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Artificial Intelligence

Chapter 5: Adversarial Search



Pop Quiz 

• White to mate…



Pop Quiz 

• White to mate…in 292 moves! 
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Games

• Multiagent environment

• Cooperative vs. competitive

– Competitive environment is where the agents’ goals are in 

conflict

– Adversarial Search

• Game Theory

– A branch of  economics

– Views the impact of  agents on others as significant rather 

than competitive (or cooperative).
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Properties of  Games

• Game Theorists
– Deterministic, turn-taking, two-player, zero-sum games of  perfect 

information

• AI
– Deterministic

– Fully-observable

– Two agents whose actions must alternate

– Utility values at the end of  the game are equal and opposite

• In chess, one player wins (+1), one player loses (-1)

• It is this opposition between the agents’ utility functions that makes the 
situation adversarial
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Why Games?

• Small defined set of  rules

• Well defined knowledge set

• Easy to evaluate performance

• Large search spaces

– Too large for exhaustive search

• Fame and Fortune

– e.g. Chess and Deep Blue
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Games as Search Problems

• Games have a state space search

– Each potential board or game position is a state

– Each possible move is an operation to another state

– The state space can be HUGE!!!!!!!

• Large branching factor (about 35 for chess)

• Terminal state could be deep (about 50 for chess)
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Games vs. Search Problems

• Unpredictable opponent

• Solution is a strategy

– Specifying a move for every possible opponent reply

• Time limits

– Unlikely to find the goal…agent must approximate

• In AI, the most common games are deterministic, turn-

taking, two-player, zero-sum games of  perfect 

information (i.e. fully observable environments). 
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Types of  Games

Deterministic Chance

Perfect

Information

Chess, 
checkers, go, 
othello

Backgammon, 
monopoly

Imperfect

Information

Bridge, poker, 
scabble, nuclear 
war
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Example Computer Games

• Chess – Deep Blue (World Champion 1997)

• Checkers – Chinook (World Champion 1994)

• Othello – Logistello
– Beginning, middle, and ending strategy

– Generally accepted that humans are no match for computers 
at Othello

• Backgammon – TD-Gammon (Top Three)

• Go – Goemate and Go4++ (Weak Amateur)

• Bridge (Bridge Barron 1997, GIB 2000)
– Imperfect information

– multiplayer with two teams of  two



Formal Elements of  Games

• So: Initial state, specifies how game is set up to start.

• PLAYER(s): Defines which player has the move in a

state.

• ACTION(s): Returns the set of legal moves in a state.

• RESULT(s,a): The transition mode, which defines the 

result of  a move. 

• TERMINAL-TEST(s):A terminal test, which is true

when the game is over and false otherwise. 



Formal Elements of  Games

• UTILITY(s,p): A utility function (also called a payoff  

function) that defines the final numeric value for a game 

that ends in terminal state s for player p. 

• Some games have a winder variety of possible outcomes;

the payoffs in backgammon range from 0 to +192.

• A zero-sum game is defined as one where the total 

payoff  to all players is the same for every instance of  the 

game. 

• Chess is zero-sum because every game has payoff  0+1, 

1+0, or ½ + ½. 
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Optimal Decisions in Games

• Consider games with two players (MAX, MIN)

• Initial State
– Board position and identifies the player to move

• Successor Function
– Returns a list of  (move, state) pairs; each a legal move and 

resulting state

• Terminal Test
– Determines if  the game is over (at terminal states)

• Utility Function
– Objective function, payoff  function, a numeric value for the 

terminal states (+1, -1) or (+192, -192)
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Game Trees
• The root of  the tree is the initial state

– Next level is all of  MAX’s moves

– Next level is all of  MIN’s moves

– …

• Example: Tic-Tac-Toe
– Root has 9 blank squares (MAX)

– Level 1 has 8 blank squares (MIN)

– Level 2 has 7 blank squares (MAX)

