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Digression: The Monty Hall Problem

• Suppose you're on a game show, and you're given the choice of  
three doors: 

Behind one door is a car; behind the others, goats.

You pick a door, say No. 1, and the host, who knows what's behind 
the doors, opens another door, say No. 3, which has a goat. He then 
says to you, "Do you want to pick door No. 2?" Is it to your advantage 
to switch your choice?
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Uncertainty

• Agents need to handle uncertainty, whether due to partial
observability, non-determinism, or a combination of  the two. 

• In Chapter 4, we encountered problem-solving agents designed 
to handle uncertainty by monitoring a belief-state – a 
representation of  the set of  all possible world states in which 
the agent might find itself  (e.g. AND-OR graphs). 

• The agent generated a contingency plan that handles every 
possible eventuality that its sensors report during execution. 



Uncertainty
• Despite its many virtues, however, this approach has many

significant drawbacks:

(*) With partial information, an agent must consider every 
possible eventuality, no matter how unlikely. This leads to
impossibly large and complex belief-state representations. 

(*) A correct contingency plan that handles every possible 
outcome can grow arbitrarily large and must consider arbitrarily 
unlikely contingencies. 

(*) Sometimes there is, in fact, no plan that is guaranteed to 
achieve a stated goal – yet the agent must act. It must have some 
way to compare the merits of  plans that are not guaranteed. 



Uncertainty
Let action At = leave for airport t minutes before flight

Will At get me there on time?

Problems:

1. Partial observability (road state, other drivers' plans, etc.)

2. Noisy sensors (traffic reports)

3. Uncertainty in action outcomes (flat tire, etc.)

4. Immense complexity of  modeling and predicting traffic

Hence a purely logical approach either

1. risks falsehood: “A25 will get me there on time”, or

2. leads to conclusions that are too weak for decision making:

“A25 will get me there on time if  there's no accident on the bridge and it doesn't 
rain and my tires remain intact etc etc.”

(A1440 might reasonably be said to get me there on time but I'd have to stay 
overnight in the airport …)



Uncertainty
• Consider a trivial example of  uncertain reasoning for medical 

diagnosis. 

(*) Toothache => Cavity  (this is faulty)

Me amend it: 

(*) Tootache => Cavity V Gum Problem V Abscess…

Problem is that we would need to add an almost unlimited list of  
possible symptoms. 

• We could instead attempt to turn the rule into a causal rule. 

(*) Cavity => Tootache (this is also incorrect; not all cavities 
cause pain). 



Uncertainty

• The only way to fix the rule, it seems, is to make it logically 
exhaustive! (i.e. augment the left-hand side with all the 
qualifications required for a cavity to cause a toothache). 

• This approach though naturally fails for at least (3) reasons: 

(1) Laziness: far too much work is required to compile the
entire list.

(2) Theoretical Ignorance: Medical science is theoretically 
incomplete. 

(3) Practical Ignorance: Even if  we knew all the rules, we 
might be uncertain about a particular patient, because not all of  
the necessary tests have been run. 



Uncertainty

• Typically, an agent’s knowledge can at best provide only a 
degree of  belief.

• Our main tool for dealing with degrees of  belief  is probability 
theory. 

• Probability provides a way of  summarizing the uncertainty that 
comes from our laziness and ignorance. 



Uncertainty and Rational Decisions
• So how best can an agent make rational decisions in the face of  

uncertainty? 

• To make choices, the agent must first have preferences
between possible outcomes of the various plans.

• An outcome is a completely specified state, including such 
factors as whether the agent arrives on time (e.g. the “airport 
problem”). 

• We use utility theory to represent reason with preferences. 
Utility theory asserts that every state has a degree of  usefulness, 
or utility, to an agent and that the agent will prefer states with 
higher utility. 



Uncertainty and Rational Decisions
• Preferences, as expressed by utilities, are combined with 

probabilities in the general theory of  rational decisions called 
decision theory:

Decision Theory = Probability Theory + Utility Theory

• Fundamental idea: an agent is rational iff it chooses the action that
yields the highest expected utility, averaged over all possible outcomes of  the 
action. (The principle of  maximum expected utility (MEU)). 

