A.L: Genetic Algorithms

Some Examples of
Biologically Inspired Al

Neural networks

Evolutionary computation (e.g., genetic algorithms)
Immune-system-inspired computer/network security
Insect-colony optimization (ants, bees, etc.)
Slime-mould path-finding

Swarm intelligence (e.g., decentralized robots)

Evolutionary Computation

A collection of computational methods inspired by
biological evolution:

« A population of candidate solutions evolves over
time, with the fittest at each generation contributing
the most offspring to the next generation

« Offspring are produced via crossover between
parents, along with random mutations and other
“genetic” operations.

Evolution made simple

Essentials of Darwinian
evolution:

— Organisms reproduce in
proportion to their fithess
In the environment

— Offspring inherit traits
from parents

— Traits are inherited with
some variation, via
mutation and sexual
recombination

Charles Darwin
1809-1882

Evolution made simple

Essentials of evolutionary Essentials of Darwinian

algorithms: evolution:

— Computer “organisms”
(e.g., programs)
reproduce in proportion
to their fitness in the
environment (e.g., how
well they perform a
desired task)

— Organisms reproduce in
proportion to their fithess
In the environment

— Offspring inherit traits
from parents

_— Offspring inherit traits — Traits are inherited with

from their parents some variation, via
mutation and sexual

— Traits are inherited, with recombination

some variation, via
mutation and “sexual
recombination”

Appeal of ideas from evolution:

« Successful method of searching large spaces for
good solutions (chromosomes / organisms)

« Massive parallelism
« Adaptation to environments, change

 Emergent complexity from simple rules

Genetic Algorithms
Components of a GA:

* Population of candidate solutions to a given problem
(“chromosomes”)

« Fitness function that assigns fitness to each
chromosome in the population

« Selection procedure that selects individuals to
reproduce

« (Genetic operators that take existing chromosomes
and produce offspring with variation (e.g., mutation,
crossover)

A Simple Genetic Algorithm

. Start out with a randomly generated population of
chromosomes (candidate solutions).

. Calculate the fithess of each chromosome In the
population.

. Select pairs of parents with probability a function of
fitness rank in the population.

. Create new population: Cross over parents, mutate
offspring, place in new population.

. Go to step 2.

Genetic operators

« Crossover: exchange subparts of two
chromosomes:

00001000 008 LAl <) i
—

0
it
ONOZIN 1L Wl L TN 00100100
0

e Mutation: randomly_change some loci:

y _ 9 Yy _ 9 Yy _ N Yy _ 9 y _ 9 | Yy _ 9 y _ 9 y _ 9 r Y y _ 9 y _ 9 y _ 9 y _ 9 Y y

From Hornby et al., 2006

(a)

Figure 2. Photographs of prototype evolved antennas: (a) the best evolved antenna for the initial gain pattern
requirement, ST5-3-10; (b) the best evolved antenna for the revised specificatlons, ST5-33-142-7.

Evolvable hardware work at NASA Ames
(Hornby, Lohn, et al.)

From Hornby et al., 2006

(a) (b)

Figure 4. Best evolved TDRS-C antenna: (a) simulation and (b) fabricated.

Example: Evolving Strategies for Robby the

Robot
Sensors:
N,S,E,W,C(urrent) \;\% 1 2 3 4 5 6 7 8
0 J y B8
Actions: : . .
Move N) .
Move S
Move E 3 |] 0
Move W 4 g 0
Move random .
Stay put
Try to pick up can 6 s U B
7 ' ' '
Rewards/Penalties o =
(points):
Picks up can: 10 ’ o
Tries to pick up can on
empty site: -1

Crashes into wall: -5

Robby’s fitness function

Calculal o, FT HiEs S REbL yiwi
FeoUa TRRewvahaes—r 0 -

O \
Bewew =0 o NUNMSENGAERO NN RSN,

Average Reward

GELs T EiEcN rancem STy 1 nenilSmiE, (S, s 2RO D oM L

* to place can at
* each site */
For j = 1 to NUM MOVES PER ENVIRONMENT {

Total Reward = Total Reward + perform action (Robby);

