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It’s an exciting time for RL! 



Introduction 
• Reinforcement learning (RL) is learning what to do – how to map situations to actions 

– so as to maximize a numerical reward signal. 

• The learner is not told what actions to take (unlike most forms of  ML), but instead 

they must discover which actions yield the most reward by trying them. 

• Most often, actions may affect not only the immediate reward but also the next 

situation, and through that, all subsequent rewards. 

• These two characteristics – trial-and-error search and delayed reward – are the two 

most important distinguishing features of  RL. 



Introduction 
• RL is different from supervised learning, which is generally inadequate for learning from 

interaction. 

• In interactive problems it is often impractical to obtain examples of  desired behavior 

that are both correct and representative of  all the situations in which the agent has 

to act. 

• In uncharted territory – where one would expect learning to be most beneficial – an 

agent must be able to learn from its own experience. 



Introduction 
• One of  the emblematic challenges that arises in RL is the trade-off  between 

exploration and exploitation. 

• To obtain a lot of  reward, a reinforcement learning agent must prefer actions that it 

has tried in the past and found to be effective in producing reward. 

• However, in order to discover such actions, the agent has to try actions that it has not 

selected before. 



Introduction 
• Thus the agent has to exploit what it already knows in order to obtain rewards, but it 

also to explore in order to make between action selections in the future. 

• The dilemma is that neither exploration nor exploitation can be pursued exclusively 

without failing at the task. The agent must instead try a variety of  actions and 

progressively favor those that appear to be best. 

* Simulated annealing is a classic algorithm that makes use of  both exploratory and 

exploitative steps. 



Introduction 
• Another key feature of  RL is that it explicitly considers the whole problem of  a goal-

directed agent interacting with an uncertain environment (this is in contrast to other 

approaches that consider subproblems without addressing they fit into the larger 

picture).

• RL starts with an interactive, goal-seeking agent; the agent has explicit goals and can 

choose actions that influence their environment. 

• The most important features distinguishing RL learning from other types of  learning 

is that it uses training information that evaluates the actions taken rather than 

instructs by giving correct actions. 



Introduction 
• Another key feature of  RL is that it explicitly considers the whole problem of  a goal-

directed agent interacting with an uncertain environment (this is in contrast to other 

approaches that consider subproblems without addressing they fit into the larger 

picture).

• RL starts with an interactive, goal-seeking agent; the agent has explicit goals and can 

choose actions that influence their environment. 

• The most important features distinguishing RL learning from other types of  learning 

is that it uses training information that evaluates the actions taken rather than 

instructs by giving correct actions. 

• This is what creates the need for active explorations, for an explicit trial-and-error 

search for good behavior. Purely evaluative feedback indicates how good the action 

taken is, but not whether it is the best or worst action possible. 

• Purely instructive feedback, on the other hand, indicates the correct action to take, 

independently of  the action actually taken.



Introduction: Elements of  RL
• In general, there are (4) main components of  an RL system: (1) a policy, (2) a reward 

function, (3) a value function and (4) (optionally) a model of  the environment. 

(1) A policy defines the learning agent’s way of  behaving at a given time; a policy is a 

mapping from perceived states of  the environment to actions to be taken when in 

those states (it corresponds to what in psychology would be called a set of  stimulus-

response rules or associations). 

• In some cases the policy may be a simple function or lookup table, or it may involve 

extensive computation such as a search process. The policy is the core of  an RL 

learning agent; note that policies may be deterministic or stochastic. 



Introduction: Elements of  RL
• In general, there are (4) main components of  an RL system: (1) a policy, (2) a reward 

function, (3) a value function and (4) (optionally) a model of  the environment. 

(2) A reward function defined the goal in a RL problem. The reward function maps 

each perceived state (e.g. state-action pair) of  the environment to a single number, a 

reward, indicating the intrinsic desirability of  that state. 

• The RL agent’s sole object is to maximize the total reward received in the long run. 

The reward function is unalterable by the agent; it may, however, serve as a basis for 

altering the policy; reward functions may be stochastic. 



Introduction: Elements of  RL
• In general, there are (4) main components of  an RL system: (1) a policy, (2) a reward 

function, (3) a value function and (4) (optionally) a model of  the environment. 

(3) Whereas a reward function indicates what is good in an immediate sense, a value 

function specifies what is good in the long run. 

• Generally speaking, the value of  a state is the total amount of  reward an agent can 

expect to accumulate over the future, starting from that state. 

• A state might, for example, always yield a low immediate reward but nevertheless have 

a high value because it is regularly followed by other states that yield high rewards (or 

the reverse could hold). 



Introduction: Elements of  RL
(3) Where as a reward function indicates what is good in an immediate sense, a value 

function specifies what is good in the long run. 

• Generally speaking, the value of  a state is the total amount of  reward an agent can 

expect to accumulate over the future, starting from that state. 

• A state might, for example, always yield a low immediate reward but nevertheless have 

a high value because it is regularly followed by other states that yield high rewards (or 

the reverse could hold). 

• Rewards are in a sense primary – without rewards there could be no values. 

Nevertheless, it is values with which we are most concerned when making evaluating 

decisions. Action decisions are made based on value judgements; we seek actions that 

bring about states of  highest value, not states of  highest reward. 

NB: In practice it is usually much harder to determine values than rewards. 



Introduction: Elements of  RL
• In general, there are (4) main components of  an RL system: (1) a policy, (2) a reward 

function, (3) a value function and (4) (optionally) a model of  the environment. 

(4) A model (optional) mimics the behavior of  the environment.

• For example, given a state and action, the model might predict the resultant next state 

and next reward. 

• Models are used for planning, in which case an agent may consider possible future 

situations before they are actually experienced. 

* Historically, early RL systems were explicitly trial-and-error learners; more recently 

researchers regularly incorporate models and planning into RL systems. 



Introduction: Elements of  RL
• In general, there are (4) main components of  an RL system: (1) a policy, (2) a reward 

function, (3) a value function and (4) (optionally) a model of  the environment. 

Recapping:

(1) Policy: defines the agent; a mapping from states → actions (e.g., given a screen 

configuration in space invaders, tell me what to do)

(2) Reward: mapping from states to numbers; goal of  agent is to maximum reward in 

the long run.  (e.g., agent receives +1 for winning chess game; 0 for draw and -1 for 

loss)

(3) Value function: value of  a state is the total amount of  reward expected over time, 

starting from this state. (e.g., the value of  a chess board configuration one step 

removed from a forced checkmate is very large)

(4) Model: mapping from state-action pairs to new states  (e.g., a physics model for an 

environment in which a robot is moving) 



Introduction: Example

• Consider the classic tic-tac-toe game; how might we construct a player that will find 

the imperfections in its opponent’s play (we assume a fallible opponent)?



Introduction: Example
• Despite its simplicity, tic-tac-toe cannot readily be solved in a satisfactory way using 

purely classical techniques. For example, minimax (a common AI algorithm for 

adversarial games) assumes a particular way of  playing for an opponent; classical 

optimization on the other hand requires a complete specification of  the opponent 

(including every probability of  a move for a particular game state); a GA would search 

over the entire space of  possible policies. 



Introduction: Example

• How might we construct a player that will find the imperfections in its opponent’s 

play?

• Using RL, we could generate a table of  numbers, one for each possible state of  the 

game; each number in the table represents the latest estimate of  the probability of  our 

winning from that state. We treat this estimate as the state’s value. 