• Note that this is none other than a computation of expected
value.



Probability

Probabilistic assertions summarize effects of

– laziness: failure to enumerate exceptions, qualifications, etc.

– ignorance: lack of  relevant facts, initial conditions, etc.

Subjective probability:

• Probabilities relate propositions to agent's own state of  
knowledge

e.g., P(A25 | no reported accidents) = 0.06

These are not assertions about the world

Probabilities of  propositions change with new evidence:

e.g., P(A25 | no reported accidents, 5 a.m.) = 0.15



Making decisions under uncertainty
Suppose I believe the following:

P(A25 gets me there on time | …) = 0.04 

P(A90 gets me there on time | …) = 0.70 

P(A120 gets me there on time | …) = 0.95 

P(A1440 gets me there on time | …) = 0.9999 

• Which action to choose?

•

Depends on my preferences for missing flight vs. time spent 
waiting, etc.

– Utility theory is used to represent and infer preferences

– Decision theory = probability theory + utility theory



Syntax
• Basic element: random variable

• Similar to propositional logic: possible worlds defined by assignment of  values to 
random variables.

• Boolean random variables
e.g., Cavity (do I have a cavity?)

• Discrete random variables
e.g., Weather is one of  <sunny,rainy,cloudy,snow>

• Domain values must be exhaustive and mutually exclusive

• Elementary proposition constructed by assignment of  a value to a

• random variable: e.g., Weather = sunny, Cavity = false

• (abbreviated as cavity)

• Complex propositions formed from elementary propositions and standard logical 
connectives e.g., Weather = sunny  Cavity = false



Syntax
• Atomic event: A complete specification of  the state of  

the world about which the agent is uncertain

•
E.g., if  the world consists of  only two Boolean variables Cavity

and Toothache, then there are 4 distinct atomic events:

Cavity = false Toothache = false

Cavity = false  Toothache = true

Cavity = true  Toothache = false

Cavity = true  Toothache = true

• Atomic events are mutually exclusive and exhaustive



Axioms of  probability

• The set of  all possible “worlds” is the sample 
space (omega). The possible worlds are mutually 

exclusive and exhaustive. 

• A fully specified probability model associates a numerical

probability P(ω) with each possible world (we assume 

discrete, countable worlds). 
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Axioms of  probability
• Probabilistic assertions are usually about sets instead of  

particular possible worlds. 

• These sets are commonly referred to as events. 

• In AI, the sets are described by propositions in a formal 

language. The probability associated with a proposition is 

defined to be the sum of  probabilities of  the worlds in 

which it holds: 

   ,For any proposition P P
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Axioms of  probability

• The basic axioms of  probability imply certain relationships 

among the degrees of  belief  that can be accorded to 

logically-related propositions. Example: 
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Axioms of  probability

• Inclusion-Exclusion (probability of  a disjunction):

• Now derive the general formula for three or more 

sets…
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Prior probability
• Prior or unconditional probabilities of  propositions

•
e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief  prior to arrival 

of  any (new) evidence

• Probability distribution gives values for all possible assignments:

•
P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)

• Joint probability distribution for a set of  random variables gives the probability of  
every atomic event on those random variables

•
P(Weather,Cavity) = a 4 × 2 matrix of  values:

Weather = sunny rainy cloudy snow 

Cavity = true 0.144 0.02 0.016 0.02

Cavity = false 0.576 0.08 0.064 0.08

• Every question about a domain can be answered by the joint distribution



Conditional probability

• Conditional or posterior probabilities
e.g., P(cavity | toothache) = 0.8

i.e., given that toothache is all I know

• (Notation for conditional distributions:
P(Cavity | Toothache) = 2-element vector of  2-element vectors)

• If  we know more, e.g., cavity is also given, then we have
P(cavity | toothache,cavity) = 1

• New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8

• This kind of  inference, sanctioned by domain knowledge, is crucial



Conditional probability
• Definition of  conditional probability:

•
P(a | b) = P(a  b) / P(b) if   P(b) > 0

• Product rule gives an alternative formulation:

•
P(a  b) = P(a | b) P(b) = P(b | a) P(a)

• A general version holds for whole distributions, e.g.,

•
P(Weather,Cavity) = P(Weather | Cavity) P(Cavity)

• (View as a set of  4 × 2 equations, not matrix mult.)

