
A.I.: Genetic Algorithms

Some Examples of

Biologically Inspired AI

• Neural networks

• Evolutionary computation (e.g., genetic algorithms)

• Immune-system-inspired computer/network security

• Insect-colony optimization (ants, bees, etc.)

• Slime-mould path-finding

• Swarm intelligence (e.g., decentralized robots)

Evolutionary Computation

• A population of candidate solutions evolves over

time, with the fittest at each generation contributing

the most offspring to the next generation

• Offspring are produced via crossover between

parents, along with random mutations and other

“genetic” operations.

A collection of computational methods inspired by

biological evolution:

Evolution made simple

Essentials of Darwinian

evolution:

– Organisms reproduce in

proportion to their fitness

in the environment

– Offspring inherit traits

from parents

– Traits are inherited with

some variation, via

mutation and sexual

recombination

Charles Darwin

1809–1882

Evolution made simple

Essentials of Darwinian

evolution:

– Organisms reproduce in

proportion to their fitness

in the environment

– Offspring inherit traits

from parents

– Traits are inherited with

some variation, via

mutation and sexual

recombination

Essentials of evolutionary
algorithms:
– Computer “organisms”

(e.g., programs)
reproduce in proportion
to their fitness in the
environment (e.g., how
well they perform a
desired task)

– Offspring inherit traits
from their parents

– Traits are inherited, with
some variation, via
mutation and “sexual
recombination”

Appeal of ideas from evolution:

• Successful method of searching large spaces for
good solutions (chromosomes / organisms)

• Massive parallelism

• Adaptation to environments, change

• Emergent complexity from simple rules

Genetic Algorithms

Components of a GA:

• Population of candidate solutions to a given problem
(“chromosomes”)

• Fitness function that assigns fitness to each
chromosome in the population

• Selection procedure that selects individuals to
reproduce

• Genetic operators that take existing chromosomes
and produce offspring with variation (e.g., mutation,
crossover)

A Simple Genetic Algorithm

1. Start out with a randomly generated population of
chromosomes (candidate solutions).

2. Calculate the fitness of each chromosome in the
population.

3. Select pairs of parents with probability a function of
fitness rank in the population.

4. Create new population: Cross over parents, mutate
offspring, place in new population.

5. Go to step 2.

Genetic operators

• Crossover: exchange subparts of two

chromosomes:

0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1

1

0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0

0

• Mutation: randomly change some loci:

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

From Hornby et al., 2006

Evolvable hardware work at NASA Ames
(Hornby, Lohn, et al.)

From Hornby et al., 2006

Example: Evolving Strategies for Robby the

Robot
Sensors:

N,S,E,W,C(urrent)

Actions:

Move N

Move S

Move E

Move W

Move random

Stay put

Try to pick up can

Rewards/Penalties

(points):

Picks up can: 10

Tries to pick up can on

empty site: -1

Crashes into wall: -5

Robby’s fitness function

Calculate_Fitness (Robby) {

Total_Reward = 0 ;

Average_Reward = 0 ‘

For i = 1 to NUM_ENVIRONMENTS {

generate_random_environment(); /* .5 probability

* to place can at

* each site */

For j = 1 to NUM_MOVES_PER_ENVIRONMENT {

Total_Reward = Total_Reward + perform_action(Robby);

}

}

Fitness = Total_Reward / NUM_ENVIRONMENTS;

return(Fitness);

}

Genetic algorithm for

evolving strategies for Robby

1. Generate 200 random strategies (i.e., programs for controlling

Robby)

Random Initial Population

Genetic algorithm for

evolving strategies for Robby

1. Generate 200 random strategies (i.e., programs for controlling

Robby)

2. For each strategy in the population, calculate fitness (average

reward minus penalties earned on random environments)

Fitness =

Average final score

from N moves on each

of M random

environments

Genetic algorithm for

evolving strategies for Robby

1. Generate 200 random strategies (i.e., programs for controlling

Robby)

2. For each strategy in the population, calculate fitness (average

reward minus penalties earned on random environments)

3. Strategies are selected according to fitness to become

parents. (See code for choice of selection methods.)

Genetic algorithm for

evolving strategies for Robby

1. Generate 200 random strategies (i.e., programs for controlling

Robby)

2. For each strategy in the population, calculate fitness (average

reward minus penalties earned on random environments)

3. Strategies are selected according to fitness to become

parents. (See code for choice of selection methods.)

