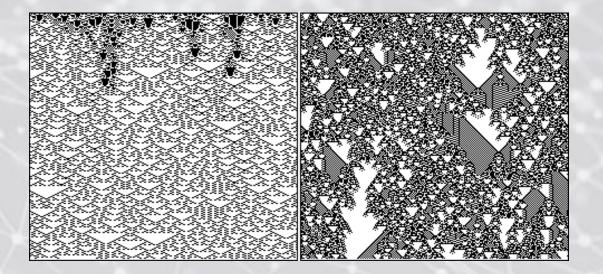
A.I.: Genetic Algorithms



Some Examples of Biologically Inspired AI

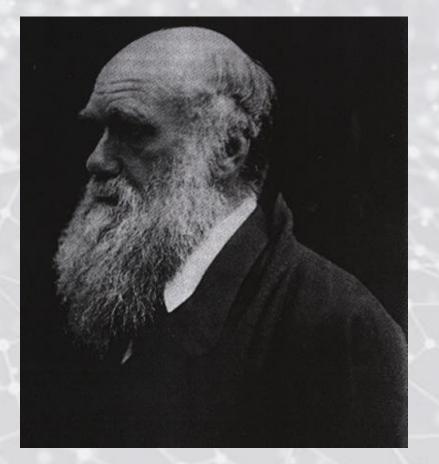
- Neural networks
- Evolutionary computation (e.g., genetic algorithms)
- Immune-system-inspired computer/network security
- Insect-colony optimization (ants, bees, etc.)
- Slime-mould path-finding
- Swarm intelligence (e.g., decentralized robots)

Evolutionary Computation

A collection of computational methods inspired by biological evolution:

- A population of candidate solutions evolves over time, with the fittest at each generation contributing the most offspring to the next generation
- Offspring are produced via crossover between parents, along with random mutations and other "genetic" operations.

Evolution made simple



Charles Darwin 1809–1882 Essentials of Darwinian evolution:

- Organisms reproduce in proportion to their *fitness* in the environment
- Offspring inherit traits from parents
- Traits are inherited with some variation, via mutation and sexual recombination

Evolution made simple

Essentials of evolutionary algorithms:

- Computer "organisms" (e.g., programs) reproduce in proportion to their *fitness* in the environment (e.g., how well they perform a desired task)
- Offspring inherit traits from their parents
- Traits are inherited, with some variation, via mutation and "sexual recombination"

Essentials of Darwinian evolution:

- Organisms reproduce in proportion to their *fitness* in the environment
- Offspring inherit traits from parents
- Traits are inherited with some variation, via mutation and sexual recombination

Appeal of ideas from evolution:

- Successful method of searching large spaces for good solutions (chromosomes / organisms)
- Massive parallelism
- Adaptation to environments, change
- Emergent complexity from simple rules

Genetic Algorithms

Components of a GA:

- Population of candidate solutions to a given problem ("chromosomes")
- *Fitness function* that assigns fitness to each chromosome in the population
- Selection procedure that selects individuals to reproduce
- Genetic operators that take existing chromosomes and produce offspring with variation (e.g., mutation, crossover)

A Simple Genetic Algorithm

- 1. Start out with a randomly generated population of chromosomes (candidate solutions).
- 2. Calculate the fitness of each chromosome in the population.
- 3. Select pairs of parents with probability a function of fitness rank in the population.
- 4. Create new population: Cross over parents, mutate offspring, place in new population.
- 5. Go to step 2.

Genetic operators

Crossover: exchange subparts of two chromosomes:

• *Mutation:* randomly change some loci:

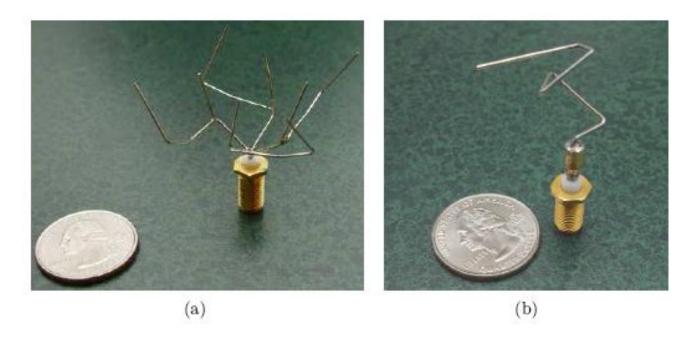
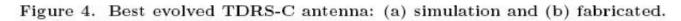


Figure 2. Photographs of prototype evolved antennas: (a) the best evolved antenna for the initial gain pattern requirement, ST5-3-10; (b) the best evolved antenna for the revised specifications, ST5-33-142-7.

Evolvable hardware work at NASA Ames (Hornby, Lohn, et al.) From Hornby et al., 2006

苹 (a)

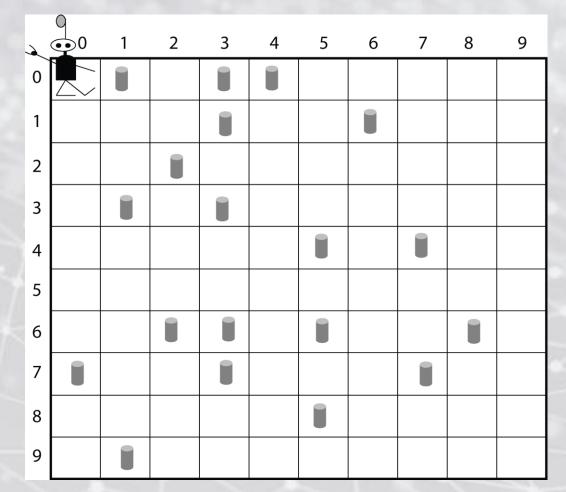


Example: Evolving Strategies for Robby the Robot

Sensors: N,S,E,W,C(urrent)

Actions: Move N Move S Move E Move W Move random Stay put Try to pick up can

Rewards/Penalties (points): Picks up can: 10 Tries to pick up can on empty site: -1 Crashes into wall: -5



Robby's fitness function

```
Calculate Fitness (Robby) {
 Total Reward = 0;
Average Reward = 0 '
 For i = 1 to NUM ENVIRONMENTS {
   generate random environment(); /* .5 probability
                               * to place can at
                        * each site */
   For j = 1 to NUM MOVES PER ENVIRONMENT {
     Total Reward = Total Reward + perform action(Robby);
 Fitness = Total Reward / NUM ENVIRONMENTS;
 return(Fitness);
```

Genetic algorithm for evolving strategies for Robby

1. Generate 200 random strategies (i.e., programs for controlling Robby)

Individual 200:

Individual 3:

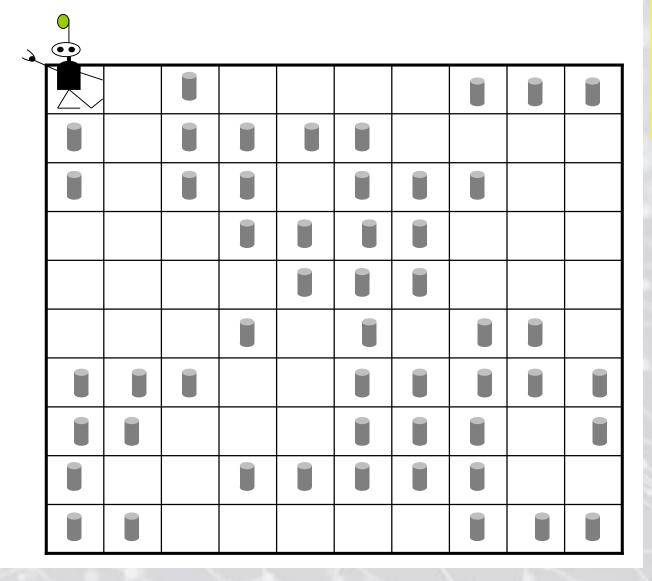
Individual 2:

Individual 1:

Random Initial Population

Genetic algorithm for evolving strategies for Robby

- 1. Generate 200 random strategies (i.e., programs for controlling Robby)
- 2. For each strategy in the population, calculate fitness (average reward minus penalties earned on random environments)



Fitness = Average final score from N moves on each of M random environments

Genetic algorithm for evolving strategies for Robby

- 1. Generate 200 random strategies (i.e., programs for controlling Robby)
- 2. For each strategy in the population, calculate fitness (average reward minus penalties earned on random environments)
- 3. Strategies are selected according to fitness to become parents. (See code for choice of selection methods.)

Genetic algorithm for evolving strategies for Robby

- 1. Generate 200 random strategies (i.e., programs for controlling Robby)
- 2. For each strategy in the population, calculate fitness (average reward minus penalties earned on random environments)
- 3. Strategies are selected according to fitness to become parents. (See code for choice of selection methods.)
- 4. The parents pair up and create offspring via crossover with random mutations.

Parent 2:

Parent 2:

Parent 2:

Child:

Parent 2:

Child:

Mutate to "4"

Mutate to "0"

Genetic algorithm for evolving strategies for Robby

- 1. Generate 200 random strategies (i.e., programs for controlling Robby)
- 2. For each strategy in the population, calculate fitness (average reward minus penalties earned on random environments)
- 3. Strategies are selected according to fitness to become parents. (See code for choice of selection methods.)
- 4. The parents pair up and create offspring via crossover with random mutations.
- 5. The offspring are placed in the new population and the old population dies.

Genetic algorithm for evolving strategies for Robby

- 1. Generate 200 random strategies (i.e., programs for controlling Robby)
- 2. For each strategy in the population, calculate fitness (average reward minus penalties earned on random environments)
- 3. Strategies are selected according to fitness to become parents. (See code for choice of selection methods.)
- 4. The parents pair up and create offspring via crossover with random mutations.
- 5. The offspring are placed in the new population and the old population dies.
- 6. Keep going back to step 2 until a good-enough strategy is

My hand-designed strategy:

"If there is a can in the current site, pick it up."

"Otherwise, if there is a can in one of the adjacent sites, move to that site."

"Otherwise, choose a random direction to move in."

My hand-designed strategy:

"If there is a can in the current site, pick it up."

"Otherwise, if there is a can in one of the adjacent sites, move to that site."

"Otherwise, choose a random direction to move in."

Average fitness of this strategy: **346** (out of max possible \approx 500)

My hand-designed strategy:

"If there is a can in the current site, pick it up."

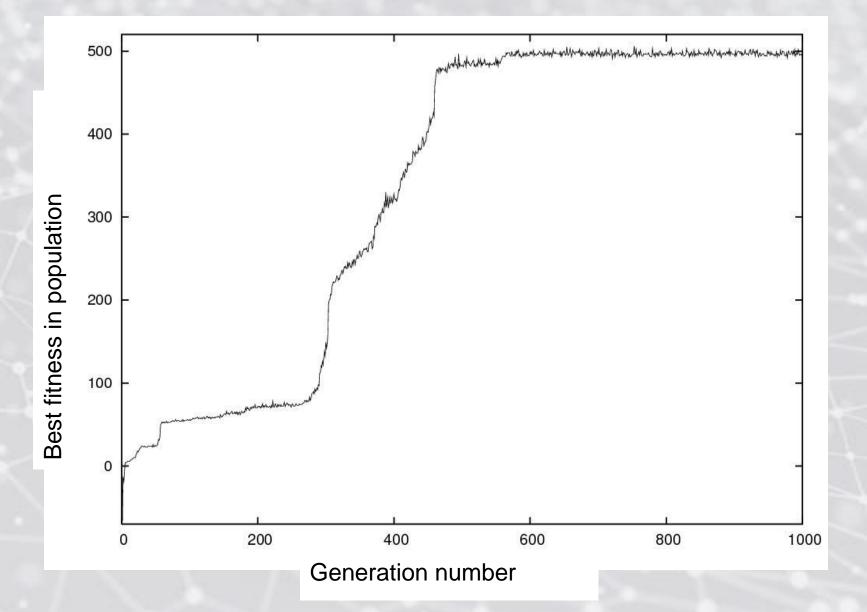
"Otherwise, if there is a can in one of the adjacent sites, move to that site."

"Otherwise, choose a random direction to move in."

Average fitness of this strategy: **346** (out of max possible \approx 500)

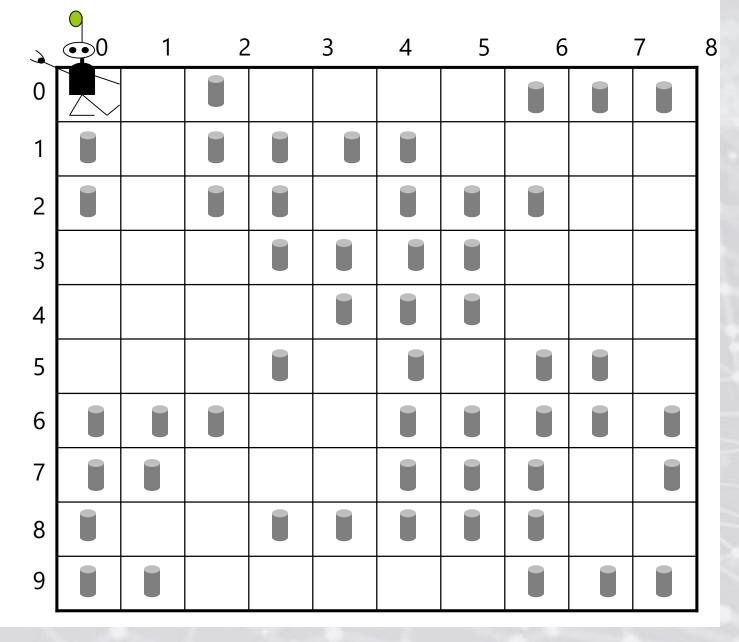
Average fitness of GA evolved strategy: 486 (out of max possible \approx 500)

