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Artificial Intelligence

Chapter 5: Adversarial Search



Pop Quiz 

ÅWhitetomateé



Pop Quiz 

ÅWhitetomateéin 292 moves! 
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Games

ÅMultiagent environment

ÅCooperative vs. competitive

ðCompetitive environment is where the agentsõ goals are in 

conflict

ðAdversarial Search

ÅGame Theory

ðA branch of  economics

ðViews the impact of  agents on others as significant rather 

than competitive (or cooperative).
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Properties of  Games

ÅGame Theorists
ðDeterministic, turn-taking, two-player, zero-sum games of  perfect 

information

ÅAI
ðDeterministic

ðFully-observable

ðTwo agents whose actions must alternate

ðUtility values at the end of  the game are equal and opposite

ÅIn chess, one player wins (+1), one player loses (-1)

ÅIt is this opposition between the agentsõ utility functions that makes the 
situation adversarial
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Why Games?

ÅSmall defined set of  rules

ÅWell defined knowledge set

ÅEasy to evaluate performance

ÅLarge search spaces

ðToo large for exhaustive search

ÅFame and Fortune

ðe.g. Chess and Deep Blue
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Games as Search Problems

ÅGames have a state space search

ðEach potential board or game position is a state

ðEach possible move is an operation to another state

ðThe state space can be HUGE!!!!!!!

ÅLarge branching factor (about 35 for chess)

ÅTerminal state could be deep (about 50 for chess)
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Games vs. Search Problems

ÅUnpredictable opponent

ÅSolution is a strategy

ðSpecifying a move for every possible opponent reply

ÅTime limits

ðUnlikely to find the goaléagent must approximate

ÅIn AI, the most common games are deterministic, turn-

taking, two-player, zero-sum games of  perfect 

information (i.e. fully observable environments). 
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Types of  Games

Deterministic Chance

Perfect

Information

Chess, 
checkers, go, 
othello

Backgammon, 
monopoly

Imperfect

Information

Bridge, poker, 
scabble, nuclear 
war
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Example Computer Games

ÅChess ðDeep Blue (World Champion 1997)

ÅCheckers ðChinook (World Champion 1994)

ÅOthello ðLogistello
ðBeginning, middle, and ending strategy

ðGenerally accepted that humans are no match for computers 
at Othello

ÅBackgammon ðTD-Gammon (Top Three)

ÅGo ðGoemateand Go4++ (Weak Amateur)

ÅBridge (Bridge Barron 1997, GIB 2000)
ðImperfect information

ðmultiplayer with two teams of  two



Formal Elements of  Games

ÅSo: Initial state, specifies how game is set up to start.

ÅPLAYER(s):Defineswhichplayerhasthemovein a

state.

ÅACTION(s):Returnsthesetof legalmovesin astate.

ÅRESULT(s,a): The transition mode, which defines the 

result of  a move. 

ÅTERMINAL-TEST(s):Aterminaltest,whichis true

when the game is over and false otherwise. 



Formal Elements of  Games

ÅUTILITY(s,p): A utility function (also called a payoff  

function) that defines the final numeric value for a game 

that ends in terminal state sfor player p. 

ÅSomegameshaveawindervarietyof possibleoutcomes;

thepayoffsin backgammonrangefrom 0 to +192.

ÅA zero-sum game is defined as one where the total 

payoff  to all playersis thesamefor everyinstance of  the 

game. 

ÅChessiszero-sumbecauseevery game has payoff  0+1, 

1+0, or ½ + ½. 
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Optimal Decisions in Games

ÅConsider games with two players (MAX, MIN)

ÅInitial State
ðBoard position and identifies the player to move

ÅSuccessor Function
ðReturns a list of  (move, state) pairs; each a legal move and 

resulting state

ÅTerminal Test
ðDetermines if  the game is over (at terminal states)

ÅUtility Function
ðObjective function, payoff  function, a numeric value for the 

terminal states (+1, -1) or (+192, -192)
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Game Trees
ÅThe root of  the tree is the initial state
ðNext level is all of MAXõs moves

ðNext level is all of MINõs moves

ðé

ÅExample: Tic-Tac-Toe
ðRoot has 9 blank squares (MAX)

ðLevel 1 has 8 blank squares (MIN)

ðLevel 2 has 7 blank squares (MAX)

ðé

ÅUtility function: 
ðwin for X is +1

ðwin for O is -1
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Game Trees
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Minimax Strategy

ÅBasic Idea:
ðChoose the move with the highest minimax value
Åbest achievable payoff  against best play

ðChoose moves that will lead to a win, even though min is trying to block

ÅMaxõs goal:  get to 1

ÅMinõs goal: get to -1

ÅMinimax value of  a node (backed up value):
ð If  N is terminal, use the utility value

ð If  N is a Max move, take max of  successors

ð If  N is a Min move, take min of  successors
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Minimax Strategy
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Minimax Algorithm
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Properties of  Minimax

ÅComplete

ðYes if  the tree is finite (e.g. chess has specific rules for this)

ÅOptimal

ðYes, against an optimal opponent, otherwise???

