Artiticial Intelligence:
Reinforcement Learning

2!

it

-
.

It’s an exciting time for RL!

Reinforcement Learning: Real World
Deep Reinforcement Learning, Q-Learning Exam p|e

| Agent | it ool * Autonomous cars(self-driving car)
hitp v icle 15 2015 pdf
David Sier, Google Deephind
state 5eward action X
St ! r state 4/ AT action

VTt % : SN S g
' sir | Environment I*‘— Lo
reward n

:0: AlphaGo -

« Google Self-driving cars
+ Tesla Model S - Autopilot
mode

MIT Login/Register ~ Search Q P
Technology)
Review PastLists+ Topics+ TheDownload ~ Magazine Events Morer | Su-scfibe

10 Breakthrough Technologies ThelList+ Years+

By experimenting, computers are
figuring out how to do things that
no programmer could teach them.

Availability: 1to 2 years

by Will Knight

Recall: Unsupervised Learning

- We are given data, x, without labels.

* Goal: Learn underlying structure, patterns in
the data.

- Examples: Clustering (k-means), density
estimation.

Original unclustered data

Learning Models

Learning from Experience Plays a Role in ...

Artificial Intelligence

* Labeled data
* Direct feedback
» Predict outcome/future

Control Theory and
Psychology Operations Research

T Reinforcement
Learning (RL)

/

Neuroscience

Artificial Neural Networks

Learning

Unsupervised Reinforcement
* No labels » Decision process
* No feedback * Reward system

* “Find hidden structure” * Learn series of actions

Reinforcement Learning Overview

« Many Al and ML tasks focus on supervised learning:
— Training examples: (X4, Y1), (X5, Y5),-...

« But consider a different type of learning problem, in which a robot
has to learn to do tasks in a particular environment.

<lc.0%

Reinforcement .
Learning

« Navigate without crashing into anything

« Locate and retrieve an object

« Perform some multi-step manipulation of objects resulting in
a desired configuration (e.g., sorting objects)

Recommended Text on RL:
Sutton/Barto

This type of problem doesn’t typically provide clear
“training examples” with detailed feedback at each step.

Rather, robot gets intermittent “rewards” for doing “the
right thing”, or “punishment” for doing “the wrong thing”.

Goal: To have robot (or other learning system) learn,
based on such intermittent rewards, what action to take
In a given situation.

ldeas for this have been inspired by “reinforcement
learning” experiments in psychology literature.

Applications of reinforcement learning:
A few examples

Learning to play backgammon (and more recently, Go)
Robot arm control (juggling)

Robot Locomotion

Robot navigation

Elevator dispatching

Power systems stability control

Job-shop scheduling

Air traffic control

Cart-Pole Problem

m

o\

OHO)

-

Objective: Balance a pole on top of movable cart.
State: Angle, angular speed, position, horizontal velocity.

Action: Horizontal force applied to cart.
Reward: +1 at each time step if the pole is upright.

https://www.youtube.com/watch?v=_Mmc3i7jZ2c

Robot Locomotion (and pancake flipping!)

Objective: Make the robot move forward successfully.

State: Angle and position of joints.

Action: Torques applied on joints.

Reward: +1 at each time step the robot is upright and moving
forward.

https://www.youtube.com/watch?v=gn4nRCC9TwQ
https://www.youtube.com/watch?v=W_gxLKSsSIE

Board Games (Backgammon, Chess, Go)

iy
i,
Y
N
mv;

mmm

M
) &_
%
M

..“.....)
o
i

N7 777 7777>

N
XV 147207227

WY Y
N et
'

“Hel W Er
-0 W _m-0-
Hel W Ee-
oM W
SN
-l W Eo-

,,,,,,,,,

Action: Next move/placement of next piece.

Reward: +1 for win, O for loss.

Objective: Win the game.
State: Position of pieces.

Atarl Games

..
-.- -

Objective: Werld-demination Obtain high score (make lots of
human friends in the process).

