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Introduction

* Reinforcement learning (RL) is learning what to do — how to map situations to actions
— 50 as to maximize a numerical reward signal.

* The learner is not told what actions to take (unlike most forms of ML), but instead
they must discover which actions yield the most reward by trying them.

* Most often, actions may affect not only the immediate reward but also the next
situation, and through that, all subsequent rewards.

* These two characteristics — trial-and-error search and delayed reward — are the two
most important distinguishing features of RL.



Introduction

* RL is different from supervised learning, which is generally inadequate for learning from
interaction.

* In interactive problems it is often impractical to obtain examples of desired behavior
that are both correct and representative of all the situations in which the agent has
to act.

* In uncharted territory — where one would expect learning to be most beneficial — an
agent must be able to learn from its own experience.

* Labeled data

- Dioct feedback Learning from Experience Plays a Role in ...

* Predict outcome/future
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« No labels « Decision process Artificial Neural Networks
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* “Find hidden structure” * Learn series of actions



Introduction

* One of the emblematic challenges that arises in RL 1s the trade-off between
exploration and exploitation.

* To obtain a lot of reward, a reinforcement learning agent must prefer actions that it
has tried in the past and found to be effective in producing reward.

* However, in order to discover such actions, the agent has to try actions that it has not
selected before.

I EXPLOITATION & EXPLORATION




Introduction

* Thus the agent has to exp/loit what it already knows in order to obtain rewards, but it
also to explore in order to make between action selections in the future.

* The dilemma is that neither exploration nor exploitation can be pursued exclusively
without failing at the task. The agent must instead try a variety of actions and

progressively favor those that appear to be best.

||
x0 b

* Simulated annealing is a classic algorithm that makes use of both exploratory and
exploitative steps.



Introduction

* Another key feature of RL 1s that it explicitly considers the whole problem of a goal-
directed agent interacting with an uncertain environment (this is in contrast to other
approaches that consider subproblems without addressing they fit into the larger
picture).

* RL starts with an interactive, goal-seeking agent; the agent has explicit goals and can
choose actions that influence their environment.

* The most important features distinguishing RL learning from other types of learning
is that it uses training information that evaluates the actions taken rather than

instructs by giving correct actions.




Introduction

* Another key feature of RL 1s that it explicitly considers the whole problem of a goal-
directed agent interacting with an uncertain environment (this is in contrast to other
approaches that consider subproblems without addressing they fit into the larger
picture).

* RL starts with an interactive, goal-seeking agent; the agent has explicit goals and can
choose actions that influence their environment.

* The most important features distinguishing RL learning from other types of learning
is that it uses training information that evaluates the actions taken rather than

instructs by giving correct actions.

* This is what creates the need for active explorations, for an explicit trial-and-error

search for good behavior. Purely evaluative feedback indicates how good the action
taken 1s, but not whether it is the best or worst action possible.

* Purely instructive feedback, on the other hand, indicates the correct action to take,
independently of the action actually taken.



Introduction: Elements of RIL.

* In general, there are (4) main components of an RL system: (1) a policy, (2) a reward
function, (3) a value function and (4) (optionally) a mode/ of the environment.

(1) A policy defines the learning agent’s way of behaving at a given time; a policy is a
mapping from perceived states of the environment to actions to be taken when in
those states (it corresponds to what in psychology would be called a set of stzmzulus-
response rules or associations).

* In some cases the policy may be a simple function or lookup table, or it may involve
extensive computation such as a search process. The policy is the core of an RL
learning agent; note that policies may be deterministic or stochastic.

Model of
environment

Policy: what to do
Reward: what is good

Value: what is good because it predicts reward
Model: what follows what



Introduction: Elements of RIL.

* In general, there are (4) main components of an RL system: (1) a policy, (2) a reward
function, (3) a value function and (4) (optionally) a mode/ of the environment.

(2) A reward function defined the goal in a RL problem. The reward function maps
each percetved state (e.g. state-action pair) of the environment to a single number, a
reward, indicating the intrinsic desirability of that state.