• Next we play many games against the opponent. To select our moves we examine the 

states that would result from each of  our possible moves; most of  the time we move 

greedily, selecting the move that leads to the state with the greatest value.

• Occasionally, however, we select randomly from among the other moves instead; these 

are exploratory moves that cause us to experience states that we might otherwise never see. 



Introduction: Example
• While we are playing, we change the values of  the states in which we find ourselves 

during the game; we attempt to make more accurate estimates of  the probabilities of  

winning. 

• To do this, we “back up” the value of  the state after each greedy move to the state 

before the move. More precisely, we move the earlier state’s value a fraction of  the way 

toward the value of  the later state. 

• Let s denote the state before the greedy move and 

s’ the state after the move; then the update to the 

estimates value of  V(s) is given by: 

Where α is the step-size parameter; this update

rule is an example of  temporal-difference (TD)

learning. 

       V s V s V s V s     



Introduction: Example
• The aforementioned method performs quite well on this task. In particular, if  the 

step-size parameter is reduced appropriately over time, this method converges – for any 

fixed opponent – to the true probabilities of  winning from each state given an optimal 

opponent. 

• This simple example illustrates an essential different between evolutionary methods 

and methods that learn value functions. 

• To evaluate a policy, an evolutionary method must hold it fixed and play many games 

(or simulate many games) using a model of  the opponent. 

• The frequency of  wins gives an unbiased estimate of  the probability of  winning with 

that policy; however, each policy change is made only after many games, and only the 

final outcome of  each games is used. Moreover, what happens during the games is 

ignored (i.e. for a winning match, all of  the agent’s actions are given credit for the win).



Introduction: Example
• By contrast, with RL, value function methods allow individual states to be evaluated. 

Learning a value function takes explicit advantage of  information available during the 

course of  play. 

• With RL, there is an emphasis on learning while interacting with an environment; in 

addition, there is a clear goal, and correct behavior requires planning or foresight that 

takes into account delayed effects of  one’s choices. 



Introduction: Example
• By contrast, with RL, value function methods allow individual states to be evaluated. 

Learning a value function takes explicit advantage of  information available during the 

course of  play. 

• With RL, there is an emphasis on learning while interacting with an environment; in 

addition, there is a clear goal, and correct behavior requires planning or foresight that 

takes into account delayed effects of  one’s choices. 

* It is a striking feature of  RL that it can achieve the effects of  planning and lookahead 

without using a model of  the opponent and without conducting an explicit search over 

possible sequences of  future states and actions. 

* RL can also be applied in non-episodic environments (e.g. when agent behavior 

continues indefinitely); furthermore, RL can be used in the absence of  an external 

adversary, i.e. in the case of  a “game against nature.” 



n-Armed Bandits & Action-Value Methods
• Consider the following learning problem: 

You are faced repeatedly with a choice among n different options, or actions. After each 

choice you receive a numerical reward chosen from a stationary probability distribution 

that depends on the action you selected. Your objective is to maximize the expected 

total reward over some time period, for example, over 1000 action selections. Each 

action selection is called a play. 

* This is the original form of  the n-armed bandit problem. Each action selection is 

like a play of  one of  the slot machine levers, and the rewards are the payoffs for hitting 

the jackpot. Through repeated plays you are to maximize your winnings by 

concentrating your play on the best levers. 

• Generally, each machine payout follows a probability 

distribution, pi, with mean μi; the agent should identify 

the machine with the largest μi.



n-Armed Bandits & Action-Value Methods
• In the n-armed bandit problem, each action has an expected or mean reward give that 

a particular action is selected; call this the value of  the action. 

• Naturally, if  we knew the exact value of  each action, solving the problem would be 

trivial. 

• If  you maintain estimates of  the action values, then at any time there is at least one 

action whose estimated value is greatest; call this the greedy action. 



n-Armed Bandits & Action-Value Methods
• In the n-armed bandit problem, each action has an expected or mean reward give that 

a particular action is selected; call this the value of  the action. 

• Naturally, if  we knew the exact value of  each action, solving the problem would be 

trivial. 

• If  you maintain estimates of  the action values, then at any time there is at least one 

action whose estimated value is greatest; call this the greedy action. 

•If  you select the greedy action, you are exploiting your current knowledge of  the 

values of  the actions; otherwise, if  you select a non-greedy action, then you are 

exploring, because this behavior allows you to improve your estimate of  the non-

greedy action’s value. 

• Exploitation is the prudent thing to do to maximize the expected reward on the one 

play – but exploitation may produce the greater total reward in the long run. This is the 

essence of  the exploitation-exploration “dilemma.” 



n-Armed Bandits & Action-Value Methods
• Now we consider several elementary methods for estimating the values of  actions and 

for using the estimates to make action selection decisions. 

Denote the true value of  action a as Q*(a), and the estimated value at the tth play as 

Qt(a). Recall that the true value of  an action is the mean reward received when the 

action is selected. 

(I) One natural method to estimate this quantity, which we call the sample-average 

method,  is by simply averaging the rewards actually received:

Where ka denotes the number of  times action a has been chosen prior to time t, yielding 

rewards r1,r2,…,rka (if  ka=0 then define Qt(a)=0, etc.).
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n-Armed Bandits & Action-Value Methods
(I) One natural method to estimate this quantity is by simply averaging the rewards 

actually received:

Where ka denotes the number of  times action a has been chosen prior to time t, yielding 

rewards r1,r2,…,rka (if  ka=0 then define Qt(a)=0, etc.).

• As ka→∞, by the law of  large numbers, Qt(a) converges to Q*(a). 

• The simplest action selection rule is to select the action with highest estimated value. 

A simple alternative is to behave greedily most of  the time, but every once in a while, 

say with small probability ε, instead select an action at random, uniformly, 

independently of  the action-value estimates. 

* This rule is known as the ε-greedy method. 
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n-Armed Bandits & Action-Value Methods
•To roughly assess the relative effectiveness of  the greedy and ε-greedy methods, we can 

compare them numerically (see plots). 

* Note that with noisy rewards it would take more exploration to find the optimal 

solution, and ε-greedy methods would fare generally even better than baseline greedy 

methods. 



n-Armed Bandits & Action-Value Methods
•Although ε-greedy action selection is an effective and popular means of  balancing 

exploration and exploitation in RL, one drawback is that when it explores it chooses 

equally among all actions.  This means that it is as likely to choose the worst-appearing 

action as it is to choose the next-to-best action. 

The obvious solution is to vary the action probabilities as a graded function of  

estimates value. 

(II) Define the softmax action selection:

Where τ is a positive parameter call the temperature; high temperatures cause the 

actions to be all (nearly) equiprobable; low temperatures cause a greater difference in 

selection probability for actions that differ in their value estimates. In the limit τ→0, 

softmax action selection becomes equivalent to greedy action selection.  
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n-Armed Bandits & Action-Value Methods
• The aforementioned action-value methods all estimate action values as sample 

averages of  observed rewards. 

A practical issue associated with estimating action values from samples of  observed 

rewards is that these procedure will not scale well; larger samples will grow over time 

without bound. 

As a remedy, we can devise an (III) incremental update formula for computing 

averages with small, constant computation required to process each new reward. For 

some action, let Qk denote the average of  its first k rewards; given this average and a 

(k+1)st reward, rk+1, then the average of  all k+1 rewards can be computed by: 
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n-Armed Bandits & Action-Value Methods
• The aforementioned action-value methods all estimate action values as sample 

averages of  observed rewards. 

