
Reinforcement Learning & Deep RL

CS 446/546

Outline
• Introduction

• n-Armed Bandits

• The Formal RL Problem

• Dynamic Programming

• Monte Carlo Methods

• Temporal-Difference Learning

• Deep RL

*http://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

It’s an exciting time for RL!

Introduction
• Reinforcement learning (RL) is learning what to do – how to map situations to actions

– so as to maximize a numerical reward signal.

• The learner is not told what actions to take (unlike most forms of ML), but instead

they must discover which actions yield the most reward by trying them.

• Most often, actions may affect not only the immediate reward but also the next

situation, and through that, all subsequent rewards.

• These two characteristics – trial-and-error search and delayed reward – are the two

most important distinguishing features of RL.

Introduction
• RL is different from supervised learning, which is generally inadequate for learning from

interaction.

• In interactive problems it is often impractical to obtain examples of desired behavior

that are both correct and representative of all the situations in which the agent has

to act.

• In uncharted territory – where one would expect learning to be most beneficial – an

agent must be able to learn from its own experience.

Introduction
• One of the emblematic challenges that arises in RL is the trade-off between

exploration and exploitation.

• To obtain a lot of reward, a reinforcement learning agent must prefer actions that it

has tried in the past and found to be effective in producing reward.

• However, in order to discover such actions, the agent has to try actions that it has not

selected before.

Introduction
• Thus the agent has to exploit what it already knows in order to obtain rewards, but it

also to explore in order to make between action selections in the future.

• The dilemma is that neither exploration nor exploitation can be pursued exclusively

without failing at the task. The agent must instead try a variety of actions and

progressively favor those that appear to be best.

* Simulated annealing is a classic algorithm that makes use of both exploratory and

exploitative steps.

Introduction
• Another key feature of RL is that it explicitly considers the whole problem of a goal-

directed agent interacting with an uncertain environment (this is in contrast to other

approaches that consider subproblems without addressing they fit into the larger

picture).

• RL starts with an interactive, goal-seeking agent; the agent has explicit goals and can

choose actions that influence their environment.

• The most important features distinguishing RL learning from other types of learning

is that it uses training information that evaluates the actions taken rather than

instructs by giving correct actions.

Introduction
• Another key feature of RL is that it explicitly considers the whole problem of a goal-

directed agent interacting with an uncertain environment (this is in contrast to other

approaches that consider subproblems without addressing they fit into the larger

picture).

• RL starts with an interactive, goal-seeking agent; the agent has explicit goals and can

choose actions that influence their environment.

• The most important features distinguishing RL learning from other types of learning

is that it uses training information that evaluates the actions taken rather than

instructs by giving correct actions.

• This is what creates the need for active explorations, for an explicit trial-and-error

search for good behavior. Purely evaluative feedback indicates how good the action

taken is, but not whether it is the best or worst action possible.

• Purely instructive feedback, on the other hand, indicates the correct action to take,

independently of the action actually taken.

Introduction: Elements of RL
• In general, there are (4) main components of an RL system: (1) a policy, (2) a reward

function, (3) a value function and (4) (optionally) a model of the environment.

(1) A policy defines the learning agent’s way of behaving at a given time; a policy is a

mapping from perceived states of the environment to actions to be taken when in

those states (it corresponds to what in psychology would be called a set of stimulus-

response rules or associations).

• In some cases the policy may be a simple function or lookup table, or it may involve

extensive computation such as a search process. The policy is the core of an RL

learning agent; note that policies may be deterministic or stochastic.

Introduction: Elements of RL
• In general, there are (4) main components of an RL system: (1) a policy, (2) a reward

function, (3) a value function and (4) (optionally) a model of the environment.

(2) A reward function defined the goal in a RL problem. The reward function maps

each perceived state (e.g. state-action pair) of the environment to a single number, a

reward, indicating the intrinsic desirability of that state.

• The RL agent’s sole object is to maximize the total reward received in the long run.

The reward function is unalterable by the agent; it may, however, serve as a basis for

altering the policy; reward functions may be stochastic.

Introduction: Elements of RL
• In general, there are (4) main components of an RL system: (1) a policy, (2) a reward

function, (3) a value function and (4) (optionally) a model of the environment.

(3) Whereas a reward function indicates what is good in an immediate sense, a value

function specifies what is good in the long run.

• Generally speaking, the value of a state is the total amount of reward an agent can

expect to accumulate over the future, starting from that state.

• A state might, for example, always yield a low immediate reward but nevertheless have

a high value because it is regularly followed by other states that yield high rewards (or

the reverse could hold).

Introduction: Elements of RL
(3) Where as a reward function indicates what is good in an immediate sense, a value

function specifies what is good in the long run.

• Generally speaking, the value of a state is the total amount of reward an agent can

expect to accumulate over the future, starting from that state.

• A state might, for example, always yield a low immediate reward but nevertheless have

a high value because it is regularly followed by other states that yield high rewards (or

the reverse could hold).

• Rewards are in a sense primary – without rewards there could be no values.

Nevertheless, it is values with which we are most concerned when making evaluating

decisions. Action decisions are made based on value judgements; we seek actions that

bring about states of highest value, not states of highest reward.

NB: In practice it is usually much harder to determine values than rewards.

Introduction: Elements of RL
• In general, there are (4) main components of an RL system: (1) a policy, (2) a reward

function, (3) a value function and (4) (optionally) a model of the environment.

(4) A model (optional) mimics the behavior of the environment.

• For example, given a state and action, the model might predict the resultant next state

and next reward.

• Models are used for planning, in which case an agent may consider possible future

situations before they are actually experienced.

* Historically, early RL systems were explicitly trial-and-error learners; more recently

researchers regularly incorporate models and planning into RL systems.

Introduction: Elements of RL
• In general, there are (4) main components of an RL system: (1) a policy, (2) a reward

function, (3) a value function and (4) (optionally) a model of the environment.

Recapping:

(1) Policy: defines the agent; a mapping from states → actions (e.g., given a screen

configuration in space invaders, tell me what to do)

(2) Reward: mapping from states to numbers; goal of agent is to maximum reward in

the long run. (e.g., agent receives +1 for winning chess game; 0 for draw and -1 for

loss)

(3) Value function: value of a state is the total amount of reward expected over time,

starting from this state. (e.g., the value of a chess board configuration one step

removed from a forced checkmate is very large)

(4) Model: mapping from state-action pairs to new states (e.g., a physics model for an

environment in which a robot is moving)

Introduction: Example

• Consider the classic tic-tac-toe game; how might we construct a player that will find

the imperfections in its opponent’s play (we assume a fallible opponent)?

Introduction: Example
• Despite its simplicity, tic-tac-toe cannot readily be solved in a satisfactory way using

purely classical techniques. For example, minimax (a common AI algorithm for

adversarial games) assumes a particular way of playing for an opponent; classical

optimization on the other hand requires a complete specification of the opponent

(including every probability of a move for a particular game state); a GA would search

over the entire space of possible policies.

Introduction: Example

• How might we construct a player that will find the imperfections in its opponent’s

play?

• Using RL, we could generate a table of numbers, one for each possible state of the

game; each number in the table represents the latest estimate of the probability of our

winning from that state. We treat this estimate as the state’s value.

• Next we play many games against the opponent. To select our moves we examine the

states that would result from each of our possible moves; most of the time we move

greedily, selecting the move that leads to the state with the greatest value.

• Occasionally, however, we select randomly from among the other moves instead; these

are exploratory moves that cause us to experience states that we might otherwise never see.

Introduction: Example
• While we are playing, we change the values of the states in which we find ourselves

during the game; we attempt to make more accurate estimates of the probabilities of

winning.