One Run of the Genetic Algorithm

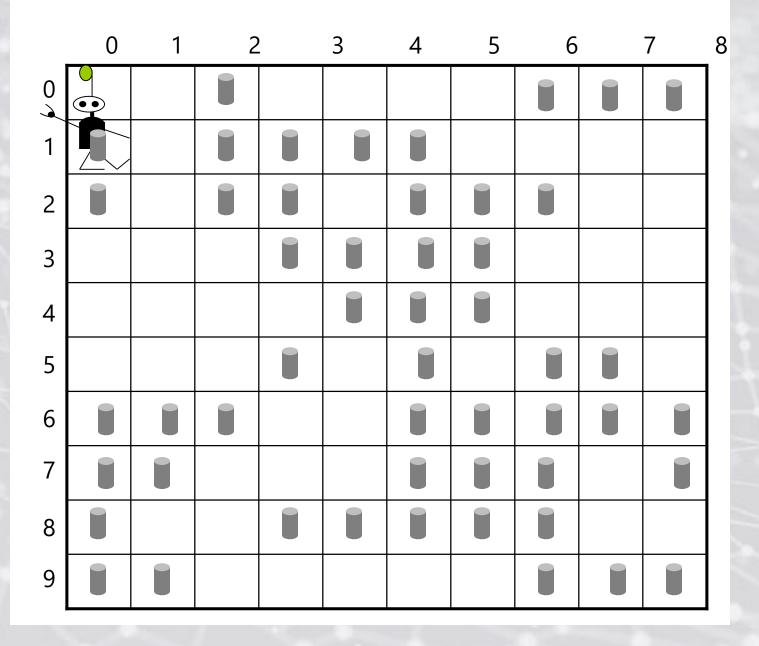


Generation 1 Best fitness = -81

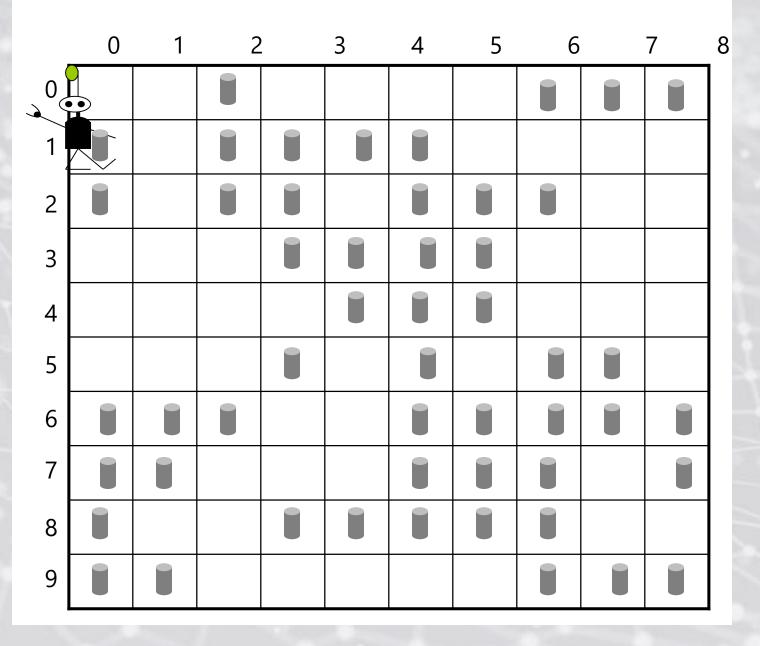
Time: 0 Score: 0



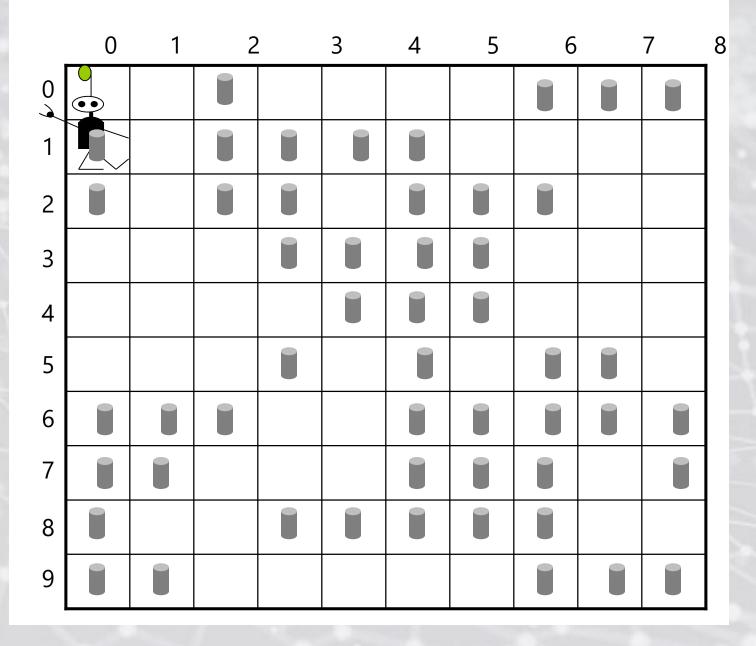
Time: 1 Score: 0



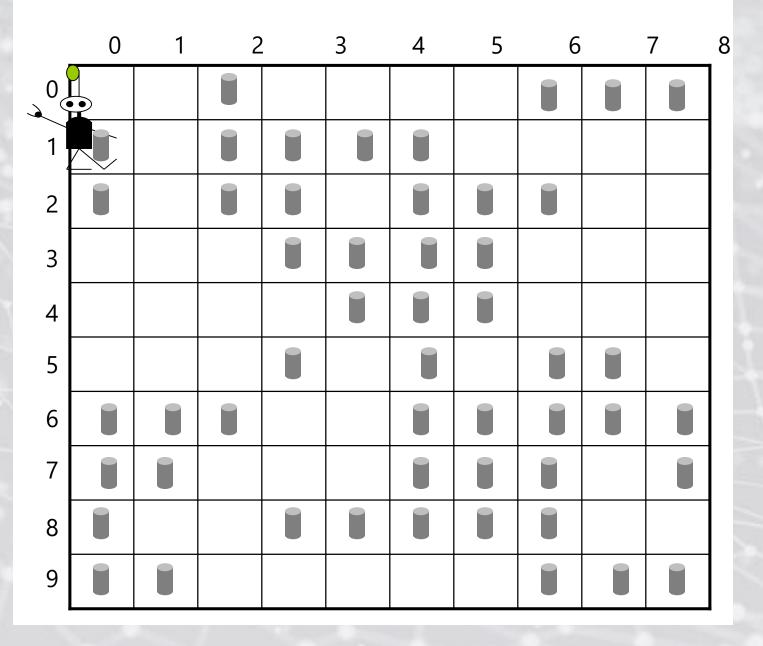
Time: 2 Score: -5



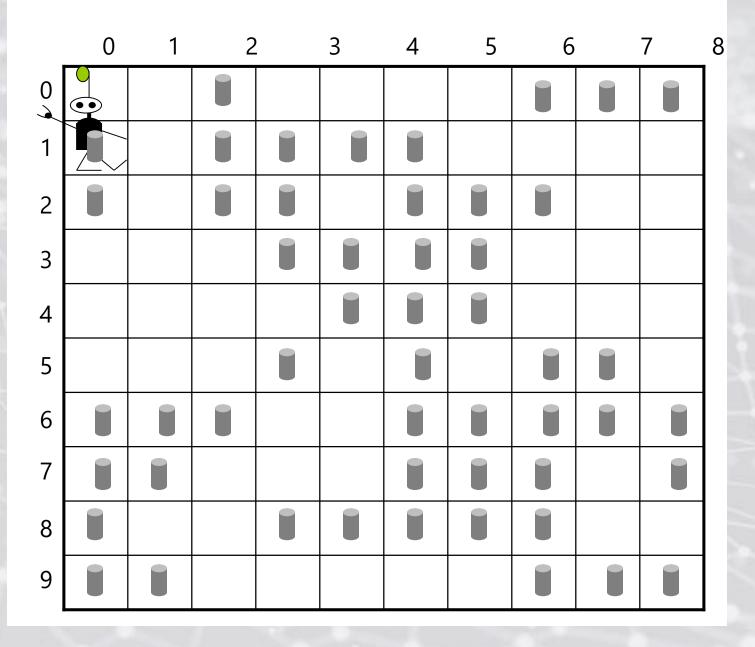
Time: 2 Score: -5



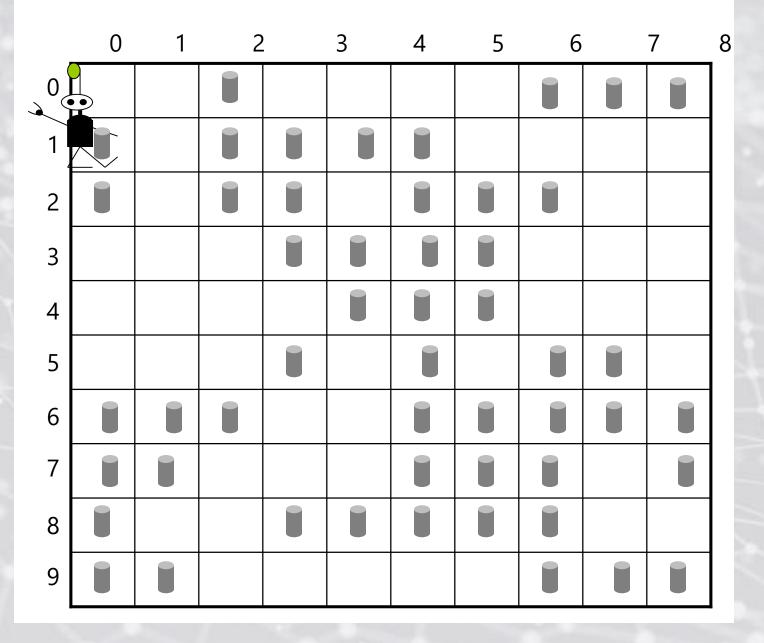
Time: 3 Score: -10



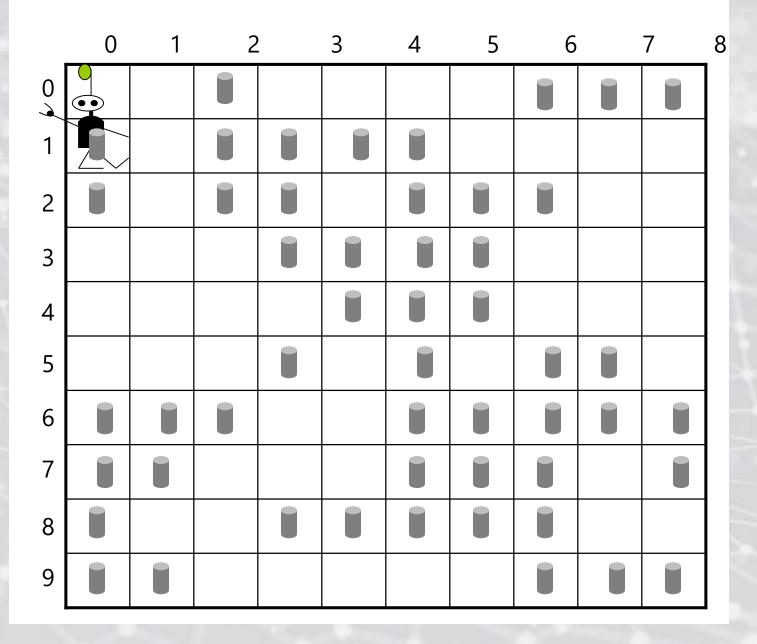
Time: 3 Score: -10



Time: 4 Score: -15



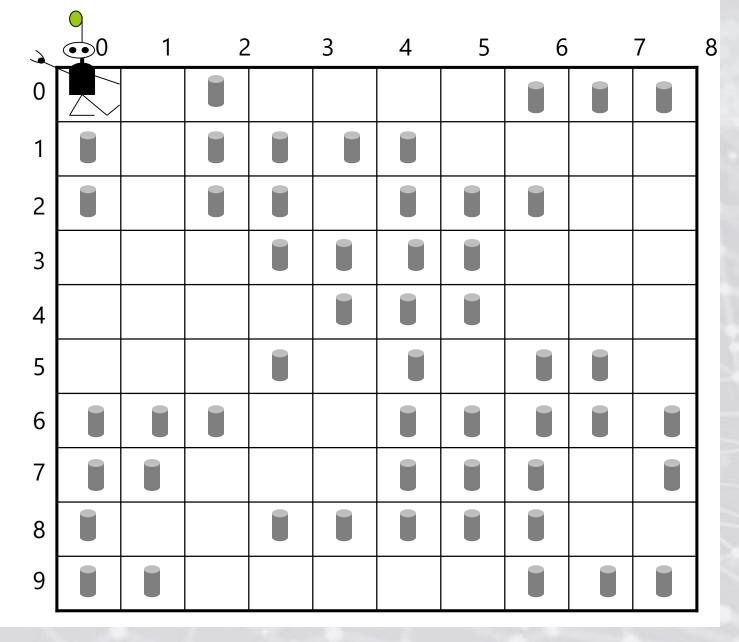
Time: 4 Score: -15



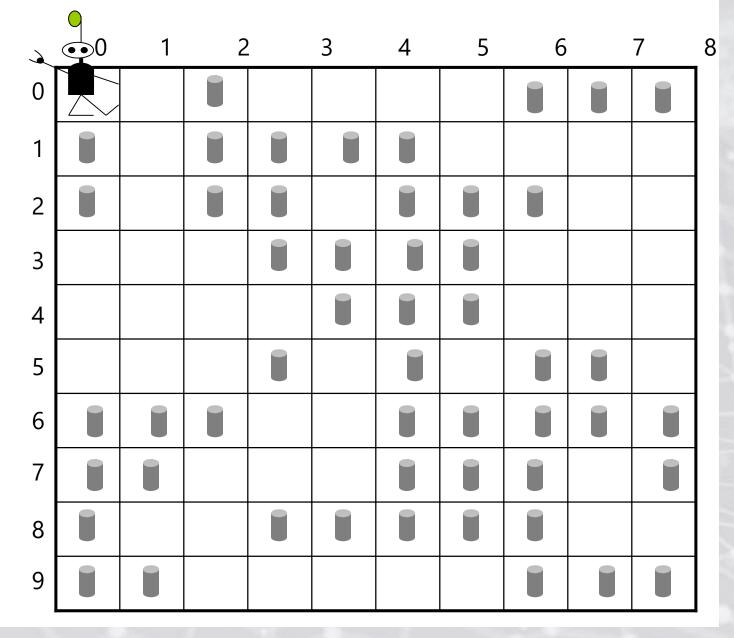
Generation 14

Best fitness = 1

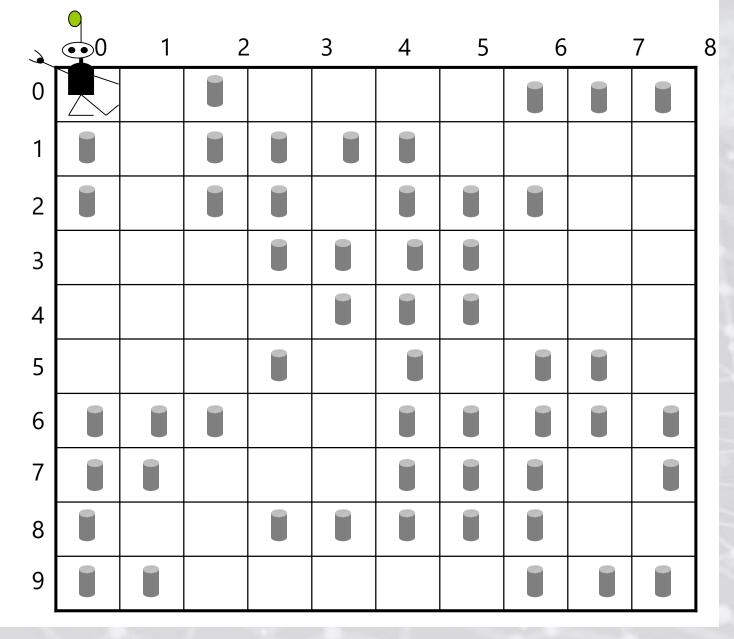
Time: 0 Score: 0



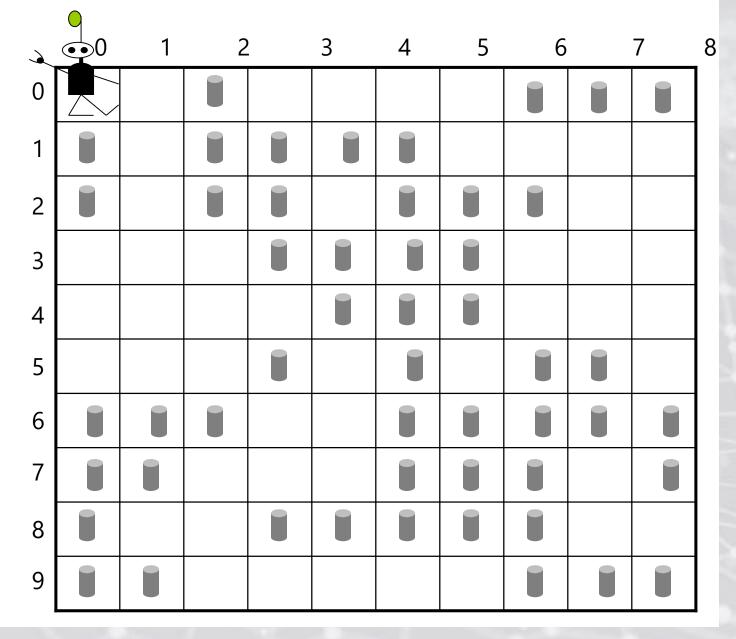
Time: 1 Score: 0



Time: 2 Score: 0

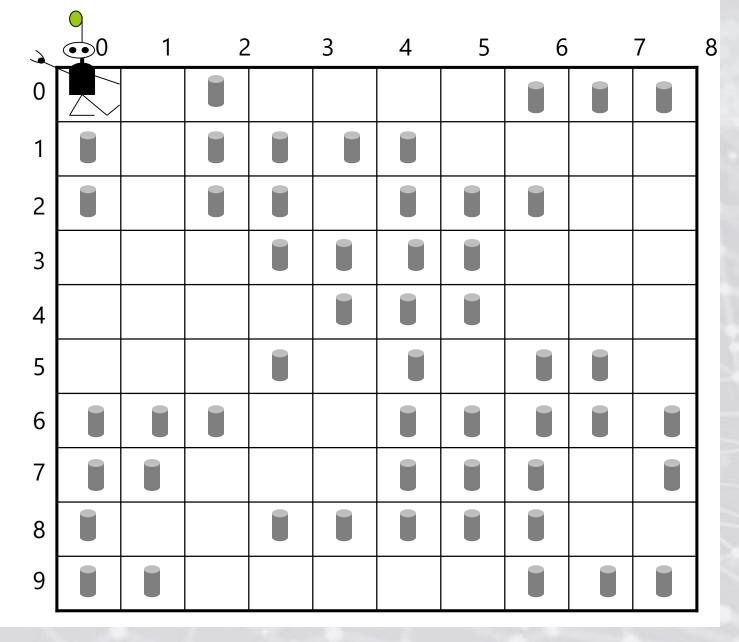


Time: 3 Score: 0

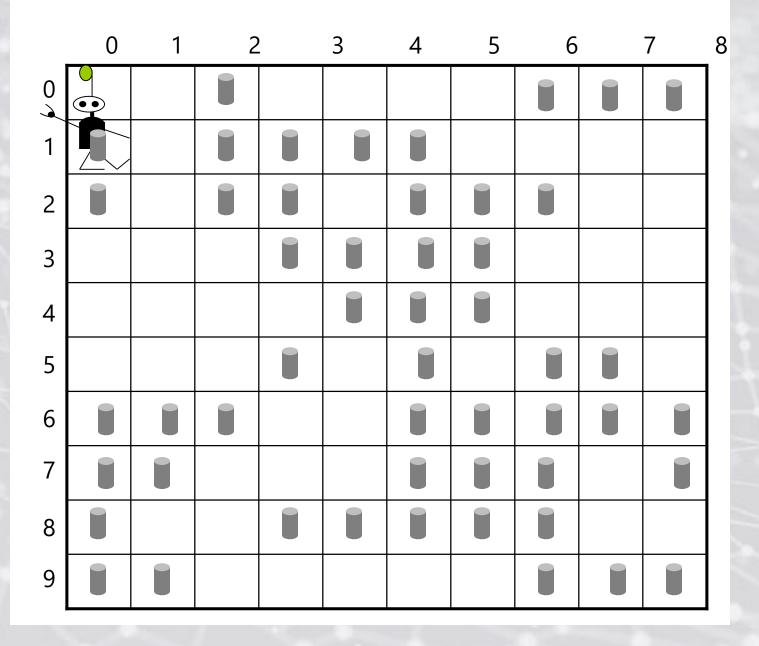