A practical issue associated with estimating action values from samples of  observed 

rewards is that these procedure will not scale well; larger samples will grow over time 

without bound. 

As a remedy, we can devise an (III) incremental update formula for computing 

averages with small, constant computation required to process each new reward. For 

some action, let Qk denote the average of  its first k rewards; given this average and a 

(k+1)st reward, rk+1, then the average of  all k+1 rewards can be computed by: 

* Note that this implementation requires memory only for Qk and k. 
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n-Armed Bandits & Action-Value Methods

• This update rule is of  a familiar form: 
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n-Armed Bandits & Action-Value Methods

• This update rule is of  a familiar form: 

• The expression [Target-OldEstimate] is an error in the estimate; it is reduced by 

taking a step toward the “target.”

• Averaging methods discussed previously are appropriate for stationary 

environments (i.e. environments that do not change over time). With non-

stationary environments, it is common to add a constant step-size parameter 0 < α ≤ 1 

to the previous update rule, giving:

• This is sometimes called an exponential recency-weighted average;  the basic idea is that the 

weight given to reward ri decreases as the number of  intervening rewards increases. 
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n-Armed Bandits & Action-Value Methods

• The previous methods are all dependent on the initial action-value estimates Q0(a); 

viz., these methods are biased by their initial estimates. 

• For sample-average methods, the bias disappears once all actions have been selected at 

least once, but for methods with constant α, the bias is permanent, though decreasing 

over time. 

• In practice, this kind of  bias is usually not a problem, and can even be helpful. The 

downside is that these initial estimates become de facto hyperparameters. 



n-Armed Bandits & Action-Value Methods
• Initial action values can be used as a simple way of  encouraging exploration. If  we, 

say, initially choose wildly optimistic action values (e.g. very large parameter settings), 

this will encourage the agent to explore, being “disappointed” with the rewards 

received. 

• Using optimistic initial values is a simple and often effective trick; however, it is 

generally poorly-suited to non-stationary cases. 



The Formal RL Problem 
• In the general RL framework, an agent interactions with its environment at each of  a 

sequence of  discrete time steps, t = 0, 1, 2, 3, … . 

• At each time step t, the agent receives some representation of  the environment’s state, 

𝑠𝑡 ∈ 𝑆, where S is the set of  possible states, and on that basis selects an action, 𝑎𝑡∈
𝐴 𝑠𝑡 , where A is the set of  actions available in state st.

• One time step later, in part as a consequence of  its action, the agent receives a 

numerical reward 𝑟𝑡+1∈ and finds itself  in a new state, st+1. 



The Formal RL Problem 
• At each time step, the agent implements a mapping from states to probabilities of  

selecting each possible action. This mapping is called the agent’s policy and is 

denoted πt, where πt(s,a) is the probability that at=a if  st=s. 

• RL methods specify how the agent changes its policy as a result of  its experience. 

• The agent’s goal, roughly speaking, is to maximize the total amount of  reward it 

receives in the long run. 



The Formal RL Problem 
• At each time step, the agent implements a mapping from states to probabilities of  

selecting each possible action. This mapping is called the agent’s policy and is 

denoted πt, where πt(s,a) is the probability that at=a if  st=s. 

• RL methods specify how the agent changes its policy as a result of  its experience. 

• The agent’s goal, roughly speaking, is to maximize the total amount of  reward it 

receives in the long run. 

• The use of  a reward signal to formalize the idea of  a goal is one of  the most 

distinctive features of  RL. Although this approach may appear superficially limiting, 

in practice it has proven to be a flexible and widely applicable method. 

• For instance, if  we want to make a robot learn to walk, we can provide a reward on 

each time step proportional to the robot’s forward motion; in making a robot learn 

to escape from a maze, the reward is often zero until it escapes, at which time it 

receives +1 reward. 



Applications of  reinforcement learning:

A few examples
• Learning to play backgammon  (and more recently, Go)

• Robot arm control (juggling)

• Robot Locomotion

• Robot navigation

• Elevator dispatching

• Power systems stability control

• Job-shop scheduling

• Air traffic control

• Autonomous Driving



Cart-Pole Problem

Objective: Balance a pole on top of  movable cart. 

State: Angle, angular speed, position, horizontal velocity. 

Action: Horizontal force applied to cart.

Reward: +1 at each time step if  the pole is upright. 

https://www.youtube.com/watch?v=_Mmc3i7jZ2c



Robot Locomotion (and pancake flipping!) 

Objective: Make the robot move forward successfully. 

State: Angle and position of  joints. 

Action: Torques applied on joints.

Reward: +1 at each time step the robot is upright and moving 

forward. 

https://www.youtube.com/watch?v=gn4nRCC9TwQ

https://www.youtube.com/watch?v=W_gxLKSsSIE

https://www.youtube.com/watch?v=SH3bADiB7uQ



Board Games (Backgammon, Chess, Go)

Objective: Win the game. 

State: Position of pieces. 

Action: Next move/placement of next piece. 

Reward: +1 for win, 0 for loss. 



Robby the Robot can learn via reinforcement 

learning
Sensors:

H(ere), N,S,E,W,

Actions:

Move N

Move S

Move E

Move W

Pick up can

Rewards/Penalties (points):

Picks up can: 10

Pick up can on empty site: -1

Crashes into wall: -5

“policy” = “strategy”



Atari Games

Objective: World domination Obtain high score (make lots of  human 

friends in the process). 

State: Raw pixel inputs. 

Action: Game controls, e.g., movement and zap! 

Reward: Score differential. 



The Formal RL Problem: Goals & Rewards 

• Part of  the “art” of  developing an effective RL algorithm rests in the choice of  

reward function. We want the reward to truly indicate what we want accomplished. 

• In particular, the reward signal is not the place to impart to the agent prior knowledge 

about how to achieve what we want it to do; for example, a chess-playing agent 

should be rewarded only for actually winning, not for achieving subgoals such as 

taking its opponent’s pieces or gaining control of  the center of  the board. 

• Explicitly rewarding subgoals may cause the agent to learn to achieve these subgoals

to the detriment of  any long-term objectives (e.g. the agent might learn to capture 

pieces effectively and yet still lose the chess match). 



The Formal RL Problem: Returns

• The precise aspect of  the sequence of  rewards that we wish to maximize is the 

expected return, defined as: 

where T is the final time step; this quantity is just the sum of  rewards after step t. 

This definition makes perfect sense when there is a natural notion of  a “final” time 

step; such an agent-environment interaction consists of  episodes. 

• When the agent-environment interaction does not break naturally into identifiable 

episodes, and instead goes on continually without limit, we call these continuing tasks

(i.e. T = ∞).

1 2 ...t t t TR r r r   



The Formal RL Problem: Returns
•An additional, common feature used in RL is discounting. According to this 

approach, the agent tries to select actions so that the sum of  the discounted rewards 

it receives over the future is maximized. 

• In particular, the agent chooses action at to maximize the expected discounted return: 

where 0 ≤ γ ≤ 1, is called the discount rate. If  γ = 0, we say the agent is “myopic.” 
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Markov Decision Processes
• An RL learning task that satisfies the Markov property is called a Markov Decision 

Process (MDP). 

The Markov property implies that the environment’s response at time t+1 depends 

only on the state and action representations at time t. For example, a checkers 

position (i.e., the current piece configuration) would serve as a Markov state because 

the current state summarizes everything important about the complete sequence of  

positions that led to it. 

