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Games

A Multiagent environment

A Cooperative vs. competitive

OoCompeti tive environment 1| s
conflict

0 Adversarial Search
A Game Theory

d A branch of economics

0 Views the impact of agents on others as significant rather
than competitive (or cooperative).



Properties of Games

A Game Theorists

d Deterministic, turtaking, tweplayer, zergsum games of perfect
Information

A Al

d Deterministic

0 Fully-observable

d Two agents whose actions must alternate

d Utility values at the end of the game are equal and opposite
A In chess, one player wins (+1), one player ages (

Al't is this opposition between the
situation adversarial



Why Games?

A Small defined set of rules

A Well definec
A Easy to eva

knowledge set
uate performance

A Large searc

N spaces

0 Too large for exhaustive search

A Fame and Fortune
0 e.g. Chess and Deep Blue



Games as Search Problems

A Games have a state space search
0 Each potential board or game position is a state
0 Each possible move is an operation to another sta

ALarge branching factor (about 35 for chess)
ATerminal state could be deep (about 50 for chess)



Games vs. Search Problems

A Unpredictablepponent
A Solution is a strategy

0 Specifying a move for every possible opponent rej
A Time limits

ounl i kely to find the g

A In Al, the most common games are deterministic, tur
taking, tweplayer, zersum games of perfect
Information (i.e. fully observable environments).



Types of Games

Deterministic Chance

Perfect Chess, Backgammon,

Information checkers, go, | monopoly
othello

Imperfect Bridge, poker,

Information scabble, nuclear

war




Example Computer Games

A Chess$ Deep Blue (World Champion 1997)
A Checker® Chinook (World Champion 1994)

A Othellod Logistello

0 Beginning, middle, and ending strategy

0 Generally accepted that humans are no match for compute
at Othello

A Backgammod TD-Gammon (Top Three)
A Go 8 Goemateind Go4++ (Weak Amateur)
A Bridge (Bridge Barron 1997, GIB 2000)

0 Imperfect information
o0 multiplayer with two teams of two
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Formal Elements of Games

A S Initial state, specifies how game is set up to start.

A PLAYER(s)Defineswhichplayehasthe movein a
state.

A ACTION(s):Returnghesetof legaimovesn astate.

A RESULTS$,3: The transition mode, which defines the
result of a move.

A TERMINAL-TEST(s):Aerminalest,whichistrue
when the game is over and false otherwise.



Formal Elements of Games

A UTILITY(s,p: Autility function (also called a payoff
function) that defines the final numeric value for a gan
that ends in terminal stat®r playelp.

A Somep

amesaveawindervarietyof possibleutcomes;

the payoffsin backgammormnggrom Oto +192.
A A zero-sum gameis defined as one where the total

payoff
game.

to all playersthe samdor everyinstance of the

A Chesss zerosumbecausevery game has payoff 0+1,
1+0, or %2 + 1.



Optimal Decisions in Games

A Consider games with two players (MAX, MIN)
A Initial State
0 Board position and identifies the player to move

A Successor Function

0 Returns a list of (move, state) pairs; each a legal move an
resulting state

A Terminal Test
0 Determines if the game is over (at terminal states)

A Utility Function

0 Objective function, payoff function, a numeric value for the
terminal states (+11) or (+192;192)
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Game Trees

A The root of the tree is the initial state

O Ne xt | ev el I s al | o f
O Ne xt | ev el E -2 XL & o f
0 é

A Example: TicTacToe
d Root has 9 blank squares (MAX)
d Level 1 has 8 blank squares (MIN)
d Level 2 has 7 blank squares (MAX)
d0 e

A Utility function:
d win for X is +1
d win for O is-1

MAXOSs
MI NOs

Mo V €
MO V €
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MAX (X)

MIN (O]

MAX (X)

MIN (O)

TERMINAL

Utility

Game Trees

X
X X
X X
0 x| Jo] [x[
O X X0 0
X X
O|X X|O|X 8]
0x 00X X
0 X[ X0 8]
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Minimax Strategy

A Basic Idea:

d Choose the move with the highest minimax value
A best achievable payoff against best play
0 Choose moves that will lead to a win, even though min is trying to bilc