• To do this, we “back up” the value of the state after each greedy move to the state

before the move. More precisely, we move the earlier state’s value a fraction of the way

toward the value of the later state.

• Let s denote the state before the greedy move and

s’ the state after the move; then the update to the

estimates value of V(s) is given by:

Where α is the step-size parameter; this update

rule is an example of temporal-difference (TD)

learning.

       V s V s V s V s     

Introduction: Example
• The aforementioned method performs quite well on this task. In particular, if the

step-size parameter is reduced appropriately over time, this method converges – for any

fixed opponent – to the true probabilities of winning from each state given an optimal

opponent.

• This simple example illustrates an essential different between evolutionary methods

and methods that learn value functions.

• To evaluate a policy, an evolutionary method must hold it fixed and play many games

(or simulate many games) using a model of the opponent.

• The frequency of wins gives an unbiased estimate of the probability of winning with

that policy; however, each policy change is made only after many games, and only the

final outcome of each games is used. Moreover, what happens during the games is

ignored (i.e. for a winning match, all of the agent’s actions are given credit for the win).

Introduction: Example
• By contrast, with RL, value function methods allow individual states to be evaluated.

Learning a value function takes explicit advantage of information available during the

course of play.

• With RL, there is an emphasis on learning while interacting with an environment; in

addition, there is a clear goal, and correct behavior requires planning or foresight that

takes into account delayed effects of one’s choices.

Introduction: Example
• By contrast, with RL, value function methods allow individual states to be evaluated.

Learning a value function takes explicit advantage of information available during the

course of play.

• With RL, there is an emphasis on learning while interacting with an environment; in

addition, there is a clear goal, and correct behavior requires planning or foresight that

takes into account delayed effects of one’s choices.

* It is a striking feature of RL that it can achieve the effects of planning and lookahead

without using a model of the opponent and without conducting an explicit search over

possible sequences of future states and actions.

* RL can also be applied in non-episodic environments (e.g. when agent behavior

continues indefinitely); furthermore, RL can be used in the absence of an external

adversary, i.e. in the case of a “game against nature.”

n-Armed Bandits & Action-Value Methods
• Consider the following learning problem:

You are faced repeatedly with a choice among n different options, or actions. After each

choice you receive a numerical reward chosen from a stationary probability distribution

that depends on the action you selected. Your objective is to maximize the expected

total reward over some time period, for example, over 1000 action selections. Each

action selection is called a play.

* This is the original form of the n-armed bandit problem. Each action selection is

like a play of one of the slot machine levers, and the rewards are the payoffs for hitting

the jackpot. Through repeated plays you are to maximize your winnings by

concentrating your play on the best levers.

• Generally, each machine payout follows a probability

distribution, pi, with mean μi; the agent should identify

the machine with the largest μi.

n-Armed Bandits & Action-Value Methods
• In the n-armed bandit problem, each action has an expected or mean reward give that

a particular action is selected; call this the value of the action.

• Naturally, if we knew the exact value of each action, solving the problem would be

trivial.

• If you maintain estimates of the action values, then at any time there is at least one

action whose estimated value is greatest; call this the greedy action.

n-Armed Bandits & Action-Value Methods
• In the n-armed bandit problem, each action has an expected or mean reward give that

a particular action is selected; call this the value of the action.

• Naturally, if we knew the exact value of each action, solving the problem would be

trivial.

• If you maintain estimates of the action values, then at any time there is at least one

action whose estimated value is greatest; call this the greedy action.

•If you select the greedy action, you are exploiting your current knowledge of the

values of the actions; otherwise, if you select a non-greedy action, then you are

exploring, because this behavior allows you to improve your estimate of the non-

greedy action’s value.

• Exploitation is the prudent thing to do to maximize the expected reward on the one

play – but exploitation may produce the greater total reward in the long run. This is the

essence of the exploitation-exploration “dilemma.”

n-Armed Bandits & Action-Value Methods
• Now we consider several elementary methods for estimating the values of actions and

for using the estimates to make action selection decisions.

Denote the true value of action a as Q*(a), and the estimated value at the tth play as

Qt(a). Recall that the true value of an action is the mean reward received when the

action is selected.

(I) One natural method to estimate this quantity, which we call the sample-average

method, is by simply averaging the rewards actually received:

Where ka denotes the number of times action a has been chosen prior to time t, yielding

rewards r1,r2,…,rka (if ka=0 then define Qt(a)=0, etc.).

 
1 2 ...

ak

t

a

r r r
Q a

k

  


n-Armed Bandits & Action-Value Methods
(I) One natural method to estimate this quantity is by simply averaging the rewards

actually received:

Where ka denotes the number of times action a has been chosen prior to time t, yielding

rewards r1,r2,…,rka (if ka=0 then define Qt(a)=0, etc.).

• As ka→∞, by the law of large numbers, Qt(a) converges to Q*(a).

• The simplest action selection rule is to select the action with highest estimated value.

A simple alternative is to behave greedily most of the time, but every once in a while,

say with small probability ε, instead select an action at random, uniformly,

independently of the action-value estimates.

* This rule is known as the ε-greedy method.

 
1 2 ...

ak

t

a

r r r
Q a

k

  


n-Armed Bandits & Action-Value Methods
•To roughly assess the relative effectiveness of the greedy and ε-greedy methods, we can

compare them numerically (see plots).

* Note that with noisy rewards it would take more exploration to find the optimal

solution, and ε-greedy methods would fare generally even better than baseline greedy

methods.

n-Armed Bandits & Action-Value Methods
•Although ε-greedy action selection is an effective and popular means of balancing

exploration and exploitation in RL, one drawback is that when it explores it chooses

equally among all actions. This means that it is as likely to choose the worst-appearing

action as it is to choose the next-to-best action.

The obvious solution is to vary the action probabilities as a graded function of

estimates value.

(II) Define the softmax action selection:

Where τ is a positive parameter call the temperature; high temperatures cause the

actions to be all (nearly) equiprobable; low temperatures cause a greater difference in

selection probability for actions that differ in their value estimates. In the limit τ→0,

softmax action selection becomes equivalent to greedy action selection.

 
()/

()/

1

t

t

Q a

t n
Q b

b

e
Q a

e











n-Armed Bandits & Action-Value Methods
• The aforementioned action-value methods all estimate action values as sample

averages of observed rewards.

A practical issue associated with estimating action values from samples of observed

rewards is that these procedure will not scale well; larger samples will grow over time

without bound.

As a remedy, we can devise an (III) incremental update formula for computing

averages with small, constant computation required to process each new reward. For

some action, let Qk denote the average of its first k rewards; given this average and a

(k+1)st reward, rk+1, then the average of all k+1 rewards can be computed by:

 
1

1 1 1

1 1

1 1 1

1 1 1

k k

k i k i k k k k

i i

Q r r r r kQ Q Q
k k k



  

 

 
       

   
 

Why?

n-Armed Bandits & Action-Value Methods
• The aforementioned action-value methods all estimate action values as sample

averages of observed rewards.

A practical issue associated with estimating action values from samples of observed

rewards is that these procedure will not scale well; larger samples will grow over time

without bound.

As a remedy, we can devise an (III) incremental update formula for computing

averages with small, constant computation required to process each new reward. For

some action, let Qk denote the average of its first k rewards; given this average and a

(k+1)st reward, rk+1, then the average of all k+1 rewards can be computed by:

* Note that this implementation requires memory only for Qk and k.