Fitness = Total Reward / NUM ENVIRONMENTS;

return (Fitness) ;

Genetic algorithm for
evolving strategies for Robby

1. Generate 200 random strategies (i.e., programs for controlling
Robby)

Random Initial Population

Individual 1:
23300323421630343530546006102562515114162260435654334066511514
15650220640642051006643216161521652022364433363346013326503000
40622050243165006111305146664232401245633345524126143441361020
150630642551654043264463156164510543665346310551646005164

Individual 2:
16411343121025360340361241431201104235462525304202044516433665
61035322153105131440622120614631432154610256523644422025340345
30502005620634026331002453416430151631210012214400664012665246
351650154123113132453304433212634555005314213064423311000

Individual 3:
20423344402411226132136452632464212206122122252660626144436125
32512664061335340153411110206164226653145522540234051155031302
22020065445125062206631426135532010000400031640130154160162006
134440626160505641421553133236021503355131253632642630551

Individual 200:
34632525136001012225612106043301135205155320130656005322235043
32425064124255265534635345523053326612010632124554423440613654
30246240160663016464641103026540006334126150352262106063624260
550616616344255124354464110023463330440102533212142402251

Genetic algorithm for
evolving strategies for Robby

Generate 200 random strategies (i.e., programs for controlling
Robby)

For each strategy in the population, calculate fithess (average
reward minus penalties earned on random environments)

Fitness =

Average final score
from N moves on each
of M random
environments

Genetic algorithm for
evolving strategies for Robby

Generate 200 random strategies (i.e., programs for controlling
Robby)

For each strategy in the population, calculate fithess (average
reward minus penalties earned on random environments)

Strategies are selected according to fitness to become
parents. (See code for choice of selection methods.)

Genetic algorithm for
evolving strategies for Robby

Generate 200 random strategies (i.e., programs for controlling
Robby)

For each strategy in the population, calculate fithess (average
reward minus penalties earned on random environments)

Strategies are selected according to fitness to become
parents. (See code for choice of selection methods.)

The parents pair up and create offspring via crossover with
random mutations.

Parent 1:

16411343121025360340361241431201104235462525304202044516433665
61035322153105131440622120614631432154610256523644422025340345
30502005620634026331002453416430151631210012214400664012665246
351650154123113132453304433212634555005314213064423311000

Parent 2:

20423344402411226132136452632464212206122122252660626144436125
32512664061335340153411110206164226653145522540234051155031302
22020065445125062206631426135532010000400031640130154160162006
134440626160505641421553133236021503355131253632642630551

Parent 1:

16411343121025360340361241431201104235462525304202044516433665
61035322153105131440622120614631432154610256523644422025340345
3050200562063402633100245

3416430151631210012214400664012665246
351650154123113132453304433212634555005314213064423311000

Parent 2:

20423344402411226132136452632464212206122122252660626144436125
32512664061335340153411110206164226653145522540234051155031302
220200654451250622066314..6135532010000400031640130154160162006
134440626160505641421553133236021503355131253632642630551

Parent 1:

16411343121025360340361241431201104235462525304202044516433665
61035322153105131440622120614631432154610256523644422025340345
3050200562063402633100245

3416430151631210012214400664012665246
351650154123113132453304433212634555005314213064423311000

Parent 2:

20423344402411226132136452632464212206122122252660626144436125
32512664061335340153411110206164226653145522540234051155031302
220200654451250622066314..6135532010000400031640130154160162006
134440626160505641421553133236021503355131253632642630551

Child:

16411343121025360340361241431201104235462525304202044516433665

610 0 4406 0614631432154610256523644422025340345
30502005620634026 00245 6135532010000400031640130154160162006
134440626160505641421553133236021503355131253632642630551

Parent 1:

