
A.I.: Genetic Algorithms



Some Examples of 

Biologically Inspired AI

• Neural networks

• Evolutionary computation (e.g., genetic algorithms)

• Immune-system-inspired computer/network security

• Insect-colony optimization (ants, bees, etc.)

• Slime-mould path-finding

• Swarm intelligence (e.g., decentralized robots)



Evolutionary Computation

• A population of candidate solutions evolves over 

time, with the fittest at each generation contributing 

the most offspring to the next generation

• Offspring are produced via crossover between 

parents, along with random mutations and other 

“genetic” operations.

A collection of computational methods inspired by 

biological evolution: 



Evolution made simple

Essentials of Darwinian 

evolution:

– Organisms reproduce in 

proportion to their fitness

in the environment

– Offspring inherit traits 

from parents

– Traits are inherited with 

some variation, via 

mutation and sexual 

recombination

Charles Darwin

1809–1882



Evolution made simple

Essentials of Darwinian 

evolution:

– Organisms reproduce in 

proportion to their fitness

in the environment

– Offspring inherit traits 

from parents

– Traits are inherited with 

some variation, via 

mutation and sexual 

recombination

Essentials of evolutionary 
algorithms:
– Computer “organisms” 

(e.g., programs) 
reproduce in proportion 
to their fitness in the 
environment (e.g., how 
well they perform a 
desired task)

– Offspring inherit traits 
from their parents

– Traits are inherited, with 
some variation, via 
mutation and “sexual 
recombination”



Appeal of ideas from evolution: 

• Successful method of searching large spaces for 
good solutions (chromosomes / organisms)

• Massive parallelism

• Adaptation to environments, change

• Emergent complexity from simple rules



Genetic Algorithms

Components of a GA: 

• Population of candidate solutions to a given problem 
(“chromosomes”)

• Fitness function that assigns fitness to each 
chromosome in the population

• Selection procedure that selects individuals to 
reproduce 

• Genetic operators that take existing chromosomes 
and produce offspring with variation (e.g., mutation, 
crossover)



A Simple Genetic Algorithm

1. Start out with a randomly generated population of 
chromosomes (candidate solutions).

2. Calculate the fitness of each chromosome in the 
population.

3. Select pairs of parents with probability a function of 
fitness rank in the population.

4. Create new population:  Cross over parents, mutate 
offspring, place in new population.

5. Go to step 2. 



Genetic operators

• Crossover: exchange subparts of two 

chromosomes:

0 0  0 0  0  1  0  0 0 0  0  0 1  1  1  1  1 

1

0  0  1  1  1  1  1  1 1 0  0  1  0  0  1  0  0 

0

• Mutation: randomly change some loci:

0  0  0  0  0  1 0  0  0  0  0  0  0  0  0 0  



From Hornby et al., 2006

Evolvable hardware work at NASA Ames
(Hornby, Lohn, et al.)



From Hornby et al., 2006



Example:  Evolving Strategies for Robby the 

Robot
Sensors: 

N,S,E,W,C(urrent)

Actions:

Move N

Move S

Move E

Move W

Move random

Stay put

Try to pick up can

Rewards/Penalties 

(points):

Picks up can: 10

Tries to pick up can on 

empty site: -1

Crashes into wall: -5



Robby’s fitness function

Calculate_Fitness (Robby) {

Total_Reward = 0 ; 

Average_Reward = 0 ‘ 

For i = 1 to NUM_ENVIRONMENTS {

generate_random_environment( ); /* .5 probability 

* to place can at 

* each site */

For j = 1 to NUM_MOVES_PER_ENVIRONMENT {

Total_Reward = Total_Reward + perform_action(Robby); 

}

}

Fitness = Total_Reward / NUM_ENVIRONMENTS;

return(Fitness);

}



Genetic algorithm for 

evolving strategies for Robby

1. Generate 200 random strategies (i.e., programs for controlling 

Robby)



Random Initial Population



Genetic algorithm for 

evolving strategies for Robby

1. Generate 200 random strategies (i.e., programs for controlling 

Robby)

2. For each strategy in the population, calculate fitness (average 

reward minus penalties earned on random environments)



Fitness = 

Average final score 

from N moves on each 

of  M random 

environments



Genetic algorithm for 

evolving strategies for Robby

1. Generate 200 random strategies (i.e., programs for controlling 

Robby)

2. For each strategy in the population, calculate fitness (average 

reward minus penalties earned on random environments)

3. Strategies are selected according to fitness to become 

parents.  (See code for choice of selection methods.) 