Generation 200 Fitness = 240

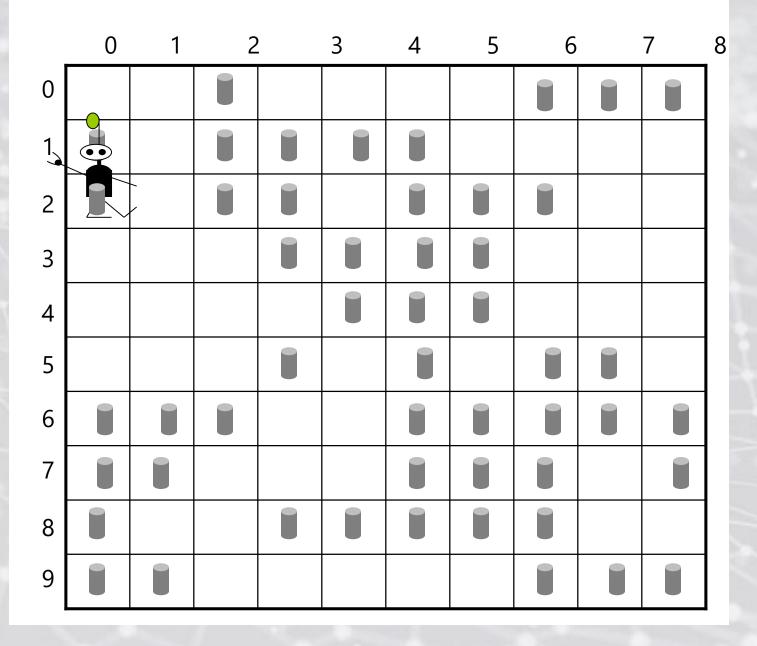
Time: 0 Score: 0



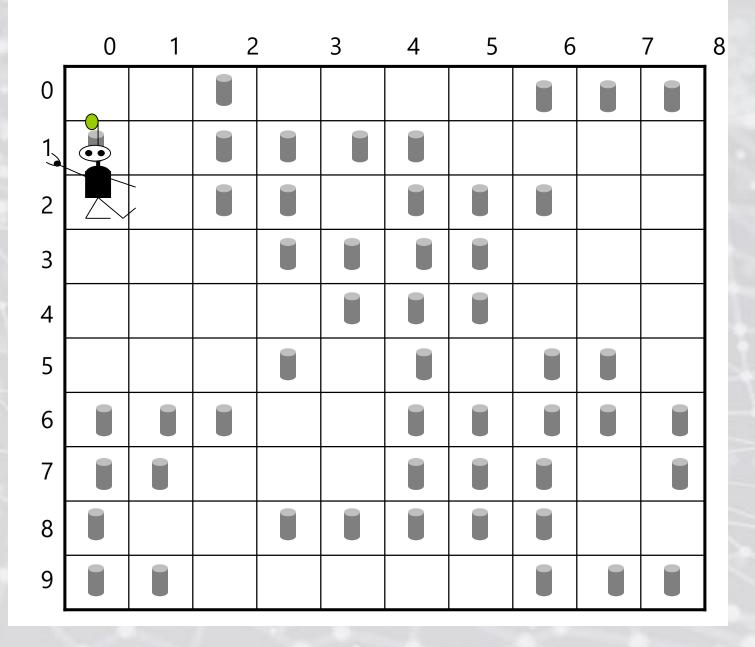
Time: 1 Score: 0



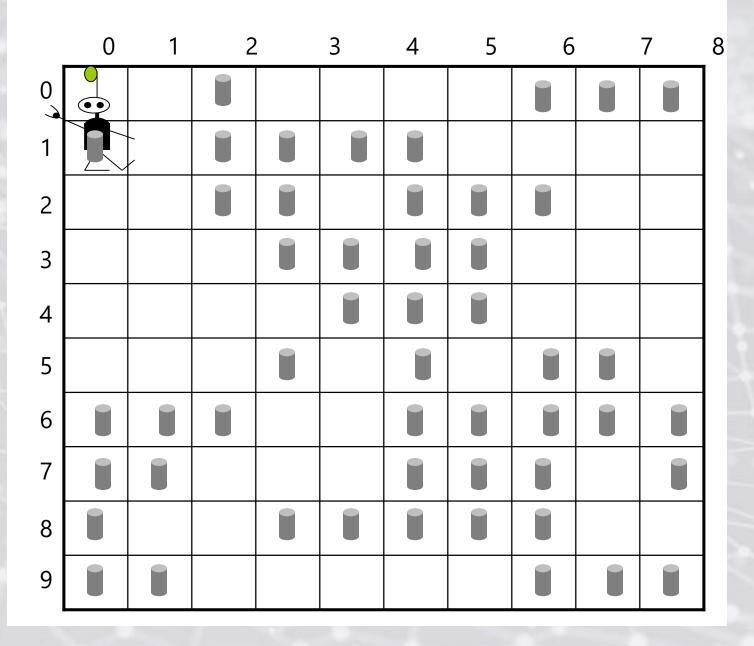
Time: 2 Score: 0



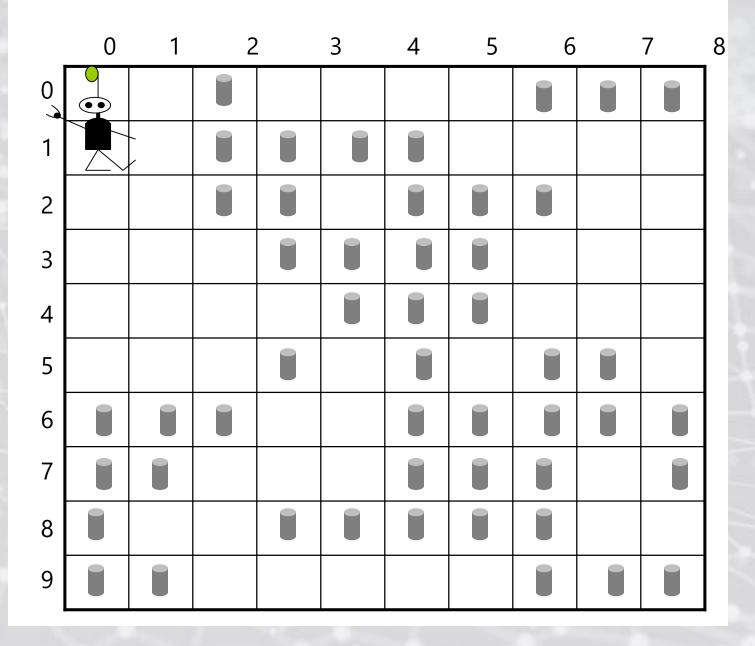
Time: 3 Score: 10



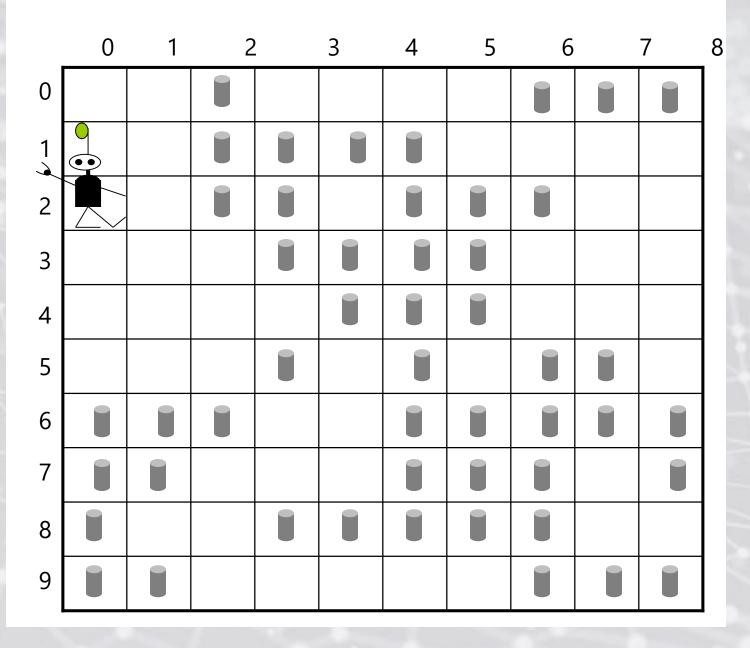
Time: 4 Score: 10



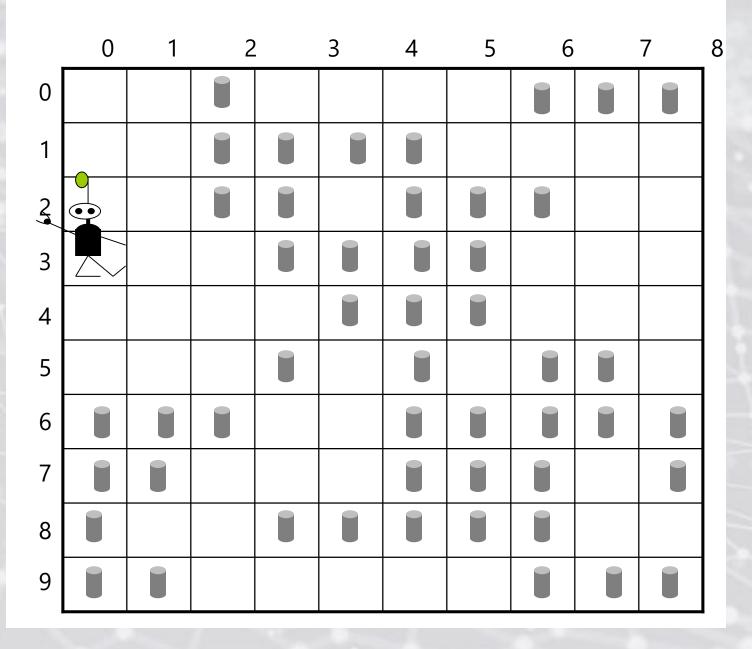
Time: 5 Score: 20



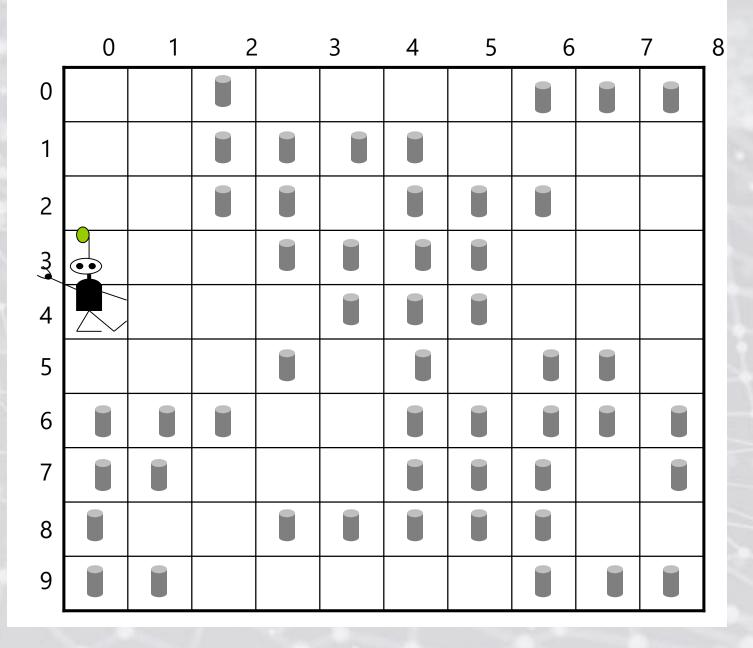
Time: 6 Score: 20



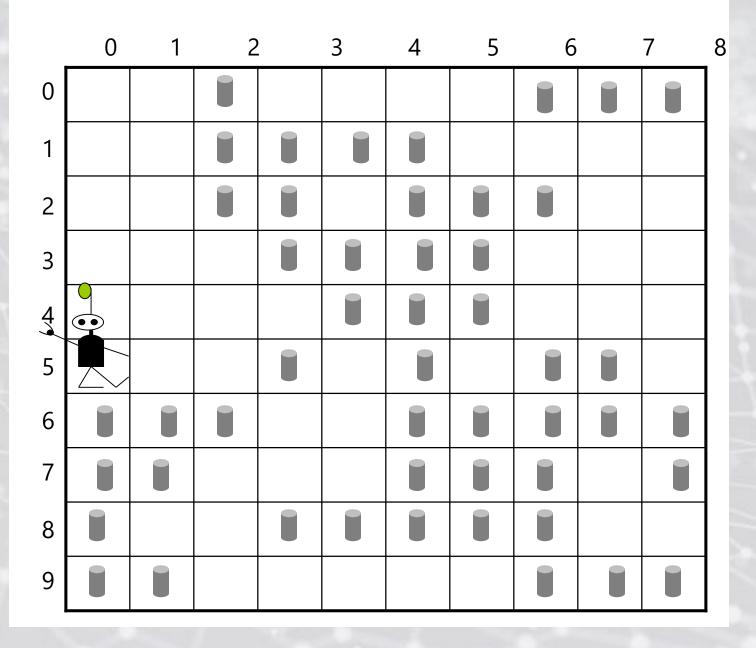
Time: 7 Score: 20



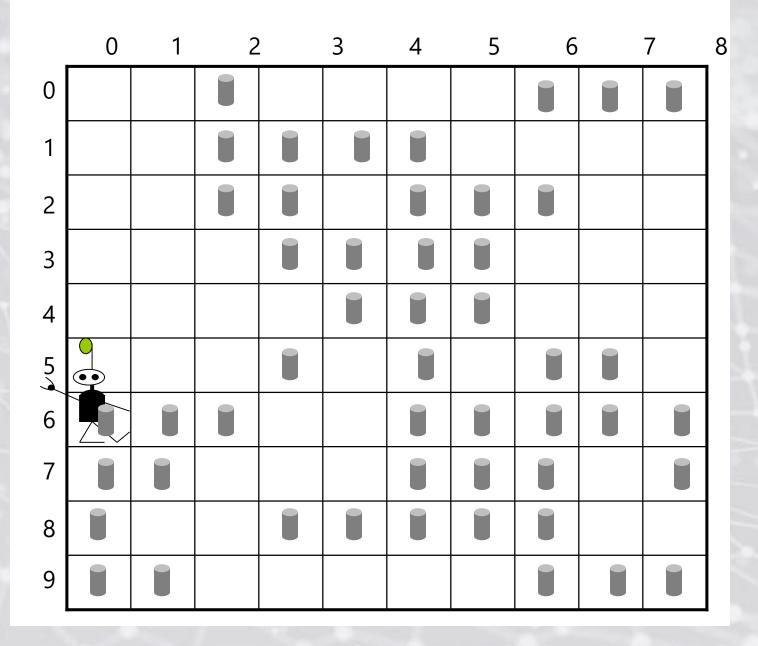
Time: 8 Score: 20



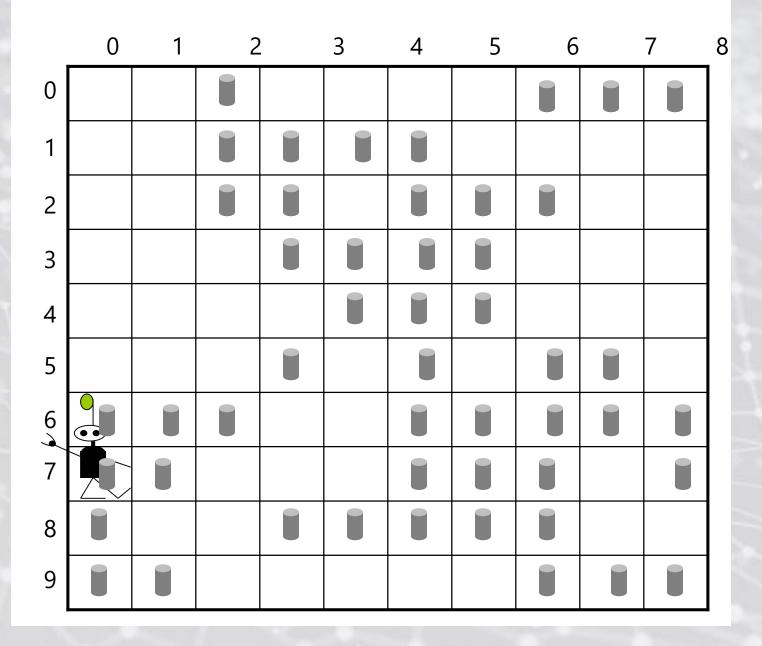
Time: 9 Score: 20



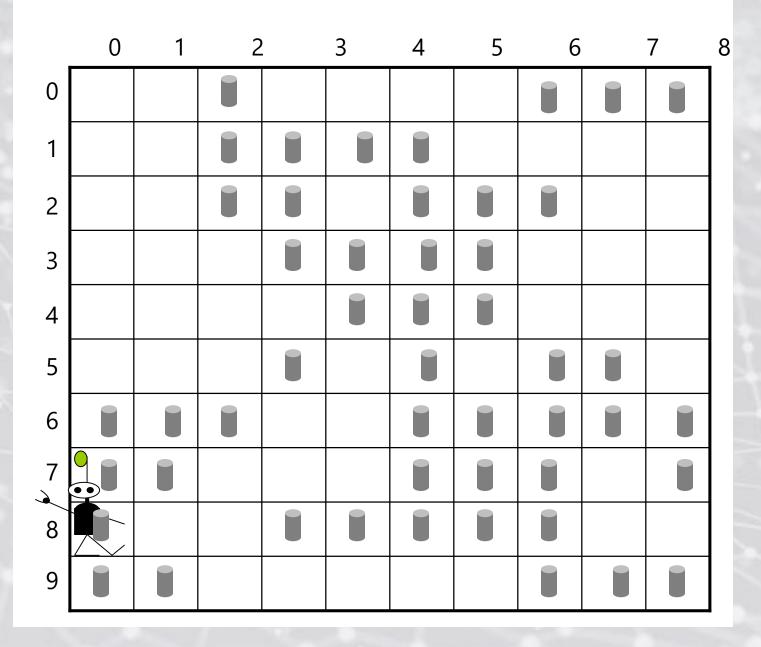
Time: 10 Score: 20



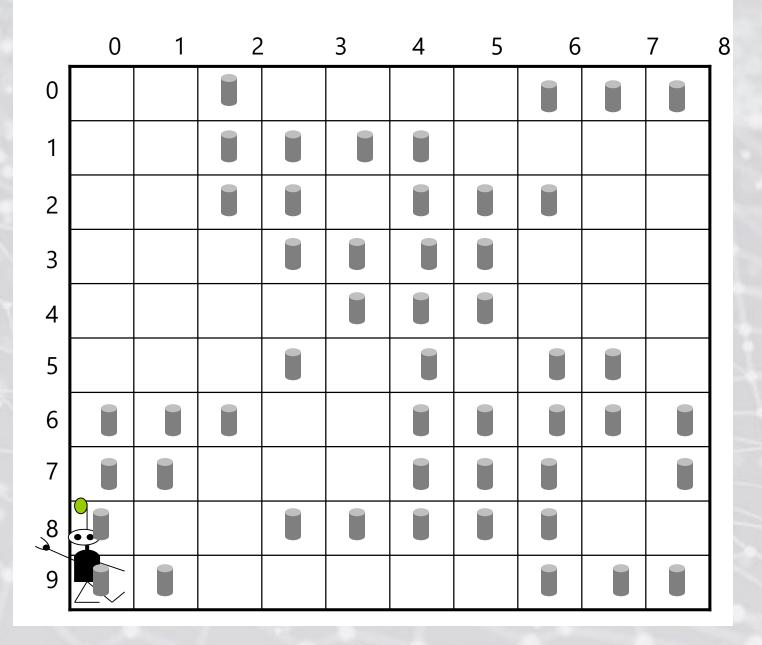
Time: 11 Score: 20



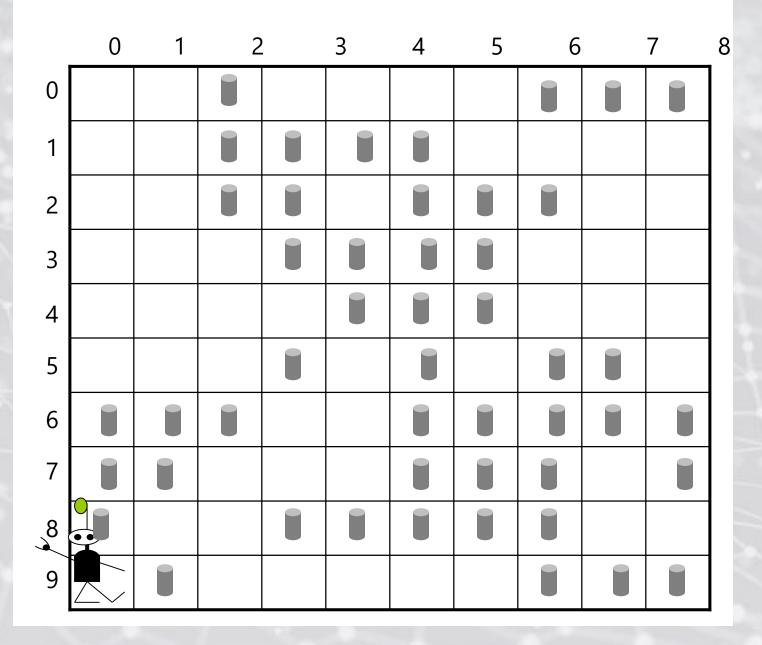
Time: 12 Score: 20



Time: 13 Score: 20



