
1

Artificial Intelligence

Chapter 5: Adversarial Search

Pop Quiz

• White to mate…

Pop Quiz

• White to mate…in 292 moves!

4

Games

• Multiagent environment

• Cooperative vs. competitive

– Competitive environment is where the agents’ goals are in

conflict

– Adversarial Search

• Game Theory

– A branch of economics

– Views the impact of agents on others as significant rather

than competitive (or cooperative).

5

Properties of Games

• Game Theorists
– Deterministic, turn-taking, two-player, zero-sum games of perfect

information

• AI
– Deterministic

– Fully-observable

– Two agents whose actions must alternate

– Utility values at the end of the game are equal and opposite

• In chess, one player wins (+1), one player loses (-1)

• It is this opposition between the agents’ utility functions that makes the
situation adversarial

6

Why Games?

• Small defined set of rules

• Well defined knowledge set

• Easy to evaluate performance

• Large search spaces

– Too large for exhaustive search

• Fame and Fortune

– e.g. Chess and Deep Blue

7

Games as Search Problems

• Games have a state space search

– Each potential board or game position is a state

– Each possible move is an operation to another state

– The state space can be HUGE!!!!!!!

• Large branching factor (about 35 for chess)

• Terminal state could be deep (about 50 for chess)

8

Games vs. Search Problems

• Unpredictable opponent

• Solution is a strategy

– Specifying a move for every possible opponent reply

• Time limits

– Unlikely to find the goal…agent must approximate

• In AI, the most common games are deterministic, turn-

taking, two-player, zero-sum games of perfect

information (i.e. fully observable environments).

9

Types of Games

Deterministic Chance

Perfect

Information

Chess,
checkers, go,
othello

Backgammon,
monopoly

Imperfect

Information

Bridge, poker,
scabble, nuclear
war

10

Example Computer Games

• Chess – Deep Blue (World Champion 1997)

• Checkers – Chinook (World Champion 1994)

• Othello – Logistello
– Beginning, middle, and ending strategy

– Generally accepted that humans are no match for computers
at Othello

• Backgammon – TD-Gammon (Top Three)

• Go – Goemate and Go4++ (Weak Amateur)

• Bridge (Bridge Barron 1997, GIB 2000)
– Imperfect information

– multiplayer with two teams of two

Formal Elements of Games

• So: Initial state, specifies how game is set up to start.

• PLAYER(s): Defines which player has the move in a

state.

• ACTION(s): Returns the set of legal moves in a state.

• RESULT(s,a): The transition mode, which defines the

result of a move.

• TERMINAL-TEST(s):A terminal test, which is true

when the game is over and false otherwise.

Formal Elements of Games

• UTILITY(s,p): A utility function (also called a payoff

function) that defines the final numeric value for a game

that ends in terminal state s for player p.

• Some games have a winder variety of possible outcomes;

the payoffs in backgammon range from 0 to +192.

• A zero-sum game is defined as one where the total

payoff to all players is the same for every instance of the

game.

• Chess is zero-sum because every game has payoff 0+1,

1+0, or ½ + ½.

13

Optimal Decisions in Games

• Consider games with two players (MAX, MIN)

• Initial State
– Board position and identifies the player to move

• Successor Function
– Returns a list of (move, state) pairs; each a legal move and

resulting state

• Terminal Test
– Determines if the game is over (at terminal states)

• Utility Function
– Objective function, payoff function, a numeric value for the

terminal states (+1, -1) or (+192, -192)

14

Game Trees
• The root of the tree is the initial state

– Next level is all of MAX’s moves

– Next level is all of MIN’s moves

– …

• Example: Tic-Tac-Toe
– Root has 9 blank squares (MAX)

– Level 1 has 8 blank squares (MIN)

– Level 2 has 7 blank squares (MAX)

– …

• Utility function:
– win for X is +1

– win for O is -1

15

Game Trees

16

Minimax Strategy

• Basic Idea:
– Choose the move with the highest minimax value

• best achievable payoff against best play

– Choose moves that will lead to a win, even though min is trying to block

• Max’s goal: get to 1

• Min’s goal: get to -1

• Minimax value of a node (backed up value):
– If N is terminal, use the utility value

– If N is a Max move, take max of successors

– If N is a Min move, take min of successors

17

Minimax Strategy

18

Minimax Algorithm

19

Properties of Minimax

• Complete

– Yes if the tree is finite (e.g. chess has specific rules for this)

• Optimal

– Yes, against an optimal opponent, otherwise???

