
Artificial Intelligence:

Reinforcement Learning

It’s an exciting time for RL!

Recall: Unsupervised Learning

• We are given data, x, without labels.

• Goal: Learn underlying structure, patterns in

the data.

• Examples: Clustering (k-means), density

estimation.

Learning Models

Reinforcement Learning Overview
• Many AI and ML tasks focus on supervised learning:

– Training examples: (x1, y1), (x2, y2),...

• But consider a different type of learning problem, in which a robot

has to learn to do tasks in a particular environment.

– E.g.,

• Navigate without crashing into anything

• Locate and retrieve an object

• Perform some multi-step manipulation of objects resulting in

a desired configuration (e.g., sorting objects)

Recommended Text on RL:

Sutton/Barto

• This type of problem doesn’t typically provide clear

“training examples” with detailed feedback at each step.

• Rather, robot gets intermittent “rewards” for doing “the

right thing”, or “punishment” for doing “the wrong thing”.

• Goal: To have robot (or other learning system) learn,

based on such intermittent rewards, what action to take

in a given situation.

• Ideas for this have been inspired by “reinforcement

learning” experiments in psychology literature.

Applications of reinforcement learning:

A few examples
• Learning to play backgammon (and more recently, Go)

• Robot arm control (juggling)

• Robot Locomotion

• Robot navigation

• Elevator dispatching

• Power systems stability control

• Job-shop scheduling

• Air traffic control

Cart-Pole Problem

Objective: Balance a pole on top of movable cart.

State: Angle, angular speed, position, horizontal velocity.

Action: Horizontal force applied to cart.

Reward: +1 at each time step if the pole is upright.

https://www.youtube.com/watch?v=_Mmc3i7jZ2c

Robot Locomotion (and pancake flipping!)

Objective: Make the robot move forward successfully.

State: Angle and position of joints.

Action: Torques applied on joints.

Reward: +1 at each time step the robot is upright and moving

forward.

https://www.youtube.com/watch?v=gn4nRCC9TwQ

https://www.youtube.com/watch?v=W_gxLKSsSIE

Board Games (Backgammon, Chess, Go)

Objective: Win the game.

State: Position of pieces.

Action: Next move/placement of next piece.

Reward: +1 for win, 0 for loss.

Atari Games

Objective: World domination Obtain high score (make lots of

human friends in the process).

State: Raw pixel inputs.

Action: Game controls, e.g., movement and zap!

Reward: Score differential.

Exploitation vs. Exploration

• On-line versus off-line learning

• On-line learning requires the correct balance

between “exploitation” and “exploration”

Exploitation

Exploit current good strategies to obtain known reward

Exploration

Explore new strategies in hope of finding ways to

increase reward

Multi-armed Bandits

Robby the Robot can learn via reinforcement

learning
Sensors:

H(ere), N,S,E,W,

Actions:

Move N

Move S

Move E

Move W

Pick up can

Rewards/Penalties (points):

Picks up can: 10

Pick up can on empty site: -1

Crashes into wall: -5

“policy” = “strategy”

Robby the Robot can learn via reinforcement

learning
Sensors:

H(ere), N,S,E,W,

Actions:

Move N

Move S

Move E

Move W

Pick up can

Rewards/Penalties (points):

Picks up can: 10

Pick up can on empty site: -1

Crashes into wall: -5

What is a good policy?

“policy” = “strategy”

Markov Decision Processes
• Mathematical formulation of the RL problem.

• Markov property: Current state completely characterizes

the state of the world.

Formalization
Reinforcement learning is typically formalized as a Markov Decision

Process (MDP):

Agent L only knows current state and actions available from that

state.

Agent L can:

– perceive a set S of distinct states of an environment

– perform a set A of actions.

Components of Markov Decision Process (MDP):

– Possible set S of states (state space)

– Possible set A of actions (action space)

– State transition function (unknown to learner L)

– Reward function (unknown to learner L)

  1: ,t t tS A S s a s    

 : ,t t tr S A R r s a r  

Formalization
Reinforcement learning is typically formalized as a Markov Decision

Process (MDP):

Agent L only knows current state and actions available from that

state.

Agent L can:

– perceive a set S of distinct states of an environment

– perform a set A of actions.