State: Raw pixel inputs.
Action: Game controls, e.g., movement and zap!
Reward: Score differential.

A fatal exce e current

application f

% Press any o T

» fressC(R ALL YOUR BASE 'ouwill
lose any ARE BELONG TO US

Press any key to continue _

Exploitation vs. Exploration

* On-line versus off-line learning

* On-line learning requires the correct balance
between “exploitation” and “exploration”

Exploitation
Exploit current good strategies to obtain known reward

Exploration
Explore new strategies in hope of finding ways to
Increase reward

Multi-armed Bandits

e Stochastic Multi-armed Bandit

e Set of N arms

e Each arm is associated with an unknown reward distribution

supported on [0,1] with mean 6,
® Each time, sample an arm and receive the
reward independently drawn from the

reward distribution

classic problems in stochastic control, stochastic
optimization and online learning

Robby the Robot can learn via reinforcement
learning

Sensors: ¥t 1
H(ere), N,S,E,W policy” = “strategy
Actions: \ki 1 2 3 4 5 6 7 8
Move N 0 i y|
Move S " N J
Move E 2 0
Move W 3] i
Pick up can 4 C §
5
Rewards/Penalties (points): - -
6
Picks up can: 10 -
7 ' '

Pick up can on empty site: -1

Crashes into wall: -5 ® d

Robby the Robot can learn via reinforcement
learning

Sensors: Pite] 1
H(ere), N,S,E,W policy” = “strategy
ACtIOﬂS \i 1 2 3 4 5 6 7 8
Move N 0 i |0
Move S 1 g 5
Move E 2 5
Move W 3 0 .
Pick up can 4 g .
5
Rewards/Penalties (points): . .
6
Picks up can: 10 §
7 ' '

Pick up can on empty site: -1

Crashes into wall: -5 ® d

What is a good policy?

Markov Decision Processes

« Mathematical formulation of the RL problem.

« Markov property: Current state completely characterizes
the state of the world.

Markov Decision Process (MDP)

S - Set of States

A - Set of Actions @ . .
Pr(s'la,s) - Transitions @ @

o - Starting State Distribution

¥ - Discount Factor
r(s) - Reward [orr(s,a)] ’ m) g
States Actions

Formalization

Reinforcement learning is typically formalized as a Markov Decision
Process (MDP):.

Agent L only knows current state and actions available from that
state.

Agent L can:
— perceive a set S of distinct states of an environment
— perform a set A of actions.
Components of Markov Decision Process (MDP):
— Possible set S of states (state space)
— Possible set A of actions (action space)
— State transition function (unknown to learner L)
5:SxA—>S 6(s,8,)=5,

— Reward function (unknown to learner L)

r:SxA—>R r(s,a)=r,

Formalization

Reinforcement learning is typically formalized as a Markov Decision
Process (MDP):.

Agent L only knows current state and actions available from that
state.

Agent L can:
— perceive a set S of distinct states of an environment
— perform a set A of actions.

Components of Markov Decision Process (MDP): Note: BOt,h,é .andr can
— Possible set S of states (state space) be deterministic
— Possible set A of actions (action space) or probabilistic.

— State transition function (unknown to learner L) In the Robby the Robot

example, they are both
§:SxA—>S 5(s,8)=5, deterministic

— Reward function (unknown to learner L)

r:SxA—>R r(s,a)=r,

MDPs

* At time step t=0, environment samples initial state s,~p(S,)
*Then, for t=0 until done:

- Agent selects action a,

- Environment samples reward r~R(:|s,,a,)

- Environment samples next state s,.,~P(:|s.a,)

- Agent receives reward r, and next state s, ;

A policy 1T is a function from S to A that specifies what action to take
In each state.