•

• Chain rule is derived by successive application of  product rule:
• P(X1, …,Xn) = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1)

= P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1)

= …

= πi= 1^n P(Xi | X1, … ,Xi-1)



Bayesian and Frequentist Probability
• (2) General paradigms for statistics and statistical inference: frequentist vs. Bayesian.

• Frequentists: Parameters are fixed; there is a (Platonic) model; parameters remain constant.

• Bayesians: Data are fixed; data are observed from realized sample; we encode prior beliefs; 
parameters are described probabilistically.  

• Frequentists commonly use the MLE (maximum likelihood estimate) as a cogent point estimate 

of the model parameters of a probability distribution:

• Using the Law of Large Numbers (LLN),  

one can consequently show that:               

Potential issues with frequentist approach: philosophical reliance on long-term ‘frequencies’, the 
problem of induction (Hume) and the black swan paradox, as well as the presence of limited exact 
solutions for a small class of settings. 



Bayesian and Frequentist Probability
In the Bayesian framework, conversely, probability is regarded as a measure of  uncertainty 

pertaining to the practitioner’s knowledge about a particular phenomenon.

The prior belief  of  the experimenter is not ignored but rather encoded in the process of  

calculating probability.

As the Bayesian gathers new information from experiments, this information is used, in 

conjunction with prior beliefs, to update the measure of  certainty related to a specific outcome. 

These ideas are summarized elegantly in the familiar Bayes’ Theorem:

Where H here connotes ‘hypothesis’ and D connotes ‘data’; the leftmost probability is referred to 

as the posterior (of  the hypothesis), and the numerator factors are called the likelihood (of  the 

data) and the prior (on the hypothesis), respectively; the denominator expression is referred to 

as the marginal likelihood. 

Typically, the point estimate for a parameter used in Bayesian statistics is the mode of  the 

posterior distribution, known as the maximum a posterior (MAP) estimate, which is given as:



Practice Problems 
(1) Derive Inclusion-Exclusion from Equations (13.1) and (13.2) in the text. 

(2) Consider the set of all possible five-card poker hands dealt fairly (i.e. randomly) from a 
single, standard deck. 

(i) How many atomic events are there in the joint probability distribution?

(ii) What is the probability of  each atomic event?

(iii) What is the probability of being dealt a royal flush? 

(iv) Four of  a kind?

(v) Given that my first two cards are aces, what is the probability that my total hand consists
of four aces?

(13.1)

(13.2)



Inference by enumeration

• Start with the joint probability distribution:

•

• For any proposition φ, sum the atomic events where it is true: 



Inference by enumeration

• Start with the joint probability distribution:

• For any proposition φ, sum the atomic events where it is true:

• P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2



Inference by enumeration

• Start with the joint probability distribution:

•

• Can also compute conditional probabilities:

•

P(cavity | toothache) = P(cavity  toothache)

P(toothache)

= 0.016+0.064

0.108 + 0.012 + 0.016 + 0.064

= 0.4



Normalization

• Denominator can be viewed as a normalization constant α

•

P(Cavity | toothache) = α, P(Cavity,toothache) 
= α, [P(Cavity,toothache,catch) + P(Cavity,toothache, catch)]

= α, [<0.108,0.016> + <0.012,0.064>] 

= α, <0.12,0.08> = <0.6,0.4>

General idea: compute distribution on query variable by fixing evidence variables
and summing over hidden variables



Inference by enumeration
Typically, we are interested in 

the posterior joint distribution of  the query variables Y 

given specific values e for the evidence variables E

Let the hidden variables be H = X - Y - E

Then the required summation of  joint entries is done by summing out the hidden 
variables:

P(Y | E = e) = αP(Y,E = e) = αΣhP(Y,E= e, H = h)

• The terms in the summation are joint entries because Y, E and H together exhaust the 
set of  random variables

• Obvious problems:
1. Worst-case time complexity O(dn) where d is the largest arity

2. Space complexity O(dn) to store the joint distribution

3. How to find the numbers for O(dn) entries?



Independence

• A and B are independent iff

P(A|B) = P(A)    or P(B|A) = P(B)     or P(A, B) = P(A) P(B)

P(Toothache, Catch, Cavity, Weather)

= P(Toothache, Catch, Cavity) P(Weather)

• 32 entries reduced to 12; for n independent biased coins, O(2n) →O(n)

• Absolute independence powerful but rare

• Dentistry is a large field with hundreds of  variables, none of  which are 
independent. What to do?