* The RL agent’s sole object is to maximize the total reward received in the long run.
The reward function is unalterable by the agent; it may, however, serve as a basis for
altering the policy; reward functions may be stochastic.




Introduction: Elements of RIL.

* In general, there are (4) main components of an RL system: (1) a policy, (2) a reward
Sfunction, (3) a value function and (4) (optionally) a mode/ of the environment.

(3) Whereas a reward function indicates what 1s good in an immediate sense, a value
function specifies what 1s good in the long run.

* Generally speaking, the value of a state 1s the total amount of reward an agent can
expect to accumulate over the future, starting from that state.

* A state might, for example, always yield a low immediate reward but nevertheless have
a high value because it is regularly followed by other states that yield high rewards (or
the reverse could hold).



Introduction: Elements of RIL.

(3) Where as a reward function indicates what 1s good in an immediate sense, a value
function specifies what is good in the long run.

* Generally speaking, the value of a state 1s the total amount of reward an agent can
expect to accumulate over the future, starting from that state.

* A state might, for example, always yield a low immediate reward but nevertheless have
a high value because it is regularly followed by other states that yield high rewards (or
the reverse could hold).

* Rewards are 1n a sense primary — without rewards there could be no values.
Nevertheless, it is values with which we are most concerned when making evaluating
decisions. Action decisions are made based on value judgements; we seek actions that
bring about states of highest value, not states of highest reward.

NB: In practice it 1s usually much harder to determine values than rewards.



Introduction: Elements of RIL.

* In general, there are (4) main components of an RL system: (1) a policy, (2) a reward
function, (3) a value function and (4) (optionally) a mode/ of the environment.

(4) A model (optional) mimics the behavior of the environment.

* For example, given a state and action, the model might predict the resultant next state
and next reward.

* Models are used for planning, in which case an agent may consider possible future
situations before they are actually experienced.

* Historically, early RL systems were explicitly trial-and-error learners; more recently
researchers regularly incorporate models and planning into RL systems.



Introduction: Elements of RIL.

* In general, there are (4) main components of an RL system: (1) a policy, (2) a reward
function, (3) a value function and (4) (optionally) a mode/ of the environment.

Recapping:

(1) Policy: defines the agent; a mapping from states — actions (e.g., given a screen
configuration in space invaders, tell me what to do)

(2) Reward: mapping from states to numbers; goal of agent 1s to maximum reward in
the long run. (e.g., agent receives +1 for winning chess game; 0 for draw and -1 for
loss)

(3) Value function: value of a state is the total amount of reward expected over time,
starting from this state. (e.g;, the value of a chess board configuration one step
removed from a forced checkmate is very large)

(4) Model: mapping from state-action pairs to new states (e.g, a physics model for an
environment in which a robot is moving)



Introduction: Example
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* Consider the classic tic-tac-toe game; how might we construct a player that will find
the imperfections in its opponent’s play (we assume a fallible opponent)?



Introduction: Example

* Despite its simplicity, tic-tac-toe cannot readily be solved in a satisfactory way using
purely classical techniques. For example, minimax (a common Al algorithm for

adversarial games) assumes a particular way of playing for an opponent; classical
optimization on the other hand requires a complete specification of the opponent
(including every probability of a move for a particular game state); a GA would search
over the entire space of possible policies.

00| x
X 0
X
X's move
(choose max)
O’'s move
{back-up min}
X's move

(back-up max)

0|0|x 0|0|x" 0]0|x 0]|0|x O0|0|x 0]0|x
X|x|0 x| x|0 x[0|0 x| x|0 x|0[0 x[X|0
0| x|x X100 x X-F% 1% Olx|x XTx1x-- Jx‘[} X




Introduction: Example
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* How might we construct a player that will find the imperfections in its opponent’s
play?

* Using RL, we could generate a table of numbers, one for each possible state of the
game; each number in the table represents the latest estimate of the probability of our
winning from that state. We treat this estimate as the state’s va/xe.

* Next we play many games against the opponent. To select our moves we examine the
states that would result from each of our possible moves; most of the time we move
greedily, selecting the move that leads to the state with the greatest value.