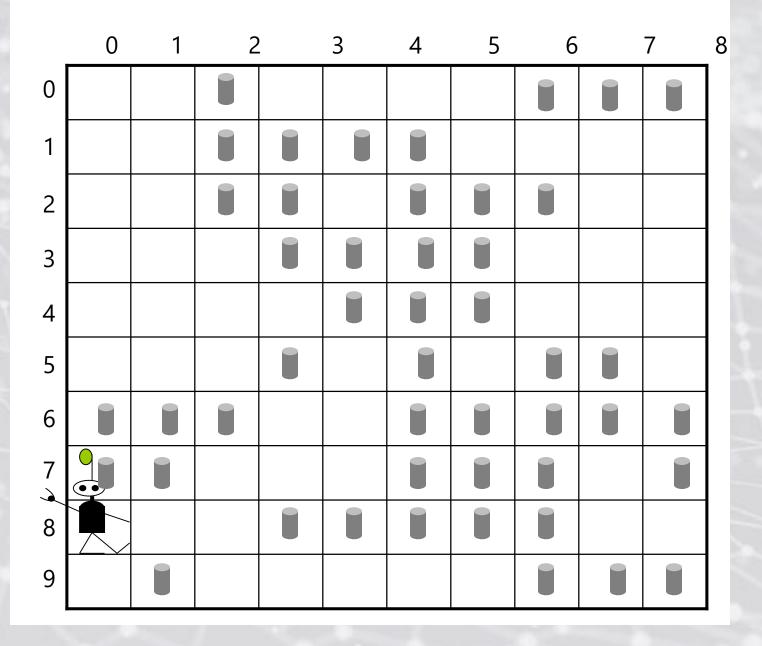
Time: 14 Score: 30



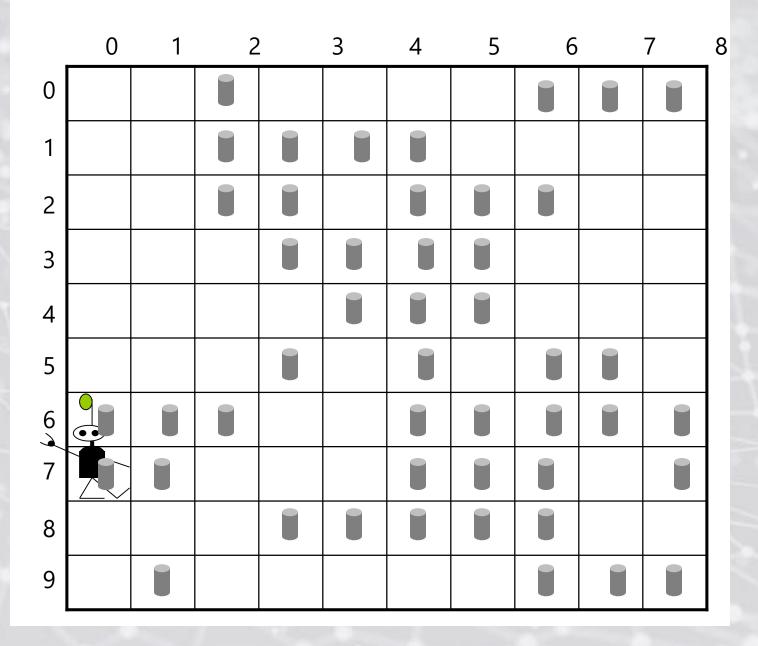
Time: 15 Score: 30



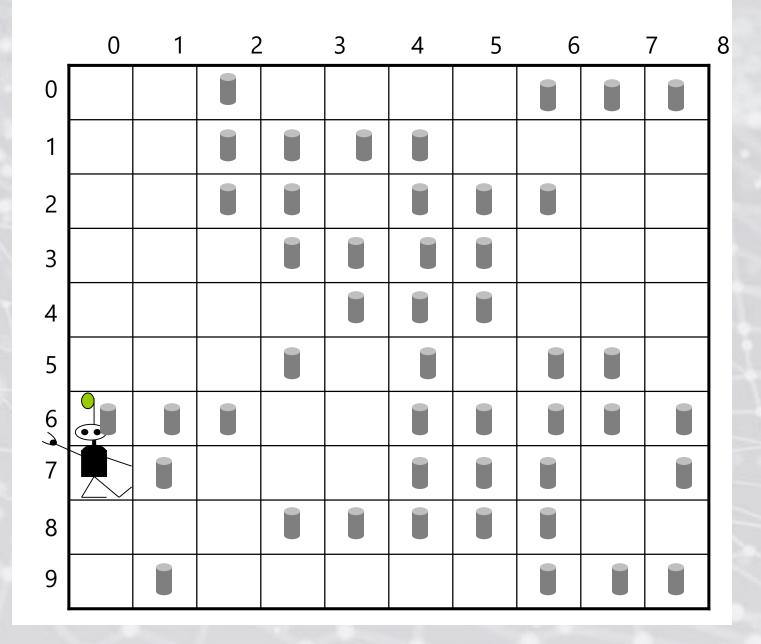
Time: 16 Score: 40



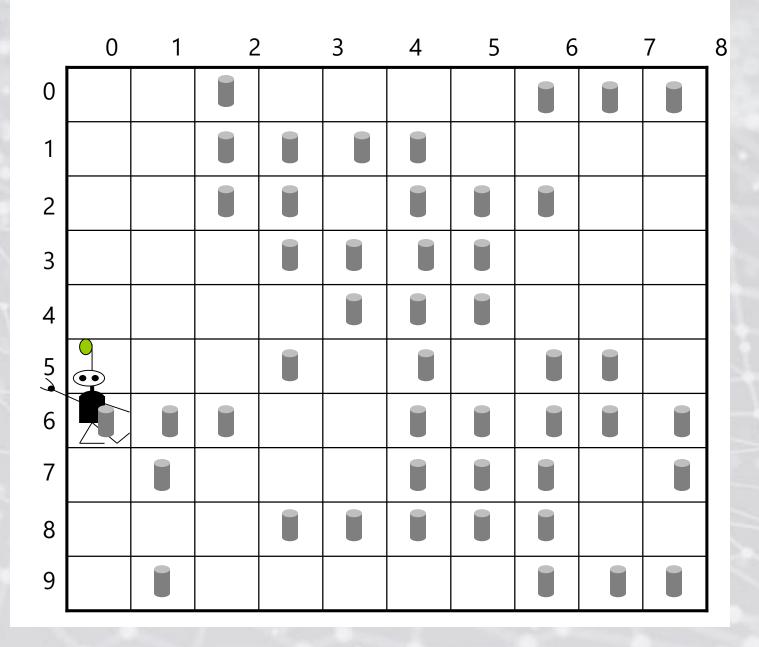
Time: 17 Score: 40



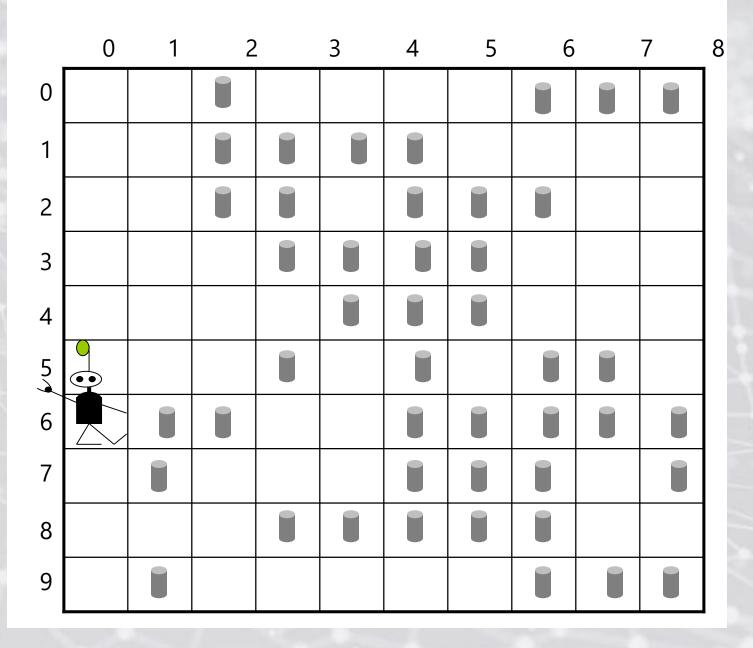
Time: 18 Score: 50



Time: 19 Score: 50

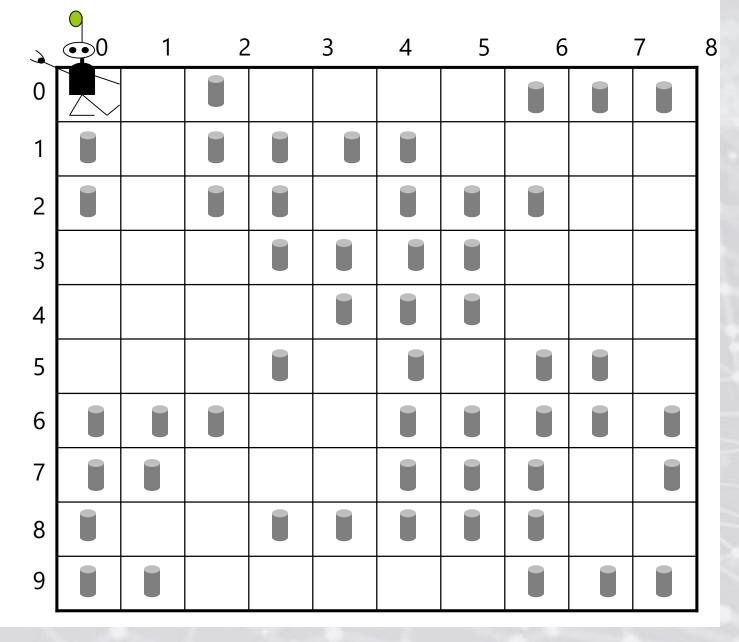


Time: 20 Score: 60

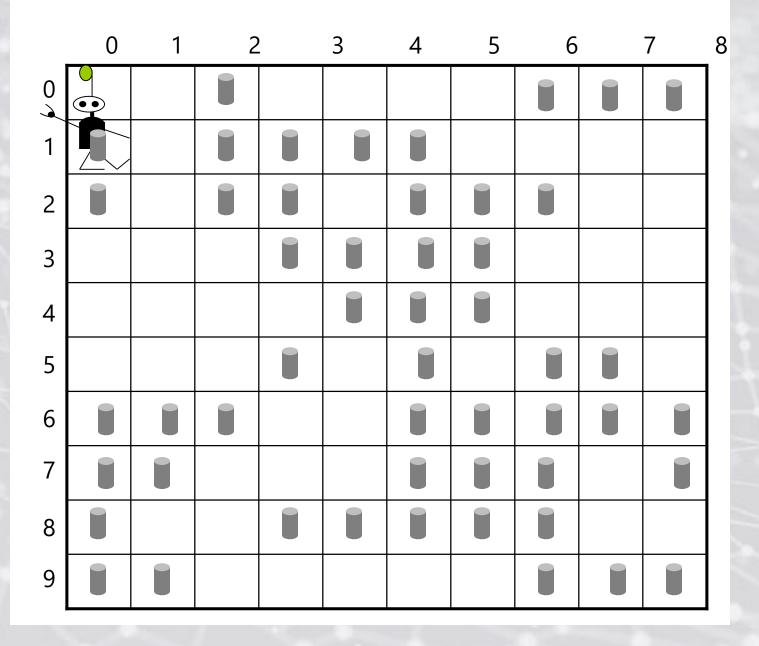


Generation 1000 Fitness = 492

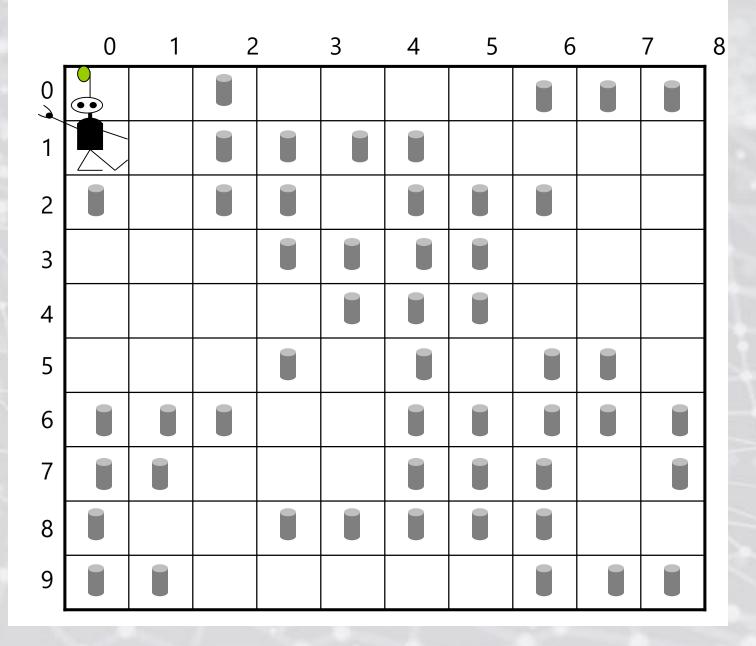
Time: 0 Score: 0



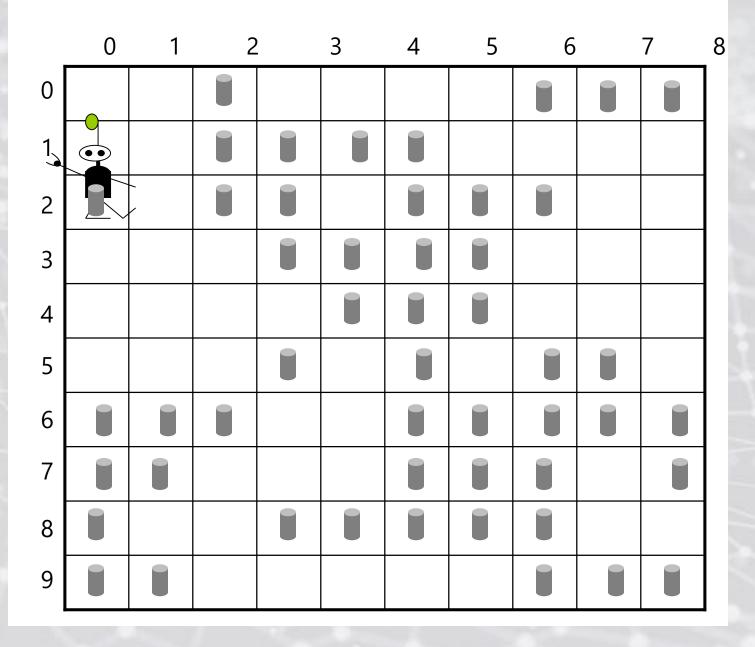
Time: 1 Score: 0



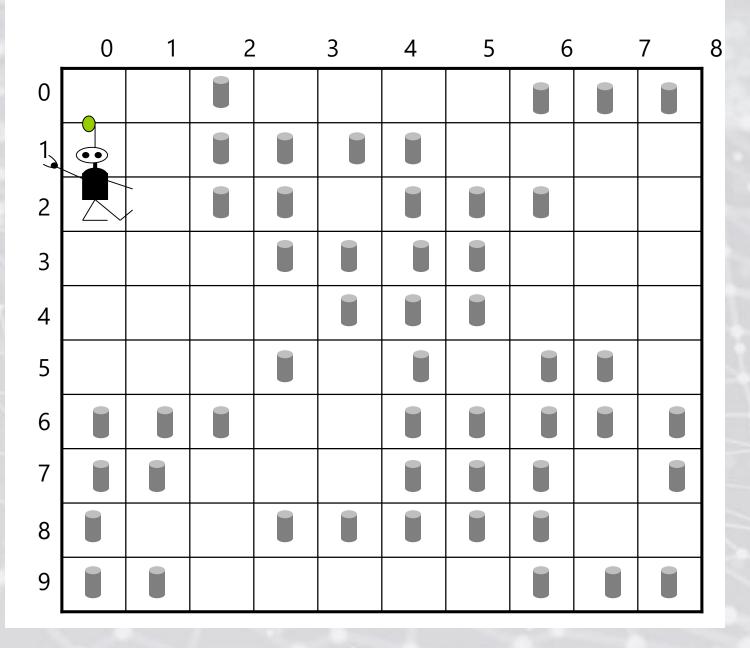
Time: 2 Score: 10



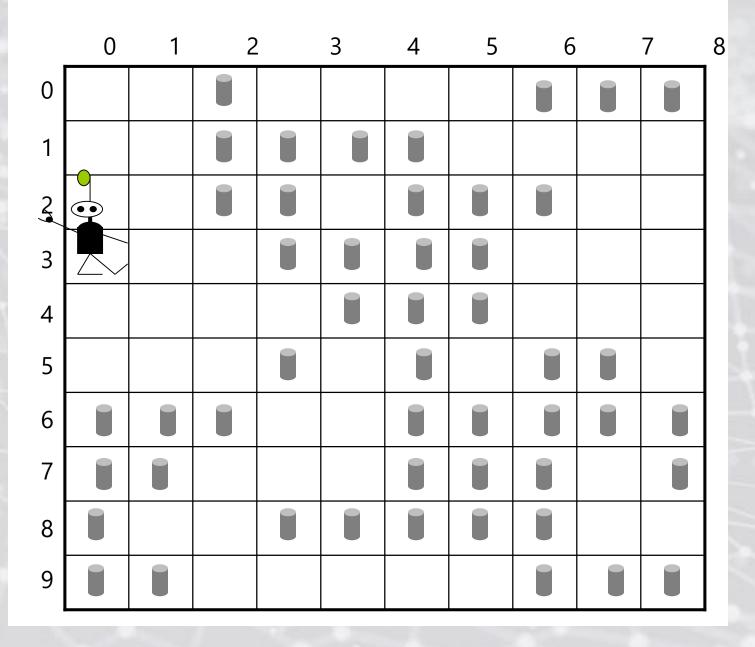
Time: 3 Score: 10



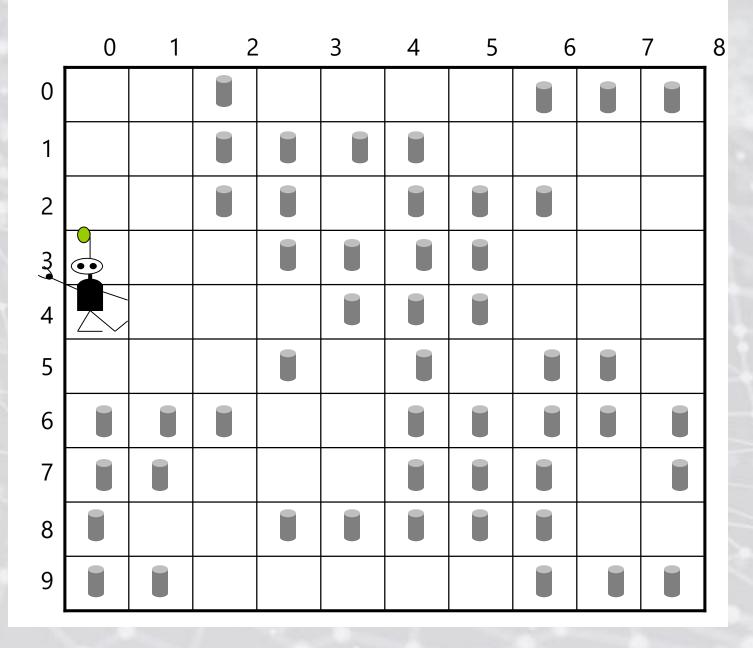
Time: 4 Score: 20



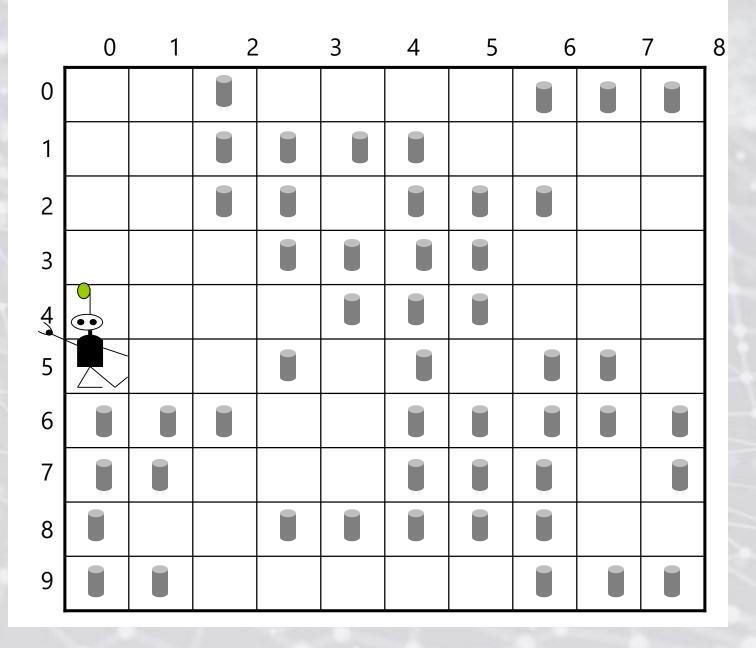
Time: 5 Score: 20



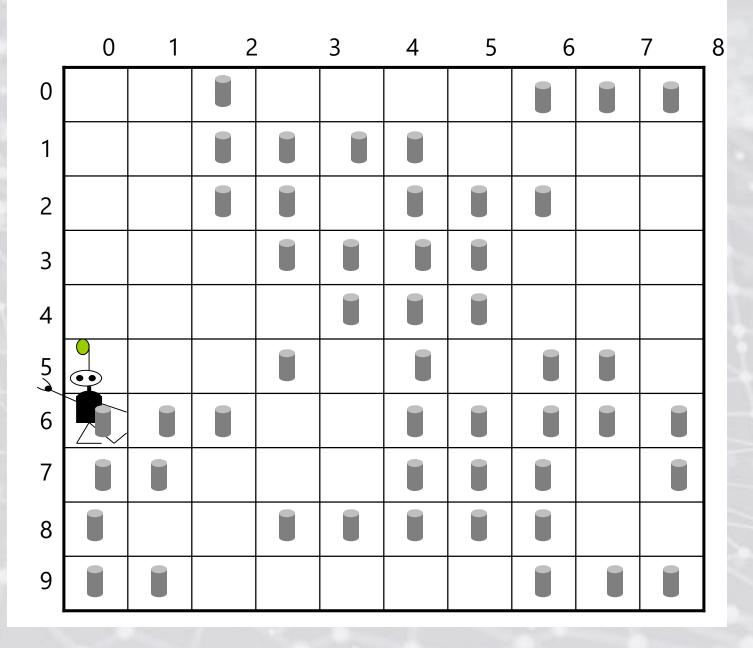