Genetic algorithm for 

evolving strategies for Robby

1. Generate 200 random strategies (i.e., programs for controlling 

Robby)

2. For each strategy in the population, calculate fitness (average 

reward minus penalties earned on random environments)

3. Strategies are selected according to fitness to become 

parents.  (See code for choice of selection methods.) 

4. The parents pair up and create offspring via crossover with 

random mutations.  



Parent 1:

Parent 2:



Parent 1:

Parent 2:



Parent 1:

Parent 2:

Child:



Parent 1:

Parent 2:

Child:
Mutate to “0”

Mutate to “4”



Genetic algorithm for 

evolving strategies for Robby

1. Generate 200 random strategies (i.e., programs for controlling 

Robby)

2. For each strategy in the population, calculate fitness (average 

reward minus penalties earned on random environments)

3. Strategies are selected according to fitness to become 

parents.  (See code for choice of selection methods.) 

4. The parents pair up and create offspring via crossover with 

random mutations.  

5. The offspring are placed in the new population and the old 

population dies.  



Genetic algorithm for 

evolving strategies for Robby

1. Generate 200 random strategies (i.e., programs for controlling 

Robby)

2. For each strategy in the population, calculate fitness (average 

reward minus penalties earned on random environments)

3. Strategies are selected according to fitness to become 

parents.  (See code for choice of selection methods.) 

4. The parents pair up and create offspring via crossover with 

random mutations.  

5. The offspring are placed in the new population and the old 

population dies. 

6. Keep going back to step 2 until a good-enough strategy is 

found!



My hand-designed strategy:

“If there is a can in the current site, pick it up.”

“Otherwise, if there is a can in one of the adjacent 

sites, move to that site.”  

“Otherwise, choose a random direction to move in.”



My hand-designed strategy:

“If there is a can in the current site, pick it up.”

“Otherwise, if there is a can in one of the adjacent 

sites, move to that site.”  

“Otherwise, choose a random direction to move in.”

Average fitness of this strategy:  346

(out of max possible  500)



My hand-designed strategy:

“If there is a can in the current site, pick it up.”

“Otherwise, if there is a can in one of the adjacent 

sites, move to that site.”  

“Otherwise, choose a random direction to move in.”

Average fitness of this strategy:  346

(out of max possible  500)

Average fitness of GA evolved strategy:  

486

(out of max possible  500)



One Run of the Genetic Algorithm
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Generation 1
Best fitness = 81
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Generation 14
Best fitness = 1
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Generation 200
Fitness = 240
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Generation 1000
Fitness = 492
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Why Did The GA’s Strategy Outperform 

Mine?



My Strategy
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The GA’s Evolved Strategy
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Genetic Algorithms, Part 2

(Application to Cellular Automata

-- Bonus material) 



Evolving (and co-evolving) one-dimensional 

cellular automata to perform a computation



One-dimensional cellular automata



One-dimensional cellular automata

Rule:



One-dimensional cellular automata

Rule:



One-dimensional cellular automata

Rule:



One-dimensional cellular automata

Rule:



One-dimensional cellular automata

Rule:





Can the complex dynamics be harnessed by evolution

to perform collective information processing?



A task requiring collective computation in 

cellular automata



A task requiring collective computation in 

cellular automata

• Design a cellular automata to decide 

whether or not  the initial pattern has a 

majority of “on”cells.



majority on

initial



majority on

initial

final



majority offmajority on

initial

final



majority offmajority on

initial

final



majority offmajority on

initial

final

How to design a cellular automaton

that will do this? 



We used cellular automata with 6 neighbors for 

each cell:

Rule: ... ...

...



A candidate solution that does not work:  

Local majority voting



Evolving cellular automata with 

genetic algorithms

• Create a random population of 

candidate cellular automata rules

• The “fitness” of each cellular automaton 

is how well it performs the task.  

(Analogous to surviving in an 

environment.)

• The fittest cellular automata get to 

reproduce themselves, with mutations 

and crossovers.



The “chromosome” of a cellular automaton is an 

encoding of its rule table:

Rule table: 
Chromosome

0

0

1

1

.

.

.

.

.

.

0



Create a random population of 

candidate cellular automata rules:

rule 1: 0010001100010010111100010100110111000...

rule 2: 0001100110101011111111000011101001010...

rule 3: 1111100010010101000000011100010010101...

.

.

.

rule 100: 0010111010000001111100000101001011111...



Calculating the Fitness of a Rule

• For each rule, create the corresponding 

cellular automaton.  Run that cellular 

automaton on many initial 

configurations.

