old valueestimate of optimal

future value

Q s a Q s a r Q s a Q s a

• RL theory is rooted in psychological and neuroscientific perspectives on animal behavior, particularly instances in
which an agent optimizes their control of/interaction with an environment.

• Future breakthroughs in ‘strong AI’ will conceivably necessitate the coordination of techniques in reinforcement
learning and high-dimensional, hierarchical sensory processing systems.

• Despite a myriad of impressive results due to RL in the past several decades, to date, most RL applications have been,
nonetheless, limited to domains where features are handcrafted, domains that are full-observed and or regimes with
low-dimensional state spaces.

• Hassabis et al. (Google DeepMind) develop a novel artificial agent, termed a ‘Q-network’, that can learn successful
policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning.

Human-level control through deep reinforcement learning

• The test domain chosen for this novel, state-of-the-art AI agent is, naturally, classic ATARI games!

• Crucially, this problem domain is very challenging because it involves high-dimensional data, an incomplete
environment knowledge-base (plus the environment is non-deterministic), minimal prior information, and
the absence of intuitive/hand-crafted features.

• Moreover, the developers used a single algorithm (with shared parameters) to build an agent with a wide range of
competencies on a varied range of challenging tasks – a central goal of AI.

Human-level control through deep reinforcement learning (cont’d)

• Methodological details

• Preprocessing/data: Atari 2600 frames are of dimension 210x160 pixels, over a palette of 128 ‘vibrant & ultra-realistic’ colors.

• A pooling over colors was performed to obviate ‘flickering’ issues; ‘luminance’ channel (i.e. the brightness/intensity of an image) was rescaled

to 84x84; frames were stacked (by fours) when fed into the algorithm; notation: ϕ(st) denotes this pre-processing applied to the sequence of

images st.

Human-level control through deep reinforcement learning (cont’d II)

• Methodological details

• Model Architecture: The researchers developed a novel agent, a deep Q-network (DQN) which is able to combine RL
with ‘deep’ NNs (that is to say they have many layers).

• Notably, recent research [see Bengio, for instance] has revealed that it is possible for deep NNs to ‘learn’/infer
progressively more abstract representations of data.

• Hassabis et al. use a deep CNN, which employs hierarchical layers of tiled convolutional filters to mimic the effects of
‘receptive fields’.

• The goal of the game-playing agent is to select actions in a fashion that maximizes cumulative feature rewards.
Formally, the deep CNN is used to approximate the optimal action-value, which is the maximum sum of discounted
rewards achievable by a behavior policy :

• RL is known to be numerically unstable when NNs are used to approximate Q functions; this is largely due to (2)
issues: (1) many data sequences of state action pairs are highly correlated; (2) minute updates in Q-value
approximations can significantly impact the behavior of an optimal policy.

• To get around these potential shortcomings, the authors propose: (1) the use of ‘experience replay’ that randomizes
over the data and thus removes many data correlations; and (2) the use of iterative updates to Q-values that are only
periodically updated.

Human-level control through deep reinforcement learning (cont’d III)

 2

1 2* , max ... , ,t t t t tQ s a E r r r s s a a

 |P a s

• Model Architecture (cont’d):

• In previous approaches, researchers applied NNs to approximate Q-values using histories + actions as inputs to the NN. This
scheme presents a significant drawback, however, since a separate forward pass is required to compute the Q-value for each
individual action.

• Instead, in the current method, the outputs correspond to the predicted Q-values of the individual actions for the input state. This
presents a significant computational advantage over previous methods; Q-values are accordingly computed for all possible
actions in a given state with only a single forward pass through the network.

Human-level control through deep reinforcement learning (cont’d IV)

• Model Architecture (cont’d):

• The input to the NN consists of an 84x84x4 image produced by the preprocessing map.

• The first hidden layer convolves 32 filters of size 8x8 with stride 4 and applies a RELU.

• The second hidden layer convolves 64 filters of size 4x4 with stride 2, again followed by a RELU.

• The third hidden layer convolves 64 filters of size 3x3 with stride 1, with RELU.

• The final hidden layer is fully-connected and consists of 512 rectifier units. The output layer is a fully-connected layer with an output for each
action. The number of valid actions varies between 4 and 18 in the games considered.

Human-level control through deep reinforcement learning (cont’d V)

• Training Details:

• Experiments were performed across 49 games; a different network was trained on each game. Nevertheless, the same
architecture, learning algorithm and hyperparameters were used across all games.

• Rewards were based on in-game scoring and were ‘clipped’ in order to reasonably limit the scale of derivatives.

• A gradient-based backprop (with minibatches of size 32) was used to train the CNN.

• The behavior policy during training was ε–greedy with ε annealed linearly from 1.0 to 0.1.

• Evaluation Details:

• Trained agents were evaluated by playing each game 30 times for up to 5 minutes each time, with different random
initial conditions and an ε–greedy policy with ε=.05; a ‘random’ agent was provided as a baseline.