– …

• Utility function: 
– win for X is +1

– win for O is -1
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Game Trees
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Minimax Strategy

• Basic Idea:
– Choose the move with the highest minimax value

• best achievable payoff  against best play

– Choose moves that will lead to a win, even though min is trying to block

• Max’s goal:  get to 1

• Min’s goal: get to -1

• Minimax value of  a node (backed up value):
– If  N is terminal, use the utility value

– If  N is a Max move, take max of  successors

– If  N is a Min move, take min of  successors
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Minimax Strategy
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Minimax Algorithm
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Properties of  Minimax

• Complete

– Yes if  the tree is finite (e.g. chess has specific rules for this)

• Optimal

– Yes, against an optimal opponent, otherwise???

• Time

– O(bm) (m is the maximum tree depth, b is the number of  

legal moves at each point)

• Space

– O(bm) depth first exploration of  the state space
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Resource Limits

• Suppose there are 100 seconds, explore 104 nodes / 

second

• 106 nodes per move

• Standard approach

– Cutoff  test – depth limit 

• quiesence search – values that do not seem to change

– Change the evaluation function
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Evaluation Functions

• In 1950, Shannon proposed that programs should cut off  

the search earlier to apply a heuristic evaluation function

to states in the search.

• This technique effectively turns non-terminal nodes into

terminal leaves. 

• The idea is to replace the utility function by a heuristic 

evaluation function (EVAL), which estimates the position’s 

utility, and replace the terminal test by a cutoff  test that 

decides when to apply EVAL.

• An evaluation function returns an estimate of  the expected 

utility of  the game from a give position, just as heuristic 

functions return an estimate of  the distance to the goal. 
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Evaluation Functions

• The performance of  a game-playing program depends 

strongly on the quality of  its evaluation function – but how 

to design?

(1) The evaluation function should order the terminal states

in the same way as the true utility function: states that are 

wins must evaluate better than draws, etc. 

(2) The computation must not take too long!

(3) For nonterminal states, the evaluation function should be 

strongly correlated with the actual “chances of  winning.” 
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Evaluation Functions
• Note that if  the search must be cut off  at nonterminal 

states, then the algorithm will necessarily be uncertain about 

the final outcomes of  those states. 

• Usually, an evaluation function calculates various features

of a state (e.g. number of  pawns, etc.). 

• The features define various categories or equivalence classes

of states: the states in each category have the same values

for all features.

• For example: suppose experience suggests that 72% of

states encountered in a two-pawn vs. one-pawn category 

lead to a win (utility: +1); 20% to a loss (0) and 8% to a 

draw (1/2). 

• Expected value: (0.72 x 1)+(0.20 x 0) + (0.08 x ½) = 0.76. 
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Evaluation Functions

• Most evaluation functions compute separate 

numerical contributions from each feature and 

then combine them to find the total value.

– Typical evaluation function is a linear sum of  

features

– Eval(s) = w1f1(s) + w2f2(s) + … + wnfn(s)

• w1 = 9

• f1(s) = number of  white queens) – number of  black 

queens

• etc.



Game tree
From M. T. Jones, Artificial Intelligence:  A Systems Approach

Current board:

X’s move



How many nodes?

Game tree
From M. T. Jones, Artificial Intelligence:  A Systems Approach

Current board:

X’s move



Evaluation Function
From M. T. Jones, Artificial Intelligence:  A Systems Approach

Evaluation function f(n) measures “goodness” of board configuration n.   Assumed to be better

estimate as search is deepened (i.e., at lower levels of game tree).  

Evaluation function here:  “Number of possible wins (rows, columns, diagonals) 

not blocked by opponent, minus number of possible wins for opponent not blocked by current player.”  

Current board:

O’s move



Minimax search:  Expand the game tree by m ply (levels in game tree) 

in a limited depth-first search.  Then apply evaluation function at lowest level, and 

propagate results back up the tree. 