More formally, if  the Markov property holds, then: 

•Which is to say that the next state (and reward) only depend on the current state-action 

pair. 
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Markov Decision Processes

Where Pa(s,s’) are called transition 

probabilities; note that the quantities: 

Pa(s,s’) and Ra(s,s’) completely specify 

the most important aspects of  the 

dynamics of  a MDP. 



Value Functions
• Almost all RL learning algorithms are based on estimating value functions –

functions of  states (or of  state-action pairs) that estimate “how good” it is for the 

agent to be in a given state (or how good it is to perform a given action in a given 

state).

• The notion of  “how good” here is defined in terms of  future rewards that can be 

expected, i.e., expected return. 

• Recall that a policy, π, is a mapping from each state 𝑠 ∈ 𝑆 and action, 𝑎 ∈ 𝐴 𝑠 the 

probability π (s,a) of  taking action a when in state s. 



Value Functions
• Almost all RL learning algorithms are based on estimating value functions –

functions of  states (or of  state-action pairs) that estimate “how good” it is for the 

agent to be in a given state (or how good it is to perform a given action in a given 

state).

• The notion of  “how good” here is defined in terms of  future rewards that can be 

expected, i.e., expected return. 

• Recall that a policy, π, is a mapping from each state 𝑠 ∈ 𝑆 and action, 𝑎 ∈ 𝐴 𝑠 the 

probability π (s,a) of  taking action a when in state s. 

For MDPs, we can define Vπ(s), the value of  state s under policy π as:

where Eπ [·] denotes the expected value given that the agent follows policy π. The function 

Vπ is called the state-value function for policy π.
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Value Functions
• Similarly, we define the value of  taking action a in state s under policy π, denoted 

Qπ(s,a) as the expected return stating from s, taking action a, and thereafter following 

policy π: 

We call Qπ the action-value function for policy π. 
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Value Functions
• Similarly, we define the value of  taking action a in state s under policy π, denoted 

Qπ(s,a) as the expected return stating from s, taking action a, and thereafter following 

policy π: 

We call Qπ the action-value function for policy π. 

• The value functions Vπ and Qπ can be estimated from experience. For example, if  

an agent follows policy π and maintains an average, for each state encountered, of  the 

actual returns that have followed that state, then the average will converge to the 

state’s value V(s), as the number of  times that state is encountered approaches 

infinity. 

• If  separate averages are kept for each action taken in a state, then these averages 

will similarly converge to the action values, Qπ(s,a). 

• We call estimate methods of  this kind Monte Carlo methods because they involve 

averaging over random samples of  actual returns. 
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Value Functions

• A fundamental property of  value functions used in RL and dynamic 

programming is that they satisfy recursive relationships. 

• For any policy π and any state s, the following consistency condition holds 

between the value of  s and the value of  its possible successor states: 
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Value Functions

• A fundamental property of  value functions used in RL and dynamic 

programming is that they satisfy recursive relationships. 

• For any policy π and any state s, the following consistency condition holds 

between the value of  s and the value of  its possible successor states: 
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Value Functions

• A fundamental property of  value functions used in RL and dynamic 

programming is that they satisfy recursive relationships. 

• For any policy π and any state s, the following consistency condition holds 

between the value of  s and the value of  its possible successor states: 
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Value Functions

• A fundamental property of  value functions used in RL and dynamic 

programming is that they satisfy recursive relationships. 

• For any policy π and any state s, the following consistency condition holds 

between the value of  s and the value of  its possible successor states: 
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Value Functions

• A fundamental property of  value functions used in RL and dynamic 

programming is that they satisfy recursive relationships. 

• For any policy π and any state s, the following consistency condition holds 

between the value of  s and the value of  its possible successor states: 

Where it is implicit that the actions, a, are taken from the set A(s), and the next states, 

s’, are taken from the set S. 
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Bellman Equation

• The Bellman Equation for Vπ expresses a relationship between the value of  a state and 

the values of  its successor states. 

• Think of  “looking ahead” from one state to its possible success states (see “backup 

diagram”). 

• Each open circle represents a state and each solid circle represents a state-action pair. 

Starting from state s, the root node at the top, the agent could take any of  some set of  

actions – three are shown. From each of  these, the environment could respond with one 

of  several next states, s’, along with a reward, r. 

• The Bellman equation averages over all the possibilities, weighting each by its probability of  

occurring. It states that the value of  the start state must equal the (discounted) value of  the 

expected next state, plus the reward expected along the way. 
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Value Functions: Gridwold Example

• Consider the MDP: the cells of  the grid correspond to the states of  the 

environment; at each cell four actions are possible: north, south, east, and west, 

which deterministically cause the agent to move one cell in the corresponding 

direction on the grid. 

• Actions that would take the agent off  the grid leave its location unchanged, but 

also result in a reward of  -1. Other actions result in a reward of  0, except those 

that move the agent out of  the special states A and B. From state A, all four 

actions yield a reward of  +10 and take the agent to A’. From state B, all actions 

yield a reward of  +5 and take the agent to B’. 



Value Functions: Gridwold Example

• Suppose the agent selects all four actions with equal probability in all states. The 

corresponding value function, Vπ, for this policy, for the discounted reward case 

with γ = 0.9 is shown. 

• Vπ is computed using the Bellman equation: 



Optimal Value Functions
• Solving a RL learning task means, roughly, finding a policy that achieves a lot of  

reward over the long run. 

• For finite MDPs, we can precisely define an optimal policy by relying on the fact 

that value functions define a partial ordering over policies. 

• A policy π is defined to be better than or equal to policy π’ if  its expected return 

is greater than or equal to that of  π’ for all stages. 



Optimal Value Functions
• Solving a RL learning task means, roughly, finding a policy that achieves a lot of  

reward over the long run. 

• For finite MDPs, we can precisely define an optimal policy by relying on the fact 

that value functions define a partial ordering over policies. 

• A policy π is defined to be better than or equal to policy π’ if  its expected return 

is greater than or equal to that of  π’ for all stages. 

• In other words, π ≥ π’ if  and only if  Vπ(s) ≥ Vπ’(s) for all 𝑠 ∈ 𝑆. 

• There is always exists at least one policy that is better than or equal to all other 

policies; this is an optimal policy. 



Optimal Value Functions
• Denote the optimal policy by π*; the optimal state-value function, denoted V* is 

defined: 

for all 𝑠 ∈ 𝑆. 

• Optimal policies also share the same optimal action-value function, denoted Q*, 

defined:

for all 𝑠 ∈ 𝑆 and a ∈ A(s).

• For the state-action pair (s,a), this function gives the expected return for taking 

action a in state s and thereafter following an optimal policy. Thus, we can write 

Q* in terms of  V* as follows: 
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Optimal Value Functions
• Because V* is the value function for a policy, it must satisfy the self-consistency 

condition given by the Bellman equation for state values: 

• In addition, because it is the optimal value function, V*’s consistency condition 

can be written in a special form without reference to any specific policy. 