• Time

– O(bm) (m is the maximum tree depth, b is the number of

legal moves at each point)

• Space

– O(bm) depth first exploration of the state space

20

Resource Limits

• Suppose there are 100 seconds, explore 104 nodes /

second

• 106 nodes per move

• Standard approach

– Cutoff test – depth limit

• quiesence search – values that do not seem to change

– Change the evaluation function

21

Evaluation Functions

• In 1950, Shannon proposed that programs should cut off

the search earlier to apply a heuristic evaluation function

to states in the search.

• This technique effectively turns non-terminal nodes into

terminal leaves.

• The idea is to replace the utility function by a heuristic

evaluation function (EVAL), which estimates the position’s

utility, and replace the terminal test by a cutoff test that

decides when to apply EVAL.

• An evaluation function returns an estimate of the expected

utility of the game from a give position, just as heuristic

functions return an estimate of the distance to the goal.

22

Evaluation Functions

• The performance of a game-playing program depends

strongly on the quality of its evaluation function – but how

to design?

(1) The evaluation function should order the terminal states

in the same way as the true utility function: states that are

wins must evaluate better than draws, etc.

(2) The computation must not take too long!

(3) For nonterminal states, the evaluation function should be

strongly correlated with the actual “chances of winning.”

23

Evaluation Functions
• Note that if the search must be cut off at nonterminal

states, then the algorithm will necessarily be uncertain about

the final outcomes of those states.

• Usually, an evaluation function calculates various features

of a state (e.g. number of pawns, etc.).

• The features define various categories or equivalence classes

of states: the states in each category have the same values

for all features.

• For example: suppose experience suggests that 72% of

states encountered in a two-pawn vs. one-pawn category

lead to a win (utility: +1); 20% to a loss (0) and 8% to a

draw (1/2).

• Expected value: (0.72 x 1)+(0.20 x 0) + (0.08 x ½) = 0.76.

24

Evaluation Functions

• Most evaluation functions compute separate

numerical contributions from each feature and

then combine them to find the total value.

– Typical evaluation function is a linear sum of

features

– Eval(s) = w1f1(s) + w2f2(s) + … + wnfn(s)

• w1 = 9

• f1(s) = number of white queens) – number of black

queens

• etc.

Game tree
From M. T. Jones, Artificial Intelligence: A Systems Approach

Current board:

X’s move

How many nodes?

Game tree
From M. T. Jones, Artificial Intelligence: A Systems Approach

Current board:

X’s move

Evaluation Function
From M. T. Jones, Artificial Intelligence: A Systems Approach

Evaluation function f(n) measures “goodness” of board configuration n. Assumed to be better

estimate as search is deepened (i.e., at lower levels of game tree).

Evaluation function here: “Number of possible wins (rows, columns, diagonals)

not blocked by opponent, minus number of possible wins for opponent not blocked by current player.”

Current board:

O’s move

Minimax search: Expand the game tree by m ply (levels in game tree)

in a limited depth-first search. Then apply evaluation function at lowest level, and

propagate results back up the tree.

Minimax search
From M. T. Jones, Artificial Intelligence: A

Systems Approach
Current board:

X’s move

Minimax search
From M. T. Jones, Artificial Intelligence: A

Systems Approach

Calculate f(n)

Current board:

X’s move

Minimax search
From M. T. Jones, Artificial Intelligence: A

Systems Approach

Calculate f(n)

Propagate min

value of children

to parent

Current board:

X’s move

Minimax search
From M. T. Jones, Artificial Intelligence: A

Systems Approach

Calculate f(n)

Propagate min

value of children

to parent

Propagate max

value of children

to parent

Current board:

X’s move

Minimax search
From M. T. Jones, Artificial Intelligence: A

Systems Approach

Calculate f(n)

Propagate min

value of children

to parent

Propagate max

value of children

to parent

Propagate min

value of children

to parent

Current board:

X’s move

Minimax search
From M. T. Jones, Artificial Intelligence: A

Systems Approach

Calculate f(n)

Propagate min

value of children

to parent

Propagate max

value of children

to parent

Propagate min

value of children

to parent

Propagate max

value of children

to parent

Current board:

X’s move

Minimax algorithm: Example
From M. T. Jones, Artificial Intelligence: A Systems Approach

Current board

X’s move

Exercise

What is value at the root?

36

Alpha-Beta Pruning

• The problem with minimax search is that the number

of games states it has to examine is exponential in the

depth of the tree.

• We can’t eliminate the exponent – however, we can

effectively cut it in half!

• The key idea is that it is possible to compute the correct

minimax decision without looking at every node in the

game true.

• We “prune” away branches in the game tree that cannot

possibly influence the final decision.

37

Alpha-Beta Pruning

• Recognize when a position can never be chosen

in minimax no matter what its children are

– Max (3, Min(2,x,y) …) is always ≥ 3

– Min (2, Max(3,x,y) …) is always ≤ 2

– We know this without knowing x and y!