AMaxds goal : get to 1
AMi nds gdal: get to

A Minimax value of a node (backed up value):
o If N is terminal, use the utility value
o0 If N is a Max move, take max of successors
o0 If N is a Min move, take min of successors
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MAX

MIN

Minimax Strategy
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Minimax Algorithm

function MINIMAX-DECISION(state, game) returns an action
action, state < the a, s in SUCCESSORS(state)

such that MINIMAX-VALUE(s, game) is maximized
return action

function MINIMAX-VALUE(s¢q¢e, game) returns a utility value

if TERMINAL-TEST(state) then

return UTILITY(5¢g¢e)
else if MAX is to move in state then

return the highest MINIMAX-VALUE of SUCCESSORS(state)
else

return the lowest MINIMAX-VALUE of Su-:‘.{;:ESSURS{sng)
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Properties of Minimax

A Complete

0 Yes if the tree is finite (e.g. chess has specific rules for th
A Optimal

0 Yes, against an optimal opponent, otherwise???

A Time

0 O(b™M) (m is the maximum tree depth, b is the number of
legal moves at each point)

A Space
d O(bm) depth first exploration of the state space
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Resource Limits

A Suppose there are 100 seconds, exploned€s /
second

A 1C° nodes per move

A Standard approach

0 Cutoff testd depth limit
A quiesencsearc!® values that do not seem to change

0 Change the evaluation function
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Evaluation Functions

A In 1950, Shannon proposed that programs should cut off
the searclearlierto applyaheuristicevaluationfunction
to statesn thesearch.

A Thistechniquesffectivelyturnsnonterminaihodesnto
terminalleaves.

A The idea is to replace the utility function by a heuristic
evaluation function (EVAL)
utility, and replace the terminal test bytaff testthat
decides when to apply EVAL.

A An evaluation function returns an estimate of the expecte
utility of the game from a give position, just as heuristic

functions return an estimate of the distance to the goal.
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Evaluation Functions

A The performance of a gamlaying program depends
strongly on the quality of its evaluation fund@ibat how
to design?

(1) The evaluatiofunctionshouldordertheterminalstates
In the sameawvayasthetrue utility function:states that are
wins must evaluate better than draws, etc.

(2) Thecomputatiormustnot taketoo long!

(3) For nonterminal states, the evaluation function should bt
strongly correlated with
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Evaluation Functions

A Note that if the search must be cut off at nonterminal
states, then the algorithm will necessariundertaabout
the final outcomes of those states.

A Usuallyanevaluatioiunctioncalculatesariousfeatures
of astate(e.g. number of pawns, etc.).

A Thefeatureslefinevariouscategoriesr equivalencelasses
of statesthestatesn eachcategoryhavethesamevalues
for allfeatures.

A For examplesuppose@xperienceuggestthat 72%of
statesencountered in a twzawn vs. orpawn category
lead to a win (utility: +1); 20% to a loss (0) and 8% to a
draw (1/2).

A Expected/alue{0.72 x 1)+(0.20 x 0) + (0.08 x %2) = 0.76.



Evaluation Functions

A Mostevaluatioiunctionscompute separate
numerical contributions from each feature an
then combine them to find the total value.

0 Typical evaluation function is a linear sum of

features
8 Evals) =wf,(s) +wf,( s ) wfs) +
Aw, =9
Af.(s) = number of white queedsh)umber of black
queens

Aetc.
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Game tree

From M. T. Jones, Artificial Intelligence: A Systems Approach

Current board:
X6s move




Game tree

From M. T. Jones, Artificial Intelligence: A Systems Approach

Current board:
X6s move

O move

How many nodes? _—

0|0 0 0 O| 0 @) O




Evaluation Function

From M. T. JonegAtrtificial Intelligence: A Systems Approach

X
x| o CuArrent board:
O0s move
X | X X X X X X
X 1|10 X |10 X| X |0 X |10 X |0 X moves
O O O X O X | O
f(n)=4-2=2 f(n)=4-1=3 f(n)=4-2=2 f(n)=4-1=3 f(n)=4-1=3

Evaluation functiorfln) measur es figoodnesrs Assonfedtb loedettek c o n
estimate as search is deepened (i.e., at lower levels of game tree).