Objective: find a policy r* that maximizes cumulative discount
reward: Y ',

t>0

GridWorld Example

Vi tor the Greedy Polky
Random Policy wrt Vg
7= random (umform) action choice aofaofoofon FHpFe
y ¢ L 0 (LRI AR Al --n. -——9-—5—0-—1-—0 random
i 00| 0o 0o oo ﬂaa{[-ae-}[ia&{-‘ policy
[8) LARA) 1 1} " ’;—I—;;—]t—‘ ‘—]i—‘
|_n)} 1.0 et |
fe=] I 1.0 B L = e
[10 O L = = =) |
|) 0 o e U B ?
& =: 1.7] 1 Q—] n-}—' |
)1 Vi el
)] + -3 —*
0.(24] X — AjA
k=3 24 e iz S
v 0f-2.9.2.4 ! L r“ l
2 24 0 L S| — [
N
2 | ‘\
1] 6.1 -84)| : o 5,
k=10 61]-7.7]-8.4]-5.4] Vid |5 | " optimal
- -8 4|-8.4]-7.7]-6.1]) i = | ' policy
e | e |) L. * “ "'}
= ; ’
o= (=20 1-22 < el 0-‘
(s v (v a l ' e T ("J A4 -1 =20 [-20 1|
¢ " it '.\ 5 ’ ¢ 4 |l 4 | — e - . '-] }
V(s)« > m(s.a)) PL|RS.+yV(s) K L W o
: S' MLl on L. —=| =

Finding an Optimal Policy 1*

* We wish to determine a policy 1* that maximizes the sum of
rewards: » '

>0

Question: How do we deal with uncertainty in agent-based
searches?

Finding an Optimal Policy 1*

* We wish to determine a policy 1* that maximizes the sum of
rewards: » '

>0

Question: How do we deal with uncertainty in agent-based
searches? Answer: Introduce the formalism of probability (and
expectation).

t>0

Formally: 7% =argmax E {Z 7T | 72}

withs, ~ p(s;), & ~7(-s.), S~ P(15.2)

Value Function and Q-Value

» Following a policy produces sample trajectories (or paths): s, a,,
ro, Sl’ al, rl,...
(1) How to assess value of a particular state?

The value function at state s, is the expected cumulative reward
from following the policy 1T from state s:

V7 (s)= E{Zytrt s, =S,7z}

t>0

Value Function and Q-Value

» Following a policy produces sample trajectories (or paths): s, a,,
ro, Sl’ al, rl,...

(1) How to assess value of a particular state?

The value function at state s, is the expected cumulative reward
from following the policy 1T from state s:

V7 (s)= E{Z;/trt s, =S,7z}

t>0

(2) What is the quality of a state-action pair?

The Q-value function for state-action pair (s,a) is the expected
cumulative reward from taking action a in state s and then following

policy Tr:
Q" (s,a)= E{Zyxtrt s, =S,a, =a,7z}

t>0

Bellman Equations

* The optimal Q-value function Q* is the maximum expected cumulative
reward achievable from a given state-action pair:

Q*(s,a)= maxE{Zytrt S, =S, 8, :a,n}

t>0

Where Q* satisfied the so-called Bellman equations:

Q*(s,a)=E,_, [r ey magle*(s’, a')|s, a}

Idea: If the optimal state-action values for the next time-step Q*(s’,a’) are
known, then then optimal strategy is to take the action that maximizes the
expected value of : I +y maxQ*(s’, a’)

ai

The optimal policy 1r* corresponds with taking the best action in any state
specified by Q*.

Value lteration

* One strategy: Value lIteration (V.1.) algorithm — simply use Bellman
Equations as iterative update:

Q.(s.a)= E[r +ymaxQ, (s',a')|s, a}

It follows that:

ImQ. =Q*

I—o0

However, in general V.1. is not scalable, as we must compute Q(s,a)
for every state-action pair (consider Go, etc.).

Q-Learning

* Alternative strategy: Q-learning.

Idea: Use function approximation to estimate the action-value
function:

Q(s,a;0) ~Q*(s,a)

©: function parameters/weights

Q-Learning

* Alternative strategy: Q-learning.