4. The parents pair up and create offspring via crossover with

random mutations.

Parent 1:

Parent 2:

Parent 1:

Parent 2:

Parent 1:

Parent 2:

Child:

Parent 1:

Parent 2:

Child:
Mutate to “0”

Mutate to “4”

Genetic algorithm for

evolving strategies for Robby

1. Generate 200 random strategies (i.e., programs for controlling

Robby)

2. For each strategy in the population, calculate fitness (average

reward minus penalties earned on random environments)

3. Strategies are selected according to fitness to become

parents. (See code for choice of selection methods.)

4. The parents pair up and create offspring via crossover with

random mutations.

5. The offspring are placed in the new population and the old

population dies.

Genetic algorithm for

evolving strategies for Robby

1. Generate 200 random strategies (i.e., programs for controlling

Robby)

2. For each strategy in the population, calculate fitness (average

reward minus penalties earned on random environments)

3. Strategies are selected according to fitness to become

parents. (See code for choice of selection methods.)

4. The parents pair up and create offspring via crossover with

random mutations.

5. The offspring are placed in the new population and the old

population dies.

6. Keep going back to step 2 until a good-enough strategy is

found!

My hand-designed strategy:

“If there is a can in the current site, pick it up.”

“Otherwise, if there is a can in one of the adjacent

sites, move to that site.”

“Otherwise, choose a random direction to move in.”

My hand-designed strategy:

“If there is a can in the current site, pick it up.”

“Otherwise, if there is a can in one of the adjacent

sites, move to that site.”

“Otherwise, choose a random direction to move in.”

Average fitness of this strategy: 346

(out of max possible  500)

My hand-designed strategy:

“If there is a can in the current site, pick it up.”

“Otherwise, if there is a can in one of the adjacent

sites, move to that site.”

“Otherwise, choose a random direction to move in.”

Average fitness of this strategy: 346

(out of max possible  500)

Average fitness of GA evolved strategy:

486

(out of max possible  500)

One Run of the Genetic Algorithm
B

e
s
t

fi
tn

e
s
s
 i
n
 p

o
p
u
la

ti
o
n

Generation number

Generation 1
Best fitness = 81

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 0 Score: 0

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 1 Score: 0

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 2 Score: 5

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 2 Score: 5

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 3 Score: 10

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 3 Score: 10

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 4 Score: 15

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 4 Score: 15

Generation 14
Best fitness = 1

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 0 Score: 0

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 1 Score: 0

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 2 Score: 0

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 3 Score: 0

Generation 200
Fitness = 240

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 0 Score: 0

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 1 Score: 0

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 2 Score: 0

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 3 Score: 10

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 4 Score: 10

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 5 Score: 20

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 6 Score: 20

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 7 Score: 20

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 8 Score: 20

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 9 Score: 20

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 10 Score: 20

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 11 Score: 20

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 12 Score: 20

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 13 Score: 20

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 14 Score: 30

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 15 Score: 30

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 16 Score: 40

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 17 Score: 40

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 18 Score: 50

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 19 Score: 50

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 20 Score: 60

Generation 1000
Fitness = 492

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 0 Score: 0

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 1 Score: 0

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 2 Score: 10

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 3 Score: 10

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 4 Score: 20

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 5 Score: 20

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 6 Score: 20

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 7 Score: 20

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 8 Score: 20

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 9 Score: 30

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 10 Score: 30

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 11 Score: 40

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 12 Score: 40

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 13 Score: 50

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 14 Score: 50

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 15 Score: 60

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 16 Score: 60

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 17 Score: 70

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Time: 18 Score: 70

Why Did The GA’s Strategy Outperform

Mine?

My Strategy

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

The GA’s Evolved Strategy

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Genetic Algorithms, Part 2

(Application to Cellular Automata

-- Bonus material)

Evolving (and co-evolving) one-dimensional

cellular automata to perform a computation

One-dimensional cellular automata

One-dimensional cellular automata

Rule:

One-dimensional cellular automata

Rule:

One-dimensional cellular automata

Rule:

One-dimensional cellular automata

Rule:

One-dimensional cellular automata

Rule:

Can the complex dynamics be harnessed by evolution

to perform collective information processing?