 
1

1 1 1

1 1

1 1 1

1 1 1

k k

k i k i k k k k

i i

Q r r r r kQ Q Q
k k k



  

 

 
       

   
 

    1 1

1 1
1

1 1
k k k k k kr k Q Q Q r Q

k k
       

 

n-Armed Bandits & Action-Value Methods

• This update rule is of a familiar form:

 
1

1 1 1

1 1

1 1 1

1 1 1

k k

k i k i k k k k

i i

Q r r r r kQ Q Q
k k k



  

 

 
       

   
 

    1 1

1 1
1

1 1
k k k k k kr k Q Q Q r Q

k k
       

 

[]NewEstimate OldEstimate StepSize Target OldEstimate  

n-Armed Bandits & Action-Value Methods

• This update rule is of a familiar form:

• The expression [Target-OldEstimate] is an error in the estimate; it is reduced by

taking a step toward the “target.”

• Averaging methods discussed previously are appropriate for stationary

environments (i.e. environments that do not change over time). With non-

stationary environments, it is common to add a constant step-size parameter 0 < α ≤ 1

to the previous update rule, giving:

• This is sometimes called an exponential recency-weighted average; the basic idea is that the

weight given to reward ri decreases as the number of intervening rewards increases.

[]NewEstimate OldEstimate StepSize Target OldEstimate  

     1 1 0

1

... 1 1
k

k k i

k k k k i

i

Q Q r Q Q r   


 



       

 1 1

1

1
k k k kQ Q r Q

k
   



n-Armed Bandits & Action-Value Methods

• The previous methods are all dependent on the initial action-value estimates Q0(a);

viz., these methods are biased by their initial estimates.

• For sample-average methods, the bias disappears once all actions have been selected at

least once, but for methods with constant α, the bias is permanent, though decreasing

over time.

• In practice, this kind of bias is usually not a problem, and can even be helpful. The

downside is that these initial estimates become de facto hyperparameters.

n-Armed Bandits & Action-Value Methods
• Initial action values can be used as a simple way of encouraging exploration. If we,

say, initially choose wildly optimistic action values (e.g. very large parameter settings),

this will encourage the agent to explore, being “disappointed” with the rewards

received.

• Using optimistic initial values is a simple and often effective trick; however, it is

generally poorly-suited to non-stationary cases.

The Formal RL Problem
• In the general RL framework, an agent interactions with its environment at each of a

sequence of discrete time steps, t = 0, 1, 2, 3, … .

• At each time step t, the agent receives some representation of the environment’s state,

𝑠𝑡 ∈ 𝑆, where S is the set of possible states, and on that basis selects an action, 𝑎𝑡∈
𝐴 𝑠𝑡 , where A is the set of actions available in state st.

• One time step later, in part as a consequence of its action, the agent receives a

numerical reward 𝑟𝑡+1∈ and finds itself in a new state, st+1.

The Formal RL Problem
• At each time step, the agent implements a mapping from states to probabilities of

selecting each possible action. This mapping is called the agent’s policy and is

denoted πt, where πt(s,a) is the probability that at=a if st=s.

• RL methods specify how the agent changes its policy as a result of its experience.

• The agent’s goal, roughly speaking, is to maximize the total amount of reward it

receives in the long run.

The Formal RL Problem
• At each time step, the agent implements a mapping from states to probabilities of

selecting each possible action. This mapping is called the agent’s policy and is

denoted πt, where πt(s,a) is the probability that at=a if st=s.

• RL methods specify how the agent changes its policy as a result of its experience.

• The agent’s goal, roughly speaking, is to maximize the total amount of reward it

receives in the long run.

• The use of a reward signal to formalize the idea of a goal is one of the most

distinctive features of RL. Although this approach may appear superficially limiting,

in practice it has proven to be a flexible and widely applicable method.

• For instance, if we want to make a robot learn to walk, we can provide a reward on

each time step proportional to the robot’s forward motion; in making a robot learn

to escape from a maze, the reward is often zero until it escapes, at which time it

receives +1 reward.

Applications of reinforcement learning:

A few examples
• Learning to play backgammon (and more recently, Go)

• Robot arm control (juggling)

• Robot Locomotion

• Robot navigation

• Elevator dispatching

• Power systems stability control

• Job-shop scheduling

• Air traffic control

• Autonomous Driving

Cart-Pole Problem

Objective: Balance a pole on top of movable cart.

State: Angle, angular speed, position, horizontal velocity.

Action: Horizontal force applied to cart.

Reward: +1 at each time step if the pole is upright.

https://www.youtube.com/watch?v=_Mmc3i7jZ2c

Robot Locomotion (and pancake flipping!)

Objective: Make the robot move forward successfully.

State: Angle and position of joints.

Action: Torques applied on joints.

Reward: +1 at each time step the robot is upright and moving

forward.

https://www.youtube.com/watch?v=gn4nRCC9TwQ

https://www.youtube.com/watch?v=W_gxLKSsSIE

https://www.youtube.com/watch?v=SH3bADiB7uQ

Board Games (Backgammon, Chess, Go)

Objective: Win the game.

State: Position of pieces.

Action: Next move/placement of next piece.

Reward: +1 for win, 0 for loss.

Robby the Robot can learn via reinforcement

learning
Sensors:

H(ere), N,S,E,W,

Actions:

Move N

Move S

Move E

Move W

Pick up can

Rewards/Penalties (points):

Picks up can: 10

Pick up can on empty site: -1

Crashes into wall: -5

“policy” = “strategy”

Atari Games

Objective: World domination Obtain high score (make lots of human

friends in the process).

State: Raw pixel inputs.

Action: Game controls, e.g., movement and zap!

Reward: Score differential.

The Formal RL Problem: Goals & Rewards

• Part of the “art” of developing an effective RL algorithm rests in the choice of

reward function. We want the reward to truly indicate what we want accomplished.

• In particular, the reward signal is not the place to impart to the agent prior knowledge

about how to achieve what we want it to do; for example, a chess-playing agent

should be rewarded only for actually winning, not for achieving subgoals such as

taking its opponent’s pieces or gaining control of the center of the board.

• Explicitly rewarding subgoals may cause the agent to learn to achieve these subgoals

to the detriment of any long-term objectives (e.g. the agent might learn to capture

pieces effectively and yet still lose the chess match).

The Formal RL Problem: Returns

• The precise aspect of the sequence of rewards that we wish to maximize is the

expected return, defined as:

where T is the final time step; this quantity is just the sum of rewards after step t.

This definition makes perfect sense when there is a natural notion of a “final” time

step; such an agent-environment interaction consists of episodes.

• When the agent-environment interaction does not break naturally into identifiable

episodes, and instead goes on continually without limit, we call these continuing tasks

(i.e. T = ∞).

1 2 ...t t t TR r r r   

The Formal RL Problem: Returns
•An additional, common feature used in RL is discounting. According to this

approach, the agent tries to select actions so that the sum of the discounted rewards

it receives over the future is maximized.

• In particular, the agent chooses action at to maximize the expected discounted return:

where 0 ≤ γ ≤ 1, is called the discount rate. If γ = 0, we say the agent is “myopic.”

2

1 2 3 1

0

... k

t t t t t k

k

R r r r r  


    



    

Markov Decision Processes
• An RL learning task that satisfies the Markov property is called a Markov Decision

Process (MDP).

The Markov property implies that the environment’s response at time t+1 depends

only on the state and action representations at time t. For example, a checkers

position (i.e., the current piece configuration) would serve as a Markov state because

the current state summarizes everything important about the complete sequence of

positions that led to it.

More formally, if the Markov property holds, then:

•Which is to say that the next state (and reward) only depend on the current state-action

pair.

 1 1, | ,t t t tP s s r r s a 
 

Markov Decision Processes

Where Pa(s,s’) are called transition

probabilities; note that the quantities:

Pa(s,s’) and Ra(s,s’) completely specify

the most important aspects of the

dynamics of a MDP.