• This is known as the Bellman optimality equation. Intuitively, the Bellman 

optimality equation expresses the fact that the value of  a state under an optimal 

policy must equal the expected return for the best action from that state: 

     ' ', a a

ss ss

a s

V s s a P R V s  


    

 
 

 

 

 

 

*

*

* 1 2

0

1 1

' '

* max ,

max | ,

max | ,

max * | ,

max *

a A s

t t t
a

k

t t k t t
a

k

t t t t
a

a a

ss ss
a

s

V s Q s a

E R s s a a

E r r s s a a

E r V s s s a a

P R V s





  







  



 





  

 
    

 

     

   







Optimal Value Functions

• The Bellman optimality equation for Q* is given by: 

• The backup diagrams show graphically the spans of  future states and actions 

considered in the Bellman optimality equations for V* and Q*. 
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Optimal Value Functions

• For finite MDPs, the Bellman optimality equation for V* has a unique solution 

independent of  the policy. The Bellman optimality “equation” is actually a system 

of  equations, one for each state (thus for N states one has N equations and N 

unknowns). 

• If  the dynamics of  the environment are known (i.e. 𝑅𝑠𝑠′
𝑎 and 𝑃𝑠𝑠′

𝑎 known), then in 

principle one can solve this system of  equations for V*; one can, in addition, 

solve a related set of  equations for Q*. 
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Optimal Value Functions
• Once one has V*, it is relatively easy to determine an optimal policy. For each 

state s, there will be one or more actions at which the maximum is attained in the 

Bellman optimality equation. 

• If  you have the optimal value function V*, then the actions that appear best after 

a one-step search will be optimal actions. Put another way, any policy that is 

greedy with respect to the optimal value function V* is an optimal policy. 

• The beauty of  V* is that if  one uses it to evaluate the short-term consequences 

of  actions – specifically, the one-step consequences – then a greedy policy is 

actually optimal in the long-term sense because V* already takes into account the 

reward consequences of  all future behavior. 

• Having Q* makes choosing optimal actions still easier. With Q*, the agent does 

not even have to do a one-step-ahead search: for any state s, it can simply find any 

action that maximizes Q*(s,a). 



Value Functions: Gridwold Example

Returning to the Gridworld example from before: 

• Actions that would take the agent off  the grid leave its location unchanged, but 

also result in a reward of  -1. Other actions result in a reward of  0, except those 

that move the agent out of  the special states A and B. From state A, all four 

actions yield a reward of  +10 and take the agent to A’. From state B, all actions 

yield a reward of  +5 and take the agent to B’. 



Value Functions: Gridwold Example

• The optimal value solutions are given as follows: 

where V* is computed using the Bellman optimality equation: 
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Value Functions: Practical Concerns

Recall the Bellman optimality equation:

• Explicitly solving the Bellman optimality equation provides one route to finding an 

optimal policy, and thus to solving the RL problem. 

• However, this solution is rarely used in practice, as it is akin to an exhaustive search: 

looking ahead at all possibilities, computing their probabilities of  occurrence and 

their desirabilities in terms of  expected rewards. 

This solution relies on at least three assumptions that are rarely true in practice: 

(1) We actually know the dynamics of  the environment

(2) We have enough computational resources to complete the computation of  the 

solution

(3) Markov Property  

   ' '* max *a a

ss ss
a

s

V s P R V s


   



Value Functions: Practical Concerns

• Naturally, an agent that learns an optimal policy has done very well, but in practice 

this rarely happens. 

• For “interesting”, real-world problems, optimal policies can be generated only with 

extreme computational cost. However, a well-defined notion of  optimality 

nevertheless helps frame RL in a mathematically rigorous way.

In practice, optimal policies represent an ideal that agents can only approximate to 

varying degrees. 



Value Functions: Practical Concerns

• Oftentimes, it is also impossible to directly use tabular methods to build up 

approximations of  value functions and policies, because there are far more states 

than could possibly be entries in a table. In these cases the functions must be 

approximated, using some sort of  more compact parameterized function 

representation (e.g. a DNN).

• Many useful techniques exist for dealing with very large search spaces, including 

heuristic search methods. In approximating optimal behavior, there may be many 

states the agent faces with very low probability; the on-line nature of  RL makes it 

possible to approximate optimal policies in a way that puts more effort into learning 

to make good decisions for frequently encountered states. 

• With TD-Gammon (1992, IBM Watson Research Center), a classic RL-based 

Backgammon AI program, for instance, although the program performed at near 

human expert level, it nonetheless makes bad decisions on board configurations that 

rarely (or never) appear in games. Backgammon has on the order of  ~1020 states. 



Dynamic Programming
• Dynamic Programming (DP) techniques can be used to compute optimal policies 

given a perfect model of  the environment as a MDP; in practice DP techniques can 

be computationally expensive for RL, but they nevertheless provide an essential 

foundation across RL frameworks. 

• The key idea of  DP in conjunction with RL is the use of  value functions to 

organize and structure the search for good policies. 

• One can easily obtain optimal policies once we have found the optimal value 

functions, V* or Q*, which satisfy the Bellman equations (from before): 

(*) Key idea: Turn the Bellman equations into iterative assignment updates for 

approximating the desired value functions. 



Dynamic Programming: Policy Evaluation
• First we consider how to compute the state-value function Vπ for any arbitrary 

policy π; this is called policy evaluation. 

Recall that for all 𝑠 ∈ 𝑆: 

• If  the environment’s dynamics are completely known (viz., we have a 

complete model), then the equation above is a system of  |S| unknowns; we 

consider an iterative solution. 

• Consider a sequence of  approximate value functions: V0, V1, V2, where V0 is 

initialized arbitrarily. 

• Each successive approximation for Vπ can be updated as follows: 
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Dynamic Programming: Policy Evaluation

• This is known as iterative policy evaluation.

• NB: It can be shown that {Vk} converges to Vπ as k →∞ (as Vk=Vπ is a fixed 

point for the Bellman equation).

• For implementation, iterative policy evaluation uses a “full backup”, meaning that 

in order to approximate Vk+1 from Vk, we replace the old value of  s with a new 

value obtained from the old values of  the successor states of  s. 
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Dynamic Programming: Policy Improvement

• The reason for computing value functions for a policy is to assist in the search for 

better policies; naturally, given a policy, we would like to determine whether we 

should change its action for a particular state in order to improve the policy. 

To this end, define: 

This quantity considers selecting a in state s and thereafter following the existing 

policy, π. 

*The key criterion is whether this is greater than or less than Vπ(s). If  it is greater,

then one would expect it to be better still to select a every time s is encountered. 

This is in general true, as stated by the policy improvement theorem.
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Dynamic Programming: Policy Improvement

• Policy improvement theorem:

Let π and π’ be any pair of  deterministic policies such that, for all 𝑠 ∈ 𝑆:

Then policy π’ must be as good as, or better than, π. Thus for all 𝑠 ∈ 𝑆, it follows 

that:

    ,Q s s V s  

   V s V s 
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Dynamic Programming: Policy Improvement

• In summary, given a policy and its value function, we can easily evaluate a change in 

the policy at a single state to a particular action. 

• As an extension, we can consider changes at all states and to all possible actions, 

selecting at each state the action that appears best according to Qπ(s,a). 

In other words, to consider the new greedy policy, π’, given by:

The greedy policy takes the action that looks best in the short term – after one step 

of  lookahead – according to Vπ. 

* By construction, the greedy policy meets the conditions of  the policy improvement 

theorem; these results are naturally extended to the case of  stochastic policies. 
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Policy Improvement: GridWorld



Dynamic Programming: Policy Iteration
• Once a policy, π, has been improved using Vπ to yield a better policy, π’, we can then 

compute Vπ’ and improve it again to yield an ever better π’’. We can thus obtain a 

sequence of  monotonically improving policies and value functions:

Where E denotes a policy evaluation and I denotes a policy improvement. Each policy is 

guaranteed to be a strict improvement over the previous one. 



