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Artificial Intelligence

Chapter 6: Constraint Satisfaction 

Problems



Digression: The Four Color Theorem

• One of  the most famous results in the history of  
mathematics. 

• It was first conjectured in 1852, but only finally proven in
1976. Notably it was the first math proof  to rely crucially 
on computers (for a large set of  configuration/case 
checks) – and for this reason was considered controversial.



Digression: The Four Color Theorem

• Why was the proof  so difficult?

Because the best-known technique 

relied on (originally) 1936

unavoidable configurations --

like these. 



Digression: The Four Color Theorem

• While we can’t prove the FCT in lecture (!), we can prove 
its baby brother, the 6 color theorem. 

• Let’s do this…

• (1) Prove Euler’s Polyhedron Formula. 
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on E(G)). 
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equivalent to planarity. 



Digression: The Four Color Theorem

• (1) Prove Euler’s Polyhedron Formula. 

• (2) Convince yourself that embedding on the sphere is
equivalent to planarity. 

This is called a 

“stereographic 

projection”
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Digression: The Four Color Theorem

• (1) Prove Euler’s Polyhedron Formula. 

• (2) Convince yourself that embedding on the sphere is
equivalent to planarity. 

• (3) Prove that if G is planar (with n ≥3), then 
|E(G)|≤3n-6.

• (4) Claim: Every planar graph contains a vertex of degree
5 or less. (Hint: use the fact that the sum of  the degrees of  
vertices in a graph equals twice the number of  edges). 



Digression: The Four Color Theorem

• (1) Prove Euler’s Polyhedron Formula. 

• (2) Convince yourself that embedding on the sphere is
equivalent to planarity. 

• (3) Prove that if G is planar (with n ≥3), then 
|E(G)|≤3n-6.

• (4) Claim: Every planar graph contains a vertex of degree
5 or less.

• Now put it all together and we have the 6 Color Theorem!



Digression: The Four Color Theorem

• So how about a Five Color Theorem?

• Actually, it’s not that bad. We use the Six Color Theorem 
plus an additional clever argument utilizing a structure 
called a “Kempe Chain” (1890); the result follows by 
contradiction. 



Digression: The Four Color Theorem

• Unfortunately, no one to date has found a simple way to
reduce Kempe Chains and similar structures to efficiently
solve 4CT (aside from exhaustive case-checking.

• Nevertheless, the 4CT and its proof  serve evidence that 
humankind and machines can work together productively 
and harmoniously!
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Constraint satisfaction problems (CSPs)

• Standard search problem: state is a "black box“ – any 
data structure that supports successor function and 
goal test

• CSP:

– state is defined by variables Xi with values from 
domain Di

– goal test is a set of  constraints specifying allowable 
combinations of  values for subsets of  variables

• Allows useful general-purpose algorithms with more 
power than standard search algorithms.



Example: Map-Coloring

• Variables WA, NT, Q, NSW, V, SA, T

• Domains Di = {red,green,blue}

• Constraints: adjacent regions must have different colors

• e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), 
(green,blue),(blue,red),(blue,green)}



Example: Map-Coloring

• Solutions are complete and consistent
assignments

• e.g., WA = red, NT = green, Q = red, NSW = 
green,V = red,SA = blue,T = green



Constraint graph

• Binary CSP: each constraint relates two variables

• Constraint graph: nodes are variables, arcs are 

constraints



Varieties of CSPs

• Discrete variables
– finite domains:

• n variables, domain size d  O(dn) complete assignments

• e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

– infinite domains:

• integers, strings, etc.

• e.g., job scheduling, variables are start/end days for each job

• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

• Continuous variables
– e.g., start/end times for Hubble Space Telescope observations

– linear constraints solvable in polynomial time by LP



Varieties of constraints

• Unary constraints involve a single variable, 

– e.g., SA ≠ green

• Binary constraints involve pairs of variables,

– e.g., SA ≠ WA

• Higher-order constraints involve 3 or more 

variables,

– e.g., cryptarithmetic column constraints



Cryptarithmetic Problem

• Try this one:



Cryptarithmetic Problem



Backtracking search
• Backtracking search is used for a depth-first search 

that chooses values for one variable at a time and 
backtracks when a variable has no legal values left to 
assign. 