* Occasionally, however, we select randomly from among the other moves instead; these
are exploratory moves that cause us to experience states that we might otherwise never see.



Introduction: Example

* While we are playing, we change the values of the states in which we find ourselves
during the game; we attempt to make more accurate estimates of the probabilities of
winning.

* To do this, we “back up” the value of the state after each greedy move to the state
before the move. More precisely, we move the earlier state’s value a fraction of the way

opponent's move {

our move

toward the value of the later state.

starting position

* Let s denote the state before the greedy move and

s’ the state after the move; then the update to the

opponent's move

estimates value of V(s) is given by:

V(s)«V(s)+a|V(s)-V(s)]

Where o 1s the step-size parameter; this update

our move

opponent's move

our move
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rule is an example of temporal-difference (TD)

1 : ['.llllll' 1.1: A sequence of tic-tac-toe moves. I'he solid lines represent the

earnlng' moves taken during a game; the dashed lines represent moves that we (our
reinforcement learning player) considered but did not make. Our second move
was an exploratory move, meaning that it was taken even though another
sibling move, the one leading to e*, was ranked higher. Exploratory moves do
not result in any learning, but each of our other moves does, causing backups
as suggested by the curved arrows and detailed in the text



Introduction: Example

* The aforementioned method performs quite well on this task. In particular, if the
step-size parameter 1s reduced appropriately over time, this method converges — for any
fixed opponent — to the true probabilities of winning from each state given an optimal

opponent.

* This simple example illustrates an essential different between evolutionary methods
and methods that learn value functions.

* To evaluate a policy, an evolutionary method must hold it fixed and play many games
(or simulate many games) using a model of the opponent.

* The frequency of wins gives an unbiased estimate of the probability of winning with
that policy; however, each policy change is made only after many games, and only the
final outcome of each games is used. Moreover, what happens during the games is
ignored (L.e. for a winning match, @/ of the agent’s actions are given credit for the win).



Introduction: Example

* By contrast, with RL, value function methods allow individual states to be evaluated.

Learning a value function takes explicit advantage of information available during the
course of play.

* With RL, there is an emphasis on learning while interacting with an environment; in
addition, there is a clear goal, and correct behavior requires planning or foresight that
takes into account delayed effects of one’s choices.



Introduction: Example

* By contrast, with RL, value function methods allow individual states to be evaluated.
Learning a value function takes explicit advantage of information available during the

course of play.

* With RL, there is an emphasis on learning while interacting with an environment; in
addition, there is a clear goal, and correct behavior requires planning or foresight that
takes into account delayed effects of one’s choices.

* It 15 a striking feature of RL that it can achieve the effects of planning and lookahead
without using a model of the opponent and without conducting an explicit search over

possible sequences of future states and actions.

* RL can also be applied in non-episodic environments (e.g. when agent behavior
continues indefinitely); furthermore, RL. can be used in the absence of an external

adversary. i.e. in the case of a “came acainst nature.”
adversary,



n-Armed Bandits & Action-Value Methods

* Consider the following learning problem:

You are faced repeatedly with a choice among 7 different options, or actions. After each
choice you receive a numerical reward chosen from a stationary probability distribution
that depends on the action you selected. Your objective is to maximize the expected
total reward over some time period, for example, over 1000 action selections. Each
action selection 1s called a play.

*This is the original form of the n-armed bandit problem. Each action selection is
like a play of one of the slot machine levers, and the rewards are the payoffs for hitting
the jackpot. Through repeated plays you are to maximize your winnings by
concentrating your play on the best levers.

* Generally, each machine payout follows a probability
distribution, p, with mean p.; the agent should identity
the machine with the largest .




n-Armed Bandits & Action-Value Methods

* In the n-armed bandit problem, each action has an expected or mean reward give that
a particular action 1s selected; call this the va/ue of the action.

* Naturally, if we knew the exact value of each action, solving the problem would be
trivial.

* If you maintain estimates of the action values, then at any time there 1s at least one
action whose estimated value is greatest; call this the greedy action.



n-Armed Bandits & Action-Value Methods

* In the n-armed bandit problem, each action has an expected or mean reward give that
a particular action 1s selected; call this the va/ue of the action.

