
1

Artificial Intelligence

Chapter 6: Constraint Satisfaction

Problems

Digression: The Four Color Theorem

• One of the most famous results in the history of
mathematics.

• It was first conjectured in 1852, but only finally proven in
1976. Notably it was the first math proof to rely crucially
on computers (for a large set of configuration/case
checks) – and for this reason was considered controversial.

Digression: The Four Color Theorem

• Why was the proof so difficult?

Because the best-known technique

relied on (originally) 1936

unavoidable configurations --

like these.

Digression: The Four Color Theorem

• While we can’t prove the FCT in lecture (!), we can prove
its baby brother, the 6 color theorem.

• Let’s do this…

• (1) Prove Euler’s Polyhedron Formula.

Digression: The Four Color Theorem

• (1) Prove Euler’s Polyhedron Formula. (we use induction
on E(G)).

Digression: The Four Color Theorem

• (1) Prove Euler’s Polyhedron Formula.

• (2) Convince yourself that embedding on the sphere is
equivalent to planarity.

Digression: The Four Color Theorem

• (1) Prove Euler’s Polyhedron Formula.

• (2) Convince yourself that embedding on the sphere is
equivalent to planarity.

This is called a

“stereographic

projection”

Digression: The Four Color Theorem

• (1) Prove Euler’s Polyhedron Formula.

• (2) Convince yourself that embedding on the sphere is
equivalent to planarity.

• (3) Prove that if G is planar (with n ≥3), then
|E(G)|≤3n-6.

Digression: The Four Color Theorem

• (1) Prove Euler’s Polyhedron Formula.

• (2) Convince yourself that embedding on the sphere is
equivalent to planarity.

• (3) Prove that if G is planar (with n ≥3), then
|E(G)|≤3n-6.

• (4) Claim: Every planar graph contains a vertex of degree
5 or less.

Digression: The Four Color Theorem

• (1) Prove Euler’s Polyhedron Formula.

• (2) Convince yourself that embedding on the sphere is
equivalent to planarity.

• (3) Prove that if G is planar (with n ≥3), then
|E(G)|≤3n-6.

• (4) Claim: Every planar graph contains a vertex of degree
5 or less. (Hint: use the fact that the sum of the degrees of
vertices in a graph equals twice the number of edges).

Digression: The Four Color Theorem

• (1) Prove Euler’s Polyhedron Formula.

• (2) Convince yourself that embedding on the sphere is
equivalent to planarity.

• (3) Prove that if G is planar (with n ≥3), then
|E(G)|≤3n-6.

• (4) Claim: Every planar graph contains a vertex of degree
5 or less.

• Now put it all together and we have the 6 Color Theorem!

Digression: The Four Color Theorem

• So how about a Five Color Theorem?

• Actually, it’s not that bad. We use the Six Color Theorem
plus an additional clever argument utilizing a structure
called a “Kempe Chain” (1890); the result follows by
contradiction.

Digression: The Four Color Theorem

• Unfortunately, no one to date has found a simple way to
reduce Kempe Chains and similar structures to efficiently
solve 4CT (aside from exhaustive case-checking.

• Nevertheless, the 4CT and its proof serve evidence that
humankind and machines can work together productively
and harmoniously!

Digression: The Four Color Theorem

• Unfortunately, no one to date has found a simple way to
reduce Kempe Chains and similar structures to efficiently
solve 4CT (aside from exhaustive case-checking.

• Nevertheless, the 4CT and its proof serve evidence that
humankind and machines can work together productively
and harmoniously!

*This message sponsored by generous donations from your friends at:

Constraint satisfaction problems (CSPs)

• Standard search problem: state is a "black box“ – any
data structure that supports successor function and
goal test

• CSP:

– state is defined by variables Xi with values from
domain Di

– goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

• Allows useful general-purpose algorithms with more
power than standard search algorithms.

Example: Map-Coloring

• Variables WA, NT, Q, NSW, V, SA, T

• Domains Di = {red,green,blue}

• Constraints: adjacent regions must have different colors

• e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red),
(green,blue),(blue,red),(blue,green)}

Example: Map-Coloring

• Solutions are complete and consistent
assignments

• e.g., WA = red, NT = green, Q = red, NSW =
green,V = red,SA = blue,T = green

Constraint graph

• Binary CSP: each constraint relates two variables

• Constraint graph: nodes are variables, arcs are

constraints

Varieties of CSPs

• Discrete variables
– finite domains:

• n variables, domain size d  O(dn) complete assignments

• e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

– infinite domains:

• integers, strings, etc.