Value Functions
• Almost all RL learning algorithms are based on estimating value functions –

functions of states (or of state-action pairs) that estimate “how good” it is for the

agent to be in a given state (or how good it is to perform a given action in a given

state).

• The notion of “how good” here is defined in terms of future rewards that can be

expected, i.e., expected return.

• Recall that a policy, π, is a mapping from each state 𝑠 ∈ 𝑆 and action, 𝑎 ∈ 𝐴 𝑠 the

probability π (s,a) of taking action a when in state s.

Value Functions
• Almost all RL learning algorithms are based on estimating value functions –

functions of states (or of state-action pairs) that estimate “how good” it is for the

agent to be in a given state (or how good it is to perform a given action in a given

state).

• The notion of “how good” here is defined in terms of future rewards that can be

expected, i.e., expected return.

• Recall that a policy, π, is a mapping from each state 𝑠 ∈ 𝑆 and action, 𝑎 ∈ 𝐴 𝑠 the

probability π (s,a) of taking action a when in state s.

For MDPs, we can define Vπ(s), the value of state s under policy π as:

where Eπ [·] denotes the expected value given that the agent follows policy π. The function

Vπ is called the state-value function for policy π.

    1

0

| |k

t t t k t

k

V s E R s s E r s s

  


 



 
    

 


Value Functions
• Similarly, we define the value of taking action a in state s under policy π, denoted

Qπ(s,a) as the expected return stating from s, taking action a, and thereafter following

policy π:

We call Qπ the action-value function for policy π.

    1

0

, | , | ,k

t t t t k t t

k

Q s a E R s s a a E r s s a a

  


 



 
      

 


Value Functions
• Similarly, we define the value of taking action a in state s under policy π, denoted

Qπ(s,a) as the expected return stating from s, taking action a, and thereafter following

policy π:

We call Qπ the action-value function for policy π.

• The value functions Vπ and Qπ can be estimated from experience. For example, if

an agent follows policy π and maintains an average, for each state encountered, of the

actual returns that have followed that state, then the average will converge to the

state’s value V(s), as the number of times that state is encountered approaches

infinity.

• If separate averages are kept for each action taken in a state, then these averages

will similarly converge to the action values, Qπ(s,a).

• We call estimate methods of this kind Monte Carlo methods because they involve

averaging over random samples of actual returns.

    1

0

, | , | ,k

t t t t k t t

k

Q s a E R s s a a E r s s a a

  


 



 
      

 


Value Functions

• A fundamental property of value functions used in RL and dynamic

programming is that they satisfy recursive relationships.

• For any policy π and any state s, the following consistency condition holds

between the value of s and the value of its possible successor states:

    1

0

| |k

t t t k t

k

V s E R s s E r s s

  


 



 
    

 


Value Functions

• A fundamental property of value functions used in RL and dynamic

programming is that they satisfy recursive relationships.

• For any policy π and any state s, the following consistency condition holds

between the value of s and the value of its possible successor states:

    1

0

1 2

0

| |

|

k

t t t k t

k

k

t t k t

k

V s E R s s E r s s

E r r s s



 





 



 





  



 
    

 

 
   

 





Why?

Value Functions

• A fundamental property of value functions used in RL and dynamic

programming is that they satisfy recursive relationships.

• For any policy π and any state s, the following consistency condition holds

between the value of s and the value of its possible successor states:

   

 

1

0

1 2

0

' ' 2 1

0

| |

|

, |

k

t t t k t

k

k

t t k t

k

a a k

ss ss t k t

a s k

V s E R s s E r s s

E r r s s

s a P R E r s s



 







 

  



 





  





  
 

 
    

 

 
   

 

  
    

  





  

Why?

Value Functions

• A fundamental property of value functions used in RL and dynamic

programming is that they satisfy recursive relationships.

• For any policy π and any state s, the following consistency condition holds

between the value of s and the value of its possible successor states:

   

 

   

1

0

1 2

0

' ' 2 1

0

' '

| |

|

, |

,

k

t t t k t

k

k

t t k t

k

a a k

ss ss t k t

a s k

a a

ss ss

a s

V s E R s s E r s s

E r r s s

s a P R E r s s

s a P R V s



 









 

  

 



 





  





  
 



 
    

 

 
   

 

  
    

  

   





  

 

Why?

Value Functions

• A fundamental property of value functions used in RL and dynamic

programming is that they satisfy recursive relationships.

• For any policy π and any state s, the following consistency condition holds

between the value of s and the value of its possible successor states:

Where it is implicit that the actions, a, are taken from the set A(s), and the next states,

s’, are taken from the set S.

   

 

   

1

0

1 2

0

' ' 2 1

0

' '

| |

|

, |

,

k

t t t k t

k

k

t t k t

k

a a k

ss ss t k t

a s k

a a

ss ss

a s

V s E R s s E r s s

E r r s s

s a P R E r s s

s a P R V s



 









 

  

 



 





  





  
 



 
    

 

 
   

 

  
    

  

   





  

 

(“Bellman Equation”

for Vπ)

Bellman Equation

• The Bellman Equation for Vπ expresses a relationship between the value of a state and

the values of its successor states.

• Think of “looking ahead” from one state to its possible success states (see “backup

diagram”).

• Each open circle represents a state and each solid circle represents a state-action pair.

Starting from state s, the root node at the top, the agent could take any of some set of

actions – three are shown. From each of these, the environment could respond with one

of several next states, s’, along with a reward, r.

• The Bellman equation averages over all the possibilities, weighting each by its probability of

occurring. It states that the value of the start state must equal the (discounted) value of the

expected next state, plus the reward expected along the way.

     ' ', a a

ss ss

a s

V s s a P R V s  


    

Value Functions: Gridwold Example

• Consider the MDP: the cells of the grid correspond to the states of the

environment; at each cell four actions are possible: north, south, east, and west,

which deterministically cause the agent to move one cell in the corresponding

direction on the grid.

• Actions that would take the agent off the grid leave its location unchanged, but

also result in a reward of -1. Other actions result in a reward of 0, except those

that move the agent out of the special states A and B. From state A, all four

actions yield a reward of +10 and take the agent to A’. From state B, all actions

yield a reward of +5 and take the agent to B’.

Value Functions: Gridwold Example

• Suppose the agent selects all four actions with equal probability in all states. The

corresponding value function, Vπ, for this policy, for the discounted reward case

with γ = 0.9 is shown.

• Vπ is computed using the Bellman equation:

Optimal Value Functions
• Solving a RL learning task means, roughly, finding a policy that achieves a lot of

reward over the long run.

• For finite MDPs, we can precisely define an optimal policy by relying on the fact

that value functions define a partial ordering over policies.

• A policy π is defined to be better than or equal to policy π’ if its expected return

is greater than or equal to that of π’ for all stages.

Optimal Value Functions
• Solving a RL learning task means, roughly, finding a policy that achieves a lot of

reward over the long run.

• For finite MDPs, we can precisely define an optimal policy by relying on the fact

that value functions define a partial ordering over policies.

• A policy π is defined to be better than or equal to policy π’ if its expected return

is greater than or equal to that of π’ for all stages.

• In other words, π ≥ π’ if and only if Vπ(s) ≥ Vπ’(s) for all 𝑠 ∈ 𝑆.

• There is always exists at least one policy that is better than or equal to all other

policies; this is an optimal policy.

Optimal Value Functions
• Denote the optimal policy by π*; the optimal state-value function, denoted V* is

defined:

for all 𝑠 ∈ 𝑆.