Idea: Use function approximation to estimate the action-value
function:

Q(s,a;0) ~Q*(s,a)

©: function parameters/weights

If Q is a deep neural network, we get: deep Q-learning.

Q-Learning

* Alternative strategy: Q-learning.

Idea: Use function approximation to estimate the action-value
function:

Q(s,a;0) ~Q*(s,a)

@: function parameters/weights

If Q is a deep neural network, we get: deep Q-learning.

What should the system learn?
(recap)

Policy Learning:

Learn function 17 that directly
maps states to actions:

T(s)=a

What should the system learn?
(recap)

Policy Learning: Q Learning:
Learn function 1 that directly Learn value function Q that maps
maps states to actions: state, action pairs to values:
O(s,a)=v
777(5) =d where v is the prediction of future

cumulative reward if system is in
state s and takes action a, assuming
the system follows the best policy
thereafter.

What should the system learn?
(recap)

Learning:
Policy Learning: ? :

_ , Learn value function Q that maps
Learn function 1T that directly state, action pairs to values:

maps states to actions: Q(S a) — v
; -

T(s)=a where v is the prediction of future
cumulative reward if system is in
state s and takes action a, assuming
the system follows the best policy
thereafter.

If you have the correct Q function,
the best policy is:

(s)=argmax Q(s,a)

a

How to learn Q ?
(In theory)

Recall that we want to learn Q(s,a) so that it gives
predicted cumulative reward to system from starting
In state s, taking action a, and following best policy
thereafter.

Thus we have:

Q(s,a)=r(s,a)+ maX[Q(é(s,a),a ')]

More generally, we include a “discount factor”, y
(between 0 and 1), that expresses how much we value
Immediate versus future rewards.

O(s,a)=r(s,a)+ yma}X[Q(é(s,a),a ')]

How to learn Q In practice?

nitialize Q(s,a) to all zeros

nitialize s

Repeat forever (or as long as you have time
for):

— Select action a

— Take action a and receive reward r
— Observe new state s’

— Update Q(s,a) <= Q(s,a) + n (r + y max, Q(s’,a’) — Q(s, a))

— Update s < s’

Example

A Is our agent, who takes an action
at each timestep.

$5

Only action in square 1 is Forward.

Actions in squares 2 and 3 are
(Forward, Back)

Being in square 4 gives reward of $5
Only action in square 4 is Stop

No other rewards or penalties.
Sety=.9

Sety=1

Q(s,a) <= Q(s,a) + n (r +ymax, Q(s,a") - Q(s, a))

4
A $5

Episode 1
Currentstates=1

Q(s,a) Forward Back Stop

1 0 X X

x| o| o
o X | X

0
0
X

Al WD

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3
A $5

Episode 1

Current state s =1

Action = F
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 0 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
A $5

Episode 1

Current state s =1

Action = F
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 0 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
A $5

Episode 1

Current state s =1

Action = F

r=0

s’=2
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 0 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
A $5

Episode 1

Currentstates =1

Action = F

r=0 O, F)=0+max[0(2,a")] =0

s'=2 z
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 0 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
A $5

Episode 1
Current state s =2

Q(s,a) Forward Back Stop

1 0 X X

x| o| o
o X | X

0
0
X

Al WD

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
A $5

Episode 1

Current state s = 2

Action = F
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 0 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3
A | $5

Episode 1

Current state s = 2

Action = F
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 0 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3
A | $5

Episode 1

Current state s = 2

Action = F

r=0

=3
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 0 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 A 3 $5 4

Episode 1

Current state s = 2

Action = F

e 02, F)=0+(0+9maxQ(s',a') - O(s,4)) = 0
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 0 0 X
4 X X 0)