• In addition to the learned agents, scores were also reported for a ‘professional’ human player, under controlled
conditions (e.g. same emulator).

Human-level control through deep reinforcement learning (cont’d VI)

• Algorithm Details:

• Sequences of actions and observations, st = x1,a1,x2,…,at-1,xt, are input to the algorithm, which then learns game strategies
depending upon these sequences.

• This formalism gives rise to a large (but finite) Markov decision process (MDP).

• The optimal action-value function in this setting obeys the aforementioned Bellman equation. Normally, where
possible, one would use the Bellman equation as an iterative update for the action-value approximation.

• In practice for large sequence MDPs, this approach is impractical because it requires estimating the action-value
function for each sequence separately, without any generalization.

• Alternatively, the authors use a NN, viz., a Q-Network (with parameter set θ) for the approximation:
.

• Note that without an efficient state-action value approximation, the number of action pair values is astronomically large
(~1067970)!

• The Q-Network is trained by adjusting the parameters θi at each iteration to reduce the MSE in the Bellman equation,
this yields the loss function:

• Differentiating this loss function wrt the weights yields a gradient used in stochastic gradient descent. Note that state-
action sequences are generated off-policy; the behavior distribution is ε-greedy.

Human-level control through deep reinforcement learning (cont’d VII)

 , ; * ,Q s a Q s a

• Putting it all together…

• The agent selects and executes actions according to an ε–greedy policy based on Q. The Q-function works on fixed
length representations of histories produced by the pre-processing function ϕ.

• The algorithm modifies standard online Q-learning in (2) ways to make it suitable for training a large NN.

• (1) The authors employ a technique called ‘experience replay’, in which the agent’s experiences at each time step
et=(st,at,rt,st+1) are stored in a data set Dt={e1,…,et} pooled over many episodes.

• During the inner loop of the algorithm the authors apply Q-learning updates to samples of experience, (s,a,r,s’)~U(D),
drawn at random from the pool of stored samples. (this improves data efficiency and reduces correlations between
samples and the presence of feedback loops in the in training process).

• By using experience replay, the behavior distribution is averaged over many of its previous states, thereby smoothing
out learning and avoiding oscillations or avoidance in the parameters.

• Note that the uniform sampling gives equal importance to all transitions in the replay memory (a possible
improvement would be to apply a more sophisticated sampling strategy similar to prioritized sweeping).

• (2) To further improve stability, a separate network for generating the targets (yi’s) in the Q-learning update. More
precisely, every C updates the authors cloned the network Q to obtain a target network that is used for generating Q-
learning targets for the following C updates to Q.

Human-level control through deep reinforcement learning (cont’d VIII)

Human-level control through deep reinforcement learning (cont’d IX)

• Visualization of learned value functions on two games.

Human-level control through deep reinforcement learning (cont’d X)

• Results

• The DQN agent performed at a level comparable to that of a professional human games
test across the set of 49 games, achieving more than 75% of the human score on more
than half the games.

• The authors’ method was able to train large NNs using RL with stochastic gradient
descent in a stable manner – illustrated by the temporal evolution of two indices of
learning (the agent’s average score-per-episode and average predicted Q-values).

Human-level control through deep reinforcement learning (cont’d XI)

• 2-D t-SNE embedding of the representations in the last hidden layer assigned by DQN to game states experienced while playing Space
Invaders. Points are colored according to state values predicted by DQN for the corresponding game states (dark red: high V, dark blue:
low V).

Human-level control through deep reinforcement learning (cont’d XII)

• Conclusion:

• The authors demonstrate that a single architecture and single algorithm can successfully learn control policies in a rage of different
environments.

• Input only consisted of scores and pixels, prior knowledge and hand-crafted features were essentially non-existent; no internal knowledge of
the game algorithm itself was utilized; environment model is thus unknown and effectively non-deterministic.

• RL was used end-to-end for training and evaluation.

• Methodology is rooted in neurobiological evidence that reward signals during perceptual learning may influence the characteristics of
representations within primate visual cortex.

• The successful integration of RL with deep network architectures was critically dependent on incorporate of a replay algorithm which
involves the storage and representation of recently experienced transitions.

• This work reveals the potential of marrying cutting-edge ML techniques with biologically-inspired mechanisms to create agents capable of
learning to master a multitude of diverse and challenging tasks.

• Some discussion questions:

• (*) How does this work compare (as an achievement in the domain of AI), with previous landmark results and models, e.g. Deep Blue, Watson,
AlphaGo? While these other models are conventionally considered as solving ‘narrow’ AI tasks, can the same be said for the current paper?

• (*) Does the algorithm’s ability to ‘play’ (some would consider play synonymous with instantiations of creativity) shed any light on AI-based
‘creativity’?

• (*) Can the model be said to ‘learn’ the rules/objectives of the game in a way comparable to our own understanding?

• (*) Do you consider this research a milestone in the development of AI?

• (*) For students familiar with these structures, do you think the use of an RNN/LSTM model might be beneficial for this paradigm?

Human-level control through deep reinforcement learning (cont’d XIII)