• e.g., job scheduling, variables are start/end days for each job

• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

• Continuous variables
– e.g., start/end times for Hubble Space Telescope observations

– linear constraints solvable in polynomial time by LP

Varieties of constraints

• Unary constraints involve a single variable,

– e.g., SA ≠ green

• Binary constraints involve pairs of variables,

– e.g., SA ≠ WA

• Higher-order constraints involve 3 or more

variables,

– e.g., cryptarithmetic column constraints

Cryptarithmetic Problem

• Try this one:

Cryptarithmetic Problem

Backtracking search
• Backtracking search is used for a depth-first search

that chooses values for one variable at a time and
backtracks when a variable has no legal values left to
assign.

• It repeatedly chooses an unassigned variable, and then
tries all values in the domain of that variable in turn,
trying to find a solution.

• If an inconsistency is detected, then BACKTRACK
returns failure, causing the previous call to try another
value.

Backtracking Search
• Depth-first search for CSPs with single-variable

assignments is called backtracking search.

• Variable assignments are commutative, i.e.,

[WA = red then NT = green] same as [NT = green
then WA = red].

• => Only need to consider assignments to a single
variable at each node, so the algorithm keeps only a
single representation of a state and alters that
representation rather than creating new ones.

• Can solve n-queens for n ≈ 25.

Backtracking example

Backtracking example

Backtracking example

Backtracking example

Improving backtracking efficiency

• (3) General-purpose methods can give huge

gains in speed:

– Which variable should be assigned next? (e.g. MRV)

– In what order should its values be tried? (e.g.

inference/forward checking)

– Can we detect inevitable failure early? (e.g. constraint

learning)

Constraint Propagation

• In regular state-space search, an algorithm can

do only one thing: search.

• In CSP there is a choice: (1) an algorithm can

search (i.e. choose a new variable assignment

from several possibilities); (2) perform a specific

type of inference called constraint propagation.

Constraint Propagation

• Constraint propagation uses the constraints to

reduce the number of legal values for a variable,

which in turn can reduce the legal values for

another variable, and so on.

• Constraint propagation may be interleaved with

search, or it can be done as a preprocessing step.

• The key idea is: local consistency.

Constraint Propagation

• The key idea is: local consistency (e.g. node

consistency, arc consistency, etc.).

• If we treat each variable as a node in the graph,

and each binary constraint as an arc, then the

process of enforcing local consistency in each

part of the graph causes inconsistent values to

be eliminated throughout the graph.

Most constrained variable

• Most constrained variable:

choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV)

heuristic

Most constraining variable

• A good idea is to use it as a tie-breaker among

most constrained variables

• Most constraining variable:

– choose the variable with the most constraints on

remaining variables

Least constraining value

• Given a variable to assign, choose the least

constraining value:

– the one that rules out the fewest values in the

remaining variables

–

• Combining these heuristics (MRV + LCV)

makes 1000 queens feasible!

Forward checking

• MRV and LCV and related approaches can infer

reduction in the domain variables before we begin the

search.

• But inference can be even more powerful in the

course of a search: every time we make a choice of

a value for a variable, we have a brand-new

opportunity to infer new domain reductions on

neighboring values.

Forward checking

• Forward checking is one of the simplest forms of

inference.

• Whenever a variable X is assigned, the forward-

checking process establishes arc consistency for it: for

each unassigned variable Y that is connected to X by a

constraint, delete from Y’s domain any value that is

inconsistent with the value chosen for X.

Forward checking

• Idea:

– Keep track of remaining legal values for

unassigned variables.

– Terminate search when any variable has no legal

values.

Forward checking

• Idea:

– Keep track of remaining legal values for

unassigned variables.

– Terminate search when any variable has no legal

values.

Forward checking

• Idea:

– Keep track of remaining legal values for

unassigned variables.

– Terminate search when any variable has no legal

values.

Forward checking
• Idea:

– Keep track of remaining legal values for

unassigned variables.

– Terminate search when any variable has no legal

values.

Constraint propagation
• Forward checking propagates information from

assigned to unassigned variables, but doesn't provide

early detection for all failures:

•

• NT and SA cannot both be blue!

• Constraint propagation algorithms repeatedly

enforce constraints locally…

Node Consistency

• A single variable (in a CSP network) is node-

consistent if all the values in the variable’s

domain satisfy the variable’s unary constraints.