* Naturally, if we knew the exact value of each action, solving the problem would be
trivial.

* If you maintain estimates of the action values, then at any time there 1s at least one
action whose estimated value is greatest; call this the greedy action.

*If you select the greedy action, you are exploiting your current knowledge of the
values of the actions; otherwise, if you select a non-greedy action, then you are
exploring, because this behavior allows you to improve your estimate of the non-
greedy action’s value.

 Exploitation 1s the prudent thing to do to maximize the expected reward on the one
play — but exploitation may produce the greater total reward in the long run. This 1s the

essence of the exploitation-exploration “dilemma.”



n-Armed Bandits & Action-Value Methods

* Now we consider several elementary methods for estimating the values of actions and
for using the estimates to make action selection decisions.

Denote the #ue value of action a as Q*(a), and the estimated value at the t#) play as
Q.(a). Recall that the true value of an action is the mean reward received when the
action 1s selected.

(D)  One natural method to estimate this quantity, which we call the sample-average
method, is by simply averaging the rewards actually received:

[L+0,+.. 4T

Qt(a)_ k

a

Where £, denotes the number of times action « has been chosen prior to time 7 ytelding
rewards r,r,,...,1;, (if k, =0 then define Q (a)=0, etc.).



n-Armed Bandits & Action-Value Methods

() One natural method to estimate this quantity is by simply averaging the rewards
actually received:

IRl S I
Qt(a):l 2k K,

a

Where £, denotes the number of times action « has been chosen prior to time 7, yielding
rewards r;,1,,...,1.. (if k, =0 then define Q (a)=0, etc.).

* As k,—0, by the Jaw of large numbers, Q (a) converges to Q*(a).

* The simplest action selection rule 1s to select the action with highest estimated value.
A simple alternative is to behave greedily most of the time, but every once in a while,
say with small probability e, instead select an action at random, uniformly,

independently of the action-value estimates.

*This rule 1s known as the e-greedy method.



n-Armed Bandits & Action-Value Methods

*To roughly assess the relative effectiveness of the greedy and e-greedy methods, we can
compare them numerically (see plots).

e=0.1
L
Average
reward
0.5
Figure 2.1: Average performance of s-greedy action-value methods on the
g T T T T 1 10-armed testbed. These data are averages over 2000 tasks. All methods
0 250 500 750 1000 , S e e e . = e
used sample averages as their action-value estimates. The detailed structure

Steps at the beginning of these curves depends on how actions are selected when
multiple actions have the same maximal action value. Here such ties were
broken randomly. An alternative that has a similar effect is to add a very

100% small amount of randomness to each of the initial action values, so that ties

effectively never happen.
80% _| N SRR
o 60% |
% £=001
Optimal
action 0% |
€ = 0 (greedy)
20% ]
0%
1 1 I T 1
0 250 500 750 1000

Steps
* Note that with noisy rewards it would take more exploration to find the optimal

solution, and e-greedy methods would fare generally even better than baseline greedy
methods.



n-Armed Bandits & Action-Value Methods

*Although e-greedy action selection is an effective and popular means of balancing
exploration and exploitation in R, one drawback is that when it explores it chooses

equally among all actions. This means that it is as likely to choose the worst-appearing
action as it is to choose the next-to-best action.

The obvious solution is to vary the action probabilities as a graded function of
estimates value.

(IT) Define the softmax action selection:

th (a)lr

n
Z th (b)/z

b=1

Q (a)«

Where 1 is a positive parameter call the temperature; high temperatures cause the
actions to be all (nearly) equiprobable; low temperatures cause a greater difference in
selection probability for actions that differ in their value estimates. In the limit t—0,
softmax action selection becomes equivalent to greedy action selection.



n-Armed Bandits & Action-Value Methods

* The aforementioned action-value methods all estimate action values as sample
averages of observed rewards.

A practical issue associated with estimating action values from samples of observed
rewards is that these procedure will not scale well; larger samples will grow over time
without bound.