Components of Markov Decision Process (MDP):

– Possible set S of states (state space)

– Possible set A of actions (action space)

– State transition function (unknown to learner L)

– Reward function (unknown to learner L)

  1: ,t t tS A S s a s    

 : ,t t tr S A R r s a r  

MDPs
• At time step t=0, environment samples initial state s0~p(s0)

•Then, for t=0 until done:

- Agent selects action at

- Environment samples reward rt~R(·|st,at)

- Environment samples next state st+1~P(·|st,at)

- Agent receives reward rt and next state st+1

A policy π is a function from S to A that specifies what action to take

in each state.

Objective: find a policy π* that maximizes cumulative discount

reward:
0

t

t

t

r




GridWorld Example

Finding an Optimal Policy π*
• We wish to determine a policy π* that maximizes the sum of

rewards:

Question: How do we deal with uncertainty in agent-based

searches?

Finding an Optimal Policy π*
• We wish to determine a policy π* that maximizes the sum of

rewards:

Question: How do we deal with uncertainty in agent-based

searches? Answer: Introduce the formalism of probability (and

expectation).

Formally:

0

* arg max |t

t

t

E r


  


 
  

 


     0 0 1~ , ~ | , ~ | ,t t t t twith s p s a s s p s a  

Value Function and Q-Value
• Following a policy produces sample trajectories (or paths): s0, a0,

r0, s1, a1, r1,…

(1) How to assess value of a particular state?

The value function at state s, is the expected cumulative reward

from following the policy π from state s:

  0

0

| ,t

t

t

V s E r s s  


 
  

 


Value Function and Q-Value
• Following a policy produces sample trajectories (or paths): s0, a0,

r0, s1, a1, r1,…

(1) How to assess value of a particular state?

The value function at state s, is the expected cumulative reward

from following the policy π from state s:

(2) What is the quality of a state-action pair?

The Q-value function for state-action pair (s,a) is the expected

cumulative reward from taking action a in state s and then following

policy π:

  0

0

| ,t

t

t

V s E r s s  


 
  

 


  0 0

0

, | , ,t

t

t

Q s a E r s s a a  


 
   

 


Bellman Equations
• The optimal Q-value function Q* is the maximum expected cumulative

reward achievable from a given state-action pair:

Where Q* satisfied the so-called Bellman equations:

Idea: If the optimal state-action values for the next time-step Q*(s’,a’) are

known, then then optimal strategy is to take the action that maximizes the

expected value of :

The optimal policy π* corresponds with taking the best action in any state
specified by Q*.

  0 0

0

* , max | , ,t

t

t

Q s a E r s s a a


 


 
   

 


   ~* , max * , | ,s
a

Q s a E r Q s a s a 


   
 

 max * ,
a

r Q s a


 

Value Iteration
• One strategy: Value Iteration (V.I.) algorithm – simply use Bellman

Equations as iterative update:

It follows that:

However, in general V.I. is not scalable, as we must compute Q(s,a)

for every state-action pair (consider Go, etc.).

   1 , max , | ,i i
a

Q s a E r Q s a s a


   
 

lim *i
i

Q Q




Q-Learning
• Alternative strategy: Q-learning.

Idea: Use function approximation to estimate the action-value

function:

   , ; * ,Q s a Q s a 

Θ: function parameters/weights

Q-Learning
• Alternative strategy: Q-learning.

Idea: Use function approximation to estimate the action-value

function:

If Q is a deep neural network, we get: deep Q-learning.

   , ; * ,Q s a Q s a 

Θ: function parameters/weights

Q-Learning
• Alternative strategy: Q-learning.

Idea: Use function approximation to estimate the action-value

function:

If Q is a deep neural network, we get: deep Q-learning.

   , ; * ,Q s a Q s a 

Θ: function parameters/weights

What should the system learn?

(recap)
Policy Learning:

Learn function π that directly

maps states to actions:

What should the system learn?

(recap)
Policy Learning:

Learn function π that directly

maps states to actions:

Q Learning:

Learn value function Q that maps

state, action pairs to values:

where v is the prediction of future

cumulative reward if system is in

state s and takes action a, assuming

the system follows the best policy

thereafter.

Q(s,a) = v

What should the system learn?

(recap)
Policy Learning:

Learn function π that directly

maps states to actions:

Q Learning:

Learn value function Q that maps

state, action pairs to values:

where v is the prediction of future

cumulative reward if system is in

state s and takes action a, assuming

the system follows the best policy

thereafter.