• E.g. Suppose South Australians dislike green; the

variable SA starts with domain: {red, green,

blue}, and we make it node-consistent by

eliminating green, leaving SA with the reduced

domain: {red, blue}.

• We say that a network is node-consistent if

every variable in the network is node-consistent.

Arc consistency

• Simplest form of propagation makes each arc

consistent

• X Y is consistent iff

for every value x of X there is some allowed y

Arc consistency

• Simplest form of propagation makes each arc

consistent

• X Y is consistent iff

for every value x of X there is some allowed y

Arc consistency

• Simplest form of propagation makes each arc

consistent

• X Y is consistent iff

for every value x of X there is some allowed y

• If X loses a value, neighbors of X need to be

rechecked

Arc consistency
• Simplest form of propagation makes each arc consistent

• X Y is consistent iff

for every value x of X there is some allowed y

• If X loses a value, neighbors of X need to be rechecked

• Arc consistency detects failure earlier than forward checking

• Can be run as a preprocessor or after each assignment

AC-3 Algorithm

• The most popular algorithm for arc consistency

is called AC-3.

• The AC-3 algorithm maintains a queue of arcs

to consider.

• Initially, the queue contains all the arcs in the

CSP. AC-3 the pops off an arbitrary arc (Xi, Xj)

from the queue and makes Xi arc-consistent

with respect to Xj.

AC-3 Algorithm

• If this leaves Di unchanged, the algorithm

moves on to the next arc.

• If this revises Di, then we add to the queue all

arcs (Xk,Xi), where Xk is a neighbor of Xi.

• We need to do this because the change in Di

might enable further reductions in the domains

of Dk.

• Continue this process…

• We end up with a CSP equivalent to the original

CSP – but the arc-consistent CSP will in most

cases be much faster to search.

Arc consistency algorithm AC-3

• Time complexity: O(#constraints |domain|3)

Checking consistency of an arc is O(|domain|2)

Path Consistency

• A two-variable set {Xi,Xj} is path-consistent

with respect to a third variable Xm, if, for every

assignment {Xi=a, Xj=b} consistent with the

constraints on {Xi, Xj}, there is an assignment

to Xm that satisfies the constrains on {Xi, Xm}

and {Xm, Xj}.

• This is called path-consistency, because one can

think of it as looking at a path from Xi to Xj

with Xm in the middle.

k-consistency
• A CSP is k-consistent if, for any set of k-1 variables, and for any

consistent assignment to those variables, a consistent value can

always be assigned to any kth variable

• 1-consistency is node consistency.

• 2-consistency is arc consistency.

• For binary constraint networks, 3-consistency is the same as path

consistency.

• Getting k-consistency requires time and space exponential in k.

• Strong k-consistency means k’-consistency for all k’ from 1 to k

– Once strong k-consistency for k=#variables has been obtained,

solution can be constructed trivially

• Tradeoff between propagation and branching.

• Practitioners usually use 2-consistency and less commonly 3-

consistency.

Other techniques for CSPs

• Global constraints

– E.g., Alldiff

– E.g., Atmost(10,P1,P2,P3), i.e., sum of the 3 vars ≤ 10

– Special propagation algorithms
• Bounds propagation

– E.g., number of people on two flight D1 = [0, 165] and D2 = [0, 385]

– Constraint that the total number of people has to be at least 420

– Propagating bounds constraints yields D1 = [35, 165] and D2 = [255, 385]

• …

• Symmetry breaking (e.g. reduce search by imposing

arbitrary ordering constraint).

Structured CSPs

Tree-structured CSPs

Algorithm for tree-structured CSPs

Nearly tree-structured CSPs

(Finding the minimum cutset is NP-complete.)

Tree decomposition

• Algorithm: solve for all solutions of each subproblem. Then, use the
tree-structured algorithm, treating the subproblem solutions as
variables for those subproblems.

• O(ndw+1) where w is the treewidth (= one less than size of largest
subproblem)

• Finding a tree decomposition of smallest treewidth is NP-complete, but
good heuristic methods exists

• Every variable in original
problem must appear in at
least one subproblem

• If two variables are
connected in the original
problem, they must appear
together (along with the
constraint) in at least one
subproblem

• If a variable occurs in two
subproblems in the tree, it
must appear in every
subproblem on the path that
connects the two