Time: 6 Score: 20



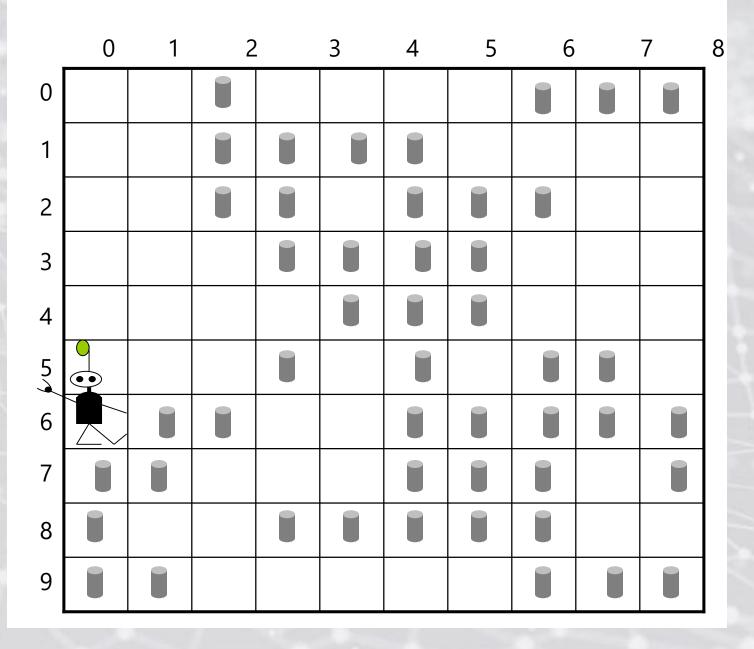
Time: 7 Score: 20



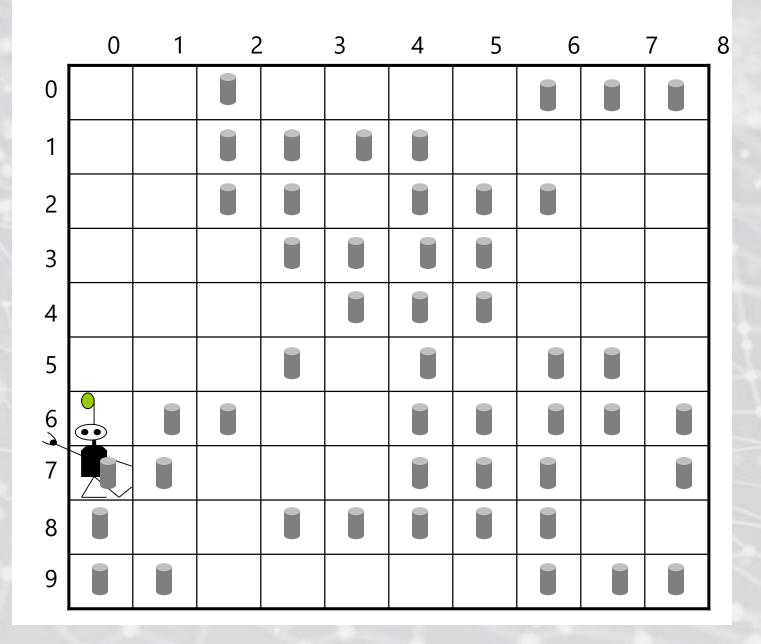
Time: 8 Score: 20



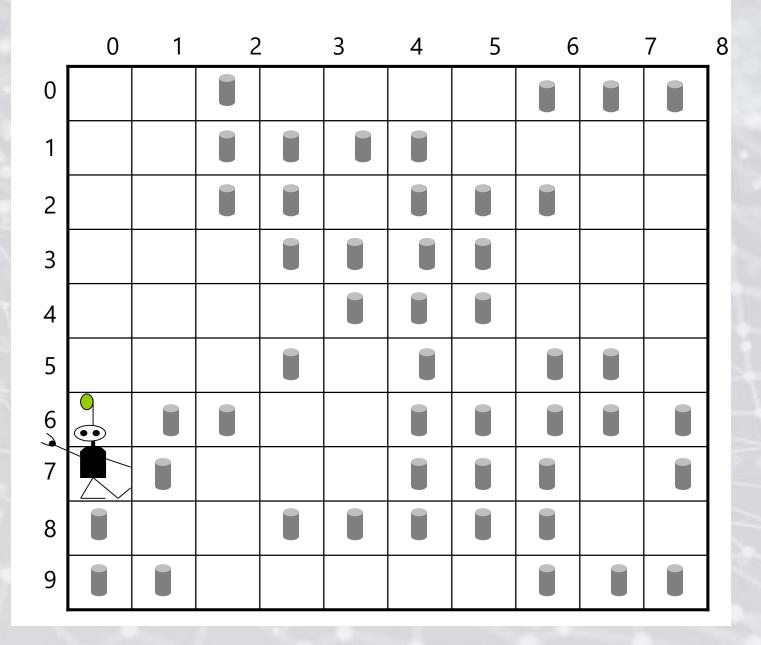
Time: 9 Score: 30



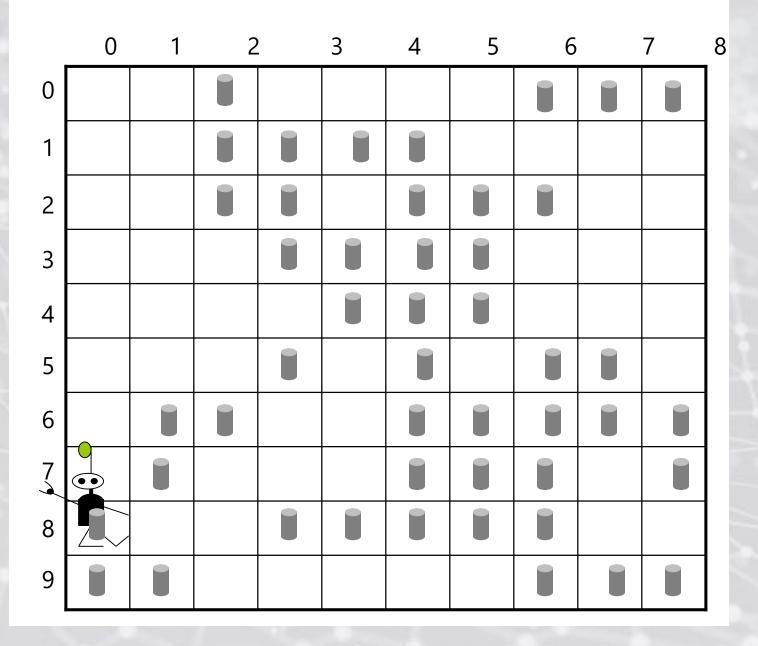
Time: 10 Score: 30



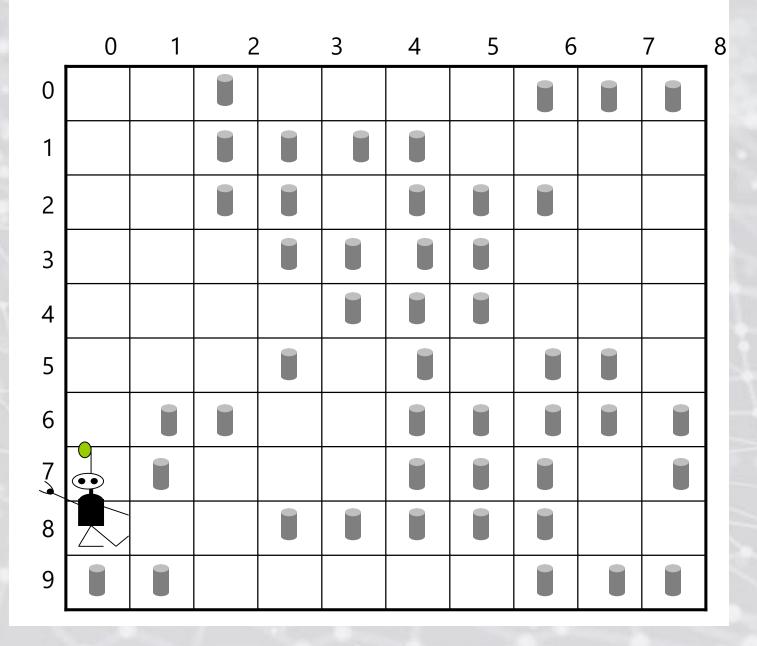
Time: 11 Score: 40



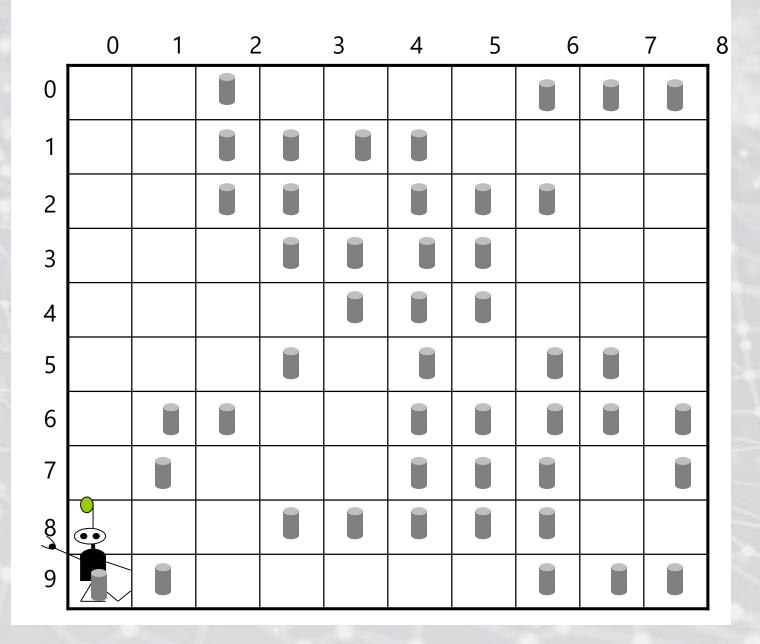
Time: 12 Score: 40



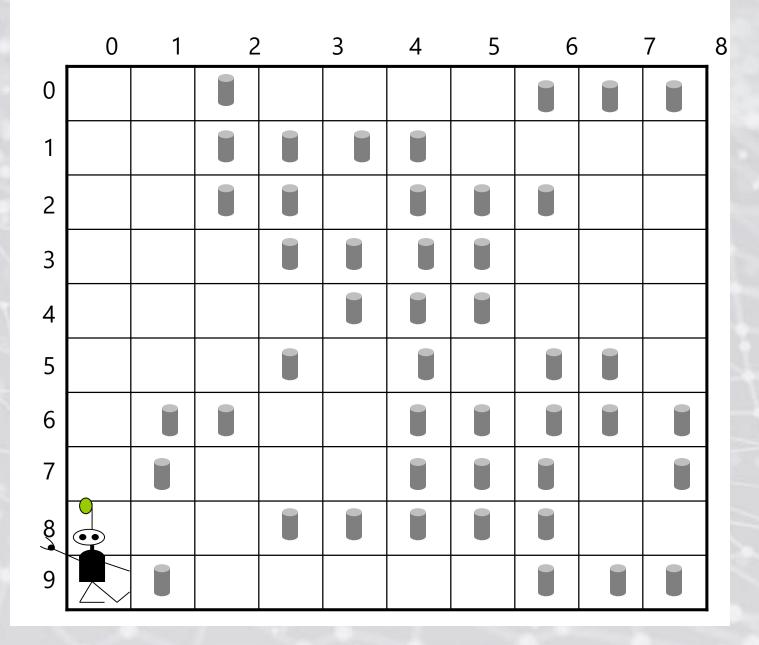
Time: 13 Score: 50



Time: 14 Score: 50



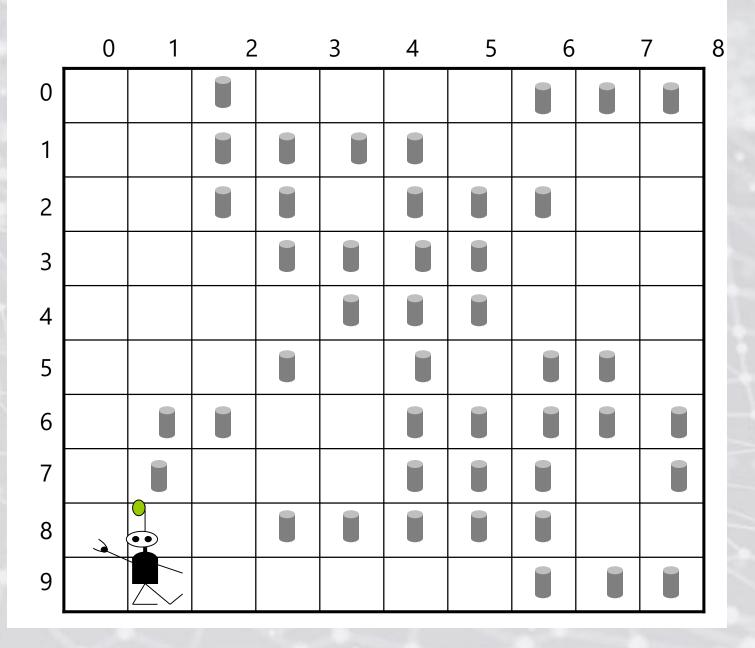
Time: 15 Score: 60



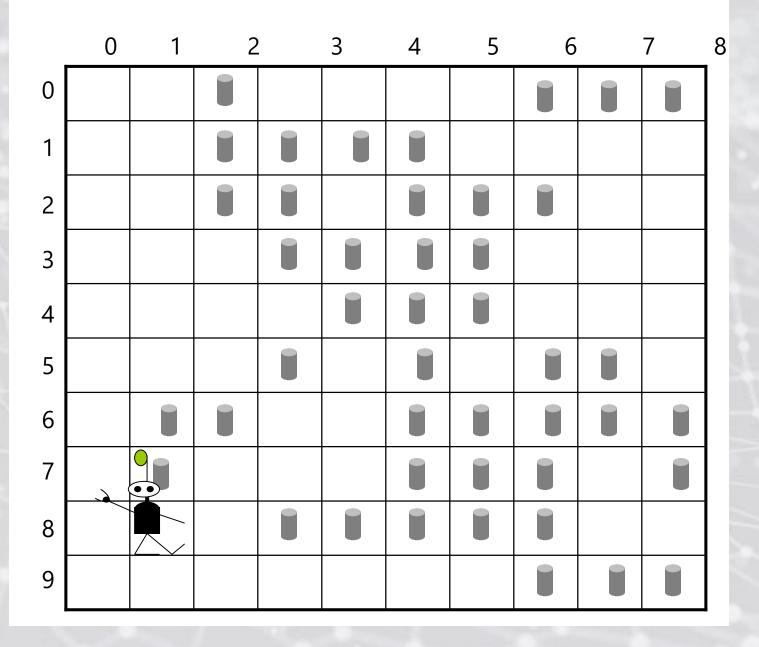
Time: 16 Score: 60



Time: 17 Score: 70

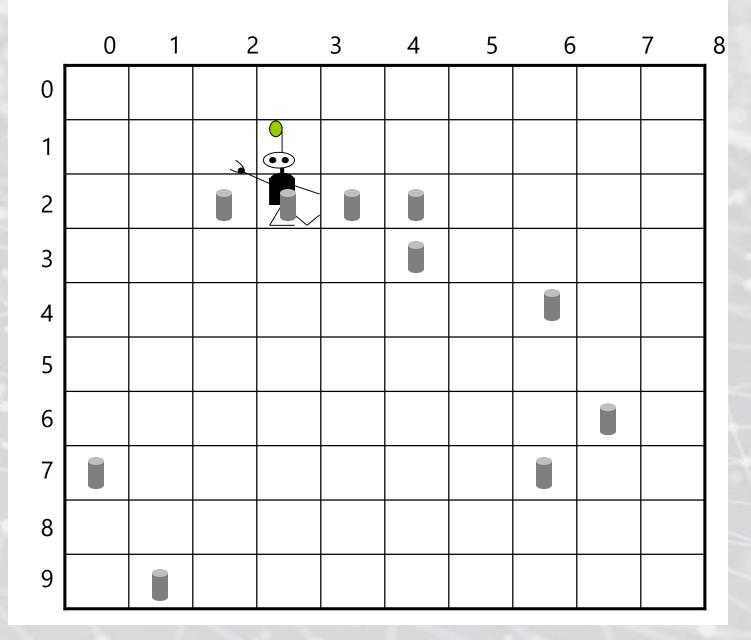


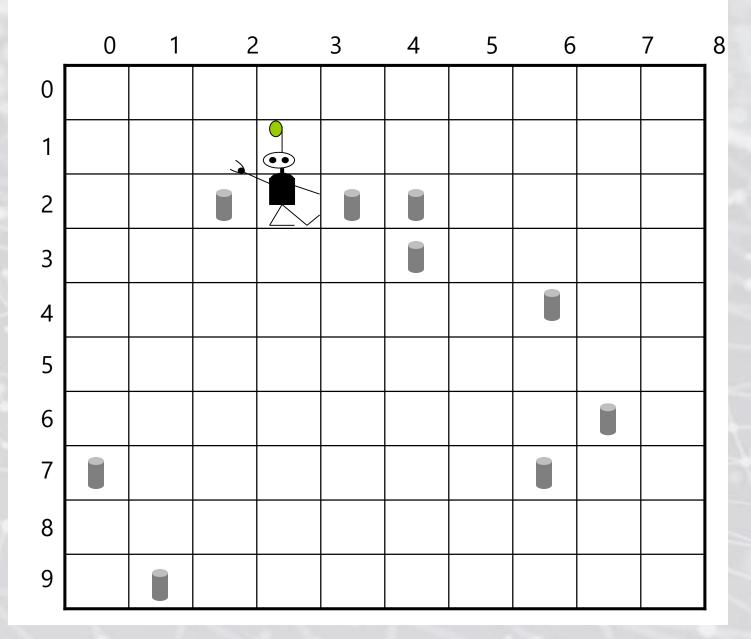
Time: 18 Score: 70

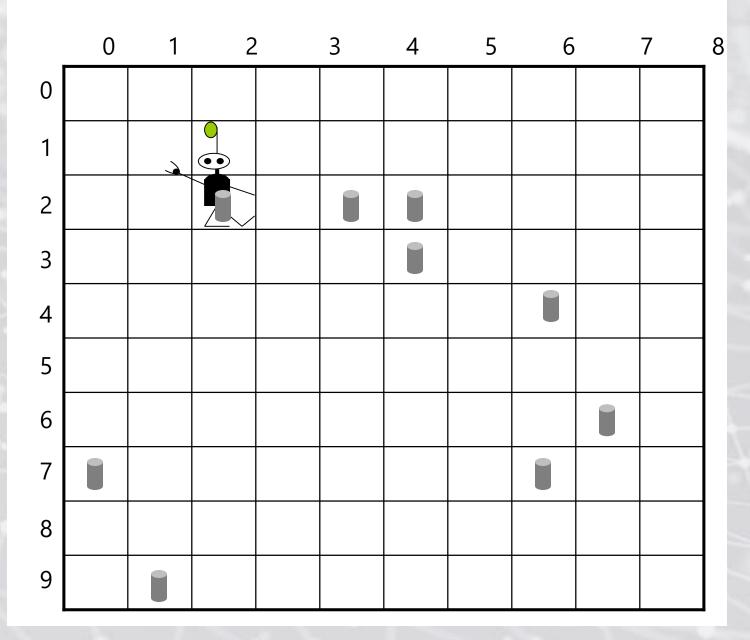


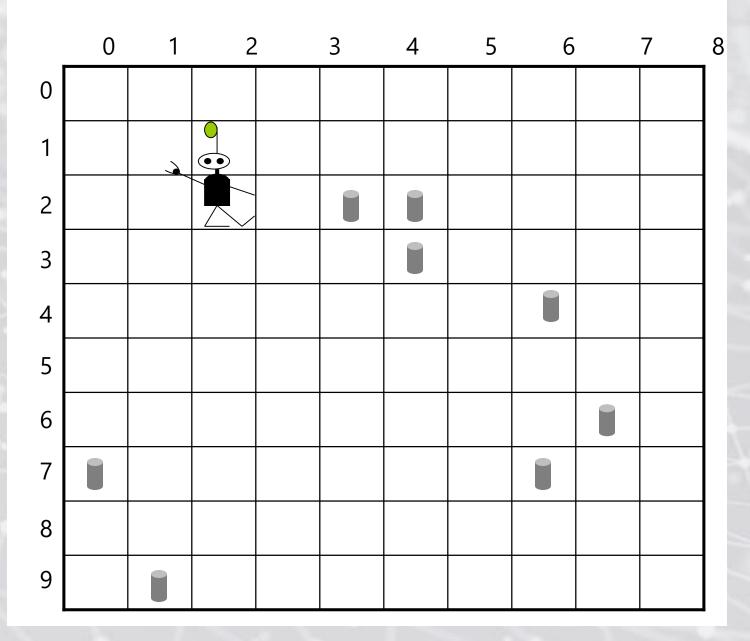
Why Did The GA's Strategy Outperform Mine?