• Optimal policies also share the same optimal action-value function, denoted Q*,

defined:

for all 𝑠 ∈ 𝑆 and a ∈ A(s).

• For the state-action pair (s,a), this function gives the expected return for taking

action a in state s and thereafter following an optimal policy. Thus, we can write

Q* in terms of V* as follows:

 *() maxV s V s




 *(,) max ,Q s a Q s a




 1 1*(,) * | ,t t t tQ s a E r V s s s a a      

Optimal Value Functions
• Because V* is the value function for a policy, it must satisfy the self-consistency

condition given by the Bellman equation for state values:

• In addition, because it is the optimal value function, V*’s consistency condition

can be written in a special form without reference to any specific policy.

• This is known as the Bellman optimality equation. Intuitively, the Bellman

optimality equation expresses the fact that the value of a state under an optimal

policy must equal the expected return for the best action from that state:

     ' ', a a

ss ss

a s

V s s a P R V s  


    

 
 

 

 

 

 

*

*

* 1 2

0

1 1

' '

* max ,

max | ,

max | ,

max * | ,

max *

a A s

t t t
a

k

t t k t t
a

k

t t t t
a

a a

ss ss
a

s

V s Q s a

E R s s a a

E r r s s a a

E r V s s s a a

P R V s





  







  



 





  

 
    

 

     

   





Optimal Value Functions

• The Bellman optimality equation for Q* is given by:

• The backup diagrams show graphically the spans of future states and actions

considered in the Bellman optimality equations for V* and Q*.

   

 

1 1

' '
'

* , * , | ,

max * ,

t t t t

a a

ss ss
a

s

Q s a E r Q s a s s a a

P R Q s a





 



     

   
 

   

 

1 1

' '

* max * | ,

max *

t t t t
a

a a

ss ss
a

s

V s E r V s s s a a

P R V s

 



     

   

Optimal Value Functions

• For finite MDPs, the Bellman optimality equation for V* has a unique solution

independent of the policy. The Bellman optimality “equation” is actually a system

of equations, one for each state (thus for N states one has N equations and N

unknowns).

• If the dynamics of the environment are known (i.e. 𝑅𝑠𝑠′
𝑎 and 𝑃𝑠𝑠′

𝑎 known), then in

principle one can solve this system of equations for V*; one can, in addition,

solve a related set of equations for Q*.

   

 

1 1

' '
'

* , * , | ,

max * ,

t t t t

a a

ss ss
a

s

Q s a E r Q s a s s a a

P R Q s a





 



     

   
 

Optimal Value Functions
• Once one has V*, it is relatively easy to determine an optimal policy. For each

state s, there will be one or more actions at which the maximum is attained in the

Bellman optimality equation.

• If you have the optimal value function V*, then the actions that appear best after

a one-step search will be optimal actions. Put another way, any policy that is

greedy with respect to the optimal value function V* is an optimal policy.

• The beauty of V* is that if one uses it to evaluate the short-term consequences

of actions – specifically, the one-step consequences – then a greedy policy is

actually optimal in the long-term sense because V* already takes into account the

reward consequences of all future behavior.

• Having Q* makes choosing optimal actions still easier. With Q*, the agent does

not even have to do a one-step-ahead search: for any state s, it can simply find any

action that maximizes Q*(s,a).

Value Functions: Gridwold Example

Returning to the Gridworld example from before:

• Actions that would take the agent off the grid leave its location unchanged, but

also result in a reward of -1. Other actions result in a reward of 0, except those

that move the agent out of the special states A and B. From state A, all four

actions yield a reward of +10 and take the agent to A’. From state B, all actions

yield a reward of +5 and take the agent to B’.

Value Functions: Gridwold Example

• The optimal value solutions are given as follows:

where V* is computed using the Bellman optimality equation:

   ' '* max *a a

ss ss
a

s

V s P R V s


   

Value Functions: Practical Concerns

Recall the Bellman optimality equation:

• Explicitly solving the Bellman optimality equation provides one route to finding an

optimal policy, and thus to solving the RL problem.

• However, this solution is rarely used in practice, as it is akin to an exhaustive search:

looking ahead at all possibilities, computing their probabilities of occurrence and

their desirabilities in terms of expected rewards.

This solution relies on at least three assumptions that are rarely true in practice:

(1) We actually know the dynamics of the environment

(2) We have enough computational resources to complete the computation of the

solution

(3) Markov Property

   ' '* max *a a

ss ss
a

s

V s P R V s


   

Value Functions: Practical Concerns

• Naturally, an agent that learns an optimal policy has done very well, but in practice

this rarely happens.

• For “interesting”, real-world problems, optimal policies can be generated only with

extreme computational cost. However, a well-defined notion of optimality

nevertheless helps frame RL in a mathematically rigorous way.

In practice, optimal policies represent an ideal that agents can only approximate to

varying degrees.

Value Functions: Practical Concerns

• Oftentimes, it is also impossible to directly use tabular methods to build up

approximations of value functions and policies, because there are far more states

than could possibly be entries in a table. In these cases the functions must be

approximated, using some sort of more compact parameterized function

representation (e.g. a DNN).

• Many useful techniques exist for dealing with very large search spaces, including

heuristic search methods. In approximating optimal behavior, there may be many

states the agent faces with very low probability; the on-line nature of RL makes it

possible to approximate optimal policies in a way that puts more effort into learning

to make good decisions for frequently encountered states.

• With TD-Gammon (1992, IBM Watson Research Center), a classic RL-based

Backgammon AI program, for instance, although the program performed at near

human expert level, it nonetheless makes bad decisions on board configurations that

rarely (or never) appear in games. Backgammon has on the order of ~1020 states.

Dynamic Programming
• Dynamic Programming (DP) techniques can be used to compute optimal policies

given a perfect model of the environment as a MDP; in practice DP techniques can

be computationally expensive for RL, but they nevertheless provide an essential

foundation across RL frameworks.

• The key idea of DP in conjunction with RL is the use of value functions to

organize and structure the search for good policies.

• One can easily obtain optimal policies once we have found the optimal value

functions, V* or Q*, which satisfy the Bellman equations (from before):

(*) Key idea: Turn the Bellman equations into iterative assignment updates for

approximating the desired value functions.

Dynamic Programming: Policy Evaluation
• First we consider how to compute the state-value function Vπ for any arbitrary

policy π; this is called policy evaluation.

Recall that for all 𝑠 ∈ 𝑆:

• If the environment’s dynamics are completely known (viz., we have a

complete model), then the equation above is a system of |S| unknowns; we

consider an iterative solution.

• Consider a sequence of approximate value functions: V0, V1, V2, where V0 is

initialized arbitrarily.

• Each successive approximation for Vπ can be updated as follows:

   

   

1 1

' '

1 |

,

k t k t

a a

ss ss k

a s

V s E r V s s s

s a P R V s

 

 

 



     

    

Dynamic Programming: Policy Evaluation

• This is known as iterative policy evaluation.

• NB: It can be shown that {Vk} converges to Vπ as k →∞ (as Vk=Vπ is a fixed

point for the Bellman equation).

• For implementation, iterative policy evaluation uses a “full backup”, meaning that

in order to approximate Vk+1 from Vk, we replace the old value of s with a new

value obtained from the old values of the successor states of s.

   

   

1 1

' '

1 |

,

k t k t

a a

ss ss k

a s

V s E r V s s s

s a P R V s

 

 

 



     

    

Dynamic Programming: Policy Improvement

• The reason for computing value functions for a policy is to assist in the search for

better policies; naturally, given a policy, we would like to determine whether we

should change its action for a particular state in order to improve the policy.

To this end, define:

This quantity considers selecting a in state s and thereafter following the existing

policy, π.