Minimax search
From M. T. Jones, Artificial Intelligence:  A 

Systems Approach
Current board:

X’s move



Minimax search
From M. T. Jones, Artificial Intelligence:  A 

Systems Approach

Calculate f(n)

Current board:

X’s move



Minimax search
From M. T. Jones, Artificial Intelligence:  A 

Systems Approach

Calculate f(n)

Propagate min

value of children

to parent

Current board:

X’s move



Minimax search
From M. T. Jones, Artificial Intelligence:  A 

Systems Approach

Calculate f(n)

Propagate min

value of children

to parent

Propagate max

value of children

to parent

Current board:

X’s move



Minimax search
From M. T. Jones, Artificial Intelligence:  A 

Systems Approach

Calculate f(n)

Propagate min

value of children

to parent

Propagate max

value of children

to parent

Propagate min

value of children

to parent

Current board:

X’s move



Minimax search
From M. T. Jones, Artificial Intelligence:  A 

Systems Approach

Calculate f(n)

Propagate min

value of children

to parent

Propagate max

value of children

to parent

Propagate min

value of children

to parent

Propagate max

value of children

to parent

Current board:

X’s move



Minimax algorithm:  Example
From M. T. Jones, Artificial Intelligence:  A Systems Approach

Current board

X’s move



Exercise

What is value at the root? 
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Alpha-Beta Pruning

• The problem with minimax search is that the number 

of  games states it has to examine is exponential in the

depth of the tree.

• We can’t eliminate the exponent – however, we can 

effectively cut it in half!

• The key idea is that it is possible to compute the correct

minimax decision without looking at every node in the

game true.

• We “prune” away branches in the game tree that cannot 

possibly influence the final decision. 
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Alpha-Beta Pruning

• Recognize when a position can never be chosen 

in minimax no matter what its children are

– Max (3, Min(2,x,y) …)  is always ≥ 3

– Min (2, Max(3,x,y) …) is always ≤ 2

– We know this without knowing x and y!
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Alpha-Beta Pruning

• Alpha = the value of  the best choice we’ve 

found so far for MAX (highest)

• Beta = the value of  the best choice we’ve found 

so far for MIN  (lowest)

• When maximizing, cut off  values lower than 

Alpha

• When minimizing, cut off  values greater than 

Beta
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Alpha-Beta Pruning Example
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Alpha-Beta Pruning Example
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Alpha-Beta Pruning Example
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Alpha-Beta Pruning Example
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Alpha-Beta Pruning Example



Algorithm: Minimax with Alpha-Beta Pruning 

• function alphabeta(node, depth, α, β, Player) 

• if depth = 0 or node is a terminal node 

• return the heuristic value of node 

• if Player = MaxPlayer

• for each child of node 

• α := max(α, alphabeta(child, depth-1, α, β, not(Player) )) 

• if β ≤ α

• break ; Prune

• return α

• else

• for each child of node 

• β := min(β, alphabeta(child, depth-1, α, β, not(Player) )) 

• if β ≤ α break ; Prune

• return β

• end

• ; Initial call

• alphabeta(origin, depth, -infinity, +infinity, MaxPlayer) 



Alpha-Beta Pruning Example
From M. T. Jones, Artificial Intelligence:  A Systems Approach



Alpha-Beta Pruning Example
From M. T. Jones, Artificial Intelligence:  A Systems Approach

alpha = value of the best possible move you can make, that you have computed so far

beta = value of the best possible move your opponent can make, that  

you have computed so far

If at any time, alpha >= beta, then your opponent's best move can force a worse position 

than your best move so far, and so there is no need to further evaluate this move



Alpha-beta pruning exercise

(a) What is value at the root, using minimax alone?  

(b) What nodes could have been pruned from the search using alpha-beta pruning?

Show values of alpha and beta  

max

min

max

min



Alpha-beta pruning exercise

(a) What is value at the root, using minimax alone?  