A task requiring collective computation in

cellular automata

A task requiring collective computation in

cellular automata

• Design a cellular automata to decide

whether or not the initial pattern has a

majority of “on”cells.

majority on

initial

majority on

initial

final

majority offmajority on

initial

final

majority offmajority on

initial

final

majority offmajority on

initial

final

How to design a cellular automaton

that will do this?

We used cellular automata with 6 neighbors for

each cell:

Rule:

...

A candidate solution that does not work:

Local majority voting

Evolving cellular automata with

genetic algorithms

• Create a random population of

candidate cellular automata rules

• The “fitness” of each cellular automaton

is how well it performs the task.

(Analogous to surviving in an

environment.)

• The fittest cellular automata get to

reproduce themselves, with mutations

and crossovers.

The “chromosome” of a cellular automaton is an

encoding of its rule table:

Rule table:
Chromosome

0

0

1

1

.

.

.

.

.

.

0

Create a random population of

candidate cellular automata rules:

rule 1: 0010001100010010111100010100110111000...

rule 2: 0001100110101011111111000011101001010...

rule 3: 1111100010010101000000011100010010101...

.

.

.

rule 100: 0010111010000001111100000101001011111...

Calculating the Fitness of a Rule

• For each rule, create the corresponding

cellular automaton. Run that cellular

automaton on many initial

configurations.

• Fitness of rule = fraction of correct

classifications

rule 1: 0010001100010010111100010100110111000...1

..

.

Create rule table

For each cellular automaton rule in the population:

Run corresponding cellular

automaton on many random

initial lattice configurations

..

.

incorrect correct

etc.

rule 1 rule table:

Fitness of rule = fraction of correct classifications

.
. . .

.

.
. . .

.

. . .

.

.
. . .

.

rule 1: 0010001100010010111100010100110111000... Fitness = 0.5

rule 2: 0001100110101011111111000011101001010... Fitness = 0.2

rule 3: 1111100010010101000000011100010010101... Fitness = 0.4

.

.

.

rule 100:0010111010000001111100000101001011111... Fitness = 0.0

Select fittest rules to reproduce

themselves

rule 1: 0010001100010010111100010100110111000... Fitness = 0.5

rule 3: 1111100010010101000000011100010010101... Fitness = 0.4

.

.

.

GA Population:

Parents:

0010001010010101000000011100010010101...

1111100 100010010111100010100110111000...

Children:

Create new generation via crossover and mutation:

mutate

rule 1: 0010001 100010010111100010100110111000...

rule 3: 1111100 010010101000000011100010010101...

Parents:

0010000010010101000000011100010010101...

1111100 100010010111100010100110111000...

Children:

Create new generation via crossover and mutation:

mutate

rule 1: 0010001 100010010111100010100110111000...

rule 3: 1111100 010010101000000011100010010101...

Parents:

0010000010010101000000011100010010101...

1111100 100010010111100010100110111000...

Children:

Create new generation via crossover and mutation:

mutate

rule 1: 0010001 100010010111100010100110111000...

rule 3: 1111100 010010101000000011100010010101...

Parents:

0010000010010101000000011100010010101...

1111100 100010010111100010100010111000...

Children:

Create new generation via crossover and mutation:

mutate

rule 1: 0010001 100010010111100010100110111000...

rule 3: 1111100 010010101000000011100010010101...

Parents:

0010000010010101000000011100010010101...

1111100 100010010111100010100010111000...

Children:

Create new generation via crossover and mutation:

rule 1: 0010001 100010010111100010100110111000...

rule 3: 1111100 010010101000000011100010010101...

Parents:

0010000010010101000000011100010010101...

1111100 100010010111100010100010111000...

Children:

Create new generation via crossover and mutation:

Continue this process until new generation is complete.

Then start over with the new generation.

Keep iterating for many generations.

rule 1: 0010001 100010010111100010100110111000...

rule 3: 1111100 010010101000000011100010010101...

majority on

A cellular automaton evolved by

the genetic algorithm

majority off

majority on

A cellular automaton evolved by

the genetic algorithm

majority off

How does it perform the computation?

How do we describe information

processing in complex systems?