*The key criterion is whether this is greater than or less than Vπ(s). If it is greater,

then one would expect it to be better still to select a every time s is encountered.

This is in general true, as stated by the policy improvement theorem.

   

 

1 1

' '

, | ,t t t t

a a

ss ss

s

Q s a E r V s s s a a

P R V s

 









 



     

   

Dynamic Programming: Policy Improvement

• Policy improvement theorem:

Let π and π’ be any pair of deterministic policies such that, for all 𝑠 ∈ 𝑆:

Then policy π’ must be as good as, or better than, π. Thus for all 𝑠 ∈ 𝑆, it follows

that:

    ,Q s s V s  

   V s V s 


Dynamic Programming: Policy Improvement

• In summary, given a policy and its value function, we can easily evaluate a change in

the policy at a single state to a particular action.

• As an extension, we can consider changes at all states and to all possible actions,

selecting at each state the action that appears best according to Qπ(s,a).

In other words, to consider the new greedy policy, π’, given by:

The greedy policy takes the action that looks best in the short term – after one step

of lookahead – according to Vπ.

* By construction, the greedy policy meets the conditions of the policy improvement

theorem; these results are naturally extended to the case of stochastic policies.

     

 

1 1

' '

arg max , arg max | ,

arg max

t t t t
a a

a a

ss ss
a s

s Q s a E r V s s s a a

P R V s

 





 



 



       

   

Policy Improvement: GridWorld

Dynamic Programming: Policy Iteration
• Once a policy, π, has been improved using Vπ to yield a better policy, π’, we can then

compute Vπ’ and improve it again to yield an ever better π’’. We can thus obtain a

sequence of monotonically improving policies and value functions:

Where E denotes a policy evaluation and I denotes a policy improvement. Each policy is

guaranteed to be a strict improvement over the previous one.

Dynamic Programming: Value Iteration
• The policy evaluation step of policy iteration can be truncated in several ways

without losing the convergence guarantees of policy iteration.

• One importance special case is when policy evaluation is stopped after just one

sweep (i.e. one backup of each state).

• This particular algorithm is called value iteration; it can be written as a particularly

simple backup operation that combines the policy improvement and truncated policy

evaluation steps:

* This is equivalent to turning the Bellman optimality equation into an update rule:

     1 1 ' '1 | , max a a

k t k t t ss ss k
a

s

V s E r V s s s a a P R V s   


           

Dynamic Programming: Value Iteration

     1 1 ' '1 | , max a a

k t k t t ss ss k
a

s

V s E r V s s s a a P R V s   


           

Dynamic Programming: Practical Considerations

• A significant drawback to the DP methods discussed, is that they involve operations

over the entire state set of the MDP, i.e., sweeps of the state set.

• If the state set is very large, then even a single sweep can be prohibitively expensive

(e.g. backgammon has over 1020 states).

• Asynchronous DP algorithms are in-place iterative DP algorithms that are not

organized in terms of systematic sweeps of the state set. These algorithms back up

the values of states in any order whatsoever.

Dynamic Programming: General Policy Iteration
• Policy iteration consists of two simultaneous, interacting processes, one making the

value function consistent with the current policy (policy evaluation), and the other

making the policy greedy with respect to the current value function (policy

improvement).

• In policy iteration, these two processes alternate, each completing before the other

begins, but this it not really necessary. In value iteration, for example, only a single

iteration of policy evaluation is performed in between each policy improvement.

*Almost all RL methods can be described as generalized policy iteration procedures (GPI).

One can think of the interaction between the evaluation and

improvement processes in GPI in terms of constraints.

Each process drives the value function or policy toward one

another; the goals accordingly interact.

Dynamic Programming: Efficiency

• DP may not be practical for large problems, but compared with other methods for

solving MDPs, DP methods are actually quite efficient (remember that DP also

requires an environment model).

• In the worst-case, DP methods find an optimal policy in polynomial time (wrt the

number of states and actions).

• Linear programming methods can also be used to solve RL problems, but these

methods become impractical at a much smaller number of states than DP methods.

Monte Carlo Methods

• Unlike Dynamic Programming methods, Monte Carlo methods (MCM) do not

assume complete knowledge of the environment.

• MCM require only experience – sample sequence of states, actiona, and rewards from

on-line or simulated interaction with an environment.

Learning from on-line experience is striking because it requires no prior knowledge

of the environment’s dynamics, yet can still attain optimal behavior.

• MCM are ways of solving the RL problem based on averaging sample returns.

• Despite their differences, the most important ideas from DP carry over to the

MCM case. In particular, MCM attain optimality in essentially the same was as DP

methods.

Monte Carlo Methods
• Let’s consider MCM for learning the state-value function for a given policy.

• Recall that the value of a state is the expected return – expected cumulative future

discounted reward – starting from that state.

• An obvious way to estimate it from experience, then, is simply to average the

returns observed after visits to that state. As more returns are observed, the average

should converge to the expected value; this is the core idea underyling all MCM.

• One such method is called the first-visit MCM; this process just averages the

returns following the first visits to s.

• By the law of large numbers, the first-visit MCM converges to Vπ(s) as the number of

first visits to s goes to infinity.

Monte Carlo Methods: Blackjack

• Blackjack as an MDP: rewards of +1, -1, 0 are given for winning, losing and

drawing respectively; no discount applied; cards drawn with replacement; policy

considered: stick of player’s sum is 20 or 21; state-value function approximated using

MCM (DP would be difficult to apply here, since we require transition probabilities

and associated rewards for all states).

Monte Carlo Methods
• If a model is not available, then it is particularly useful to estimate action values

rather than state values. With a model, state values alone are sufficient to determine a

policy; simply look ahead one step and choose whoever action leads to the best

combination of reward and next state.

• Without a model, however, state values are insufficient. One must explicitly

estimate the value of each action in order for the values to be useful in suggesting a

policy. Thus we should estimate Q*.

• The first-visit MC method averages the returns following the first time in each

episode that the state was visited and the action was selected; these methods

converge quadratically to the true expected values as the number of visits to each

state-action pair approaches infinity.

* The only complication here is that many relevant state-action pairs may never be

visited; one common remedy is to consider only policies that are stochastic with a

nonzero probability of selecting all actions.

Monte Carlo Control
• How is MCM used to approximate optimal policies?

• The general pattern is to proceed as we did with regard to DP; we maintain both an

approximate policy and an approximate value function. The value function is

repeatedly altered to more closely approximate the value function for the current

policy, and the policy is repeatedly improved with respect to the current value

function:

• MCM version of classical policy iteration entails performing alternating complete

steps of policy evaluation and policy improvement, beginning with an arbitrary policy

π0 and ending with the optimal action-value function:

Monte Carlo Control

• Policy evaluation is done exactly as described previously; many episodes are

experienced, with the approximate action-value function approaching the true

function asymptotically.

• Under some basic assumptions (e.g., infinite number of episodes), the MCM will

compute Qπk exactly, for arbitrary πk.

• Policy improvement is achieved by making the policy greedy with respect to the

current value function. In this case, we have an action-value function, and

therefore no model is needed to construct the greedy policy.

• For any action-value function Q, the corresponding greedy policy is the one that

deterministically chooses:

• Policy improvement then can be done by constructing each πk+1 as the greedy

policy wrt Qπk.

   arg max ,
a

s Q s a 

Monte Carlo Control
• Define Monte Carlo ES as the MC algorithm that alternates between evaluation

and improvement on an episode-by-episode basis:

Monte Carlo Methods : On-Policy
• There are two general approaches to ensure that all actions are selected infinitely

often: on-policy and off-policy methods.