ÅTime

ðO(bm) (m is the maximum tree depth, b is the number of  

legal moves at each point)

ÅSpace

ðO(bm) depth first exploration of  the state space
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Resource Limits

ÅSuppose there are 100 seconds, explore 104 nodes / 

second

Å106 nodes per move

ÅStandard approach

ðCutoff  test ðdepth limit 

Åquiesencesearch ðvalues that do not seem to change

ðChange the evaluation function



21

Evaluation Functions

ÅIn 1950, Shannon proposed that programs should cut off  

thesearchearlierto applyaheuristicevaluationfunction

to statesin thesearch.

ÅThistechniqueeffectivelyturnsnon-terminalnodesinto

terminalleaves. 

ÅThe idea is to replace the utility function by a heuristic 

evaluation function (EVAL), which estimates the positionõs 

utility, and replace the terminal test by a cutoff  test that 

decides when to apply EVAL.

ÅAn evaluation function returns an estimate of  the expected 

utility of  the game from a give position, just as heuristic 

functions return an estimate of  the distance to the goal. 
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Evaluation Functions

ÅThe performance of  a game-playing program depends 

strongly on the quality of  its evaluation function ðbut how 

to design?

(1) The evaluationfunctionshouldordertheterminalstates

in thesamewayasthetrueutility function:states that are 

wins must evaluate better than draws, etc. 

(2) Thecomputationmustnot taketoo long!

(3) For nonterminal states, the evaluation function should be 

strongly correlated with the actual òchances of winning.ó 
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Evaluation Functions
ÅNote that if  the search must be cut off  at nonterminal 

states, then the algorithm will necessarily be uncertainabout 

the final outcomes of  those states. 

ÅUsually,anevaluationfunctioncalculatesvariousfeatures

of astate(e.g. number of  pawns, etc.). 

ÅThefeaturesdefinevariouscategoriesor equivalenceclasses

of states:thestatesin eachcategoryhavethesamevalues

for all features.

ÅFor example:supposeexperiencesuggeststhat72%of

statesencountered in a two-pawn vs. one-pawn category 

lead to a win (utility: +1); 20% to a loss (0) and 8% to a 

draw (1/2). 

ÅExpectedvalue:(0.72 x 1)+(0.20 x 0) + (0.08 x ½) = 0.76. 
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Evaluation Functions

ÅMostevaluationfunctionscompute separate 

numerical contributions from each feature and 

then combine them to find the total value.

ðTypical evaluation function is a linear sum of  

features

ðEval(s) = w1f1(s) + w2f2(s) + é + wnfn(s)

Åw1 = 9

Åf1(s) = number of  white queens) ðnumber of  black 

queens

Åetc.



Game tree
From M. T. Jones, Artificial Intelligence:  A Systems Approach

Current board:

Xôs move



How many nodes?

Game tree
From M. T. Jones, Artificial Intelligence:  A Systems Approach

Current board:

Xôs move



Evaluation Function
From M. T. Jones, Artificial Intelligence:  A Systems Approach

Evaluation function f(n) measures ñgoodnessò of board configuration n.   Assumed to be better

estimate as search is deepened (i.e., at lower levels of game tree).  

Evaluation function here:  ñNumber of possible wins (rows, columns, diagonals) 

not blocked by opponent, minus number of possible wins for opponent not blocked by current player.ò  

Current board:

Oôs move



Minimax search:  Expand the game tree by m ply (levels in game tree) 

in a limited depth-first search.  Then apply evaluation function at lowest level, and 

propagate results back up the tree. 

Minimax search
From M. T. Jones, Artificial Intelligence:  A 

Systems Approach
Current board:

Xôs move



Minimax search
From M. T. Jones, Artificial Intelligence:  A 

Systems Approach

Calculate f(n)

Current board:

Xôs move



Minimax search
From M. T. Jones, Artificial Intelligence:  A 

Systems Approach

Calculate f(n)

Propagate min

value of children

to parent

Current board:

Xôs move
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Minimax search
From M. T. Jones, Artificial Intelligence:  A 

Systems Approach

Calculate f(n)

Propagate min

value of children

to parent

Propagate max

value of children

to parent

Propagate min

value of children

to parent

Propagate max

value of children

to parent

Current board:

Xôs move



Minimax algorithm:  Example
From M. T. Jones, Artificial Intelligence:  A Systems Approach

Current board

Xôs move



Exercise

What is value at the root? 
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Alpha-Beta Pruning

ÅThe problem with minimax search is that the number 

of  games states it has to examine is exponential in the

depthof thetree.

ÅWecanõteliminate the exponent ðhowever, we can 

effectively cut it in half!

ÅThekeyideais thatit ispossibleto computethecorrect

minimaxdecisionwithout looking ateverynodein the

gametrue.

ÅWe òpruneó away branches in the game tree that cannot 

possibly influence the final decision. 
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Alpha-Beta Pruning

ÅRecognize when a position can never be chosen 

in minimax no matter what its children are

ðMax (3, Min(2,x,y) é)  is always Ó 3

ðMin (2, Max(3,x,y) é) is always Ò 2

ðWe know this without knowing x and y!
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Alpha-Beta Pruning

ÅAlpha = the value of the best choice weõve 

found so far for MAX (highest)

ÅBeta = the value of the best choice weõve found 

so far for MIN  (lowest)

ÅWhen maximizing, cut off  values lower than 

Alpha

ÅWhen minimizing, cut off  values greater than 

Beta
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Alpha-Beta Pruning Example