Conditional independence
• P(Toothache, Cavity, Catch) has 23 – 1 = 7 independent entries

• If  I have a cavity, the probability that the probe catches in it doesn't depend on 
whether I have a toothache:
(1) P(catch | toothache, cavity) = P(catch | cavity)

• The same independence holds if  I haven't got a cavity:

•
(2) P(catch | toothache,cavity) = P(catch | cavity)

• Catch is conditionally independent of  Toothache given Cavity:
P(Catch | Toothache,Cavity) = P(Catch | Cavity)

• Equivalent statements:
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)



Conditional independence

• Write out full joint distribution using chain rule:

•

P(Toothache, Catch, Cavity)
= P(Toothache | Catch, Cavity) P(Catch, Cavity)

= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)

= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers

• In most cases, the use of  conditional independence reduces the 
size of  the representation of  the joint distribution from 
exponential in n to linear in n.

• Conditional independence is our most basic and robust form of  



Practice Problems II
(1) Show that the (3) forms of  “absolute” independence are equivalent. 

P(A|B) = P(A)    or P(B|A) = P(B)     or P(A, B) = P(A) P(B)

(2) Suppose that X, Y are independent random variables; let Z be a function of  X and Y. Must 
X and Y be conditionally independent, given Z? Explain.  

(3) Suppose you are given a bag containing n unbiased coins. You are told that n – 1 of  these 
coins are “normal”, with heads on one side and tails on the other, whereas one coin is a fake, 
with heads on both sides. 

Consider the scenario in which you reach into the bag, pick out a coin at random, flip it, and get 
a head. What is the (conditional) probability that the coin you chose is fake? 



Bayes' Rule

• Product rule P(ab) = P(a | b) P(b) = P(b | a) P(a)

•

 Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)

Derive Bayes’ Rule…



Bayes' Rule
• In distribution form:

P(Y|X) = P(X|Y) P(Y) / P(X) = αP(X|Y) P(Y)

• Useful for assessing diagnostic probability from causal probability:

– P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)

– E.g., let M be meningitis, S be stiff  neck:
– P(m|s) = P(s|m) P(m) / P(s) = 0.8 × 0.0001 / 0.1 = 0.0008

– Note: posterior probability of  meningitis still very small!



Bayes' Rule and conditional 

independence
P(Cavity | toothache  catch) 

= αP(toothache  catch | Cavity) P(Cavity) 

= αP(toothache | Cavity) P(catch | Cavity) P(Cavity) 

• This is an example of  a naïve Bayes model:

•
P(Cause,Effect1, … ,Effectn) = P(Cause) πiP(Effecti|Cause)

• Total number of  parameters is linear in n.



Summary
• Uncertainty arises because of  both laziness and ignorance. It is 

inescapable in complex, nondeterministic, or partially observable 
environments. 

• Probability is a rigorous formalism for uncertain knowledge. 
Probabilities summarize the agent’s believes relative to the evidence. 

• Decision Theory combines the agent’s beliefs and desires, 
defining the best action as the one that maximizes expected utility. 

• Basic probability statements include priors probabilities and
conditional probabilities. Joint probabilities distributions specifiy
a probability of  every atomic event. 



Summary
• Absolute independence between subsets of  random variables 

allows the full joint distribution to be factored into smaller joint 
distributions, greatly reducing its complexity. Absolute 
independence seldom occurs in practice. 

• Bayes’ Rule allows unknown probabilities to be computer from 
known conditional probabilities, usually in the casual direction. 

• Conditional independence brought about by direct causal
relationships in the domain might allow the full joint distribution
to be factored into smaller, conditional distributions.

• The naïve Bayes model assumes the conditional independence 
of  all effect variables, given a single cause variable, and grows 
linearly with the number of  effects. 