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

Episode 1
Current state s = 3

Q(s,a) Forward Back Stop

1 0 X X

x| o| o
o X | X

0
0
X

Al WD

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3
A | $5

Episode 1

Current state s = 3

Action = F
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 0 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
$5
A
Episode 1
Current state s = 3
Action = F
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 0 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
$5
A
Episode 1
Current state s =3
Action = F
r=3%$5
s’=14
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 0 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
$5
A
Episode 1
Current state s =3
Action = F
= $j OB F)=0+($5+.9maxO(s',a") - O(s,a)) = $5
S’ = i
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 0 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
$5
A
Episode 1
Current state s =3
Action = F
= $j O3 F)=0+($5+.9maxO(s",a") - O(s,a)) = $5
S’ = i
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
$5
A
Episode 1
Current states =4
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3] 4
$5
A
Episode 1
Current state s = 4
Action = Stop
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 $5 0 X
4 X X 0)

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

Episode 2
Currentstates=1

Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3
A $5

Episode 2

Current state s =1

Action = F
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
A $5

Episode 2

Current state s =1

Action = F
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
A $5

Episode 2

Current state s =1

Action = F

r=0

s’=2
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 A 2 3 $5 4

Episode 2

Current state s =1

Action = F

N O(L F)=0+(0+.9maxQ(s', a') - O(s,)) = 0
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 $5 0 X
4 X X 0)

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
A $5

Episode 2
Current state s =2

Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
A $5

Episode 2

Current state s = 2

Action = F
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3
A | $5

Episode 2

Current state s = 2

Action = F
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3
A | $5

Episode 2

Current state s = 2

Action = F

r=0

s'=3
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3
AT 55

Episode 2

Current state s = 2

Action = F

r=0 0(2,F)=0+(0+.9maxQ(s', a’) - O(s, a))

$'=3 = 0+0+(.9)($5) = $4.50
Q(s,a) Forward Back Stop
1 0 X X
2 0 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3
AT 55

Episode 2

Current state s = 2

Action = F

r=0 0(2,F)=0+(0+.9maxQ(s', a’) - O(s, a))

$'=3 = 0+0+(.9)($5) = $4.50
Q(s,a) Forward Back Stop
1 0 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

Episode 2
Current state s = 3

Q(s,a) Forward Back Stop
1 0 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3
A | $5

Episode 2

Current state s = 3

Action = F
Q(s,a) Forward Back Stop
1 0 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
$5
A
Episode 2
Current state s = 3
Action = F
Q(s,a) Forward Back Stop
1 0 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
$5
A
Episode 2
Current state s =3
Action = F
r=3%$5
s’=14
Q(s,a) Forward Back Stop
1 0 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
$5
A
Episode 2
Current state s = 3
Action = F
r=9$5 O3 F)=$5+($5+.9maxQ(s",a") - O(s, a))
s'=4 = $5+$5+0-$5=95
Q(s,a) Forward Back Stop
1 0 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
$5
A
Episode 2
Current states =4
Q(s,a) Forward Back Stop
1 0 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3] 4
$5
A
Episode 2
Current state s = 4
Action = Stop
Q(s,a) Forward Back Stop
1 0 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0)

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

Episode 3
Currentstates=1

Q(s,a) Forward Back Stop
1 0 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3
A $5

Episode 3

Current state s =1

Action = F
Q(s,a) Forward Back Stop
1 0 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3] 4
A $5

Episode 3

Current state s =1

Action = F
Q(s,a) Forward Back Stop
1 0 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0)

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3] 4
A $5

Episode 3

Current state s =1

Action = F

r=0

s'=2
Q(s,a) Forward Back Stop
1 0 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0)

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
A $5

Episode 3

Currentstates =1

Action = F

r=0 O F)=0+(0+.9maxQ(s',a’) - O(s, a))

$'=2 = 0+0+(.9)($4.50)- 0 = $4.05
Q(s,a) Forward Back Stop
1 0 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
A $5

Episode 3

Currentstates =1

Action = F

r=0 O F)=0+(0+.9maxQ(s',a’) - O(s, a))

$'=2 = 0+0+(.9)($4.50)- 0 = $4.05
Q(s,a) Forward Back Stop
1 $4.05 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
A $5