• Fitness of rule = fraction of correct 

classifications



rule 1: 0010001100010010111100010100110111000...1

..

.

Create rule table

For each cellular automaton rule in the population:



Run corresponding cellular

automaton on many random

initial lattice configurations

..

.

incorrect correct

etc.

rule 1 rule table:

Fitness of rule = fraction of correct classifications

.
. . .

. . .. . .

.
. . .

.

. . .

. . .. . .

.
. . .

.



rule 1: 0010001100010010111100010100110111000...  Fitness = 0.5

rule 2: 0001100110101011111111000011101001010...  Fitness = 0.2

rule 3: 1111100010010101000000011100010010101...  Fitness = 0.4

.

.

.

rule 100:0010111010000001111100000101001011111...  Fitness = 0.0

Select fittest rules to reproduce

themselves

rule 1: 0010001100010010111100010100110111000...  Fitness = 0.5

rule 3: 1111100010010101000000011100010010101...  Fitness = 0.4

.

.

.

GA Population:



Parents:

0010001010010101000000011100010010101...  

1111100 100010010111100010100110111000...  

Children:

Create new generation via crossover and mutation:

mutate

rule 1: 0010001    100010010111100010100110111000...  

rule 3: 1111100    010010101000000011100010010101...  



Parents:

0010000010010101000000011100010010101...  

1111100 100010010111100010100110111000...  

Children:

Create new generation via crossover and mutation:

mutate

rule 1: 0010001    100010010111100010100110111000...  

rule 3: 1111100    010010101000000011100010010101...  



Parents:
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1111100 100010010111100010100110111000...  

Children:

Create new generation via crossover and mutation:

mutate

rule 1: 0010001    100010010111100010100110111000...  

rule 3: 1111100    010010101000000011100010010101...  



Parents:

0010000010010101000000011100010010101...  

1111100 100010010111100010100010111000...  

Children:

Create new generation via crossover and mutation:

mutate

rule 1: 0010001    100010010111100010100110111000...  

rule 3: 1111100    010010101000000011100010010101...  



Parents:

0010000010010101000000011100010010101...  

1111100 100010010111100010100010111000...  

Children:

Create new generation via crossover and mutation:

rule 1: 0010001    100010010111100010100110111000...  

rule 3: 1111100    010010101000000011100010010101...  



Parents:

0010000010010101000000011100010010101...  

1111100 100010010111100010100010111000...  

Children:

Create new generation via crossover and mutation:

Continue this process until new generation is complete.

Then start over with the new generation.

Keep iterating for many generations.

rule 1: 0010001    100010010111100010100110111000...  

rule 3: 1111100    010010101000000011100010010101...  



majority on

A cellular automaton evolved by 

the genetic algorithm

majority off



majority on

A cellular automaton evolved by 

the genetic algorithm

majority off

How does it perform the computation? 



How do we describe information 

processing in complex systems? 



“simple patterns”:

black, white, checkerboard



Simple patterns

filtered out



“particles”



“particles”



“particles”laws of 

“particle physics”



• Level of particles can explain: 



• Level of particles can explain: 

– Why one CA is fitter than another



• Level of particles can explain: 

– Why one CA is fitter than another

– What mistakes are made



• Level of particles can explain: 

– Why one CA is fitter than another

– What mistakes are made

– How the GA produced the observed series of 

innovations



• Level of particles can explain: 

– Why one CA is fitter than another

– What mistakes are made

– How the GA produced the observed series of 

innovations

• Particles give an “information processing” 

description of the collective behavior



• Level of particles can explain: 

– Why one CA is fitter than another

– What mistakes are made

– How the GA produced the observed series of 

innovations

• Particles give an “information processing” 

description of the collective behavior

----> “Algorithmic” level



How the genetic algorithm 

evolved cellular automata



How the genetic algorithm 
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generation 8



How the genetic algorithm 

evolved cellular automata

generation 8 generation 13



How the genetic algorithm 

evolved cellular automata

generation 17



How the genetic algorithm 

evolved cellular automata

generation 17 generation 18



How the genetic algorithm 

evolved cellular automata

generation 33



How the genetic algorithm 

evolved cellular automata

generation 33 generation 64
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Cellular Automata

Traditional GA 
(with crossover)

20%

Traditional GA 
(mutation only)

0%

Percentage of successful runs

Problem:  GA often gets stuck in local optima, 

with “too easy” training examples



Problem for learning algorithms: 

How to select training examples appropriate to 

different stages of learning?   