16411343121025360340361241431201104235462525304202044516433665
61035322153105131440622120614631432154610256523644422025340345
3050200562063402633100245

3416430151631210012214400664012665246
351650154123113132453304433212634555005314213064423311000

Parent 2:

20423344402411226132136452632464212206122122252660626144436125
32512664061335340153411110206164226653145522540234051155031302
220200654451250622066314..6135532010000400031640130154160162006
134440626160505641421553133236021503355131253632642630551

Mutate to “0”
Child:

16411343121025360340361241431201104235462525304202044516433665

610 0 4406 0614631432154610256523644422025340345
30502005620634026 00245 6135532010000400031640130154160162006
134440626160505641421553133236021503355131253632642630551

T

Mutate to “4”

Genetic algorithm for
evolving strategies for Robby

Generate 200 random strategies (i.e., programs for controlling
Robby)

For each strategy in the population, calculate fithess (average
reward minus penalties earned on random environments)

Strategies are selected according to fitness to become
parents. (See code for choice of selection methods.)

The parents pair up and create offspring via crossover with
random mutations.

The offspring are placed in the new population and the old
population dies.

Genetic algorithm for
evolving strategies for Robby

Generate 200 random strategies (i.e., programs for controlling
Robby)

For each strategy in the population, calculate fithess (average
reward minus penalties earned on random environments)

Strategies are selected according to fitness to become
parents. (See code for choice of selection methods.)

The parents pair up and create offspring via crossover with
random mutations.

The offspring are placed in the new population and the old
population dies.

Keep going back to step 2 until a good-enough strategy is

My hand-designed strategy:

“If there is a can in the current site, pick it up.”

“Otherwise, if there is a can in one of the adjacent

sites, move to that site.”

“Otherwise, choose a random direction to move in.”

My hand-designed strategy:

“If there is a can in the current site, pick it up.”

“Otherwise, if there is a can in one of the adjacent

sites, move to that site.”

“Otherwise, choose a random direction to move in.”

Average fitness of this strategy:
(out of max possible ~ 500)

My hand-designed strategy:

“If there is a can in the current site, pick it up.”

“Otherwise, if there is a can in one of the adjacent

sites, move to that site.”

“Otherwise, choose a random direction to move in.”

Average fitness of this strategy: Average fitness of GA evolved strategy:
(out of max possible ~ 500)

(out of max possible ~ 500)