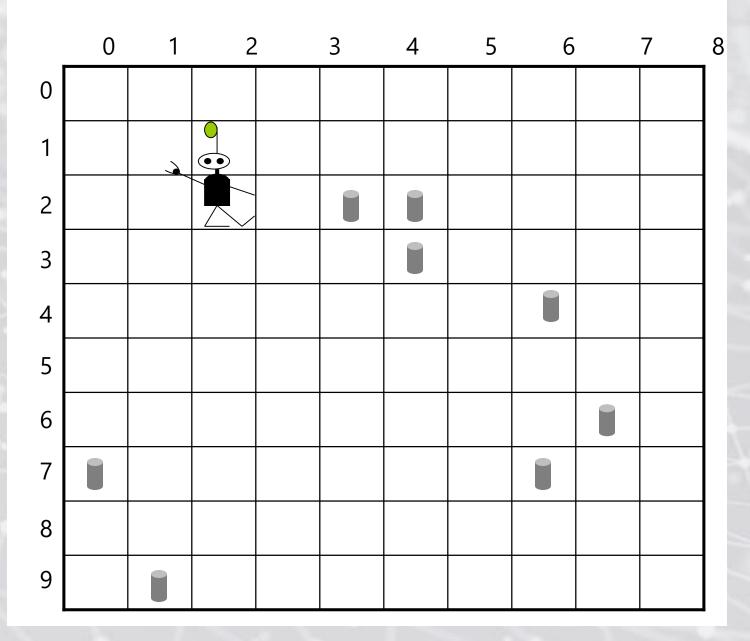
My Strategy



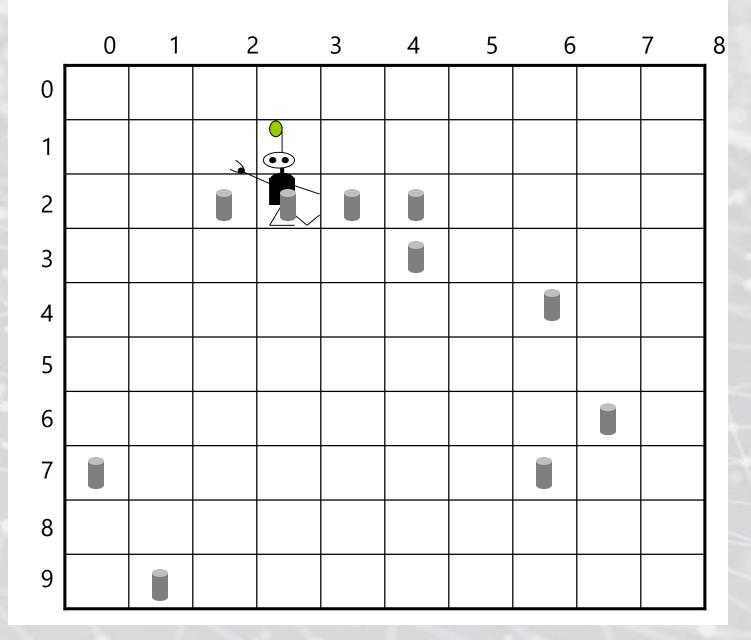


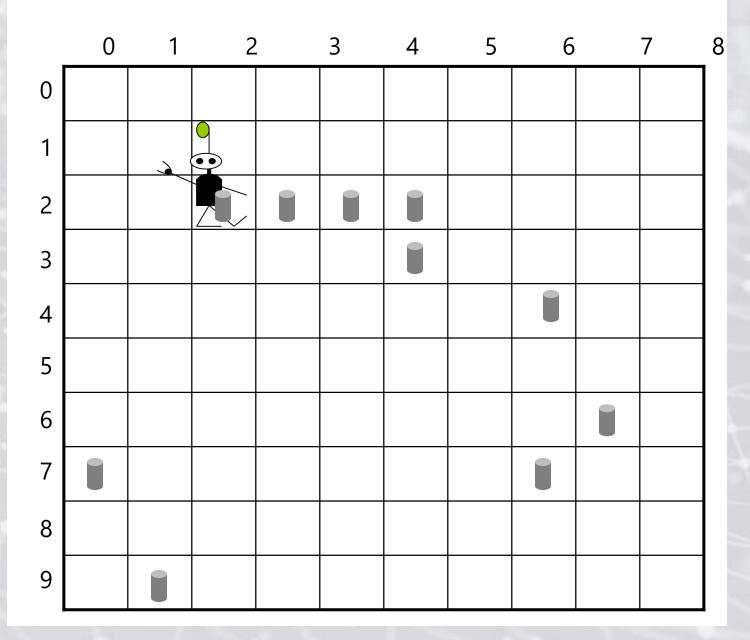


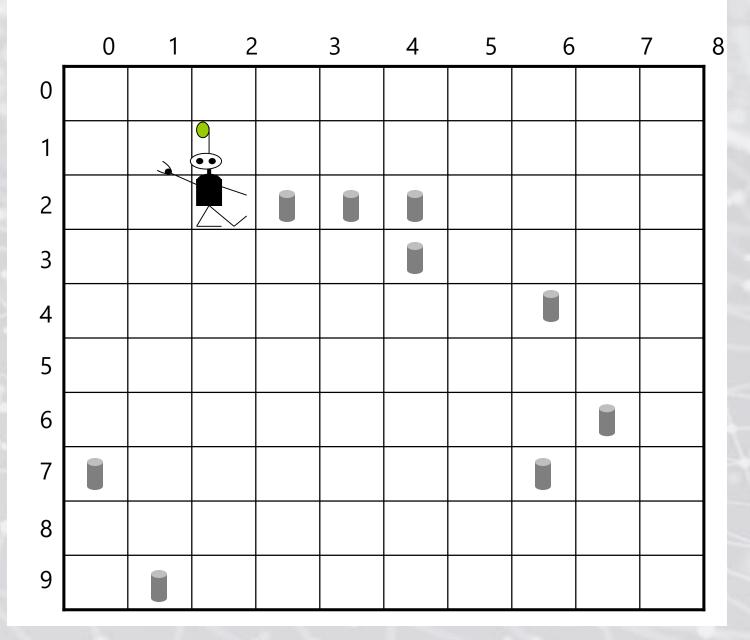


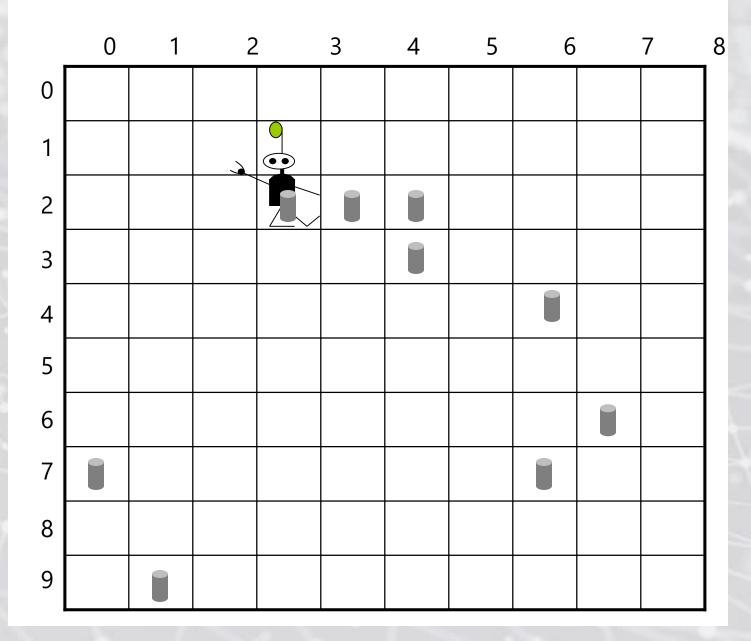


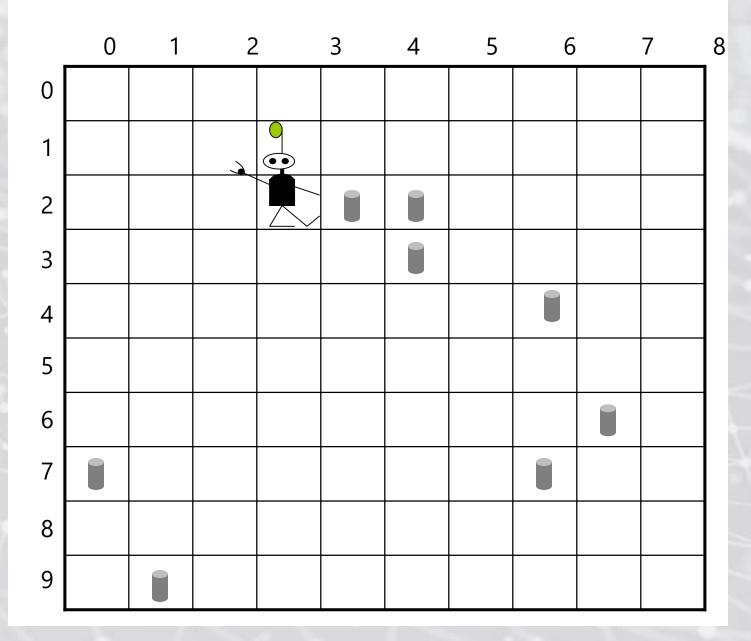
The GA's Evolved Strategy

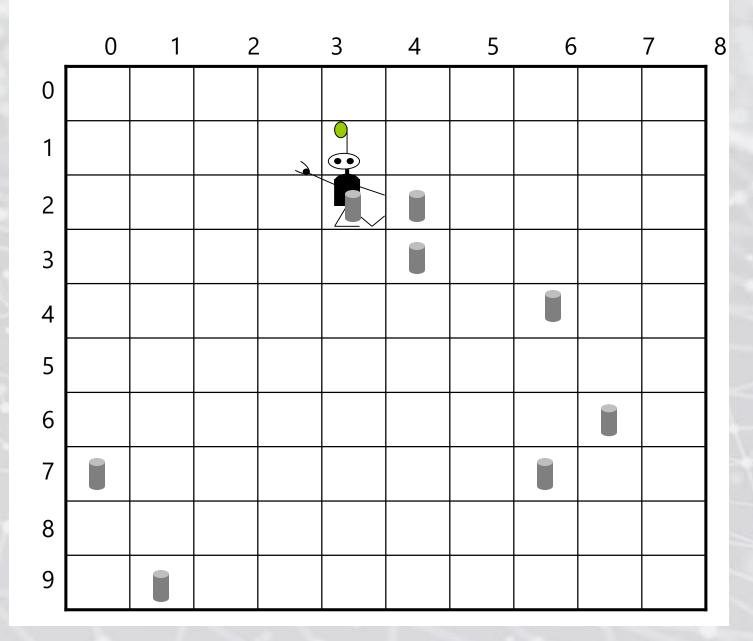


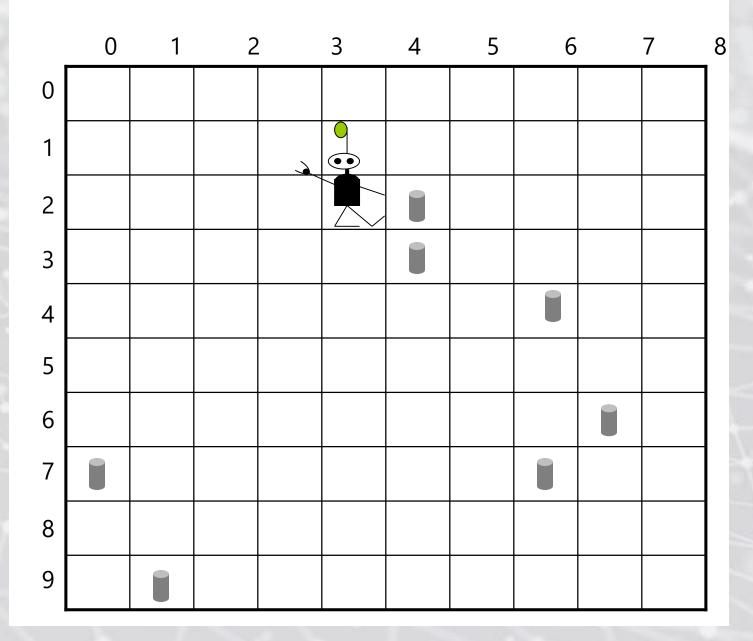


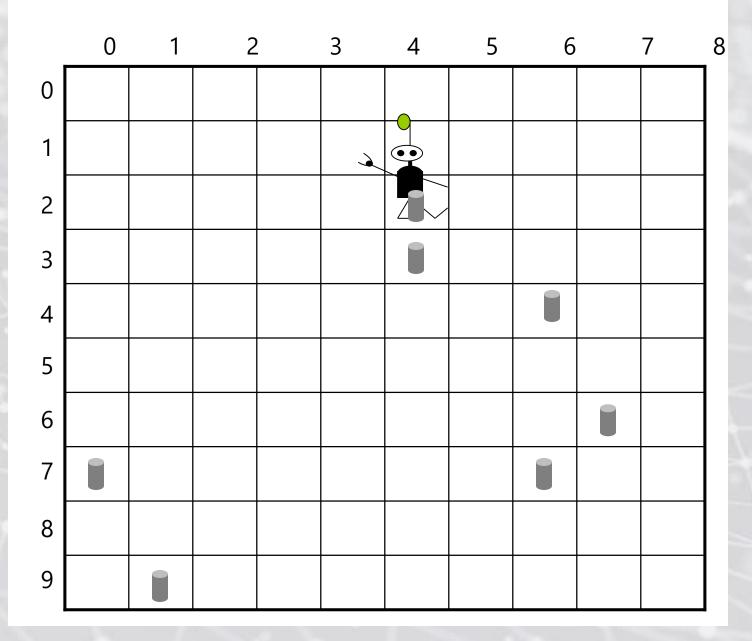


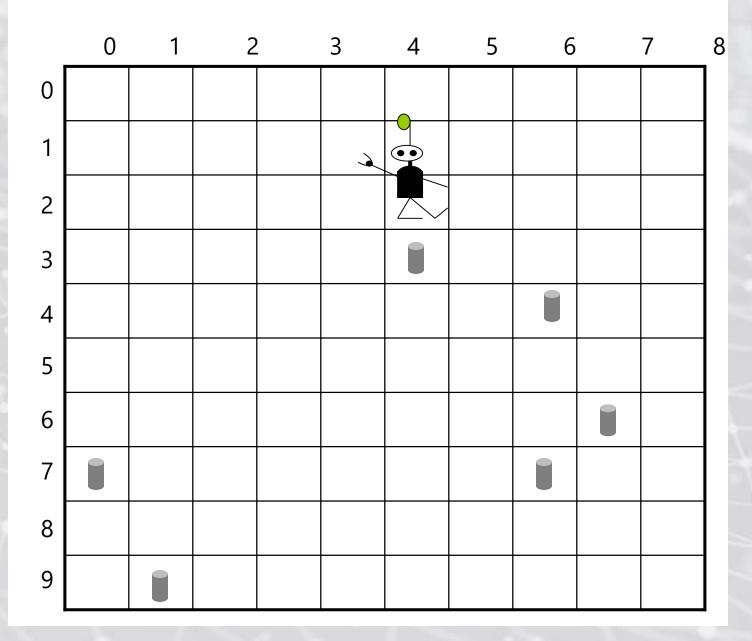


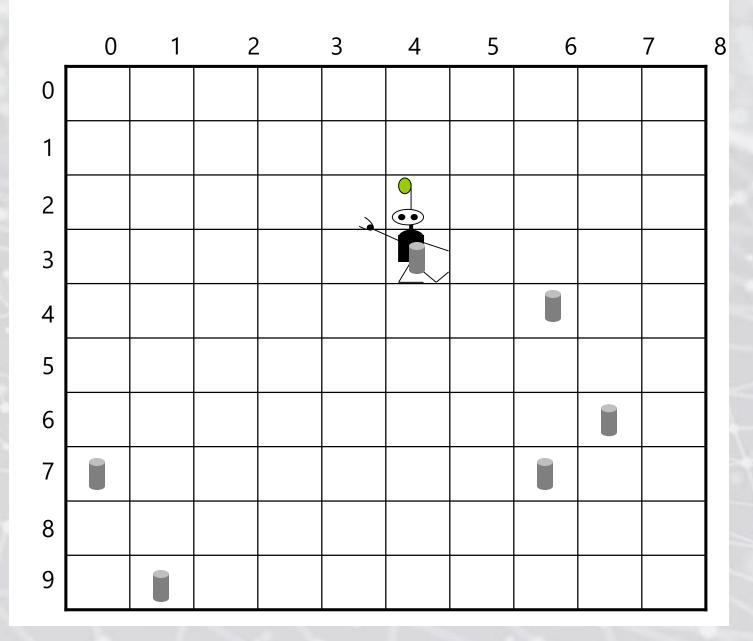


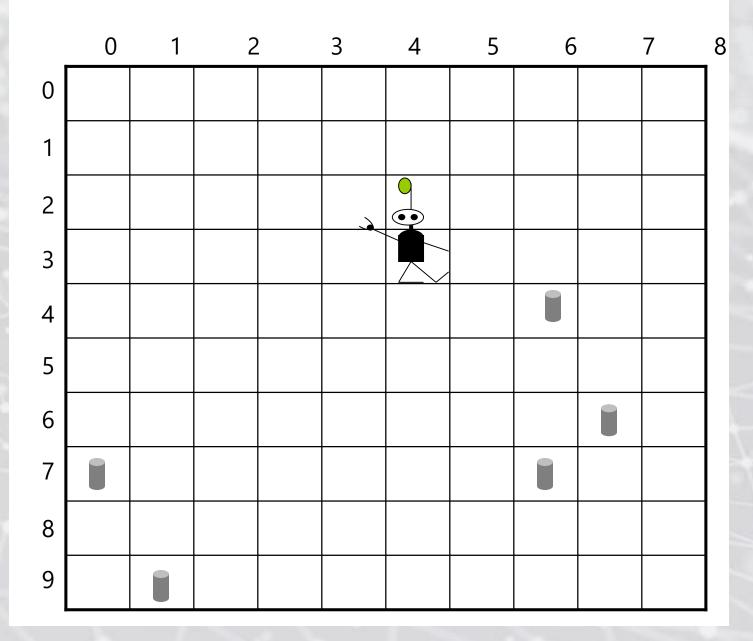












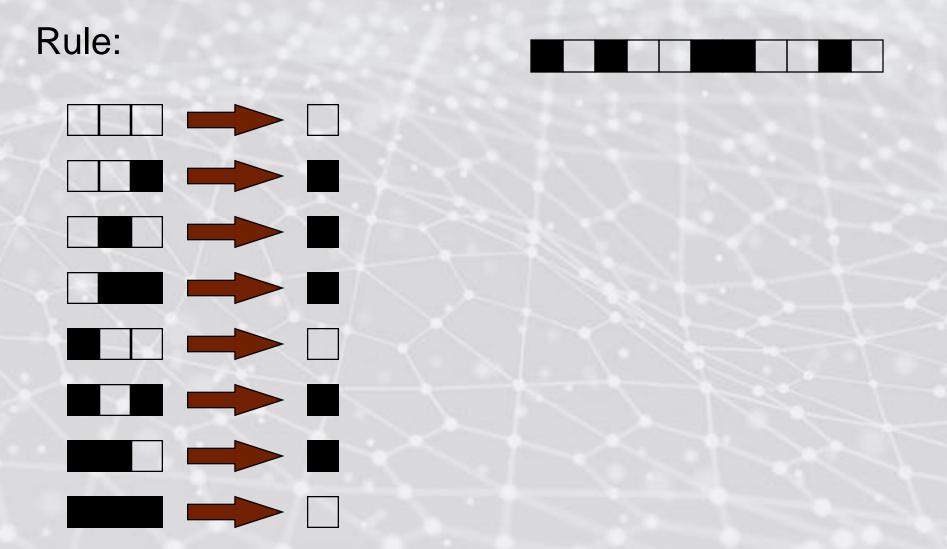
Genetic Algorithms, Part 2

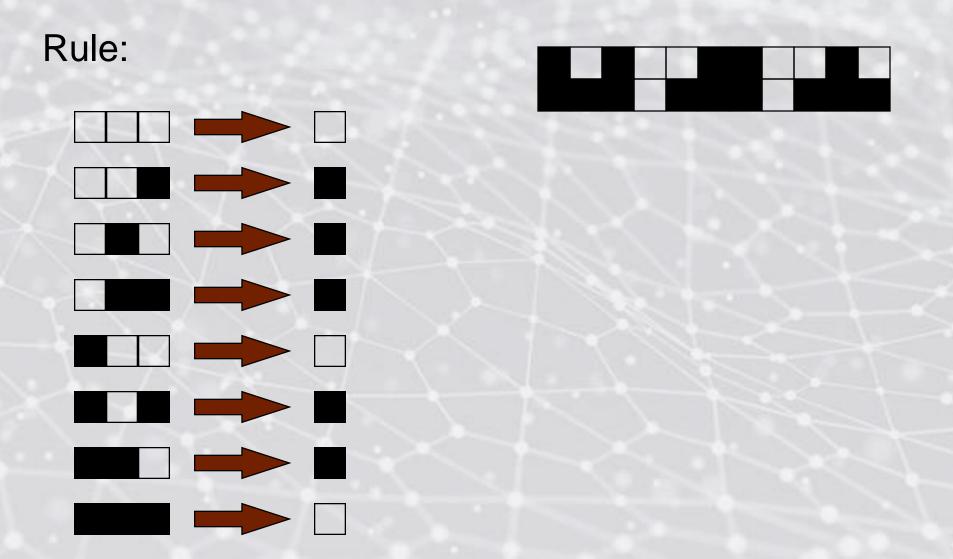
(Application to Cellular Automata -- Bonus material)