As a remedy, we can devise an (I1I) incremental update formula for computing
averages with small, constant computation required to process each new reward. For
some action, let Q, denote the average of its first k rewards; given this average and a
(k+1)sz reward, 1, |, then the average of all k+1 rewards can be computed by:

1 k+1 1 k 1
Qeit :mzri :m(rkﬂ_'_ZriJ:m(rkﬂ_'_ka +Q, _Qk)

i=1 i=1

Why?



n-Armed Bandits & Action-Value Methods

* The aforementioned action-value methods all estimate action values as sample
averages of observed rewards.

A practical issue associated with estimating action values from samples of observed
rewards is that these procedure will not scale well; larger samples will grow over time
without bound.

As a remedy, we can devise an (I1I) incremental update formula for computing
averages with small, constant computation required to process each new reward. For
some action, let Q, denote the average of its first k rewards; given this average and a
(k+1)sz reward, 1, |, then the average of all k+1 rewards can be computed by:

1 k+1 1 k 1
=—>»r=——r ,+>F |=——(r_,+kQ +Q —
Qk+1 k+1; i k+1( k+1 ; |J k-l—l( k+1 Qk Qk Qk)

N
k+1

1
(rk+1+(k+1)Qk _Qk):Qk +m(rk+1_Qk)

* Note that this implementation requires memory only for QQ, and k.



n-Armed Bandits & Action-Value Methods

1 k+1 1 k 1
Qk+1 :mzr' :m(rkﬂ"'ZriJ:m(rkﬂ"'ka +Qk _Qk)

i=1

1 1
_m(rk+l+(k+l)Qk -Q)=Q, +m(rk+1_Qk)

* This update rule 1s of a familiar form:

NewEstimate «<— OldEstimate + StepSize[Target — OldEstimate]



n-Armed Bandits & Action-Value Methods
1
Qk+1 B Qk +m(rk+l _Qk)

* This update rule 1s of a familiar form:

NewEstimate «— OldEstimate + StepSize[Target — OldEstimate]

* The expression [Target-OldEstimate] 1s an error in the estimate; it 1s reduced by
taking a step toward the “target.”

* Averaging methods discussed previously are appropriate for stationary
environments (i.e. environments that do not change over time). With non-
stationary environments, it 1s common to add a constant step-size parameter O < o < 1
to the previous update rule, giving:

Qi =G +a(rk+1_Qk) :---:(1_0‘)k Qo +Za(1_a)k_i f

1s 1s sometimes called an exponential recency-weiohted average; the basic 1dea 1s that the
* Th t lled tial recency-weighted average, the b d that th
weight given to reward r; decreases as the number of intervening rewards increases.



n-Armed Bandits & Action-Value Methods

* The previous methods are all dependent on the initial action-value estimates Q(a);
viz., these methods are biased by their initial estimates.

* For sample-average methods, the bias disappears once all actions have been selected at
least once, but for methods with constant «, the bias is permanent, though decreasing
over time.

* In practice, this kind of bias is usually not a problem, and can even be helpful. The
downside is that these initial estimates become d facto hyperparameters.



n-Armed Bandits & Action-Value Methods

* Initial action values can be used as a simple way of encouraging exploration. If we,
say, initially choose wildly optimistic action values (e.g. very large parameter settings),
this will encourage the agent to explore, being “disappointed” with the rewards
received.

* Using optimistic initial values is a simple and often effective trick; however, it is
generally pootly-suited to non-stationary cases.

100% -
optimistic, greedy
0,=5.€=0

80% -

o 60% realistic, e-greedy
Optimal Q,=0,€=0.1
action  40%
20% —
0% = T T T T 1
0 200 400 600 800 1000

Steps

Figure 2.2: The effect of optimistic initial action-value estimates on the 10-
armed testbed. Both methods used a constant step-size parameter, a = 0.1.



The Formal RI. Problem

* In the general RL framework, an agent interactions with its environment at each of a
sequence of discrete time steps,t =0, 1,2, 3, ... .

* At each time step 7 the agent receives some representation of the environment’s state,
S¢ € S, where S is the set of possible states, and on that basis selects an action, a;€
A(s;) , where A is the set of actions available in state ..