Episode 3
Current state s =2

Q(s,a) Forward Back Stop
1 $4.05 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3] 4
A $5

Episode 3

Current state s = 2

Action = B
Q(s,a) Forward Back Stop
1 $4.05 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0)

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3]
A $5

Episode 3

Current state s = 2

Action = B
Q(s,a) Forward Back Stop
1 $4.05 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0)

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3]
A $5

Episode 3

Current state s = 2

Action = B

r=0

s’=1
Q(s,a) Forward Back Stop
1 $4.05 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0)

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3 4
A $5

Episode 3

Current state s = 2

Action =B

r=0 0(2,8)=0+(0+.9maxO(s",a’) - O(s, a))

s'=1 0+0+(.9)($4.05) - 0 = $3.65
Q(s,a) Forward Back Stop
1 $4.05 X X
2 $4.50 0 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 4
$5

Episode 3

Current state s = 2

Action =B

r=0 0(2,8)=0+(0+.9maxO(s",a’) - O(s, a))

s'=1 0+0+(.9)($4.05) - 0 = $3.65
Q(s,a) Forward Back Stop
1 $4.05 X X
2 $4.50 $3.65 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

Episode 3
Currentstates=1

Q(s,a) Forward Back Stop
1 $4.05 X X
2 $4.50 $3.65 X
3 $5 0 X
4 X X 0

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3]
A $5

Episode 3

Current state s =1

Action = F
Q(s,a) Forward Back Stop
1 $4.05 X X
2 $4.50 $3.65 X
3 $5 0 X
4 X X 0)

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 3]
A $5

Episode 3

Current state s =1

Action = F

r=0

s'=2
Q(s,a) Forward Back Stop
1 $4.05 X X
2 $4.50 $3.65 X
3 $5 0 X
4 X X 0)

Q(s,a) <= Q(s,a) +n (r +y max, Q(s",a") - Q(s, a))

1 2 4
$5

Episode 3

Currentstates =1

Action = F

r=0 00, F)=%$4.05+(0+.9maxO(s',a") - $4.05)

$'=2 $4.05+0+(.9)($4.50) - $4.05 = $4.05
Q(s,a) Forward Back Stop
1 $4.05 X X
2 $4.50 $3.65 X
3 $5 0 X
4 X X 0

EtC.

k=0
k=1
k=2
k=3
k=10
k= oo

Gridworld (revisited

V. for the
Random Policy

0.0

0.0

Greedy Palicy

(2.1

0.0

(.0

0.1¥

(0.0

0.0

F
5

8.4

8.4

=77

0.1

4.1-20.

-2,

=210

-18.

-14.

| -2100

-14.

(.0

- 9
"
b el
Ll o =
— =
"Hia
MR
Ll 5 =
— = 9
1‘J"1L
TL’F’L
Ll = =

random
policy

optimal
policy

Iteration 10

'L@

Iteration 40

S

Iteration 80

Iteration 20 Iteration 30

Iteration 50

TR

Possible Solution 1 Possible Solution 2

Iteration 60

ST T T T =

Lo

Some Q-Learning Properties

* Results: Q-learning converges to optimal policy — even if
you're acting suboptimally!

« This is called off-policy learning.

Caveats:
* You have to explore sufficiently.

* You have to make learning rate small enough (but also
not decrease it too quickly).

How to choose actions?

Naive strategy: at each time step, choose action that
maximizes current Q(s,a)

This exploits current Q but doesn'’t further explore the
state-action space (in case Q is way off)

Common in Q learning to use “epsilon greedy”
approach:

— With probability (1 — €) choose action that maximizes
current Q(s,a)

— With probability € choose random action

Can start with high &, and decrease it over the run

Representation of Q(s, a)

* Note that in all of the above discussion, Q(s,
a) was assumed to be a look-up table, with a
distinct table entry for each distinct (s,a) pair.

 More commonly, Q(s, a) Is represented as a
function (e.g., a neural network), and the
function Is estimated (e.g., through back-
propagation).