One solution:

Co-evolve training examples, using inspiration from 

host-parasite coevolution in nature.



Host-parasite coevolution in nature

• Hosts evolve defenses against parasites

• Parasites find ways to overcome defenses

• Hosts evolve new defenses

• Continual “biological arms race”



Heliconius-egg mimicry in 

Passiflora

http://www.ucl.ac.uk/~ucbhdjm/courses/b242/Coevol/Coevol.html
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• Darwin recognized the importance of 

coevolution in driving evolution 

• Coevolution was later hypothesized to be 

major factor in evolution of sexual 

reproduction



Coevolutionary Learning

Candidate solutions and training examples 

coevolve.



Coevolutionary Learning

Candidate solutions and training examples 

coevolve.

– Fitness of candidate solution (host):

how well it performs on training examples.



Coevolutionary Learning

Candidate solutions and training examples 

coevolve.

– Fitness of candidate solution (host):

how well it performs on training examples.

– Fitness of training example (parasite):

how well it defeats candidate solutions.



Sample Applications of 

Coevolutionary Learning
• Competitive: 

– Coevolving minimal sorting networks (Hillis)

• Hosts: Candidate sorting networks

• Parasites: Lists of items to sort  



Sample Applications of 

Coevolutionary Learning
– Game playing strategies (e.g., Rosin & Belew; 

Fogel; Juillé & Pollack)

• Hosts:  Candidate strategies for Nim, 3D 

Tic Tac Toe,  backgammon,  etc. 

• Parasites:  Another population of candidate 

strategies



– HIV drug design (e.g., Rosin)

• Hosts:  Candidate protease inhibitors to 

match HIV protease enzymes

• Parasites:  Evolving protease enzymes



– Robot behavior (e.g., Sims; Nolfi & Floreano)

• Hosts:  Robot control programs

• Parasites:  Competing robot control 

programs



• Cooperative: 

– Cooperative coevolution of neural network 

weights and topologies (e.g., Potter & De 

Jong; Stanley, Moriarty, Miikkulainen) 



Problem domains used in experiments

1. Function induction: 2D function-induction 

task (Pagie & Hogeweg, 1997)

– Evolve function tree to approximate

44- 1
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
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yx
yx



– Hosts are candidate trees

• Function set: {+, -, , %}

• Terminal set: {x, y, }

+

 *

y x y 

Example of candidate tree



– Parasites are (x,y) pairs



• Fitness (h) = Average inverse error on sample 

of p

• Fitness (p): Error of h on problem p

• Success = Correct host (on complete set of 

problems) in population for 50 generations

176



2. Evolving cellular automata

• Problem is to design 1D CA that classifies 

initial configurations (ICs) as “majority 1s” 

or “majority 0s”. 



Spatial Coevolution

• 2D toroidal lattice with one host (h) and one 

parasite (p) per site 
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Each p is replaced by 

mutated copy of winner 

tournament among itself 

and 8 neighboring parasites. 

• 2D toroidal lattice with one host (h) and one 

parasite (p) per site 
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Non-Spatial Coevolution

• No spatial distribution of host and parasite 

populations Each h is replaced by mutated 

copy of winner of tournament 

among itself and 8 randomly 

chosen hosts.

population
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correct  is (p) if     0
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hosts

parasites

Each p is replaced by 

mutated copy of winner 

tournament among itself and 

8 randomly chosen parasites. 



fitness (h)    fraction of 9 parasites p 

(randomly chosen from parasite population)

answered correctly

                   



• Spatial Evolution:

– Same as spatial coevolution, except 

parasites don’t evolve. 

– A new population of random parasites is 

generated at each generation.  



• Non-Spatial Evolution:

– Same as non-spatial coevolution, except 

parasites don’t evolve.

– A new sample of 100 random parasites is 

generated at each generation.  

– Fitness of a host is classification accuracy 

on these 100 randomly generated 

parasites 



Results

Function Induction Cellular Automata

Spatial Coev. 78% (39/50) 67% (20/30)

Non-Spatial Coev. 0% (0/50) 0% (0/20)

Spatial Evol. 14% (7/50) 0% (0/30)

Non-Spatial Evol. 6% (3/50) 0% (0/20)

Percentage of successful runs



In short: Spatial coevolution significantly out-

performs other methods on both problems



Possible applications to real-world problems

– Drug design to foil evolving 

viruses/bacteria

– Coevolving software/hardware with test 

cases

– Evolving game-playing programs

– Coevolving computer security systems with 

possible threats