One Run of the Genetic Algorithm

| | I I

500 WM‘NMMMWMMMWM

400 |
C
O 300 |
i}
i,
-
Q.
o
Q200 -
=
7))
7p]
&)
S 100
=
o
n
)
m

0
1 1 1 1
0 200 400 600 800 1000

Generation number

Generation 1

Best fithess = —81

Score: 0O

Time: O

Score: 0O

Time: 1

Score: -5

Time: 2

Score: -5

Time: 2

Score: —-10

Time: 3

Score: —-10

Time: 3

Score: —-15

Time: 4

Score: —-15

Time: 4

Generation 14

Best fithess = 1

Score: 0O

Time: O

Score: 0O

Time: 1

Score: 0O

Time: 2

Score: 0O

Time: 3

Generation 200

Fithess = 240

Score: 0O

Time: O

Score: 0O

Time: 1

Score: 0O

Time: 2

Score: 10

Time: 3

Score: 10

Time: 4

Score: 20

Time: b

Score: 20

Time: 6

Score: 20

Time: 7

Score: 20

Time: 8

Score: 20

Time: 9

Time: 10 Score: 20

Time: 11

Score: 20
u g

c c
c c c

c

C
C C
% I c c
- c c
C C C
C C

Score: 20

Time: 12

Time: 13

Score: 20
u g

3 3
C C C

C

3
5 5
B e 5 5
5 5 5
i C C
3

0

1

2

3

Time: 14 Score: 30

4

i

Score: 30

Time: 15

Score: 40

Time: 16

Time: 17 Score: 40

0 1 2 3 4
0] [
1 N N AN

2 g8 § U
3 N B

4 I

5 o o o
g%ll ; ;
AL, JR o o
8 NN BN J
9 o o

Time: 18

Score: 50

0) 1 2 3 4
v §

3 3
- - -

-

3

3

i 3

3

§

Score: 50

Time: 19

Time: 20 Score: 60

Generation 1000

Fithess = 492

Score: 0O

Time: O

Score: 0O

Time: 1

Score: 10

Time: 2

Score: 10

Time: 3

Score: 20

Time: 4

Score: 20

Time: b

Score: 20

Time: 6

Score: 20

Time: 7

Score: 20

Time: 8

Score: 30

Time: 9

Time: 10 Score: 30

0 1 2 3 4
0] [
1 N N AN

2 g8 § U
3 N B

4 I

5 o o o
gill ; ;
AL, JR o o
g| B NN BN J
oW | ¥ o

Time: 11 Score: 40
0) 1 2 3 4
0] [
1 3 3
2 N N §
3 §
) 3
5 3 3
gi I ; ;
7 3 3
s| W N J
o| 3

Score: 40

Time: 12

Score: 50

Time: 13

Time: 14 Score: 50

Score: 60

Time: 15

Time: 16

Score: 60
J J

y y
- - -

-

y
y y
i C C
y y
u\i l l
y

0

1

2

3

Time: 17 Score: 70

4

Time: 18

Score: 70

0) 1 2 3 4
u §

3 3
- - -

-

3

3

i 3

3

§

Why Did The GA’s Strategy Outperform
Mine?

My Strategy

The GA’s Evolved Strategy

Genetic Algorithms, Part 2

(Application to Cellular Automata
-- Bonus material)

Evolving (and co-evolving) one-dimensional
cellular automata to perform a computation

One-dimensional cellular automata

One-dimensional cellular automata

e B NN

H = B

I - B

H B = B

N ==

One-dimensional cellular automata

- ol il

H = B

I - B

H B = B

N ==

One-dimensional cellular automata

ST " . " ..

H = B

Rule:

I - B

H B = B

N ==

One-dimensional cellular automata

HH"

Rule:

H = B

I - B

H B = B

N ==

One-dimensional cellular automata

Rule:
w

H = B

I - B

H B = B

N ==

Can the complex dynamics be harnessed by evolution
to perform collective information processing?

A task requiring collective computation in
cellular automata

A task requiring collective computation in
cellular automata

* Design a cellular automata to decide
whether or not the initial pattern has a
majority of “on”cells.

majority on

il

majority on

il

el

initial

final

majority on

majority off

initial

final

majority on

majority off

majority on majority off

midl T - | BN

How to design a cellular automaton
that will do this?

el

We used cellular automata with 6 neighbors for
each cell:

Rule: 80 i s &

AL

A candidate solution that does not work:
Local majority voting

o"b:d" .

Evolving cellular automata with
genetic algorithms

* Create a random population of
candidate cellular automata rules

* The “fitness” of each cellular automaton
IS how well it performs the task.
(Analogous to surviving In an
environment.)

* The fittest cellular automata get to
reproduce themselves, with mutations

The “chromosome” of a cellular automaton is an
encoding of its rule table:

Rule table: Chromosome
—p :
H == X
N = B ,
B = 0

Create a random population of
candidate cellular automata rules:

rulel: 0010001100010010111100010100110111000...
rule 2: 0001100110101011111111000011101001010...
rule 3: 1111100010010101000000011100010010101...

rule 100: 0010111010000001111100000101001011111...

Calculating the Fitness of a Rule

* For each rule, create the corresponding
cellular automaton. Run that cellular
automaton on many initial
configurations.