• It repeatedly chooses an unassigned variable, and then
tries all values in the domain of  that variable in turn, 
trying to find a solution. 

• If an inconsistency is detected, then BACKTRACK 
returns failure, causing the previous call to try another 
value. 



Backtracking Search
• Depth-first search for CSPs with single-variable 

assignments is called backtracking search.

• Variable assignments are commutative, i.e.,

[ WA = red then NT = green ] same as [ NT = green 
then WA = red ].

• => Only need to consider assignments to a single 
variable at each node, so the algorithm keeps only a 
single representation of  a state and alters that 
representation rather than creating new ones. 

• Can solve n-queens for n ≈ 25.



Backtracking example
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Backtracking example



Improving backtracking efficiency

• (3) General-purpose methods can give huge 

gains in speed:

– Which variable should be assigned next? (e.g. MRV)

– In what order should its values be tried? (e.g. 

inference/forward checking)

– Can we detect inevitable failure early? (e.g. constraint 

learning)



Constraint Propagation

• In regular state-space search, an algorithm can

do only one thing: search.

• In CSP there is a choice: (1) an algorithm can 

search (i.e. choose a new variable assignment 

from several possibilities); (2) perform a specific 

type of  inference called constraint propagation. 



Constraint Propagation

• Constraint propagation uses the constraints to

reduce the number of legal values for a variable,

which in turn can reduce the legal values for

another variable, and so on. 

• Constraint propagation may be interleaved with 

search, or it can be done as a preprocessing step.

• The key idea is: local consistency.



Constraint Propagation

• The key idea is: local consistency (e.g. node

consistency, arc consistency, etc.).

• If  we treat each variable as a node in the graph, 

and each binary constraint as an arc, then the

process of enforcing local consistency in each

part of the graph causes inconsistent values to

be eliminated throughout the graph.  



Most constrained variable

• Most constrained variable:

choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV)

heuristic



Most constraining variable

• A good idea is to use it as a tie-breaker among 

most constrained variables

• Most constraining variable:

– choose the variable with the most constraints on 

remaining variables



Least constraining value

• Given a variable to assign, choose the least 

constraining value:

– the one that rules out the fewest values in the 

remaining variables

–

• Combining these heuristics (MRV + LCV) 

makes 1000 queens feasible!



Forward checking

• MRV and LCV and related approaches can infer 

reduction in the domain variables before we begin the 

search. 

• But inference can be even more powerful in the

course of  a search: every time we make a choice of  

a value for a variable, we have a brand-new 

opportunity to infer new domain reductions on 

neighboring values. 



Forward checking

• Forward checking is one of  the simplest forms of  

inference. 

• Whenever a variable X is assigned, the forward-

checking process establishes arc consistency for it: for 

each unassigned variable Y that is connected to X by a 

constraint, delete from Y’s domain any value that is 

inconsistent with the value chosen for X. 



Forward checking

• Idea: 

– Keep track of  remaining legal values for 

unassigned variables.

– Terminate search when any variable has no legal 

values.
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Forward checking
• Idea: 
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values.



Constraint propagation
• Forward checking propagates information from 

assigned to unassigned variables, but doesn't provide 

early detection for all failures:

•

• NT and SA cannot both be blue!

• Constraint propagation algorithms repeatedly 

enforce constraints locally…



Node Consistency

• A single variable (in a CSP network) is node-

consistent if  all the values in the variable’s 

domain satisfy the variable’s unary constraints. 

• E.g. Suppose South Australians dislike green; the

variable SA starts with domain: {red, green,

blue}, and we make it node-consistent by

eliminating green, leaving SA with the reduced 

domain: {red, blue}. 