“simple patterns”:

black, white, checkerboard

Simple patterns

filtered out

“particles”

“particles”

“particles”laws of

“particle physics”

• Level of particles can explain:

• Level of particles can explain:

– Why one CA is fitter than another

• Level of particles can explain:

– Why one CA is fitter than another

– What mistakes are made

• Level of particles can explain:

– Why one CA is fitter than another

– What mistakes are made

– How the GA produced the observed series of

innovations

• Level of particles can explain:

– Why one CA is fitter than another

– What mistakes are made

– How the GA produced the observed series of

innovations

• Particles give an “information processing”

description of the collective behavior

• Level of particles can explain:

– Why one CA is fitter than another

– What mistakes are made

– How the GA produced the observed series of

innovations

• Particles give an “information processing”

description of the collective behavior

----> “Algorithmic” level

How the genetic algorithm

evolved cellular automata

How the genetic algorithm

evolved cellular automata

generation 8

How the genetic algorithm

evolved cellular automata

generation 8 generation 13

How the genetic algorithm

evolved cellular automata

generation 17

How the genetic algorithm

evolved cellular automata

generation 17 generation 18

How the genetic algorithm

evolved cellular automata

generation 33

How the genetic algorithm

evolved cellular automata

generation 33 generation 64

Cellular Automata

Traditional GA
(with crossover)

20%

Traditional GA
(mutation only)

0%

Percentage of successful runs

Cellular Automata

Traditional GA
(with crossover)

20%

Traditional GA
(mutation only)

0%

Percentage of successful runs

Problem: GA often gets stuck in local optima,

with “too easy” training examples

Problem for learning algorithms:

How to select training examples appropriate to

different stages of learning?

One solution:

Co-evolve training examples, using inspiration from

host-parasite coevolution in nature.

Host-parasite coevolution in nature

• Hosts evolve defenses against parasites

• Parasites find ways to overcome defenses

• Hosts evolve new defenses

• Continual “biological arms race”

Heliconius-egg mimicry in

Passiflora

http://www.ucl.ac.uk/~ucbhdjm/courses/b242/Coevol/Coevol.html

• Darwin recognized the importance of

coevolution in driving evolution

• Darwin recognized the importance of

coevolution in driving evolution

• Coevolution was later hypothesized to be

major factor in evolution of sexual

reproduction

Coevolutionary Learning

Candidate solutions and training examples

coevolve.

Coevolutionary Learning

Candidate solutions and training examples

coevolve.

– Fitness of candidate solution (host):

how well it performs on training examples.

Coevolutionary Learning

Candidate solutions and training examples

coevolve.

– Fitness of candidate solution (host):

how well it performs on training examples.

– Fitness of training example (parasite):

how well it defeats candidate solutions.

Sample Applications of

Coevolutionary Learning
• Competitive:

– Coevolving minimal sorting networks (Hillis)

• Hosts: Candidate sorting networks

• Parasites: Lists of items to sort

Sample Applications of

Coevolutionary Learning
– Game playing strategies (e.g., Rosin & Belew;

Fogel; Juillé & Pollack)

• Hosts: Candidate strategies for Nim, 3D

Tic Tac Toe, backgammon, etc.

• Parasites: Another population of candidate

strategies

– HIV drug design (e.g., Rosin)

• Hosts: Candidate protease inhibitors to

match HIV protease enzymes

• Parasites: Evolving protease enzymes

– Robot behavior (e.g., Sims; Nolfi & Floreano)

• Hosts: Robot control programs

• Parasites: Competing robot control

programs

• Cooperative:

– Cooperative coevolution of neural network

weights and topologies (e.g., Potter & De

Jong; Stanley, Moriarty, Miikkulainen)

Problem domains used in experiments

1. Function induction: 2D function-induction

task (Pagie & Hogeweg, 1997)

– Evolve function tree to approximate

44- 1

1

 1

1
),(f







yx
yx

– Hosts are candidate trees

• Function set: {+, -, , %}

• Terminal set: {x, y, }

+

 *

y x y 

Example of candidate tree

– Parasites are (x,y) pairs

• Fitness (h) = Average inverse error on sample

of p

• Fitness (p): Error of h on problem p

• Success = Correct host (on complete set of

problems) in population for 50 generations

176

2. Evolving cellular automata

• Problem is to design 1D CA that classifies

initial configurations (ICs) as “majority 1s”

or “majority 0s”.

Spatial Coevolution

• 2D toroidal lattice with one host (h) and one

parasite (p) per site

Spatial Coevolution

h

p

h

p

h

p

. ..