If you have the correct Q function,

the best policy is:

Q(s,a) = v

How to learn Q ?

(In theory)

Recall that we want to learn Q(s,a) so that it gives

predicted cumulative reward to system from starting

in state s, taking action a, and following best policy

thereafter.

Thus we have:

More generally, we include a “discount factor”, γ

(between 0 and 1), that expresses how much we value

immediate versus future rewards.

How to learn Q in practice?

• Initialize Q(s,a) to all zeros

• Initialize s

• Repeat forever (or as long as you have time

for):

– Select action a

– Take action a and receive reward r

– Observe new state s´

– Update Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

– Update s  s´

Example
A is our agent, who takes an action

at each timestep.

Only action in square 1 is Forward.

Actions in squares 2 and 3 are

(Forward, Back)

Being in square 4 gives reward of $5

Only action in square 4 is Stop

No other rewards or penalties.

Set γ = .9

Set η = 1

A
1 2 3

$5
4

A
1 2 3

$5
4

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Episode 1

Current state s = 1

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(1,F) = 0+max
a '
Q(2,a ')[] = 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 2

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 2

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 2

Action = F

r = 0

s’ = 3

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 2

Action = F

r = 0

s’ = 3

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(2,F) = 0+ (0+.9max
a
Q(s ',a ')-Q(s,a)) = 0

A
1 2 3

$5
4

Episode 1

Current state s = 3

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 3

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 1

Current state s = 3

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 1

Current state s = 3

Action = F

r = $5

s’ = 4

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 1

Current state s = 3

Action = F

r = $5

s’ = 4

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(3,F) = 0+ ($5+.9max
a
Q(s ',a ')-Q(s,a)) = $5

A

1 2 3
$5

4

Episode 1

Current state s = 3

Action = F

r = $5

s’ = 4

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(3,F) = 0+ ($5+.9max
a
Q(s ',a ')-Q(s,a)) = $5

A

1 2 3
$5

4

Episode 1

Current state s = 4

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 1

Current state s = 4

Action = Stop

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 1

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(1,F) = 0+ (0+.9max
a
Q(s ',a ')-Q(s,a)) = 0

A
1 2 3

$5
4

Episode 2

Current state s = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 2

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 2

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 2

Action = F

r = 0

s’ = 3

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 2

Action = F

r = 0

s’ = 3

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(2,F) = 0 + (0 +.9max
a
Q(s ',a ')-Q(s,a))

= 0 + 0 + (.9)($5) = $4.50

A
1 2 3

$5
4

Episode 2

Current state s = 2

Action = F

r = 0

s’ = 3

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(2,F) = 0 + (0 +.9max
a
Q(s ',a ')-Q(s,a))

= 0 + 0 + (.9)($5) = $4.50

A
1 2 3

$5
4

Episode 2

Current state s = 3

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 3

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 2

Current state s = 3

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 2

Current state s = 3

Action = F

r = $5

s’ = 4

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 2

Current state s = 3

Action = F

r = $5

s’ = 4

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(3,F) = $5+ ($5+.9max
a
Q(s ',a ')-Q(s,a))

= $5+$5+ 0 -$5 = $5

A

1 2 3
$5

4

Episode 2

Current state s = 4

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 2

Current state s = 4

Action = Stop

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

1 2 3
$5

4

Episode 3

Current state s = 1

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

Q(1,F) = 0+ (0+.9max
a
Q(s ',a ')-Q(s,a))

= 0 + 0 + (.9)($4.50)- 0 = $4.05

1 2 3
$5

4

Episode 3

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

Q(1,F) = 0+ (0+.9max
a
Q(s ',a ')-Q(s,a))

= 0 + 0 + (.9)($4.50)- 0 = $4.05

1 2 3
$5

4

Episode 3

Current state s = 2

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 2

Action = B

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 2

Action = B

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 2

Action = B

r = 0

s’ = 1

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 2

Action = B

r = 0

s’ = 1

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

Q(2,B) = 0 + (0 +.9max
a
Q(s ',a ')-Q(s,a))

0 + 0 + (.9)($4.05)- 0 = $3.65

1 2 3
$5

4

Episode 3

Current state s = 2

Action = B

r = 0

s’ = 1

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 $3.65 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

Q(2,B) = 0 + (0 +.9max
a
Q(s ',a ')-Q(s,a))

0 + 0 + (.9)($4.05)- 0 = $3.65

1 2 3
$5

4

Episode 3

Current state s = 1

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 $3.65 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 $3.65 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 $3.65 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 $3.65 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

Q(1,F) = $4.05+ (0 +.9max
a
Q(s ',a ')-$4.05)

$4.05+ 0 + (.9)($4.50)-$4.05 = $4.05

Etc.