Neurogammon
(Tesauro, 1989)

Used supervised learning approach: multilayer NN
trained by back-propagation on data base of recorded
expert games.

Input: raw board information (number of pieces at each
location), and a few hand-crafted features that encoded
Important expert concepts.

Neurogammon achieved strong intermediate level of
play.

Won backgammon championship at 1989 International
Computer Olympiad. But not close to beating best
human players.

Complexity of Backgammon

« Over 1020 possible states.

* At each ply, 21 dice combinations, with
average of about 20 legal moves per dice
combination. Result is branching ratio of
several hundred per ply.

* Chess has branching ratio of about 30-40
per ply.

TD-Gammon
(G. Tesauro, 1994)

« Program had two main parts:

— Move Generator: Program that generates all legal
moves from current board configuration.

— Predictor network: multi-layer NN that predicts Q(s,a):
probability of winning the game from the current board

configuration.

« Predictor network scores all legal moves. Highest scoring
move Is chosen.

 Rewards: Zero for all time steps except those on which
game is won or lost.

Network Overview

[nput Layer: 198 - 50 - 1, feedforward, fully connected
198 nodes 10,001 independent weights
Trained via TD(A) and
Hidden Layer; standard backpropagation
50 nodes
Output Layer:

| node

* Input: 198 units
— 24 positions, 8 input units for each position (192 input units)

 First 4 input units of each group of 8 represent # white
pieces at that position,

« Second 4 represent # black units at that position

— Two Inputs represent who is moving (white or black)

— Two Inputs represent pieces on the bar

— Two Inputs represent number of pieces borne off by each
player.

50 hidden units

« 1 output unit (activation represents probability that white
will win from given board configuration)

Program plays against itself.

On each turn:

 Use network to evaluate all possible moves from current board
configuration. Choose the move with the highest (lowest as
black) evaluation. This produces a new board configuration.

« Ifthis is end of game, run back-propagation, with target output
activation of 1 or O depending on whether white won or lost.

 Else evaluate new board configuration with neural network.
Calculate difference between current evaluation and previous
evaluation.

* Run back-propagation, using the current evaluation as target
output, and the board position previous to the current move as
the input.

Program | Training Games Opponenis Resulis

TD 1.0 00,000 Fobertie, Dawis, -13 ptefa] games
Ilagriel (=025 ppa)
TDx 2.0 a0, 000 Gouldmg, Woolsey, | -7 ptaf3s games
anellings, Fuszell, -0.18 ppa
aylvester
TDis 2.1 1,500,000 F.obertie -1 ptf40 games
(-0.04 ppg)

Table 1. Hesulis of testing TD-Garmmon in play against world-class
hurman opponents. Yersion 1.0 used 1-play zearch for maove selection;
versions 2.0 and 2.1 used 2-ply search. “ersion 2.0 had 40 hidden units;
versions 1.0 and 2.1 had G0 hidden units.

* From Sutton & Barto, Reinforcement
Learning: An Introduction:

“After playing about 300,000 games against itself, TD-Gammon

0.0 as described above learned to play approximately as well as
the best previous backgammon computer programs.”

“TD-Gammon 3.0 appears to be at, or very near, the playing

strength of the best human players in the world. It may already
be the world champion. These programs have already changed
the way the best human players play the game. For example,
TD-Gammon learned to play certain opening positions
differently than was the convention among the best human
players. Based on TD-Gammon's success and further analysis,
the best human players now play these positions as TD-
Gammon does (Tesauro, 1995).”

Robby the Robot can learn via reinforcement
learning

Sensors: ¥t 1
H(ere), N,S,E,W policy” = “strategy
Actions: \ki 1 2 3 4 5 6 7 8
Move N 0 i y|
Move S " N J
Move E 2 0
Move W 3] i
Pick up can 4 C §
5
Rewards/Penalties (points): - -
6
Picks up can: 10 -
7 ' '

Pick up can on empty site: -1

Crashes into wall: -5 ® d