 Fitness of rule = fraction of correct
classifications

For each cellular automaton rule in the population:

rule 1: 0010001100010010111100010100110111000...1

Create rule table

> [|
. Nl
e

"

-

rule 1 rule table: IHEF™~L T e
AFNENEF o - - W
(ITTT | =—p W

HENNEE =—p N

Run corresponding cellular
automaton on many random
initial lattice configurations

H

n
S B EEEEEE EIEE Bz RIS | S]] s N

incorrect correct

etc.

Fitness of rule = fraction of correct classifications

GA Population:

rule 1: 0010001100010010111100010100110111000... Fitness = 0.5
rule 2: 0001100110101011111111000011101001010... Fitness = 0.2

rule 3: 1111100010010101000000011100010010101... Fitness =0.4

rule 100:0010111010000001111100000101001011111.... Fitness = 0.0

Select fittest rules to reproduce
themselves

rule 1: 0010001100010010111100010100110111000... Fitness = 0.5
rule 3: 1111100010010101000000011100010010101... Fitness = 0.4

Create new generation via crossover and mutation:

Parents:

rule 1: 0010001 100010010111100010100110111000...
rule 3: 1111100 0340010101000000011100010010101...

mutate
Children:

0010001010010101000000011100010010101...
1111100 100010010111100010100110111000...

Create new generation via crossover and mutation:

Parents:

rule 1: 0010001 100010010111100010100110111000...
rule 3: 1111100 0340010101000000011100010010101...

mutate
Children:

0010000010010101000000011100010010101...
1111100 100010010111100010100110111000...

Create new generation via crossover and mutation:

Parents:

rule 1: 0010001 100010010111100010100110111000...
rule 3: 1111100 0340010101000000011100010010101...

Children:

00100000100101010000000111000100101017...
1111100 100010010111100010100110111000..

mutate

Create new generation via crossover and mutation:

Parents:

rule 1: 0010001 100010010111100010100110111000...
rule 3: 1111100 0340010101000000011100010010101...

Children:

00100000100101010000000111000100101017...
1111100 100010010111100010100010111000G...

mutate

Create new generation via crossover and mutation:

Parents:

rule 1: 0010001 100010010111100010100110111000...
rule 3: 1111100 0340010101000000011100010010101...

Children:

0010000010010101000000011100010010101...
1111100 100010010111100010100010111000...

Create new generation via crossover and mutation:

Parents:

rule 1: 0010001 100010010111100010100110111000...
rule 3: 1111100 0340010101000000011100010010101...

Children:

0010000010010101000000011100010010101...
1111100 100010010111100010100010111000...

Continue this process until new generation is complete.
Then start over with the new generation.

Keep iterating for many generations.

majority on majority off

o

A cellular automaton evolved by
the genetic algorithm

How does it perform the computation?

majority on majority off

’

A cellular automaton evolved by
the genetic algorithm

How do we describe information
processing in complex systems?

“simple patterns™:
black, white, checkerboard

Simple patterns
filtered out

“particles”

“particles”

Regular Domains

AV =0 AT=T AZ = (01)°
Particles (Velocities)

a~ A°A" (0) B ~ A'01A" (0)
v~ A°A% (-1) d ~ A*A” (-3)
n~ A"A* (3) p~ A*AT (1)
Interactions
decay a— Y+ u
react B+y—=nu+pf—24,n+6—p0
annihilate n+p—>0,7+0 - D
laws of

“particle physics”

“particles”

 Level of particles can explain:

 Level of particles can explain:
— Why one CA s fitter than another

 Level of particles can explain:
— Why one CA s fitter than another
— What mistakes are made

Level of particles can explain:
— Why one CA s fitter than another
— What mistakes are made

— How the GA produced the observed series of
Innovations

 Level of particles can explain:
— Why one CA s fitter than another
— What mistakes are made

— How the GA produced the observed series of
Innovations

» Particles give an “information processing’
description of the collective behavior

 Level of particles can explain:
— Why one CA s fitter than another
— What mistakes are made

— How the GA produced the observed series of
Innovations

» Particles give an “information processing”
description of the collective behavior