• On-policy methods attempt to evaluate or improve the policy that is used to make

decisions.

In on-policy control methods, the policy is generally soft, meaning that π(s,a)>0 for

all s ∈ 𝑆 and all a ∈ 𝐴(𝑠).

• One common on-policy method uses the epsilon-greedy approach, meaning that most

of the time they choose and action that has maximal estimated action value, but with

probability epsilon they instead select an action at random.

Monte Carlo Methods : Off-Policy
• On-policy methods estimate the value of a policy while using it for control.

• In off-policy methods these two functions are separated. The policy used to

generate behavior, called the behavior policy, may in fact be unrelated to the policy that

is evaluated and improved, called the estimation policy.

An advantage of this separation is that the estimation policy may be deterministic

(e.g. greedy), while the behavior policy can continue to sample all possible actions.

• Off-policy MC control methods use the technique previously presented from

estimating the value function for one policy while following another. They follow

the behavior policy while learning about and improving the estimation policy (to

explore all possibilities, we require that the behavior policy be soft).

Temporal-Difference Learning
• Temporal-Difference (TD) learning is a combination of Monte Carlo ideas and

dynamic programming ideas.

• Like MC methods, TD methods can learn directly from raw experience without a

model of the environment’s dynamics.

• Like DP, TD methods update estimates based in part on other learned estimates,

without waiting for a final outcome (they bootstrap).

* The relationship between TD, DP and MC methods is a recurring theme in RL.

Temporal-Difference Learning
• Both TD and MC methods use experience to solve the prediction problem.

• Given some experience following a policy π, both methods update their estimate V

of Vπ. If a nonterminal state st is visited at time t, then both methods update their

estimate V(st) based on what happens after that visit. Roughly speaking, MC methods

wait until the return following the visit is known, then use that return as a target for

V(st).

A simple, every-visit MC method suitable for nonstationary environments is:

Where Rt is the actual return following time t and α is a constant step-size parameter.

Call this method constant-α MC.

     t t t tV s V s R V s    

Temporal-Difference Learning
• Whereas MC methods must wait until the end of the episode to determine the

increment to V(st) (only Rt is known), TD methods need wait only until the next time

step.

• At time t+1 they immediately form a target and make a useful update using the

observed reward rt+1 and the estimate V(st+1). The simplest TD method, known as

TD(0) is:

• In effect, the target for the MC update is Rt, whereas the target for the TD update is

rt+1+γVt(st+1). Because TD method bases its update in part on an existing estimate,

we say that is a bootstrapping method (like DP).

       1 1t t t t tV s V s r V s V s       

Temporal-Difference Learning

• In effect, the target for the MC update is Rt, whereas the target for the TD update is

rt+1+γVt(st+1). Because TD method bases its update in part on an existing estimate,

we say that is a bootstrapping method (like DP).

• The TD target is an estimate because it samples the expected value and it uses the

current estimate Vt instead of the true Vπ. Thus, TD methods combine the sampling

of MC with the bootstrapping of DP.

       1 1t t t t tV s V s r V s V s       

Temporal-Difference Learning
Some advantages of TD learning:

• TD methods do not require a model of the environment (DP does)

• TD can be naturally implemented in an on-line, fully incremental fashion. With MC

methods, one needs to wait until the end of an episode, because only then is the

return known, whereas with TD methods one need wait only one time step.

* Surprisingly, this turns out to be a critical consideration (NB: some applications

have very long episodes).

* TD has been shown to converge to Vπ, in the mean for a sufficiently small constant

step-size parameter.

Q-Learning

• Q-learning is an off-policy TD control algorithm. In its simplest form, one-step

Q-learning, it is defined by:

• In this case, the learned action-value function, Q, directly approximates Q*, the

optimal action-value function, independent of the policy being followed. This

dramatically simplifies the analysis of the algorithm and enabled early convergence

proofs.

• The policy still has an effect in that it determines which state-action pairs are visited

and updated. However, all that is required for correct convergence is that all pairs

continue to be updated.

       1 1, , max , ,t t t t t t t t t
a

Q s a Q s a r Q s a s a  
    
 

Q-Learning

How do we use Q-learning in practice?

Initialize Q(s,a) to all zeros

Initialize s

Repeat until stopping condition:

-- select action a

-- take action a and receive reward r

-- observe new state s’

-- update Q(s,a):

-- update s ← s’

       1 1, , max , ,t t t t t t t t t
a

Q s a Q s a r Q s a s a  
    
 

Example
A is our agent, who takes an action

at each timestep.

Only action in square 1 is Forward.

Actions in squares 2 and 3 are

(Forward, Back)

Being in square 4 gives reward of $5

Only action in square 4 is Stop

No other rewards or penalties.

Set γ = .9

Set η = 1

A
1 2 3

$5
4

A
1 2 3

$5
4

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Episode 1

Current state s = 1

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(1,F) = 0+max
a '
Q(2,a ')[] = 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 2

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 2

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 2

Action = F

r = 0

s’ = 3

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 2

Action = F

r = 0

s’ = 3

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(2,F) = 0+ (0+.9max
a
Q(s ',a ')-Q(s,a)) = 0

A
1 2 3

$5
4

Episode 1

Current state s = 3

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 1

Current state s = 3

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 1

Current state s = 3

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 1

Current state s = 3

Action = F

r = $5

s’ = 4

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 1

Current state s = 3

Action = F

r = $5

s’ = 4

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(3,F) = 0+ ($5+.9max
a
Q(s ',a ')-Q(s,a)) = $5

A

1 2 3
$5

4

Episode 1

Current state s = 3

Action = F

r = $5

s’ = 4

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(3,F) = 0+ ($5+.9max
a
Q(s ',a ')-Q(s,a)) = $5

A

1 2 3
$5

4

Episode 1

Current state s = 4

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 1

Current state s = 4

Action = Stop

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 1

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(1,F) = 0+ (0+.9max
a
Q(s ',a ')-Q(s,a)) = 0

A
1 2 3

$5
4

Episode 2

Current state s = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 2

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 2

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 2

Action = F

r = 0

s’ = 3

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 2

Action = F

r = 0

s’ = 3

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(2,F) = 0 + (0 +.9max
a
Q(s ',a ')-Q(s,a))

= 0 + 0 + (.9)($5) = $4.50

A
1 2 3

$5
4

Episode 2

Current state s = 2

Action = F

r = 0

s’ = 3

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(2,F) = 0 + (0 +.9max
a
Q(s ',a ')-Q(s,a))

= 0 + 0 + (.9)($5) = $4.50

A
1 2 3

$5
4

Episode 2

Current state s = 3

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
1 2 3

$5
4

Episode 2

Current state s = 3

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 2

Current state s = 3

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 2

Current state s = 3

Action = F

r = $5

s’ = 4

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 2

Current state s = 3

Action = F

r = $5

s’ = 4

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(3,F) = $5+ ($5+.9max
a
Q(s ',a ')-Q(s,a))

= $5+$5+ 0 -$5 = $5

A

1 2 3
$5

4

Episode 2

Current state s = 4

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 2

Current state s = 4

Action = Stop

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

1 2 3
$5

4

Episode 3

Current state s = 1

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

Q(1,F) = 0+ (0+.9max
a
Q(s ',a ')-Q(s,a))

= 0 + 0 + (.9)($4.50)- 0 = $4.05

1 2 3
$5

4

Episode 3

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

Q(1,F) = 0+ (0+.9max
a
Q(s ',a ')-Q(s,a))

= 0 + 0 + (.9)($4.50)- 0 = $4.05

1 2 3
$5

4

Episode 3

Current state s = 2

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 2

Action = B

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 2

Action = B

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 2

Action = B

r = 0

s’ = 1

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 2

Action = B

r = 0

s’ = 1

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

Q(2,B) = 0 + (0 +.9max
a
Q(s ',a ')-Q(s,a))

0 + 0 + (.9)($4.05)- 0 = $3.65

1 2 3
$5

4

Episode 3

Current state s = 2

Action = B

r = 0

s’ = 1

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 $3.65 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

Q(2,B) = 0 + (0 +.9max
a
Q(s ',a ')-Q(s,a))

0 + 0 + (.9)($4.05)- 0 = $3.65

1 2 3
$5

4

Episode 3

Current state s = 1

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 $3.65 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 $3.65 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 $3.65 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

1 2 3
$5

4

Episode 3

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 $3.65 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

Q(1,F) = $4.05+ (0 +.9max
a
Q(s ',a ')-$4.05)

$4.05+ 0 + (.9)($4.50)-$4.05 = $4.05

• Results: Q-learning converges to optimal policy – even if you’re acting sub-

optimally!