(b) What nodes could have been pruned from the search using alpha-beta pruning?  

max

min

max

min

Remember: 

alpha: best move for us seen so far

beta: best move for opponent seen so far

If alpha >= beta, prune
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Alpha-Beta Pruning

• Alpha-beta pruning effectiveness is highly 

dependent on move ordering. 

• Under optimal ordering conditions, alpha-beta 

pruning needs to examine O(bm/2) nodes to pick 

the best move, instead of  O(bm) for minimax. 

• This means that the effective branching factor 

becomes root(b) instead of  b – for chess about 

6 instead of  35. 
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Alpha-Beta Pruning

• Put another way, alpha-beta can solve a tree 

roughly twice as deep as minimax in the same 

amount of  time. 

• If successors are examined in random order

rather than best-first, the total number of  nodes 

examined will be roughly O(b3m/4) for moderate 

b. 
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Alpha-Beta Pruning

• Adding dynamic move-ordering schemes, such as trying 

the first moves that were found to be best in the past, 

brings the search effectiveness closer to the theoretical 

limit. 

• In this way, the “past” could be the previous move, or it 

could come from previous exploration of  the current 

move. 

• One way to gain such valuable information is with 

iterative deepening search. (First search 1 ply and 

record path of  best moves, then 1 ply deeper, etc.)
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Alpha-Beta Pruning

• As we saw in Chapter 3, iterative deepening on an 

exponential game tree adds only a constant fraction to 

the total search time, which can be more than made up 

from better move ordering. 

• The best moves are often called killer moves and to try

them first is called killer move heuristic.

• To avoid repeating states we can use a hash table of  

previously seen positions (called a transposition table 

– like the explored list in GRAPH-SEARCH). 
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A Few More Notes on Alpha-Beta

• We assume (typically) that opponent is rational and both 

players have perfect information at each evaluation. 

• Pruning does not affect the final result

• Good move ordering improves effectiveness of  pruning

• With “perfect ordering”, time complexity O(bm/2)

– doubles the depth of  search

– can easily reach depth of  8 and play good chess 

(branching factor of  6 instead of  35)
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Optimizing Minimax Search

• Use alpha-beta cutoffs 

– Evaluate most promising moves first

• Remember prior positions, reuse their backed-up values

– Transposition table (like closed list in A*)

• Avoid generating equivalent states (e.g. 4 different first 
corner moves in tic tac toe)

• But, we still can’t search a game like chess to the end!
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Cutting Off  Search

• Replace terminal test (end of  game) by cutoff  test 

(don’t search deeper)

• Replace utility function (win/lose/draw) by heuristic 

evaluation function that estimates results on the best 

path below this board

– Like A* search, good evaluation functions mean good results 

(and vice versa)

• Replace move generator by plausible move generator 

(don’t consider “dumb” moves)
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Cutting Off  Search
• A more sophisticated type of  cut off  search applied 

evaluation functions only to positions that are 

quiescent (meaning: unlikely to exhibit wild swings in 

value in the near future). 

• Non-quiescent positions can be expanded further until 

quiescent positions are reached. This extra search is 

called a quiescent search; sometimes it is restricted to 

consider only certain types of  moves (e.g. capture

moves).

• To mitigate the horizon effect, one can use singular 

extension (apply move that is clearly better than all 

others at a given position). 
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Stochastic Games

• In nondeterministic games, chance is introduced 

by dice, card shuffling

• How do we make correct decisions for 

stochastic games? We calculate expected value. 
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Nondeterministic Games
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Algorithm for Nondeterministic Games

• Expectiminimax give perfect play
– Just like Minimax except it has to handle chance nodes

• if  state is a MAX node then
– return highest Expectiminimax – Value of  Successors(state)

• if  state is a MIN node then
– return lowest Expectiminimax – Value of  Successors(state)

• if  state is a CHANCE node then
– return average Expectiminimax – Value of  Successors(state)



• Arthur Samuel’s checkers program, written in the 1950’s.