----> "Algorithmic” level

How the genetic algorithm
evolved cellular automata

How the genetic algorithm
evolved cellular automata

generation 8

How the genetic algorithm
evolved cellular automata

A

generation 8 generation 13

How the genetic algorithm
evolved cellular automata

ry

generation 17

How the genetic algorithm
evolved cellular automata

,ﬂw

generation 17 generation 18

How the genetic algorithm
evolved cellular automata

generation 33

How the genetic algorithm
evolved cellular automata

L

generation 33 generation 64

Cellular Automata

Traditional GA 20%
(with crossover)
Traditional GA 0%

(mutation only)

Percentage of successful runs

Cellular Automata

Traditional GA 20%
(with crossover)
Traditional GA 0%

(mutation only)

Percentage of successful runs

Problem: GA often gets stuck in local optima,
with “too easy” training examples

Problem for learning algorithms:

How to select training examples appropriate to
different stages of learning?

One solution:
Co-evolve training examples, using inspiration from
host-parasite coevolution in nature.

Host-parasite coevolution in nature

Hosts evolve defenses against parasites

Parasites find ways to overcome defenses

Hosts evolve new defenses

Continual “biological arms race”

Heliconius-egg mimicry in
Passiflora

http://www.ucl.ac.uk/~ucbhdjm/courses/b242/Coevol/Coevol.html

« Darwin recognized the importance of
coevolution in driving evolution

« Darwin recognized the importance of
coevolution in driving evolution

« Coevolution was later hypothesized to be
major factor in evolution of sexual
reproduction

Coevolutionary Learning

Candidate solutions and training examples
coevolve.

Coevolutionary Learning

Candidate solutions and training examples
coevolve.

— Fitness of candidate solution (host):
how well it performs on training examples.

Coevolutionary Learning

Candidate solutions and training examples
coevolve.

— Fitness of candidate solution (host):
how well it performs on training examples.

— Fitness of training example (parasite):
how well it defeats candidate solutions.

Sample Applications of
Coevolutionary Learning

« Competitive:

— Coevolving minimal sorting networks (Hillis)

* Hosts: Candidate sorting networks
 Parasites: Lists of items to sort

Sample Applications of
Coevolutionary Learning

— Game playing strategies (e.g., Rosin & Belew;
Fogel; Juillé & Pollack)

« Hosts: Candidate strategies for Nim, 3D
Tic Tac Toe, backgammon, etc.

« Parasites: Another population of candidate
strategies

— HIV drug design (e.g., Rosin)

« Hosts: Candidate protease inhibitors to
match HIV protease enzymes

« Parasites. Evolving protease enzymes

— Robot behavior (e.g., Sims; Nolfi & Floreano)

* Hosts: Robot control programs

« Parasites: Competing robot control
programs

« Cooperative:

— Cooperative coevolution of neural network
weights and topologies (e.qg., Potter & De
Jong; Stanley, Moriarty, Miikkulainen)

Problem domains used in experiments

1. Function induction: 2D function-induction
task (Pagie & Hogeweg, 1997)

— Evolve function tree to approximate

1 1

hoc? T 14 x? | 1+ y*

— Hosts are candidate trees
* Function set: {+, -, *, %}

« Terminal set: {X, y, R}

yxample of candidate tree

9 OO)

— Parasites are (Xx,y) pairs

* Fitness (h) = Average inverse error on sample
of p

* Fitness (p): Error of h on problem p

e Success = Correct host (on complete set of
problems) in population for 50 generations

176

2. Evolving cellular automata

* Problem is to design 1D CA that classifies
initial configurations (ICs) as “majority 1s”
or “majority 0s”.