• This is called off-policy learning.

Caveats:

• You have to explore sufficiently.

• You have to make learning rate small enough (but also not decrease it too

quickly).

• Note that in all of the previous discussion, Q(s, a) was assumed to be a look-

up table, with a distinct table entry for each distinct (s,a) pair.

• More commonly, Q(s, a) is represented as a function (e.g., a neural network),

and the function is estimated (e.g., through back-propagation).

Summary of RL

Summary of RL

Summary of RL

Deep Reinforcement Learning

Deep Reinforcement Learning

Demis Hassabis (co-founder DeepMind)

https://youtu.be/rbsqaJwpu6A

• Deep learning:

Requires large amount of hand-labeled data

Assumes data samples are iid, with stationary distribution

• Reinforcement learning:

Must learn from sparse, noisy, delayed reward function

“Samples” are not independent

Data distribution can change as system learns “online”

• Uses convolutional neural network (CNN):

– Input is raw pixels of video frames (~ the “state”)

• Output is estimated Q(s,a) for each possible action

• System learns to play Atari 2600 games;

• 210x160 RGB video at 60 Hz.

• Designed to be difficult for human players

• “Our goal is to create a single neural network agent that is able to successfully

learn to play as many of the games as possible.”

• No game-specific info provided. No hand-designed visual features.

• Learns exclusively from video input, the reward, and terminal signals.

Network architecture and hyperparameters kept constant across all games.

Deep Reinforcement Learning

Methodological details

• Model Architecture: The researchers developed a novel agent, a deep Q-network (DQN) which

is able to combine RL with ‘deep’ NNs (that is to say they have many layers).

• Hassabis et al. use a deep CNN, which employs hierarchical layers of tiled convolutional filters to

mimic the effects of ‘receptive fields’.

• The goal of the game-playing agent is to select actions in a fashion that maximizes cumulative

feature rewards. Formally, the deep CNN is used to approximate the optimal action-value, which is

the maximum sum of discounted rewards achievable by a behavior policy :

• RL is known to be numerically unstable when NNs are used to approximate Q functions; this is

largely due to (2) issues: (1) many data sequences of state action pairs are highly correlated; (2)

minute updates in Q-value approximations can significantly impact the behavior of an optimal

policy.

• To get around these potential shortcomings, the authors propose: (1) the use of ‘experience

replay’ that randomizes over the data and thus removes many data correlations; and (2) the use of

iterative updates to Q-values that are only periodically updated.

Deep Reinforcement Learning

 |P a s 

  2

1 2* , max ... , ,t t t t tQ s a E r r r s s a a


   
       

Deep Reinforcement Learning
• Model Architecture (cont’d):

• In previous approaches, researchers applied NNs to approximate Q-values using histories + actions as

inputs to the NN. This scheme presents a significant drawback, however, since a separate forward pass is

required to compute the Q-value for each individual action.

• Instead, in the current method, the outputs correspond to the predicted Q-values of the individual actions

for the input state. This presents a significant computational advantage over previous methods; Q-values

are accordingly computed for all possible actions in a given state with only a single forward pass through

the network.

Deep Reinforcement Learning
• Model Architecture (cont’d):

• The input to the NN consists of an 84x84x4 image produced by the preprocessing map.

• The first hidden layer convolves 32 filters of size 8x8 with stride 4 and applies a RELU.

• The second hidden layer convolves 64 filters of size 4x4 with stride 2, again followed by a

RELU.

• The third hidden layer convolves 64 filters of size 3x3 with stride 1, with RELU.

• The final hidden layer is fully-connected and consists of 512 rectifier units. The output layer is

a fully-connected layer with an output for each action. The number of valid actions varies

between 4 and 18 in the games considered.

Deep Reinforcement Learning
• Algorithm Details:

• Sequences of actions and observations, st = x1,a1,x2,…,at-1,xt, are input to the algorithm, which then

learns game strategies depending upon these sequences.

• This formalism gives rise to a large (but finite) Markov decision process (MDP).

• The optimal action-value function in this setting obeys the aforementioned Bellman equation. Normally,

where possible, one would use the Bellman equation as an iterative update for the action-value

approximation.

• In practice for large sequence MDPs, this approach is impractical because it requires estimating the

action-value function for each sequence separately, without any generalization.

• Alternatively, the authors use a NN, viz., a Q-Network (with parameter set θ) for the approximation:

.

• Note that without an efficient state-action value approximation, the number of action pair values is

astronomically large (~1067970)!

• The Q-Network is trained by adjusting the parameters θi at each iteration to reduce the MSE in the

Bellman equation, this yields the loss function:

• Differentiating this loss function wrt the weights yields a gradient used in stochastic gradient descent.

Note that state-action sequences are generated off-policy; the behavior distribution is ε-greedy.

   , ; * ,Q s a Q s a 

• Putting it all together…

• The agent selects and executes actions according to an ε–greedy policy based on Q. The Q-function

works on fixed length representations of histories produced by the pre-processing function ϕ.

• The algorithm modifies standard online Q-learning in (2) ways to make it suitable for training a

large NN.

• (1) The authors employ a technique called ‘experience replay’, in which the agent’s experiences at

each time step et=(st,at,rt,st+1) are stored in a data set Dt={e1,…,et} pooled over many episodes.

• During the inner loop of the algorithm the authors apply Q-learning updates to samples of

experience, (s,a,r,s’)~U(D), drawn at random from the pool of stored samples. (this improves data

efficiency and reduces correlations between samples and the presence of feedback loops in the in

training process).

• By using experience replay, the behavior distribution is averaged over many of its previous states,

thereby smoothing out learning and avoiding oscillations or avoidance in the parameters.

• Note that the uniform sampling gives equal importance to all transitions in the replay memory (a

possible improvement would be to apply a more sophisticated sampling strategy similar to

prioritized sweeping).

• (2) To further improve stability, a separate network for generating the targets (yi’s) in the Q-learning

update. More precisely, every C updates the authors cloned the network Q to obtain a target

network that is used for generating Q-learning targets for the following C updates to Q.

Deep Reinforcement Learning

Deep Reinforcement Learning

Deep Reinforcement Learning

Deep Reinforcement Learning

• Results

• The DQN agent performed at a level comparable to that of a professional human games
test across the set of 49 games, achieving more than 75% of the human score on more

than half the games.

• The authors’ method was able to train large NNs using RL with stochastic gradient
descent in a stable manner – illustrated by the temporal evolution of two indices of
learning (the agent’s average score-per-episode and average predicted Q-values).

Deep Reinforcement Learning

https://www.youtube.com/watch?v=53YLZBSS0cc

https://www.youtube.com/watch?v=53YLZBSS0cc