* One time step later, in part as a consequence of its action, the agent receives a
numerical reward 7;,1€ |R and finds itself in a new state, s,, ;.

:[Agent}

state reward

action
Sr Rr AI
§< Rr+1 (
S \ Environment ]<




The Formal RI. Problem

* At each time step, the agent implements a mapping from states to probabilities of
selecting each possible action. This mapping is called the agent’s policy and 1s
denoted m,, where m.(s,a) is the probability that a =a if s =s.

* RL methods specify how the agent changes its policy as a result of its experience.

* The agent’s goal, roughly speaking, is to maximize the total amount of reward it

receives in the long run.



The Formal RI. Problem

At each time step, the agent implements a mapping from states to probabilities of
selecting each possible action. This mapping is called the agent’s policy and 1s
denoted m,, where m.(s,a) is the probability that a =a if s =s.

* RL methods specify how the agent changes its policy as a result of its experience.

* The agent’s goal, roughly speaking, is to maximize the total amount of reward it

receives in the long run.

* The use of a reward signal to formalize the idea of a goal is one of the most

distinctive features of RI.. Although this approach may appear superficially limiting,

in practice it has proven to be a flexible and widely applicable method.

* For instance, if we want to make a robot learn to walk, we can provide a reward on
each time step proportional to the robot’s forward motion; in making a robot learn
to escape from a maze, the reward is often zero until it escapes, at which time it
receives +1 reward.



Applications of reinforcement learning:
A tew examples

Learning to play backgammon (and more recently, Go)
Robot arm control (juggling)

Robot Locomotion

Robot navigation

Elevator dispatching

Power systems stability control

Job-shop scheduling

Air traffic control

Autonomous Driving



Cart-Pole Problem

m

L K

OHO)

-

Objective: Balance a pole on top of movable cart.
State: Angle, angular speed, position, horizontal velocity.

Action: Horizontal force applied to cart.
Reward: +1 at each time step if the pole is upright.

https://www.youtube.com/watch?v=_Mmc3i7jZ2c



Robot LLocomotion (and pancake tlipping!)

Objective: Make the robot move forward successtully.

State: Angle and position of joints.

Action: Torques applied on joints.

Reward: +1 at each time step the robot is upright and moving
forward.

https://www.youtube.com/watch?v=gn4nRCCITwQ
https://www.youtube.com/watch?v=W_gx] . KSsSIE
https://www.youtube.com/watch?v=SH3bADiB7uQ
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Objective: Win the game.

Board Games (Backgammon, Chess, Go)

State: Position of pieces.

Action: Next move/placement of next piece.

Reward: +1 for win, O for loss.



Robby the Robot can learn via reinforcement
learning

Sensors: > “
H(ere) N S E W pOIlcy” = Strategy”
Actions: \ki s . s e o
Move N 0 ' ' '
Move S 1 . ;
Move E 5 .
Move W 3 ’ .
Pick up can A - -
5
Rewards/Penalties (points):. ; :
6
Picks up can: 10 }
7 ' '

Pick up can on empty site: -1

Crashes into wall: -5 ® d




Atari Games

. . - .
-- — -

Objective: Wotld-domination Obtain high score (make lots of human

friends in the process).

State: Raw pixel inputs.
Action: Game controls, e.g.,, movement and zap!
Reward: Score differential.




The Formal RIL. Problem: Goals & Rewards

* Part of the “art” of developing an effective RL algorithm rests in the choice of
reward function. We want the reward to truly indicate what we want accomplished.

* In particular, the reward signal is not the place to impart to the agent prior knowledge
about Jow to achieve what we want it to do; for example, a chess-playing agent
should be rewarded only for actually winning, not for achieving subgoals such as
taking its opponent’s pieces or gaining control of the center of the board.

* Explicitly rewarding subgoals may cause the agent to learn to achieve these subgoals
to the detriment of any long-term objectives (e.g. the agent might learn to capture
pieces effectively and yet still lose the chess match).