38

Alpha-Beta Pruning

• Alpha = the value of the best choice we’ve

found so far for MAX (highest)

• Beta = the value of the best choice we’ve found

so far for MIN (lowest)

• When maximizing, cut off values lower than

Alpha

• When minimizing, cut off values greater than

Beta

39

Alpha-Beta Pruning Example

40

Alpha-Beta Pruning Example

41

Alpha-Beta Pruning Example

42

Alpha-Beta Pruning Example

43

Alpha-Beta Pruning Example

Algorithm: Minimax with Alpha-Beta Pruning

• function alphabeta(node, depth, α, β, Player)

• if depth = 0 or node is a terminal node

• return the heuristic value of node

• if Player = MaxPlayer

• for each child of node

• α := max(α, alphabeta(child, depth-1, α, β, not(Player)))

• if β ≤ α

• break ; Prune

• return α

• else

• for each child of node

• β := min(β, alphabeta(child, depth-1, α, β, not(Player)))

• if β ≤ α break ; Prune

• return β

• end

• ; Initial call

• alphabeta(origin, depth, -infinity, +infinity, MaxPlayer)

Alpha-Beta Pruning Example
From M. T. Jones, Artificial Intelligence: A Systems Approach

Alpha-Beta Pruning Example
From M. T. Jones, Artificial Intelligence: A Systems Approach

alpha = value of the best possible move you can make, that you have computed so far

beta = value of the best possible move your opponent can make, that

you have computed so far

If at any time, alpha >= beta, then your opponent's best move can force a worse position

than your best move so far, and so there is no need to further evaluate this move

Alpha-beta pruning exercise

(a) What is value at the root, using minimax alone?

(b) What nodes could have been pruned from the search using alpha-beta pruning?

Show values of alpha and beta

max

min

max

min

Alpha-beta pruning exercise

(a) What is value at the root, using minimax alone?

(b) What nodes could have been pruned from the search using alpha-beta pruning?

max

min

max

min

Remember:

alpha: best move for us seen so far

beta: best move for opponent seen so far

If alpha >= beta, prune

49

Alpha-Beta Pruning

• Alpha-beta pruning effectiveness is highly

dependent on move ordering.

• Under optimal ordering conditions, alpha-beta

pruning needs to examine O(bm/2) nodes to pick

the best move, instead of O(bm) for minimax.

• This means that the effective branching factor

becomes root(b) instead of b – for chess about

6 instead of 35.

50

Alpha-Beta Pruning

• Put another way, alpha-beta can solve a tree

roughly twice as deep as minimax in the same

amount of time.

• If successors are examined in random order

rather than best-first, the total number of nodes

examined will be roughly O(b3m/4) for moderate

b.

51

Alpha-Beta Pruning

• Adding dynamic move-ordering schemes, such as trying

the first moves that were found to be best in the past,

brings the search effectiveness closer to the theoretical

limit.

• In this way, the “past” could be the previous move, or it

could come from previous exploration of the current

move.

• One way to gain such valuable information is with

iterative deepening search. (First search 1 ply and

record path of best moves, then 1 ply deeper, etc.)

52

Alpha-Beta Pruning

• As we saw in Chapter 3, iterative deepening on an

exponential game tree adds only a constant fraction to

the total search time, which can be more than made up

from better move ordering.

• The best moves are often called killer moves and to try

them first is called killer move heuristic.

• To avoid repeating states we can use a hash table of

previously seen positions (called a transposition table

– like the explored list in GRAPH-SEARCH).

53

A Few More Notes on Alpha-Beta

• We assume (typically) that opponent is rational and both

players have perfect information at each evaluation.

• Pruning does not affect the final result

• Good move ordering improves effectiveness of pruning

• With “perfect ordering”, time complexity O(bm/2)

– doubles the depth of search

– can easily reach depth of 8 and play good chess

(branching factor of 6 instead of 35)

54

Optimizing Minimax Search

• Use alpha-beta cutoffs

– Evaluate most promising moves first

• Remember prior positions, reuse their backed-up values

– Transposition table (like closed list in A*)

• Avoid generating equivalent states (e.g. 4 different first
corner moves in tic tac toe)

• But, we still can’t search a game like chess to the end!

55

Cutting Off Search

• Replace terminal test (end of game) by cutoff test

(don’t search deeper)

• Replace utility function (win/lose/draw) by heuristic

evaluation function that estimates results on the best

path below this board

– Like A* search, good evaluation functions mean good results

(and vice versa)

• Replace move generator by plausible move generator

(don’t consider “dumb” moves)

56

Cutting Off Search
• A more sophisticated type of cut off search applied

evaluation functions only to positions that are

quiescent (meaning: unlikely to exhibit wild swings in

value in the near future).