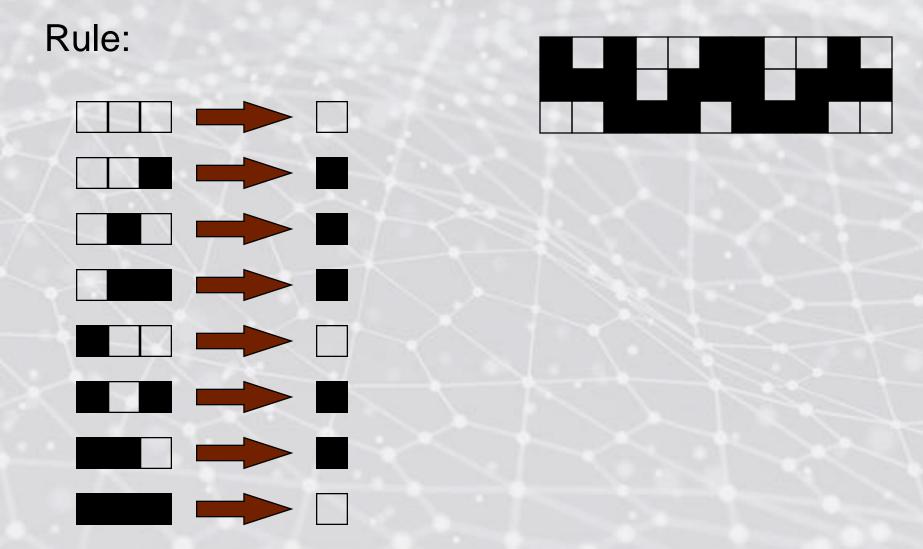
Evolving (and co-evolving) one-dimensional cellular automata to perform a computation

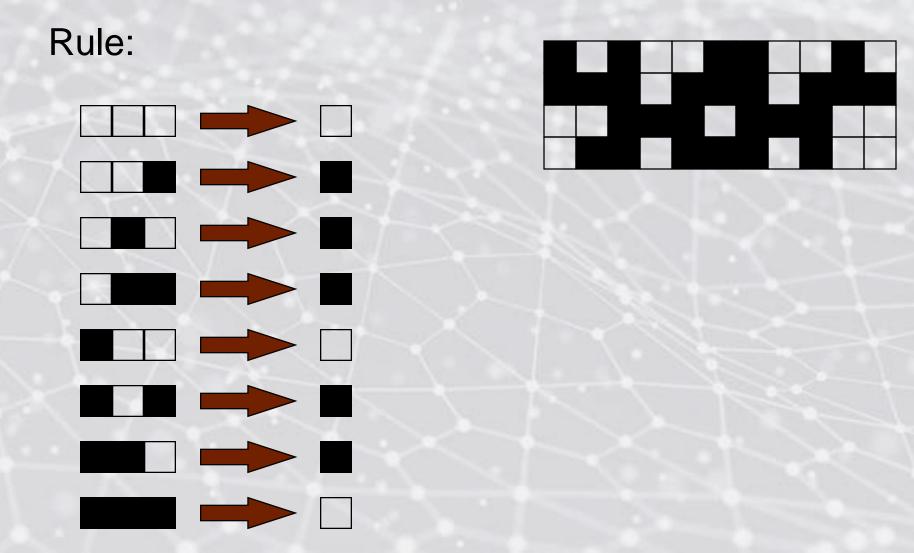
One-dimensional cellular automata

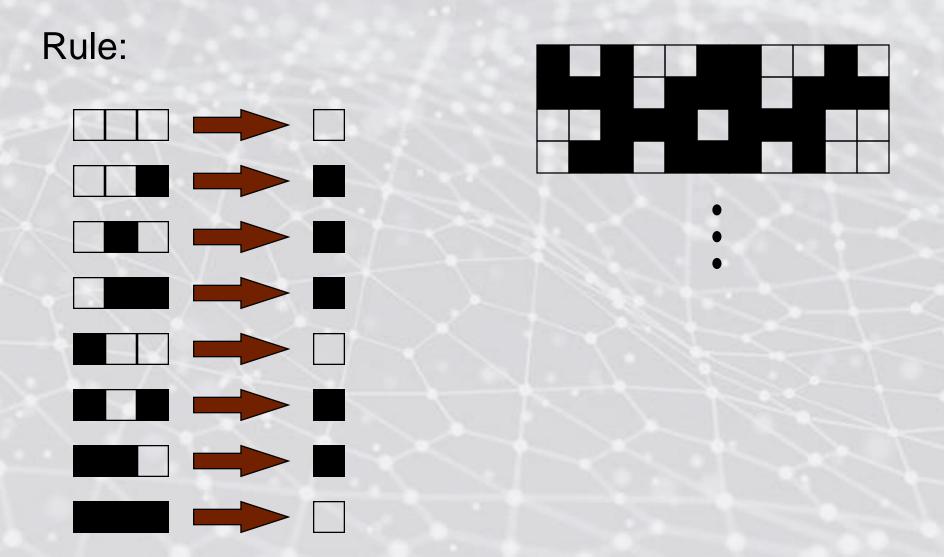
One-dimensional cellular automata

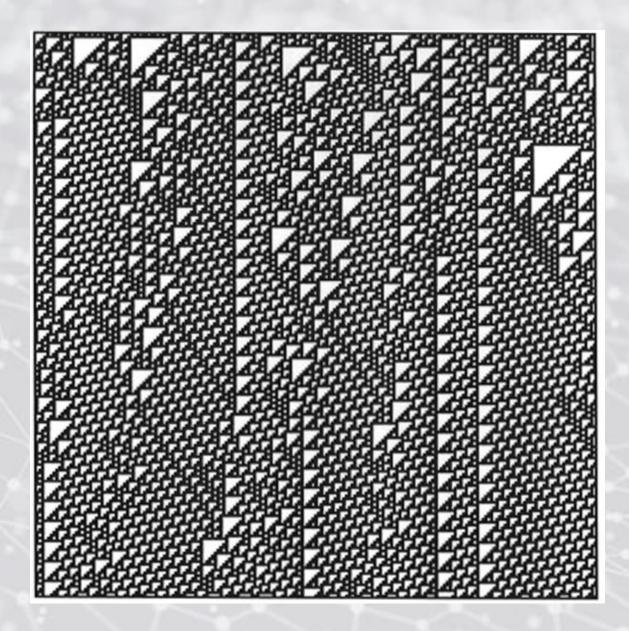


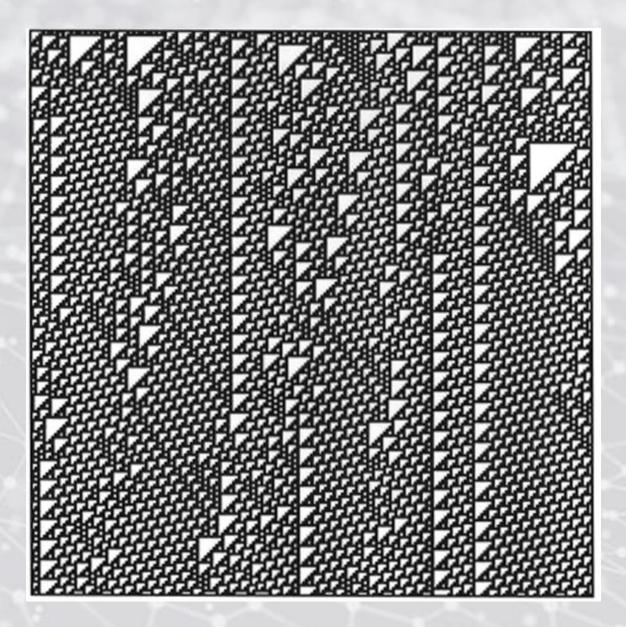












Can the complex dynamics be harnessed by evolution to perform collective information processing?

A task requiring collective computation in cellular automata

A task requiring collective computation in cellular automata

 Design a cellular automata to decide whether or not the initial pattern has a majority of "on"cells.

majority on

majority on

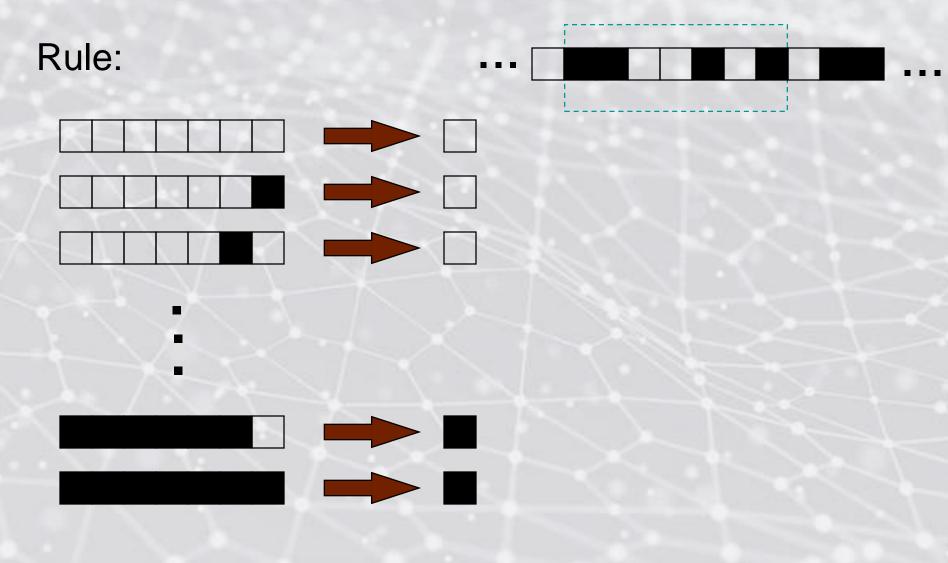
final

100	5					
		100			 1000	
	10 A 10					

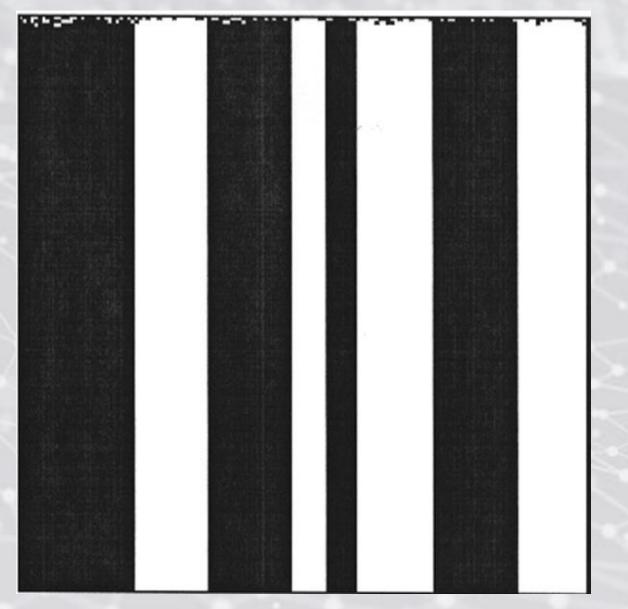
How to design a cellular automaton that will do this?

	1	 Ŋ			1	
			200			

We used cellular automata with 6 neighbors for each cell:



A candidate solution that does not work: Local majority voting



Evolving cellular automata with genetic algorithms

 Create a random population of candidate cellular automata rules

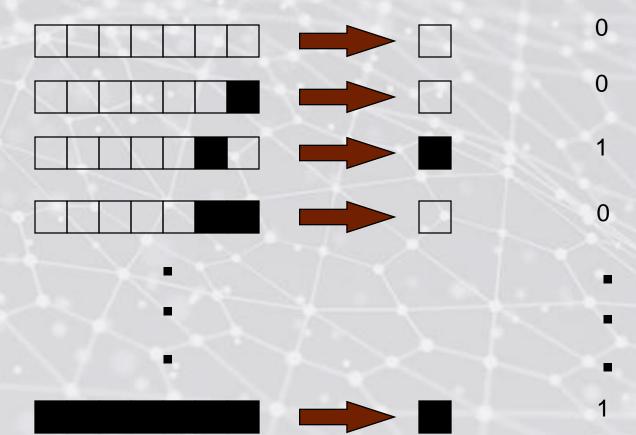
 The "fitness" of each cellular automaton is how well it performs the task. (Analogous to surviving in an environment.)

• The fittest cellular automata get to reproduce themselves, with mutations

The "chromosome" of a cellular automaton is an encoding of its rule table:

Rule table:

Chromosome



Create a random population of candidate cellular automata rules:

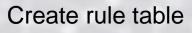
- rule 1: 0010001100010010111100010100110111000...
- rule 2: 000110011010101111111000011101001010...
- rule 3: 1111100010010101000000111000100101...

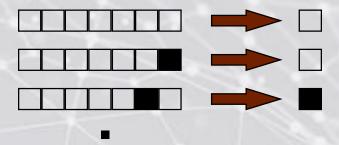
Calculating the Fitness of a Rule

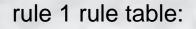
 For each rule, create the corresponding cellular automaton. Run that cellular automaton on many initial configurations.

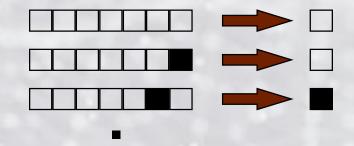
 Fitness of rule = fraction of correct classifications For each cellular automaton rule in the population:

rule 1: 0010001100010010111100010100110111000...1

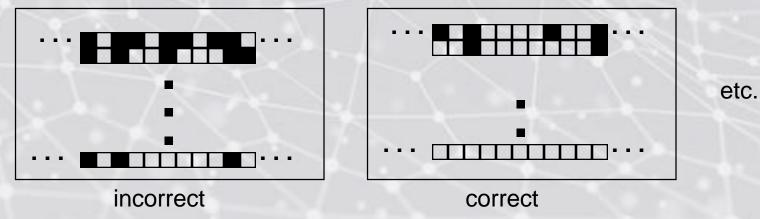








Run corresponding cellular automaton on many random initial lattice configurations



Fitness of rule = fraction of correct classifications

GA Population:



Select fittest rules to reproduce themselves

rule 1:00100011000100101111000101001001001000...Fitness = 0.5rule 3:1111000100101010000000111000100101...Fitness = 0.4

Parents:

rule 1: 0010001 100010010111100010100110111000... rule 3: 111100 01001010100000011100010010101...

mutate Children: 0010001010010101000000011100010010101... 1111100 100010010111100010010010101...

Parents:

rule 1: 0010001 100010010111100010100110111000... rule 3: 111100 01001010100000011100010010101...

mutate Children: 0010000010010101000000011100010010101... 1111100 1000100101111000100100101101...

Parents:

rule 1: 0010001 100010010111100010100110111000... rule 3: 111100 01001010100000011100010010101...

Children:

0010000010010101000000011100010010101... 1111100 1000100101111000100101011000...

mutate

Parents:

rule 1: 0010001 100010010111100010100110111000... rule 3: 111100 01001010100000011100010010101...

Children:

0010000010010101000000011100010010101... 1111100 100010010111100010101010100...

mutate

Parents:

rule 1: 0010001 100010010111100010100110111000... rule 3: 111100 01001010100000011100010010101...

Children:

0010000010010101000000011100010010101... 111100 10001001011110001001010100...

Parents:

rule 1: 0010001 100010010111100010100110111000... rule 3: 111100 01001010100000011100010010101...

Children:

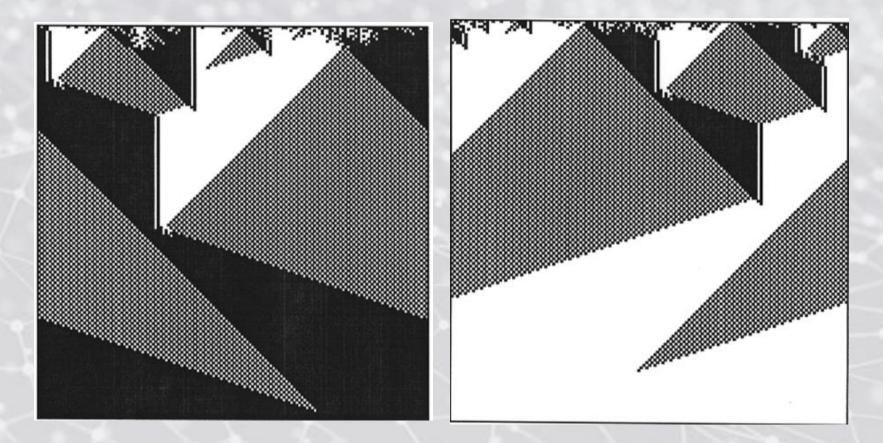
0010000010010101000000011100010010101... 111100 100010010111100010000010111000...

Continue this process until new generation is complete. Then start over with the new generation.

Keep iterating for many generations.

majority on

majority off

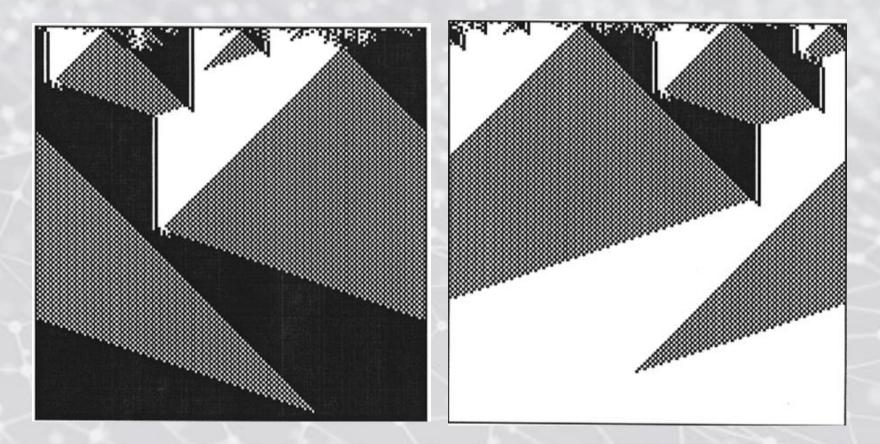


A cellular automaton evolved by the genetic algorithm

How does it perform the computation?

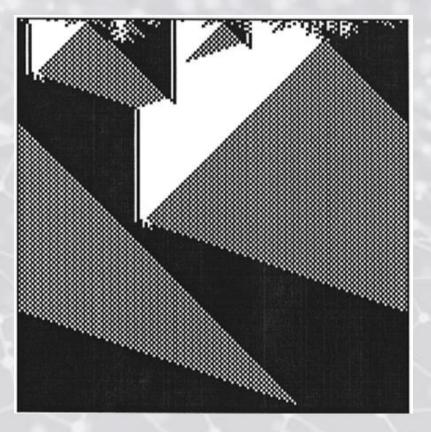
majority on

majority off

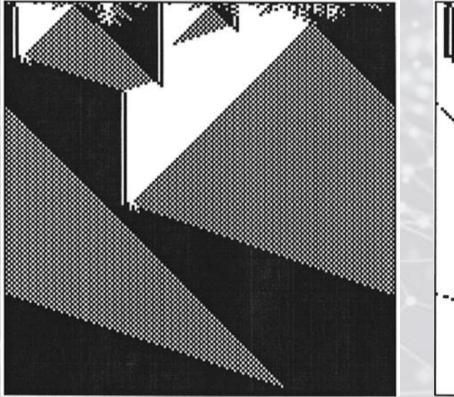


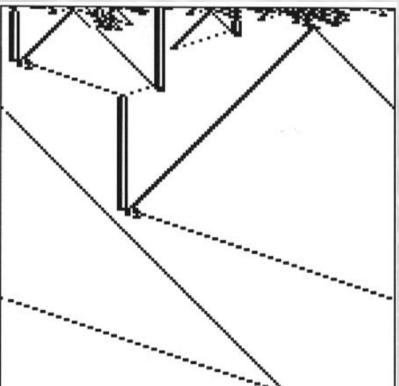
A cellular automaton evolved by the genetic algorithm

How do we describe information processing in complex systems?