Spatial Coevolution

« 2D toroidal lattice with one host (h) and one
parasite (p) per site

Spatial Coevolution

« 2D toroidal lattice with one host (h) and one
parasite (p) per site

£y

P

ol ojper =y [0 =2 | =

Spatial Coevolution

« 2D toroidal lattice with one host (h) and one
parasite (p) per site

AN

=

o | p

h

h

p

R

) .
&

fitness(h) = fraction of 9 neighboring
p answered correctly

Spatial Coevolution

« 2D toroidal lattice with one host (h) and one
parasite (p) per site

£y

P

7 fitness(p) = {O If h(p) is correct

>0 1f h(p) Is not correct

S

ol ojper =y [0 =2 | =

fitness (h) = fraction of 9 neighborin g
p answered correctly

Spatial Coevolution

« 2D toroidal lattice with one host (h) and one

parasite (p) per site
Each h is replaced by mutated
n copy of winner of tournament
among itself and 8 neighboring
EARIIED Ly e hosts.

P

O firess (D) ={O if h(p) is correct

S

ol ojper =y [0 =2 | =

>0 1f h(p)Iis not correct
fitness (h) = fraction of 9 neighborin g

p answered correctly

Spatial Coevolution

« 2D toroidal lattice with one host (h) and one

parasite (p) per site
Each h is replaced by mutated
n copy of winner of tournament
among itself and 8 neighboring
EARIIED Ly e hosts.

Each p is replaced by

) mutated copy of winner
tournament among itself
and 8 neighboring parasites.

@ 2 et T 0 rf h(p) i? correct
>0 1f h(p)Iis not correct

S

ol ojper =y [0 =2 | =

fitness (h) = fraction of 9 neighborin g
p answered correctly

Non-Spatial Coevolution

* No spatial distribution of host and parasite
populations

Non-Spatial Coevolution

* No spatial distribution of host and parasite
populations

parasites

Non-Spatial Coevolution

* No spatial distribution of host and parasite
populations

parasites

fitness (h) = fraction of 9 parasites p
(randomly chosen from parasite population)
answered correctly

Non-Spatial Coevolution

* No spatial distribution of host and parasite

populations
parasites
fitness (h) = fraction of 9 parasites p fitness(p) = {0 i_f h(p) i_S correct
(randomly chosen from parasite population) >0 if h(p)is not correct

for host h randomly chosen from host
population

answered correctly

Non-Spatial Coevolution

* No spatial distribution of host and parasite

populations Each h is replaced by mutated
copy of winner of tournament
among itself and 8 randomly
chosen hosts.

parasites

0 if h(p)is correct

fitness (h) = fraction of 9 parasites p fitness (p) =
>0 1f h(p)Is not correct

(randomly chosen from parasite population)

answered correctly for host h randomly chosen from host

population

Non-Spatial Coevolution

* No spatial distribution of host and parasite

populations Each h is replaced by mutated
copy of winner of tournament
among itself and 8 randomly
chosen hosts.

Each p is replaced by
mutated copy of winner
tournament among itself and

parasites 8 randomly chosen parasites.
fitness (h) = fraction of 9 parasites p fitness (p) = {0 i_f h(p) ii_S correct
(randomly chosen from parasite population) >0 if h(p) is not correct
answered correctly for host h randomly chosen from host

population

Spatial Evolution:

— Same as spatial coevolution, except
parasites don’t evolve.

— A new population of random parasites Is
generated at each generation.

 Non-Spatial Evolution:

— Same as non-spatial coevolution, except
parasites don’t evolve.

— A new sample of 100 random parasites Is
generated at each generation.

— Fitness of a host is classification accuracy
on these 100 randomly generated
parasites

Results

Function Induction Cellular Automata

Spatial Coev. 78% (39/50) 67% (20/30)
Non-Spatial Coev. 0% (0/50) 0% (0/20)

Spatial Evol. 14% (7/50) 0% (0/30)
Non-Spatial Evol. 6% (3/50) 0% (0/20)

Percentage of successful runs

In short: Spatial coevolution significantly out-
performs other methods on both problems

Possible applications to real-world problems

— Drug design to foil evolving
viruses/bacteria

— Coevolving software/hardware with test
cases

— Evolving game-playing programs

— Coevolving computer security systems with
possible threats