Dynamic Programming: Value Iteration
• The policy evaluation step of  policy iteration can be truncated in several ways 

without losing the convergence guarantees of  policy iteration. 

• One importance special case is when policy evaluation is stopped after just one 

sweep (i.e. one backup of  each state).

• This particular algorithm is called value iteration; it can be written as a particularly 

simple backup operation that combines the policy improvement and truncated policy 

evaluation steps: 

* This is equivalent to turning the Bellman optimality equation into an update rule: 
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Dynamic Programming: Value Iteration
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Dynamic Programming: Practical Considerations

• A significant drawback to the DP methods discussed, is that they involve operations 

over the entire state set of  the MDP, i.e., sweeps of  the state set. 

• If  the state set is very large, then even a single sweep can be prohibitively expensive 

(e.g. backgammon has over 1020 states).

• Asynchronous DP algorithms are in-place iterative DP algorithms that are not 

organized in terms of  systematic sweeps of  the state set. These algorithms back up 

the values of  states in any order whatsoever. 



Dynamic Programming: General Policy Iteration
• Policy iteration consists of  two simultaneous, interacting processes, one making the 

value function consistent with the current policy (policy evaluation), and the other 

making the policy greedy with respect to the current value function (policy 

improvement).

• In policy iteration, these two processes alternate, each completing before the other 

begins, but this it not really necessary. In value iteration, for example, only a single 

iteration of  policy evaluation is performed in between each policy improvement. 

*Almost all RL methods can be described as generalized policy iteration procedures (GPI). 

One can think of the interaction between the evaluation and 

improvement processes in GPI in terms of constraints.  

Each process drives the value function or policy toward one 

another; the goals accordingly interact. 



Dynamic Programming: Efficiency

• DP may not be practical for large problems, but compared with other methods for 

solving MDPs, DP methods are actually quite efficient (remember that DP also 

requires an environment model). 

• In the worst-case, DP methods find an optimal policy in polynomial time (wrt the 

number of  states and actions).

• Linear programming methods can also be used to solve RL problems, but these 

methods become impractical at a much smaller number of  states than DP methods. 



Monte Carlo Methods

• Unlike Dynamic Programming methods, Monte Carlo methods (MCM) do not 

assume complete knowledge of  the environment. 

• MCM require only experience – sample sequence of  states, actiona, and rewards from 

on-line or simulated interaction with an environment. 

Learning from on-line experience is striking because it requires no prior knowledge 

of  the environment’s dynamics, yet can still attain optimal behavior. 

• MCM are ways of  solving the RL problem based on averaging sample returns. 

• Despite their differences, the most important ideas from DP carry over to the 

MCM case. In particular, MCM attain optimality in essentially the same was as DP 

methods.



Monte Carlo Methods
• Let’s consider MCM for learning the state-value function for a given policy. 

• Recall that the value of  a state is the expected return – expected cumulative future 

discounted reward – starting from that state. 

• An obvious way to estimate it from experience, then, is simply to average the 

returns observed after visits to that state. As more returns are observed, the average 

should converge to the expected value; this is the core idea underyling all MCM. 

• One such method is called the first-visit MCM; this process just averages the 

returns following the first visits to s. 

• By the law of  large numbers, the first-visit MCM converges to Vπ(s) as the number of  

first visits to s goes to infinity. 



Monte Carlo Methods: Blackjack

• Blackjack as an MDP: rewards of  +1, -1, 0 are given for winning, losing and 

drawing respectively; no discount applied; cards drawn with replacement; policy 

considered: stick of  player’s sum is 20 or 21; state-value function approximated using 

MCM (DP would be difficult to apply here, since we require transition probabilities 

and associated rewards for all states). 



Monte Carlo Methods
• If  a model is not available, then it is particularly useful to estimate action values 

rather than state values. With a model, state values alone are sufficient to determine a 

policy; simply look ahead one step and choose whoever action leads to the best 

combination of  reward and next state. 

• Without a model, however, state values are insufficient. One must explicitly 

estimate the value of  each action in order for the values to be useful in suggesting a 

policy. Thus we should estimate Q*.

• The first-visit MC method averages the returns following the first time in each 

episode that the state was visited and the action was selected; these methods 

converge quadratically to the true expected values as the number of  visits to each 

state-action pair approaches infinity. 

* The only complication here is that many relevant state-action pairs may never be 

visited; one common remedy is to consider only policies that are stochastic with a 

nonzero probability of  selecting all actions. 



Monte Carlo Control
• How is MCM used to approximate optimal policies? 

• The general pattern is to proceed as we did with regard to DP; we maintain both an 

approximate policy and an approximate value function. The value function is 

repeatedly altered to more closely approximate the value function for the current 

policy, and the policy is repeatedly improved with respect to the current value 

function: 

• MCM version of  classical policy iteration entails performing alternating complete 

steps of  policy evaluation and policy improvement, beginning with an arbitrary policy 

π0 and ending with the optimal action-value function: 



Monte Carlo Control

• Policy evaluation is done exactly as described previously; many episodes are 

experienced, with the approximate action-value function approaching the true 

function asymptotically. 

• Under some basic assumptions (e.g., infinite number of  episodes), the MCM will 

compute Qπk exactly, for arbitrary πk. 

• Policy improvement is achieved by making the policy greedy with respect to the 

current value function. In this case, we have an action-value function, and 

therefore no model is needed to construct the greedy policy. 

• For any action-value function Q, the corresponding greedy policy is the one that 

deterministically chooses: 

• Policy improvement then can be done by constructing each πk+1 as the greedy 

policy wrt Qπk. 
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Monte Carlo Control
• Define Monte Carlo ES as the MC algorithm that alternates between evaluation 

and improvement on an episode-by-episode basis:



Monte Carlo Methods : On-Policy
• There are two general approaches to ensure that all actions are selected infinitely 

often: on-policy and off-policy methods. 

• On-policy methods attempt to evaluate or improve the policy that is used to make 

decisions. 

In on-policy control methods, the policy is generally soft, meaning that π(s,a)>0 for 

all s ∈ 𝑆 and all a ∈ 𝐴(𝑠). 

• One common on-policy method uses the epsilon-greedy approach, meaning that most 

of  the time they choose and action that has maximal estimated action value, but with 

probability epsilon they instead select an action at random. 



Monte Carlo Methods : Off-Policy
• On-policy methods estimate the value of  a policy while using it for control. 

• In off-policy methods these two functions are separated. The policy used to 

generate behavior, called the behavior policy, may in fact be unrelated to the policy that 

is evaluated and improved, called the estimation policy. 

An advantage of  this separation is that the estimation policy may be deterministic 

(e.g. greedy), while the behavior policy can continue to sample all possible actions. 

• Off-policy MC control methods use the technique previously presented from 

estimating the value function for one policy while following another. They follow 

the behavior policy while learning about and improving the estimation policy (to 

explore all possibilities, we require that the behavior policy be soft). 



Temporal-Difference Learning
• Temporal-Difference (TD) learning is a combination of  Monte Carlo ideas and 

dynamic programming ideas. 

• Like MC methods, TD methods can learn directly from raw experience without a 

model of  the environment’s dynamics.

• Like DP, TD methods update estimates based in part on other learned estimates, 

without waiting for a final outcome (they bootstrap). 