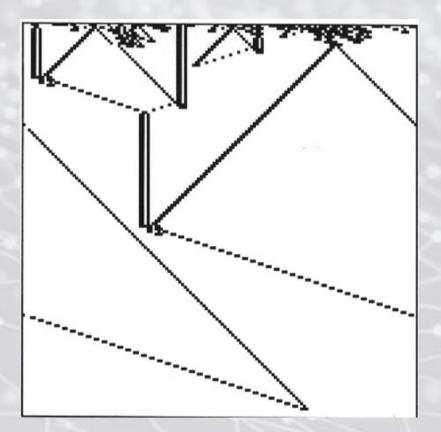


"simple patterns": black, white, checkerboard

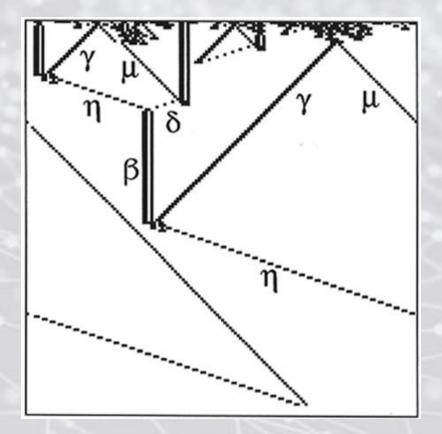




Simple patterns filtered out

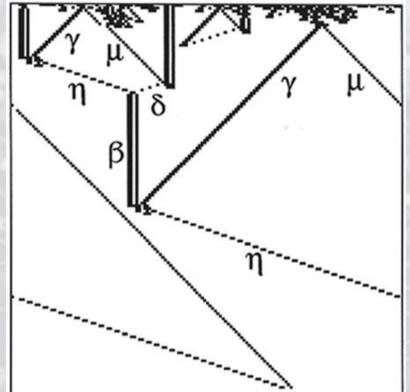


"particles"



"particles"

*	Regular	Domai	ins			
$\Lambda^0 = 0^*$	$\Lambda^1 =$	= 1*	$\Lambda^2 = (01)^*$			
	Particles	(Veloci	ties)			
$\alpha \sim \Lambda^0$	Λ^1 (0)	$\beta \sim \Lambda^1 0 1 \Lambda^0 (0)$				
$\gamma \sim \Lambda^0$	Λ^2 (-1)	$\delta \sim \Lambda^2 \Lambda^0$ (-3)				
$\eta \sim \Lambda^1$	Λ^2 (3)	$\mu \sim \Lambda^2 \Lambda^1 (1)$				
	Inter	actions				
decay	decay $\alpha \rightarrow \gamma + \mu$					
react	$\beta + \gamma \rightarrow \eta$	$\eta, \mu + \beta \to \delta, \eta + \delta \to \beta$				
annihilate	ate $\eta + \mu \rightarrow \emptyset_1, \ \gamma + \delta \rightarrow \emptyset_0$					



laws of "particle physics"

"particles"

• Level of particles can explain:

Level of particles can explain:
 Why one CA is fitter than another

Level of particles can explain:
 Why one CA is fitter than another
 What mistakes are made

- Level of particles can explain:
 - Why one CA is fitter than another
 - What mistakes are made
 - How the GA produced the observed series of innovations

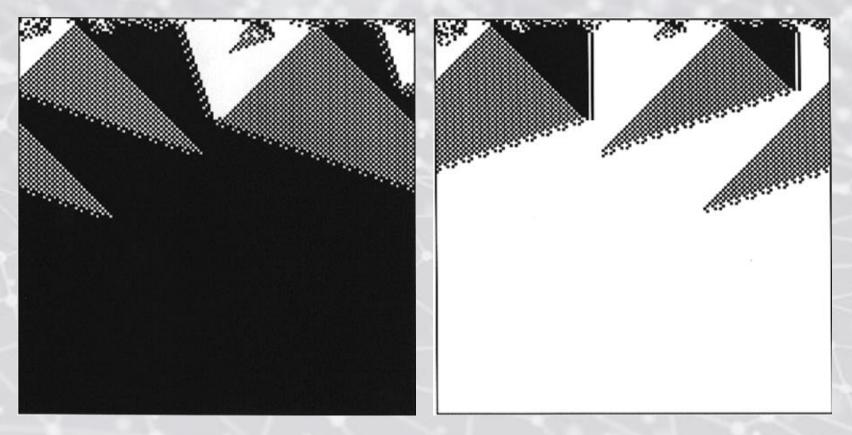
- Level of particles can explain:
 - Why one CA is fitter than another
 - What mistakes are made
 - How the GA produced the observed series of innovations

 Particles give an "information processing" description of the collective behavior

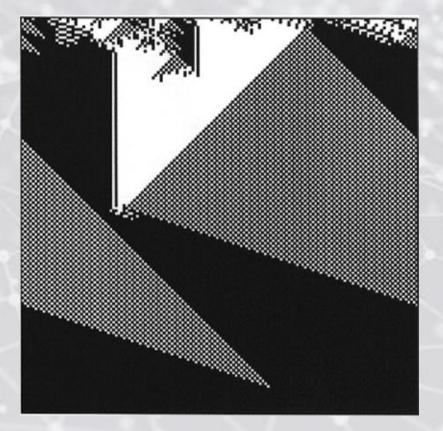
- Level of particles can explain:
 - Why one CA is fitter than another
 - What mistakes are made
 - How the GA produced the observed series of innovations

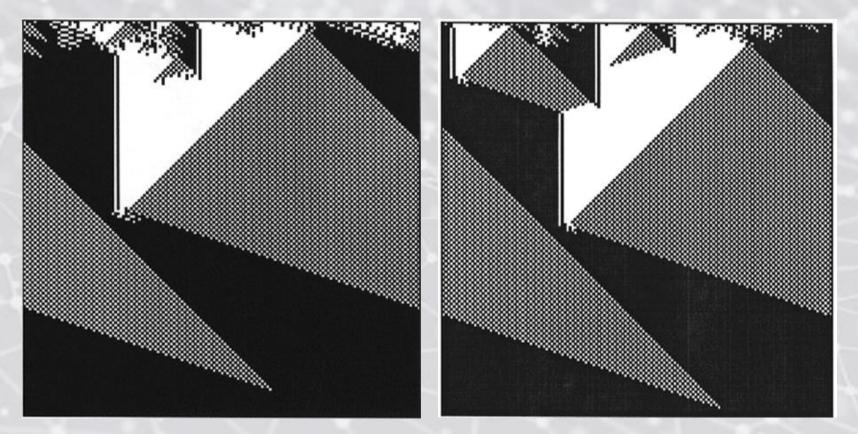
 Particles give an "information processing" description of the collective behavior
 ----> "Algorithmic" level

generation 8



generation 17





generation 33

Cellular Automata

Traditional GA (with crossover) Traditional GA (mutation only) 20%

0%

Percentage of successful runs

Cellular Automata

Traditional GA (with crossover) Traditional GA (mutation only) 20%

0%

Percentage of successful runs

Problem: GA often gets stuck in local optima, with "too easy" training examples **Problem for learning algorithms:**

How to select training examples appropriate to different stages of learning?

One solution:

Co-evolve training examples, using inspiration from host-parasite coevolution in nature.

Host-parasite coevolution in nature

- Hosts evolve defenses against parasites
- Parasites find ways to overcome defenses
- Hosts evolve new defenses
- Continual "biological arms race"

Heliconius-egg mimicry in Passiflora

http://www.ucl.ac.uk/~ucbhdjm/courses/b242/Coevol/Coevol.html

 Darwin recognized the importance of coevolution in driving evolution

- Darwin recognized the importance of coevolution in driving evolution
- Coevolution was later hypothesized to be major factor in evolution of sexual reproduction

Coevolutionary Learning

Candidate solutions and training examples coevolve.

Coevolutionary Learning

Candidate solutions and training examples coevolve.

 Fitness of candidate solution (host): how well it performs on training examples.

Coevolutionary Learning

Candidate solutions and training examples coevolve.

- Fitness of candidate solution (host): how well it performs on training examples.
- Fitness of training example (parasite): how well it defeats candidate solutions.

Sample Applications of Coevolutionary Learning

• Competitive:

Coevolving minimal sorting networks (Hillis)

- Hosts: Candidate sorting networks
- Parasites: Lists of items to sort

Sample Applications of Coevolutionary Learning – Game playing strategies (e.g., Rosin & Belew; Fogel; Juillé & Pollack)

 Hosts: Candidate strategies for Nim, 3D Tic Tac Toe, backgammon, etc.

Parasites: Another population of candidate strategies

– HIV drug design (e.g., Rosin)

 Hosts: Candidate protease inhibitors to match HIV protease enzymes

Parasites: Evolving protease enzymes

- Robot behavior (e.g., Sims; Nolfi & Floreano)

Hosts: Robot control programs

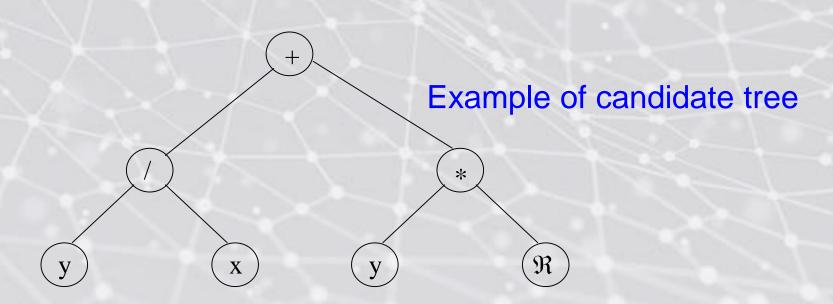
 Parasites: Competing robot control programs • Cooperative:

 Cooperative coevolution of neural network weights and topologies (e.g., Potter & De Jong; Stanley, Moriarty, Miikkulainen) **Problem domains used in experiments**

- Function induction: 2D function-induction task (Pagie & Hogeweg, 1997)
 - Evolve function tree to approximate

$$f(x, y) = \frac{1}{1 + x^{-4}} + \frac{1}{1 + y^{-4}}$$

- Hosts are candidate trees
 - Function set: {+, -, *, %}
 - Terminal set: {x, y, R}



– Parasites are (x,y) pairs

 Fitness (h) = Average inverse error on sample of p

• Fitness (*p*): Error of *h* on problem *p*

• **Success** = Correct host (on complete set of problems) in population for 50 generations

2. Evolving cellular automata

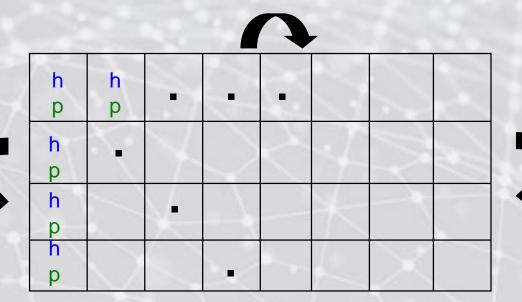
 Problem is to design 1D CA that classifies initial configurations (ICs) as "majority 1s" or "majority 0s".

Spatial Coevolution

2D toroidal lattice with one host (*h*) and one parasite (*p*) per site

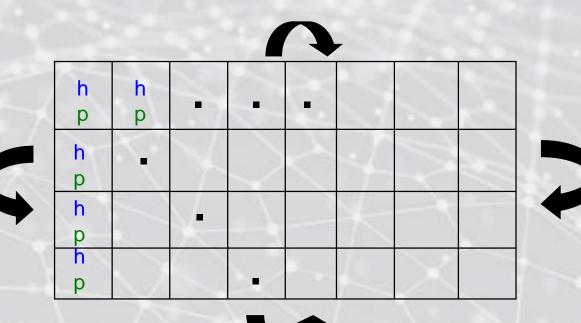
Spatial Coevolution

2D toroidal lattice with one host (*h*) and one parasite (*p*) per site



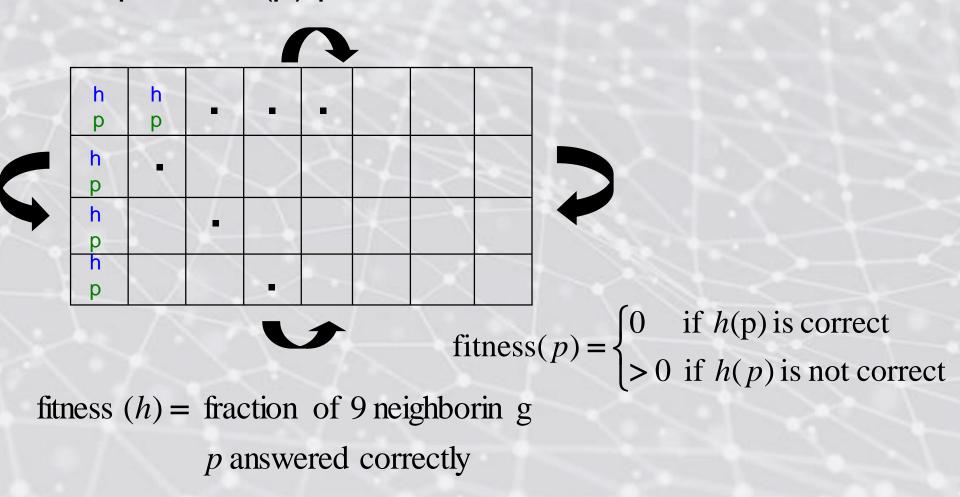
Spatial Coevolution

2D toroidal lattice with one host (*h*) and one parasite (*p*) per site

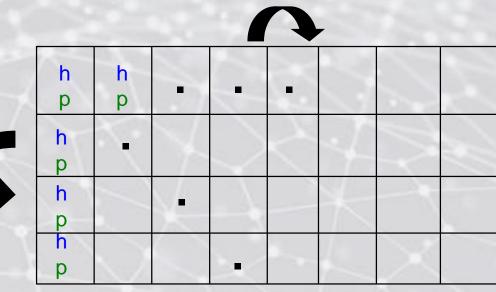


fitness(h) = fraction of 9 neighboring p answered correctly

 2D toroidal lattice with one host (h) and one parasite (p) per site



2D toroidal lattice with one host (*h*) and one parasite (*p*) per site

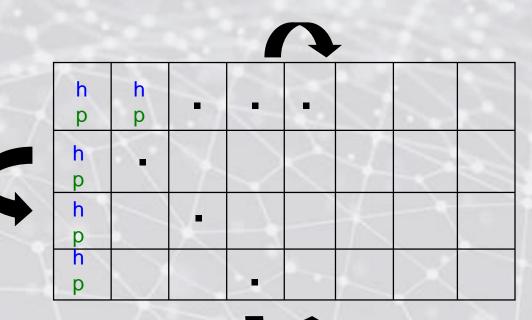


Each *h* is replaced by mutated copy of winner of tournament among itself and 8 neighboring hosts.

fitness $(p) = \begin{cases} 0 & \text{if } h(p) \text{ is correct} \\ > 0 & \text{if } h(p) \text{ is not correct} \end{cases}$

fitness (h) = fraction of 9 neighborin g p answered correctly

 2D toroidal lattice with one host (h) and one parasite (p) per site



Each h is replaced by mutated copy of winner of tournament among itself and 8 neighboring hosts.

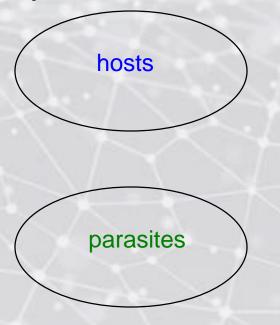
> Each *p* is replaced by mutated copy of winner tournament among itself and 8 neighboring parasites.

fitness $(p) = \begin{cases} 0 & \text{if } h(p) \text{ is correct} \\ > 0 & \text{if } h(p) \text{ is not correct} \end{cases}$

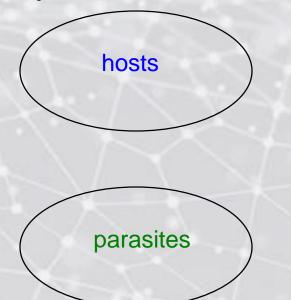
fitness (h) = fraction of 9 neighborin g *p* answered correctly

 No spatial distribution of host and parasite populations

 No spatial distribution of host and parasite populations

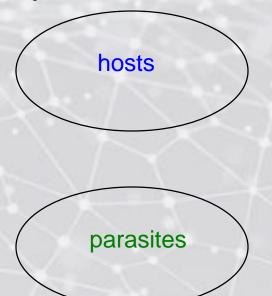


 No spatial distribution of host and parasite populations



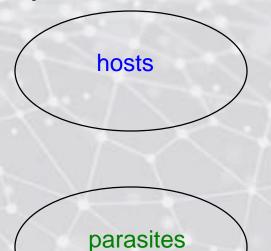
fitness (*h*) = fraction of 9 *parasites p* (randomly chosen from parasite population) answered correctly

 No spatial distribution of host and parasite populations



fitness (*h*) = fraction of 9 *parasites p* (randomly chosen from parasite population) answered correctly fitness(p) = $\begin{cases} 0 & \text{if } h(p) \text{ is correct} \\ > 0 & \text{if } h(p) \text{ is not correct} \end{cases}$ for host h randomly chosen from host population

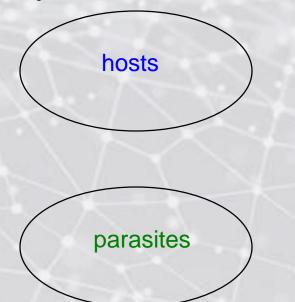
 No spatial distribution of host and parasite populations
 Each h is replaced by



Each *h* is replaced by mutated copy of winner of tournament among itself and 8 randomly chosen hosts.

fitness (h) = fraction of 9 *parasites p* (randomly chosen from parasite population) answered correctly fitness $(p) = \begin{cases} 0 & \text{if } h(p) \text{ is correct} \\ > 0 & \text{if } h(p) \text{ is not correct} \end{cases}$ for host *h* randomly chosen from host population

 No spatial distribution of host and parasite populations
 Each h is replaced by



fitness (h) = fraction of 9 *parasites p* (randomly chosen from parasite population) answered correctly Each *h* is replaced by mutated copy of winner of tournament among itself and 8 randomly chosen hosts.

Each *p* is replaced by mutated copy of winner tournament among itself and 8 randomly chosen parasites.

fitness $(p) = \begin{cases} 0 & \text{if } h(p) \text{ is correct} \\ > 0 & \text{if } h(p) \text{ is not correct} \end{cases}$ for host *h* randomly chosen from host population

Spatial Evolution:

 Same as spatial coevolution, except parasites don't evolve.

 A new population of random parasites is generated at each generation.

- Non-Spatial Evolution:
 - Same as non-spatial coevolution, except parasites don't evolve.
 - A new sample of 100 random parasites is generated at each generation.
 - Fitness of a host is classification accuracy on these 100 randomly generated parasites

Results

Function Induction Cellular Automata

Spatial Coev.	78% (39/50)	67% (20/30)
Non-Spatial Coev.	0% (0/50)	0% (0/20)
Spatial Evol.	14% (7/50)	0% (0/30)
Non-Spatial Evol.	6% (3/50)	0% (0/20)

Percentage of successful runs

In short: Spatial coevolution significantly outperforms other methods on both problems

Possible applications to real-world problems

- Drug design to foil evolving viruses/bacteria
- Coevolving software/hardware with test cases
- Evolving game-playing programs
- Coevolving computer security systems with possible threats