The Formal RL. Problem: Returns

* The precise aspect of the sequence of rewards that we wish to maximize is the
expected return, defined as:

Rt - t+1 s r;+2 +"'rT

where T 1s the final time step; this quantity is just the sum of rewards after step 7

This definition makes perfect sense when there is a natural notion of a “final” time
step; such an agent-environment interaction consists of epzsodes.

* When the agent-environment interaction does not break naturally into identifiable
episodes, and instead goes on continually without limit, we call these continuing tasks

redidea)



The Formal RL. Problem: Returns

*An additional, common feature used in RL is discounting. According to this
approach, the agent tries to select actions so that the sum of the discounted rewards
it receives over the future 1s maximized.

* In particular, the agent chooses action «, to maximize the expected discounted return:
2 k
Rt N r-t+1 +7/rt+2 +7/ rt+3 .= Zy IFt+k+1
k=0

where 0 = y = 1, 1s called the discount rate. It y = 0, we say the agent 1s “myopic.”



Markov Decision Processes

* An RL learning task that satisfies the Markov property is called a Markov Decision
Process (MDP).

The Markov property implies that the environment’s response at time #+1 depends
only on the state and action representations at time % For example, a checkers
position (1.e., the current piece configuration) would serve as a Markov state because
the current state summarizes everything important about the complete sequence of

positions that led to it.
More formally, if the Markov property holds, then:
/
Pisa=s"ta=rls.a}

*Which is to say that the next state (and reward) only depend on the current state-action
pait.



Markov Decision Processes

A Markov decision process is a 5-tuple (S, A, P,, R,,~), where

.S is a finite set of states,

« A is a finite set of actions (alternatively, A, is the finite set of actions available from state s
).

eP,(s,s') = Pr(s;y1 = s’ | 4 = s,a; = a) is the probability that action a in state s at
time ¢ will lead to state s’ attime ¢t + 1,

.Ra(s, s') is the immediate reward (or expected immediate reward) received after
transitioning from state s to state 5', due to action a,

ey € [0, 1] is the discount factor, which represents the difference in importance between
future rewards and present rewards.

Where P, (s,s) are called fransition
probabilities; note that the quantities:
P, (s,8”) and R (s,s”) completely specify
the most important aspects of the
dynamics of a MDP.




Value Functions

* Almost all RL learning algorithms are based on estimating value functions —

functions of states (or of state-action pairs) that estimate “how good™ it is for the
agent to be in a given state (or how good it 1s to perform a given action in a given
state).

* The notion of “how good” here is defined in terms of future rewards that can be
expected, 1.e., expected return.

e Recall that a policy, =, is 2 mapping from each state s € S and action, a € A(s) the
probability 7 (s,a) of taking action « when 1in state s.



Value Functions

* Almost all RL learning algorithms are based on estimating value functions —
functions of states (or of state-action pairs) that estimate “how good” it is for the
agent to be in a given state (or how good it 1s to perform a given action in a given
state).

* The notion of “how good” here is defined in terms of future rewards that can be
expected, 1.e., expected return.

e Recall that a policy, =, is 2 mapping from each state s € S and action, a € A(s) the
probability 7 (s,a) of taking action « when 1in state s.

For MDPs, we can define V*(s), the value of state s under policy 7 as:

V7 (5)=E.[R |5, =5] = {zy t+k+1|st=s}

where E_[‘] denotes the expected value given that the agent follows policy . The function
V7 is called the state-value function for policy .



Value Functions

* Similarly, we define the value of taking action « in state s under policy n, denoted
Q™(s,a) as the expected return stating from s, taking action 4, and thereafter following

policy m:

k=0

We call Q" the action-value function for policy x.



Value Functions

* Similarly, we define the value of taking action « in state s under policy n, denoted
Q7(s,a) as the expected return stating from g, taking action 4, and thereafter following
policy m:

Q" (52)=E.[RI8 =58 =a]=E.| 37115 -5.8 -]

We call Q" the action-value function for policy x.

* The value functions V*and Q™ can be estimated from experience. For example, if
an agent follows policy m and maintains an average, for each state encountered, of the
actual returns that have followed that state, then the average will converge to the
state’s value V(s), as the number of times that state 1s encountered approaches
infinity.