• Non-quiescent positions can be expanded further until

quiescent positions are reached. This extra search is

called a quiescent search; sometimes it is restricted to

consider only certain types of moves (e.g. capture

moves).

• To mitigate the horizon effect, one can use singular

extension (apply move that is clearly better than all

others at a given position).

57

Stochastic Games

• In nondeterministic games, chance is introduced

by dice, card shuffling

• How do we make correct decisions for

stochastic games? We calculate expected value.

58

Nondeterministic Games

59

Algorithm for Nondeterministic Games

• Expectiminimax give perfect play
– Just like Minimax except it has to handle chance nodes

• if state is a MAX node then
– return highest Expectiminimax – Value of Successors(state)

• if state is a MIN node then
– return lowest Expectiminimax – Value of Successors(state)

• if state is a CHANCE node then
– return average Expectiminimax – Value of Successors(state)

• Arthur Samuel’s checkers program, written in the 1950’s.

• In 1962, running on an IBM 7094, the machine defeated R.

W. Nealy, a future Connecticut state checkers champion.

• One of the first machine learning programs, introducing a

number of different learning techniques.

Samuel’s Checker Player

Rote Learning

• When a minimax value is computed for a position, that

position is stored along with its value.

• If the same position is encountered again, the value can

simply be returned.

• Due to memory constraints, all the generated board

positions cannot be stored, and Samuel used a set of criteria

for determining which positions to actually store.

Samuel’s Checker Player

Learning the evaluation function

• Comparing the static evaluation of a node with the backed-up

minimax value from a lookahead search.

• If the heuristic evaluation function were perfect, the static

value of a node would be equal to the backed-up value based

on a lookahead search applying the same evaluation on the

frontier nodes.

• If there’s a difference between the values, the evaluation the

heuristic function should be modified.

Samuel’s Checker Player

Selecting terms

• Samuel’s program could select which terms to actually use, from a

library of possible terms.

• In addition to material, these terms attempted to measure

following board features :

center control

advancement of the pieces

mobility

• The program computes the correlation between the values of

these different features and the overall evaluation score. If the

correlation of a particular feature dropped below a certain level,

the feature was replaced by another.

Samuel’s Checker Player

Deep Blue
http://www.dave-reed.com/csc550.S04/Presentations/chess/chess.ppt

• First Created in 1997

• Algorithm:

– iterative-deepening alpha-beta search, transposition table,
databases including openings of grandmaster games
(700,000), and endgames (all with 5 pieces or more pieces
remaining)

• Hardware:

– 30 IBM RS/6000 processors

• They do: high level decision making

– 480 custom chess processors

• all running in parallel

• They do :

– deep searches into the trees

– move generation and ordering,

– position evaluation (over 8000 evaluation points)

• Average performance:

– 126 million nodes/sec., 30 billion position/move generated,
search depth: 14

On May 11, 1997, the machine won a six-game match by two

wins to one with three draws against world champion Garry

Kasparov.[1] Kasparov accused IBM of cheating and

demanded a rematch, but IBM refused and dismantled Deep

Blue.[2] Kasparov had beaten a previous version of Deep

Blue in 1996.

After the loss, Kasparov said that he sometimes saw deep

intelligence and creativity in the machine's moves,

suggesting that during the second game, human chess

players had intervened on behalf of the machine, which

would be a violation of the rules. IBM denied that it cheated,

saying the only human intervention occurred between

games.

From “Deep Blue (chess computer)”
http://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

On 14 December 2006, Topalov directly accused Kramnik of

using computer assistance [from the Fritz chess computer] in

their World Championship match.

On 14 February 2007, Topalov's manager released pictures,

purporting to show cables in the ceiling of a toilet used by

Kramnik during the World Championship match in Elista.

A decade later: Topalov vs.

Kramnik
http://en.wikipedia.org/wiki/Veselin_Topalov

67

Summary
• A game can be defined by the initial state, the legal

actions in each state, the result of each action, a

terminal test, and a utility function that applies to

terminal states.

• In two-player, zero-sum games with perfect

information, the minimax algorithm can select

optimal moves by a depth-first enumeration of the

game tree.

• The alpha-beta search algorithm computes the same

optimal move as minimax, but achieves much greater

efficiency by eliminating subtrees that are probably

irrelevant.

68

Summary

• Usually, it is not feasible to consider the whole game

tree (even with alpha-beta), so we need to cut the search

off at some point and apply a heuristic evaluation

function that estimates the utility of a state.

• Games of chance can be handled by extension to the

minimax algorithm that evaluates a chance node by

taking the average utility of all its children, weighted by

the probability of each child.