Gridworld (revisited)

Some Q-Learning Properties

• Results: Q-learning converges to optimal policy – even if

you’re acting suboptimally!

• This is called off-policy learning.

Caveats:

• You have to explore sufficiently.

• You have to make learning rate small enough (but also

not decrease it too quickly).

How to choose actions?

• Naïve strategy: at each time step, choose action that

maximizes current Q(s,a)

• This exploits current Q but doesn’t further explore the

state-action space (in case Q is way off)

• Common in Q learning to use “epsilon greedy”

approach:

– With probability (1 − ε) choose action that maximizes

current Q(s,a)

– With probability ε choose random action

• Can start with high ε, and decrease it over the run

Representation of Q(s, a)

• Note that in all of the above discussion, Q(s,

a) was assumed to be a look-up table, with a

distinct table entry for each distinct (s,a) pair.

• More commonly, Q(s, a) is represented as a

function (e.g., a neural network), and the

function is estimated (e.g., through back-

propagation).

Neurogammon

(Tesauro, 1989)
• Used supervised learning approach: multilayer NN

trained by back-propagation on data base of recorded

expert games.

• Input: raw board information (number of pieces at each

location), and a few hand-crafted features that encoded

important expert concepts.

• Neurogammon achieved strong intermediate level of

play.

• Won backgammon championship at 1989 International

Computer Olympiad. But not close to beating best

human players.

Complexity of Backgammon

• Over 1020 possible states.

• At each ply, 21 dice combinations, with

average of about 20 legal moves per dice

combination. Result is branching ratio of

several hundred per ply.

• Chess has branching ratio of about 30-40

per ply.

TD-Gammon

(G. Tesauro, 1994)
• Program had two main parts:

– Move Generator: Program that generates all legal

moves from current board configuration.

– Predictor network: multi-layer NN that predicts Q(s,a):

probability of winning the game from the current board

configuration.

• Predictor network scores all legal moves. Highest scoring

move is chosen.

• Rewards: Zero for all time steps except those on which

game is won or lost.

• Input: 198 units

– 24 positions, 8 input units for each position (192 input units)

• First 4 input units of each group of 8 represent # white

pieces at that position,

• Second 4 represent # black units at that position

– Two inputs represent who is moving (white or black)

– Two inputs represent pieces on the bar

– Two inputs represent number of pieces borne off by each

player.

• 50 hidden units

• 1 output unit (activation represents probability that white

will win from given board configuration)

Program plays against itself.

On each turn:

• Use network to evaluate all possible moves from current board

configuration. Choose the move with the highest (lowest as

black) evaluation. This produces a new board configuration.

• If this is end of game, run back-propagation, with target output

activation of 1 or 0 depending on whether white won or lost.

• Else evaluate new board configuration with neural network.

Calculate difference between current evaluation and previous

evaluation.

• Run back-propagation, using the current evaluation as target

output, and the board position previous to the current move as

the input.

• From Sutton & Barto, Reinforcement

Learning: An Introduction:

“After playing about 300,000 games against itself, TD-Gammon

0.0 as described above learned to play approximately as well as

the best previous backgammon computer programs.”

“TD-Gammon 3.0 appears to be at, or very near, the playing

strength of the best human players in the world. It may already

be the world champion. These programs have already changed

the way the best human players play the game. For example,

TD-Gammon learned to play certain opening positions

differently than was the convention among the best human

players. Based on TD-Gammon's success and further analysis,

the best human players now play these positions as TD-

Gammon does (Tesauro, 1995).”

Robby the Robot can learn via reinforcement

learning
Sensors:

H(ere), N,S,E,W,

Actions:

Move N

Move S

Move E

Move W

Pick up can

Rewards/Penalties (points):

Picks up can: 10

Pick up can on empty site: -1

Crashes into wall: -5

“policy” = “strategy”