* The relationship between TD, DP and MC methods is a recurring theme in RL. 



Temporal-Difference Learning
• Both TD and MC methods use experience to solve the prediction problem. 

• Given some experience following a policy π, both methods update their estimate V 

of  Vπ. If  a nonterminal state st is visited at time t, then both methods update their 

estimate V(st) based on what happens after that visit. Roughly speaking, MC methods 

wait until the return following the visit is known, then use that return as a target for 

V(st). 

A simple, every-visit MC method suitable for nonstationary environments is: 

Where Rt is the actual return following time t and α is a constant step-size parameter. 

Call this method constant-α MC. 

     t t t tV s V s R V s    



Temporal-Difference Learning
• Whereas MC methods must wait until the end of  the episode to determine the 

increment to V(st) (only Rt is known), TD methods need wait only until the next time 

step. 

• At time t+1 they immediately form a target and make a useful update using the 

observed reward rt+1 and the estimate V(st+1). The simplest TD method, known as 

TD(0) is:

• In effect, the target for the MC update is Rt, whereas the target for the TD update is 

rt+1+γVt(st+1). Because TD method bases its update in part on an existing estimate, 

we say that is a bootstrapping method (like DP). 

       1 1t t t t tV s V s r V s V s       



Temporal-Difference Learning

• In effect, the target for the MC update is Rt, whereas the target for the TD update is 

rt+1+γVt(st+1). Because TD method bases its update in part on an existing estimate, 

we say that is a bootstrapping method (like DP). 

• The TD target is an estimate because it samples the expected value and it uses the 

current estimate Vt instead of  the true Vπ. Thus, TD methods combine the sampling 

of  MC with the bootstrapping of  DP. 
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Temporal-Difference Learning
Some advantages of  TD learning: 

• TD methods do not require a model of  the environment (DP does)

• TD can be naturally implemented in an on-line, fully incremental fashion. With MC 

methods, one needs to wait until the end of  an episode, because only then is the 

return known, whereas with TD methods one need wait only one time step. 

* Surprisingly, this turns out to be a critical consideration (NB: some applications 

have very long episodes).

* TD has been shown to converge to Vπ, in the mean for a sufficiently small constant 

step-size parameter. 



Q-Learning

• Q-learning is an off-policy TD control algorithm. In its simplest form, one-step 

Q-learning, it is defined by: 

• In this case, the learned action-value function, Q, directly approximates Q*, the 

optimal action-value function, independent of  the policy being followed. This 

dramatically simplifies the analysis of  the algorithm and enabled early convergence 

proofs. 

• The policy still has an effect in that it determines which state-action pairs are visited 

and updated. However, all that is required for correct convergence is that all pairs 

continue to be updated. 
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Q-Learning

How do we use Q-learning in practice?

Initialize Q(s,a) to all zeros 

Initialize s 

Repeat until stopping condition:

-- select action a

-- take action a and receive reward r

-- observe new state s’

-- update Q(s,a): 

-- update s ← s’ 

       1 1, , max , ,t t t t t t t t t
a

Q s a Q s a r Q s a s a  
    
 



Example
A is our agent, who takes an action

at each timestep. 

Only action in square 1 is Forward.

Actions in squares 2 and 3 are 

(Forward, Back)

Being in square 4 gives reward of $5 

Only action in square 4 is Stop

No other rewards or penalties.

Set γ = .9

Set η = 1

A
1 2 3

$5
4



A
1 2 3

$5
4

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Episode 1

Current state s = 1

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))



A
1 2 3

$5
4

Episode 1

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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1 2 3

$5
4

Episode 1

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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1 2 3
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4

Episode 1

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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4

Episode 1

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(1,F) = 0+max
a '
Q(2,a ')[ ] = 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 1

Current state s = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 1

Current state s = 2

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 1

Current state s = 2

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 1

Current state s = 2

Action = F

r = 0

s’ = 3

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 1

Current state s = 2

Action = F

r = 0

s’ = 3

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(2,F) = 0+ (0+.9max
a
Q(s ',a ')-Q(s,a)) = 0
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Episode 1

Current state s = 3

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))



A
1 2 3

$5
4

Episode 1

Current state s = 3

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 1

Current state s = 3

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 1

Current state s = 3

Action = F

r = $5

s’ = 4

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 1

Current state s = 3

Action = F

r = $5

s’ = 4

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 0 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(3,F) = 0+ ($5+.9max
a
Q(s ',a ')-Q(s,a)) = $5
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Episode 1

Current state s = 3

Action = F

r = $5

s’ = 4

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(3,F) = 0+ ($5+.9max
a
Q(s ',a ')-Q(s,a)) = $5
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Episode 1

Current state s = 4

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 1

Current state s = 4

Action = Stop

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 2

Current state s = 1

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 2

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 2

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 2

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 2

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(1,F) = 0+ (0+.9max
a
Q(s ',a ')-Q(s,a)) = 0
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Episode 2

Current state s = 2

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 2

Current state s = 2

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 2

Current state s = 2

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 2

Current state s = 2

Action = F

r = 0

s’ = 3

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Action = F

r = 0

s’ = 3

Q(s,a) Forward Back Stop

1 0 X X

2 0 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(2,F) = 0 + (0 +.9max
a
Q(s ',a ')-Q(s,a))

= 0 + 0 + (.9)($5) = $4.50
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Action = F

r = 0

s’ = 3

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(2,F) = 0 + (0 +.9max
a
Q(s ',a ')-Q(s,a))

= 0 + 0 + (.9)($5) = $4.50
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Episode 2

Current state s = 3

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X
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4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Current state s = 3

Action = F

Q(s,a) Forward Back Stop

1 0 X X
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4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 2
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Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 2

Current state s = 3

Action = F

r = $5

s’ = 4

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 2

Current state s = 3

Action = F

r = $5

s’ = 4

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

Q(3,F) = $5+ ($5+.9max
a
Q(s ',a ')-Q(s,a))

= $5+$5+ 0 -$5 = $5
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Episode 2

Current state s = 4

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))



A

1 2 3
$5

4

Episode 2

Current state s = 4

Action = Stop

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))
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Episode 3

Current state s = 1

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
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Episode 3

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
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Episode 3

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
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Episode 3

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
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Episode 3

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 0 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

Q(1,F) = 0+ (0+.9max
a
Q(s ',a ')-Q(s,a))

= 0 + 0 + (.9)($4.50)- 0 = $4.05
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Episode 3

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

Q(1,F) = 0+ (0+.9max
a
Q(s ',a ')-Q(s,a))

= 0 + 0 + (.9)($4.50)- 0 = $4.05
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Episode 3

Current state s = 2

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A



1 2 3
$5

4

Episode 3

Current state s = 2

Action = B

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
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Episode 3

Current state s = 2

Action = B

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
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Episode 3

Current state s = 2

Action = B

r = 0

s’ = 1

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
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Episode 3

Current state s = 2

Action = B

r = 0

s’ = 1

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 0 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

Q(2,B) = 0 + (0 +.9max
a
Q(s ',a ')-Q(s,a))

0 + 0 + (.9)($4.05)- 0 = $3.65
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Episode 3

Current state s = 2

Action = B

r = 0

s’ = 1

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 $3.65 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

Q(2,B) = 0 + (0 +.9max
a
Q(s ',a ')-Q(s,a))

0 + 0 + (.9)($4.05)- 0 = $3.65
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Episode 3

Current state s = 1

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 $3.65 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
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Episode 3

Current state s = 1

Action = F

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 $3.65 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
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Episode 3

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 $3.65 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A
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Episode 3

Current state s = 1

Action = F

r = 0

s’ = 2

Q(s,a) Forward Back Stop

1 $4.05 X X

2 $4.50 $3.65 X

3 $5 0 X

4 X X 0

Q(s,a)  Q(s,a) + η (r + γ maxa´ Q(s´,a´) – Q(s, a))

A

Q(1,F) = $4.05+ (0 +.9max
a
Q(s ',a ')-$4.05)

$4.05+ 0 + (.9)($4.50)-$4.05 = $4.05



• Results: Q-learning converges to optimal policy – even if  you’re acting sub-

optimally!