• In 1962, running on an IBM 7094, the machine defeated R.

W. Nealy, a future Connecticut state checkers champion.

• One of the first machine learning programs, introducing a

number of different learning techniques.

Samuel’s Checker Player



Rote Learning

• When a minimax value is computed for a position, that

position is stored along with its value.

• If the same position is encountered again, the value can

simply be returned.

• Due to memory constraints, all the generated board

positions cannot be stored, and Samuel used a set of criteria

for determining which positions to actually store.

Samuel’s Checker Player



Learning the evaluation function

• Comparing the static evaluation of a node with the backed-up

minimax value from a lookahead search.

• If the heuristic evaluation function were perfect, the static

value of a node would be equal to the backed-up value based

on a lookahead search applying the same evaluation on the

frontier nodes.

• If there’s a difference between the values, the evaluation the

heuristic function should be modified.

Samuel’s Checker Player



Selecting terms

• Samuel’s program could select which terms to actually use, from a

library of possible terms.

• In addition to material, these terms attempted to measure

following board features :

center control

advancement of the pieces

mobility

• The program computes the correlation between the values of

these different features and the overall evaluation score. If the

correlation of a particular feature dropped below a certain level,

the feature was replaced by another.

Samuel’s Checker Player



Deep Blue
http://www.dave-reed.com/csc550.S04/Presentations/chess/chess.ppt

• First Created in 1997

• Algorithm:

– iterative-deepening alpha-beta search, transposition table, 
databases including openings of grandmaster games 
(700,000), and endgames (all with 5 pieces or more pieces 
remaining)

• Hardware:

– 30 IBM RS/6000 processors

• They do: high level decision making

– 480 custom chess processors 

• all running in parallel

• They do : 

– deep searches into the trees

– move generation and ordering, 

– position evaluation (over 8000 evaluation points)

• Average performance:

– 126 million nodes/sec., 30 billion position/move generated, 
search depth: 14 



On May 11, 1997, the machine won a six-game match by two 

wins to one with three draws against world champion Garry 

Kasparov.[1] Kasparov accused IBM of cheating and 

demanded a rematch, but IBM refused and dismantled Deep 

Blue.[2] Kasparov had beaten a previous version of Deep 

Blue in 1996.

After the loss, Kasparov said that he sometimes saw deep 

intelligence and creativity in the machine's moves, 

suggesting that during the second game, human chess 

players had intervened on behalf of the machine, which 

would be a violation of the rules. IBM denied that it cheated, 

saying the only human intervention occurred between 

games.

From “Deep Blue (chess computer)”
http://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)



On 14 December 2006, Topalov directly accused Kramnik of 

using computer assistance [from the Fritz chess computer] in 

their World Championship match. 

On 14 February 2007, Topalov's manager released pictures, 

purporting to show cables in the ceiling of a toilet used by 

Kramnik during the World Championship match in Elista. 

A decade later: Topalov vs. 

Kramnik
http://en.wikipedia.org/wiki/Veselin_Topalov
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Summary
• A game can be defined by the initial state, the legal 

actions in each state, the result of  each action, a 

terminal test, and a utility function that applies to 

terminal states. 

• In two-player, zero-sum games with perfect

information, the minimax algorithm can select 

optimal moves by a depth-first enumeration of  the 

game tree. 

• The alpha-beta search algorithm computes the same

optimal move as minimax, but achieves much greater

efficiency by eliminating subtrees that are probably 

irrelevant. 
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Summary

• Usually, it is not feasible to consider the whole game 

tree (even with alpha-beta), so we need to cut the search 

off  at some point and apply a heuristic evaluation 

function that estimates the utility of  a state. 

• Games of chance can be handled by extension to the

minimax algorithm that evaluates a chance node by

taking the average utility of all its children, weighted by 

the probability of  each child. 