.

.

.

h

p
h

p

• 2D toroidal lattice with one host (h) and one

parasite (p) per site

Spatial Coevolution

h

p

h

p

h

p

. ..

.

.

.

h

p
h

p

correctly answered

 gneighborin 9 offraction)(fitness

p

h 

• 2D toroidal lattice with one host (h) and one

parasite (p) per site

Spatial Coevolution

h

p

h

p

h

p

. ..

.

.

.

h

p
h

p








correct not is)(if 0

correct is (p) if 0
)(fitness

ph

h
p

correctly answered

 gneighborin 9 offraction)(fitness

p

h 

• 2D toroidal lattice with one host (h) and one

parasite (p) per site

Spatial Coevolution

h

p

h

p

h

p

. ..

.

.

.

h

p
h

p

Each h is replaced by mutated

copy of winner of tournament

among itself and 8 neighboring

hosts.

correctly answered

 gneighborin 9 offraction)(fitness

p

h 







correct not is)(if 0

correct is (p) if 0
)(fitness

ph

h
p

• 2D toroidal lattice with one host (h) and one

parasite (p) per site

Spatial Coevolution

h

p

h

p

h

p

. ..

.

.

.

h

p
h

p

Each h is replaced by mutated

copy of winner of tournament

among itself and 8 neighboring

hosts.

correctly answered

 gneighborin 9 offraction)(fitness

p

h 







correct not is)(if 0

correct is (p) if 0
)(fitness

ph

h
p

Each p is replaced by

mutated copy of winner

tournament among itself

and 8 neighboring parasites.

• 2D toroidal lattice with one host (h) and one

parasite (p) per site

Non-Spatial Coevolution

• No spatial distribution of host and parasite

populations

Non-Spatial Coevolution

• No spatial distribution of host and parasite

populations

hosts

parasites

Non-Spatial Coevolution

• No spatial distribution of host and parasite

populations

hosts

parasites



fitness (h)  fraction of 9 parasites p

(randomly chosen from parasite population)

answered correctly

Non-Spatial Coevolution

• No spatial distribution of host and parasite

populations

hosts

parasites



fitness (h)  fraction of 9 parasites p

(randomly chosen from parasite population)

answered correctly

 population

host fromchosen randomly host for

correct not is)(if 0

correct is (p) if 0
)(fitness

h

ph

h
p








Non-Spatial Coevolution

• No spatial distribution of host and parasite

populations Each h is replaced by mutated

copy of winner of tournament

among itself and 8 randomly

chosen hosts.

population

host fromchosen randomly host for

correct not is)(if 0

correct is (p) if 0
)(fitness

h

ph

h
p








hosts

parasites



fitness (h)  fraction of 9 parasites p

(randomly chosen from parasite population)

answered correctly

Non-Spatial Coevolution

• No spatial distribution of host and parasite

populations Each h is replaced by mutated

copy of winner of tournament

among itself and 8 randomly

chosen hosts.

population

host fromchosen randomly host for

correct not is)(if 0

correct is (p) if 0
)(fitness

h

ph

h
p








hosts

parasites

Each p is replaced by

mutated copy of winner

tournament among itself and

8 randomly chosen parasites.



fitness (h)  fraction of 9 parasites p

(randomly chosen from parasite population)

answered correctly

• Spatial Evolution:

– Same as spatial coevolution, except

parasites don’t evolve.

– A new population of random parasites is

generated at each generation.

• Non-Spatial Evolution:

– Same as non-spatial coevolution, except

parasites don’t evolve.

– A new sample of 100 random parasites is

generated at each generation.

– Fitness of a host is classification accuracy

on these 100 randomly generated

parasites

Results

Function Induction Cellular Automata

Spatial Coev. 78% (39/50) 67% (20/30)

Non-Spatial Coev. 0% (0/50) 0% (0/20)

Spatial Evol. 14% (7/50) 0% (0/30)

Non-Spatial Evol. 6% (3/50) 0% (0/20)

Percentage of successful runs

In short: Spatial coevolution significantly out-

performs other methods on both problems

Possible applications to real-world problems

– Drug design to foil evolving

viruses/bacteria

– Coevolving software/hardware with test

cases

– Evolving game-playing programs

– Coevolving computer security systems with

possible threats