Eval uation function here: ANumber of possi
not blocked by opponent, mi nus number of po



Minimax search

From M. T. JonesArtificial Intelligence: A
Systems Approach Current board:
X0s move 7
x| || HE |
X
X
O move — E —
(o] / (o]
| X 0| X X . X X X X |0
o ‘ 0
X move -
X | O O/ ’ O
X X | X ‘ X
‘ X
O move /-/-""’}:, -
(o] Oﬁ O/ (0] (0] ;HO ;-‘O
X 0| X X X X X
X X 0| X X X X |0

Minimax search: Expand the game treenbply (levels in game tree)
in a limited deptHirst search. Then apply evaluation function at lowest level, and
propagate results back up the tree.



Minimax search

From M. T. JonesArtificial Intelligence: A

Systems Approach Current board:

X6s move

—

Calculate f(n) X X °1X




Minimax search

From M. T. JonesArtificial Intelligence: A

Systems Approach Current board:

X6s move

—

(o] (o]
X 0| X X X
(o]
X move ///// -
X O// O (@]
X | X X
X >
Propagate min O move —
value of children —
0| 0 (0] (o]
to parent » 5T

Calculate f(n) X X °1X




Minimax search

From M. T. JonesArtificial Intelligence: A

Systems Approach Current board:

X6s move

—

O move -
/-/////
(o] (o]
X 0| X X X
(o]
Propagate max  xmoe =
value of children_ 7] 0 0
to parent —— x x x
X >
Propagate min O rove —
value of children —
o|O0 (0] (@]
to parent . 5T
Calculate f(n) X X °1X



Minimax search

From M. T. JonesArtificial Intelligence: A

Systems Approach

Current board:
X6s move

e

==

X X
X
x -
O move ////'//////
Propagate ming; i — :
value of children " 5« <
to parent — | o
Propagate max  xmo —
value of children__[x13 0 0
to parent —— x x x
X >
Propagate min S —
value of children —
o|O0 (0] (@]
to parent . 5T
Calculate f(n) X X °1X



Minimax search

From M. T. JonesArtificial Intelligence: A

Systems Approach Current board:

X6s move

Propagate max /

value of childrep————
X I X
to parent - x
x -
O move ////'//////
Propagate ming; ///// — :
value of children " 5« <
to parent — | o
=
Propagate max  xmov —
. _ —
value of children_ 7] 0 0
to pal‘ent / X X | x X
X >
Propagate min o move —
value of children —
o|O0 (0] (@]
to parent . S Tx
Calculate f(n) X X °1X



Minimax algorithm: Example

From M. T. Jones, Atrtificial Intelligence: A Systems Approach

00 Current board
Max | X]X10 X6s move
X
,/-// O 7-7-\-7\—‘-—‘
olo]x olo olo
Mo | X | X|O X X0 X| x| 0
X x| X X | X
0 1 1
olo]x olo]x ololo olo olo[o olo
Max | X |X|O| 0 X x|o| 1 X[ x[o] -1 X/ x ol 1 X[ x[o] -1 X| x| o
ol |X 0| X x| X x| 0] x X [ x ol X|X
olo[x olo[x olo[x olo[x
x| x[o]| o x| x[o]| 1 x| x[o]| 1 x|x[o]| o
o[ x[x X [o[x X [0 x ol x[x

AN

Evaluated Node



Exercise

Max

) A

i O ( @ @

What is value at the root?



AlphaBeta Pruning

A The problem with minimax search is that the number
of games states it has to examine is exponential in tl
depthof thetree.

A Wec a elitninate the exponedihowever, we can
effectively cut it in half!

A Thekeyideaisthatit is possibléo computethe correct
minimaxdecisiorwithout looking aéverynodein the
gamerue.

AWe oOopruned away branches
possibly influence the final decision.
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AlphaBeta Pruning

A Recognize when a position can never be chos
IN Minimaxno matter what its children are

oMax (3, Min(2,x,vy) )
oMi n ( 2, Max (3, xXx,Yy) ¢&)
d We know this without knowing x and V!
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AlphaBeta Pruning

AAl pha = the value of
found so far for MAX (highest)
ABeta = the value of

so far for MIN (lowest)

A When maximizing, cut off values lower than
Alpha

A When minimizing, cut off values greater than
Beta
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Alpha-Beta Pruning Example

39