• We say that a network is node-consistent if

every variable in the network is node-consistent.



Arc consistency

• Simplest form of  propagation makes each arc 

consistent

• X Y is consistent iff

for every value x of  X there is some allowed y
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Arc consistency
• Simplest form of  propagation makes each arc consistent

• X Y is consistent iff

for every value x of  X there is some allowed y

• If  X loses a value, neighbors of  X need to be rechecked

• Arc consistency detects failure earlier than forward checking

• Can be run as a preprocessor or after each assignment



AC-3 Algorithm

• The most popular algorithm for arc consistency

is called AC-3.

• The AC-3 algorithm maintains a queue of  arcs 

to consider. 

• Initially, the queue contains all the arcs in the 

CSP. AC-3 the pops off  an arbitrary arc (Xi, Xj) 

from the queue and makes Xi arc-consistent

with respect to Xj.



AC-3 Algorithm

• If this leaves Di unchanged, the algorithm 

moves on to the next arc.

• If  this revises Di, then we add to the queue all 

arcs (Xk,Xi), where Xk is a neighbor of  Xi. 

• We need to do this because the change in Di

might enable further reductions in the domains

of Dk.

• Continue this process…

• We end up with a CSP equivalent to the original 

CSP – but the arc-consistent CSP will in most 

cases be much faster to search. 



Arc consistency algorithm AC-3

• Time complexity: O(#constraints |domain|3)

Checking consistency of an arc is O(|domain|2)



Path Consistency

• A two-variable set {Xi,Xj} is path-consistent

with respect to a third variable Xm, if, for every 

assignment {Xi=a, Xj=b} consistent with the

constraints on {Xi, Xj}, there is an assignment 

to Xm that satisfies the constrains on {Xi, Xm} 

and {Xm, Xj}. 

• This is called path-consistency, because one can

think of it as looking at a path from Xi to Xj

with Xm in the middle.



k-consistency
• A CSP is k-consistent if, for any set of  k-1 variables, and for any 

consistent assignment to those variables, a consistent value can 

always be assigned to any kth variable

• 1-consistency is node consistency.

• 2-consistency is arc consistency.

• For binary constraint networks, 3-consistency is the same as path 

consistency.

• Getting k-consistency requires time and space exponential in k.

• Strong k-consistency means k’-consistency for all k’ from 1 to k

– Once strong k-consistency for k=#variables has been obtained, 

solution can be constructed trivially

• Tradeoff  between propagation and branching.

• Practitioners usually use 2-consistency and less commonly 3-

consistency.



Other techniques for CSPs

• Global constraints

– E.g., Alldiff

– E.g., Atmost(10,P1,P2,P3), i.e., sum of  the 3 vars ≤ 10

– Special propagation algorithms
• Bounds propagation

– E.g., number of  people on two flight D1 = [0, 165] and D2 = [0, 385]

– Constraint that the total number of  people has to be at least 420

– Propagating bounds constraints yields D1 = [35, 165] and D2 = [255, 385]

• …

• Symmetry breaking (e.g. reduce search by imposing 

arbitrary ordering constraint). 



Structured CSPs



Tree-structured CSPs



Algorithm for tree-structured CSPs



Nearly tree-structured CSPs

(Finding the minimum cutset is NP-complete.)



Tree decomposition

• Algorithm: solve for all solutions of each subproblem.  Then, use the 
tree-structured algorithm, treating the subproblem solutions as 
variables for those subproblems.

• O(ndw+1) where w is the treewidth (= one less than size of largest 
subproblem)

• Finding a tree decomposition of smallest treewidth is NP-complete, but 
good heuristic methods exists

• Every variable in original 
problem must appear in at 
least one subproblem

• If two variables are 
connected in the original 
problem, they must appear 
together (along with the 
constraint) in at least one 
subproblem

• If a variable occurs in two 
subproblems in the tree, it 
must appear in every 
subproblem on the path that 
connects the two