• This is called off-policy learning. 

Caveats: 

• You have to explore sufficiently. 

• You have to make learning rate small enough (but also not decrease it too 

quickly). 



• Note that in all of  the previous discussion, Q(s, a) was assumed to be a look-

up table, with a distinct table entry for each distinct (s,a) pair.

• More commonly, Q(s, a) is represented as a function (e.g., a neural network), 

and the function is estimated (e.g., through back-propagation).



Summary of  RL
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Deep Reinforcement Learning

Demis Hassabis (co-founder DeepMind)

https://youtu.be/rbsqaJwpu6A



• Deep learning:  

Requires large amount of  hand-labeled data

Assumes data samples are iid, with stationary distribution

• Reinforcement learning: 

Must learn from sparse, noisy, delayed reward function

“Samples” are not independent

Data distribution can change as system learns “online”  

• Uses convolutional neural network (CNN):  

– Input is raw pixels of  video frames (~ the “state”)

• Output is estimated Q(s,a) for each possible action



• System learns to play Atari 2600 games;

• 210x160 RGB video at 60 Hz.  

• Designed to be difficult for human players

• “Our goal is to create a single neural network agent that is able to successfully 

learn to play as many of  the games as  possible.”  

• No game-specific info provided.  No hand-designed visual features.  

• Learns exclusively from video input, the reward, and terminal signals.   

Network architecture and hyperparameters kept constant across all games.  

Deep Reinforcement Learning



Methodological details

• Model Architecture: The researchers developed a novel agent, a deep Q-network (DQN) which 

is able to combine RL with ‘deep’ NNs (that is to say they have many layers). 

• Hassabis et al. use a deep CNN, which employs hierarchical layers of  tiled convolutional filters to 

mimic the effects of  ‘receptive fields’. 

• The goal of  the game-playing agent is to select actions in a fashion that maximizes cumulative 

feature rewards. Formally, the deep CNN is used to approximate the optimal action-value, which is 

the maximum sum of  discounted rewards achievable by a behavior policy                   :                

• RL is known to be numerically unstable when NNs are used to approximate Q functions; this is 

largely due to (2) issues: (1) many data sequences of  state action pairs are highly correlated; (2) 

minute updates in Q-value approximations can significantly impact the behavior of  an optimal 

policy. 

• To get around these potential shortcomings, the authors propose: (1) the use of  ‘experience 

replay’ that randomizes over the data and thus removes many data correlations; and (2) the use of  

iterative updates to Q-values that are only periodically updated. 

Deep Reinforcement Learning
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Deep Reinforcement Learning
• Model Architecture (cont’d): 

• In previous approaches, researchers applied NNs to approximate Q-values using histories + actions as 

inputs to the NN. This scheme presents a significant drawback, however, since a separate forward pass is 

required to compute the Q-value for each individual action. 

• Instead, in the current method, the outputs correspond to the predicted Q-values of  the individual actions 

for the input state. This presents a significant computational advantage over previous methods; Q-values 

are accordingly computed for all possible actions in a given state with only a single forward pass through 

the network. 



Deep Reinforcement Learning
• Model Architecture (cont’d): 

• The input to the NN consists of  an 84x84x4 image produced by the preprocessing map. 

• The first hidden layer convolves 32 filters of  size 8x8 with stride 4 and applies a RELU. 

• The second hidden layer convolves 64 filters of  size 4x4 with stride 2, again followed by a 

RELU.

• The third hidden layer convolves 64 filters of  size 3x3 with stride 1, with RELU.

• The final hidden layer is fully-connected and consists of  512 rectifier units. The output layer is 

a fully-connected layer with an output for each action. The number of  valid actions varies 

between 4 and 18 in the games considered. 



Deep Reinforcement Learning
• Algorithm Details:

• Sequences of  actions and observations, st = x1,a1,x2,…,at-1,xt, are input to the algorithm, which then 

learns game strategies depending upon these sequences. 

• This formalism gives rise to a large (but finite) Markov decision process (MDP).

• The optimal action-value function in this setting obeys the aforementioned Bellman equation. Normally, 

where possible, one would use the Bellman equation as an iterative update for the action-value 

approximation. 

• In practice for large sequence MDPs, this approach is impractical because it requires estimating the 

action-value function for each sequence separately, without any generalization. 

• Alternatively, the authors use a NN, viz., a Q-Network (with parameter set θ) for the approximation:                                  

.

• Note that without an efficient state-action value approximation, the number of  action pair values is 

astronomically large (~1067970)!

• The Q-Network is trained by adjusting the parameters θi at each iteration to reduce the MSE in the 

Bellman equation, this yields the loss function: 

• Differentiating this loss function wrt the weights yields a gradient used in stochastic gradient descent. 

Note that state-action sequences are generated off-policy; the behavior distribution is ε-greedy. 

   , ; * ,Q s a Q s a 



• Putting it all together…

• The agent selects and executes actions according to an ε–greedy policy based on Q. The Q-function 

works on fixed length representations of  histories produced by the pre-processing function ϕ. 

• The algorithm modifies standard online Q-learning in (2) ways to make it suitable for training a 

large NN.

• (1) The authors employ a technique called ‘experience replay’, in which the agent’s experiences at 

each time step et=(st,at,rt,st+1) are stored in a data set Dt={e1,…,et} pooled over many episodes. 

• During the inner loop of  the algorithm the authors apply Q-learning updates to samples of  

experience, (s,a,r,s’)~U(D), drawn at random from the pool of  stored samples. (this improves data 

efficiency and reduces correlations between samples and the presence of  feedback loops in the in 

training process).

• By using experience replay, the behavior distribution is averaged over many of  its previous states, 

thereby smoothing out learning and avoiding oscillations or avoidance in the parameters. 

• Note that the uniform sampling gives equal importance to all transitions in the replay memory (a 

possible improvement would be to apply a more sophisticated sampling strategy similar to 

prioritized sweeping).

• (2) To further improve stability, a separate network for generating the targets (yi’s) in the Q-learning 

update. More precisely, every C updates the authors cloned the network Q to obtain a target 

network that is used for generating Q-learning targets for the following C updates to Q. 

Deep Reinforcement Learning
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Deep Reinforcement Learning

• Results

• The DQN agent performed at a level comparable to that of a professional human games
test across the set of 49 games, achieving more than 75% of the human score on more 

than half the games. 

• The authors’ method was able to train large NNs using RL with stochastic gradient                             
descent in a stable manner – illustrated by the temporal evolution of two indices of 
learning (the agent’s average score-per-episode and average predicted Q-values). 
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https://www.youtube.com/watch?v=53YLZBSS0cc

https://www.youtube.com/watch?v=53YLZBSS0cc