* If separate averages are kept for each action taken in a state, then these averages
will similarly converge to the action values, Q7(s,a).

* We call estimate methods of this kind Monte Carlo methods because they involve
averaging over random samples of actual returns.



Value Functions

A fundamental property of value functions used in RL and dynamic
programming is that they satisfy recursive relationships.

For any policy © and any state s, the following consistency condition holds
between the value of sand the value of its possible successor states:

Vﬁ(s): E;r[Rt |St :S]: E;z |:§7/krt+k+1 | St :S:|



Value Functions

A fundamental property of value functions used in RL and dynamic
programming is that they satisfy recursive relationships.

For any policy © and any state s, the following consistency condition holds
between the value of sand the value of its possible successor states:
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Value Functions

A fundamental property of value functions used in RL and dynamic
programming is that they satisfy recursive relationships.
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Value Functions

A fundamental property of value functions used in RL and dynamic
programming is that they satisfy recursive relationships.

For any policy © and any state s, the following consistency condition holds
between the value of sand the value of its possible successor states:
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Value Functions

* A fundamental property of value functions used in RL and dynamic
programming is that they satisfy recursive relationships.

* TFor any policy © and any state s, the following consistency condition holds
between the value of sand the value of its possible successor states:

=~
/ N\

'\Vﬂ(s)__\’Eﬁ[Rt|St:S]:E7r|:Zykrt+k+1|St:S:|
4 k=0

N\

n ‘ = k
(“Bellman Equation” | = E, | Gt 7/2 Y lea IS = S}
for V) h = -
) a a C k '
~Sa(s AT Re+E 3 |ﬂ
a — e G = k=0

——

— -
- —
— e e = - = =T

s’ are taken from the set S.



Bellman Equation
V7™ (s)= Za:”(s a); P2 RL+V7(s) ]

The Bellman Equation for V™ expresses a relationship between the value of a state and
the values of its successor states.

Think of “looking ahead” from one state to its possible success states (see “backup

diagram”).
(a) “' (b) 5,4

Figure 3.4: Backup diagrams for (a) v, and (b) ¢x.

Each open circle represents a state and each solid circle represents a state-action pait.
Starting from state s, the root node at the top, the agent could take any of some set of
actions — three are shown. From each of these, the environment could respond with one
of several next states, &, along with a reward, .

The Bellman equation averages over all the possibilities, weighting each by its probability of
occurring, It states that the value of the start state must equal the (discounted) value of the
expected next state, plus the reward expected along the way.




Value Functions: Gridwold Example

Consider the MDP: the cells of the grid correspond to the states of the
environment; at each cell four actions are possible: north, south, east, and west,
which deterministically cause the agent to move one cell in the corresponding
direction on the grid.

Actions that would take the agent off the grid leave its location unchanged, but
also result in a reward of -1. Other actions result in a reward of 0, except those
that move the agent out of the special states A and B. From state A, all four
actions yield a reward of +10 and take the agent to A’. From state B, all actions
yield a reward of +5 and take the agent to B’.

+5
H0 B" ‘—I_>

A ‘f Actions




Value Functions: Gridwold Example

Suppose the agent selects all four actions with equal probability in all states. The

corresponding value function, V7, for this policy, for the discounted reward case
with y = 0.9 is shown.

A B 3.3/ 8.8/4.4|5.3|1.5

\ 1.5|3.0/ 2.3/ 1.9/ 0.5
+1o) g <—I—> 0.1/0.7/0.7] 0.4|-0.4
/ -1.0,-0.4/-0.4/-0.6-1.2
y Actions

A -1.9/-1.3/-1.2/-1.4]-2.0

&

V7™ is computed using the Bellman equation:

V7(s)=2r(s.a) P [Re+ V™ (s')]



Optimal Value Functions

Solving a RL learning task means, roughly, finding a policy that achieves a lot of
reward over the long run.

For finite MDPs, we can precisely define an optimal policy by relying on the fact
that value functions define a partial ordering over policies.

A policy 7 1s defined to be better than or equal to policy n’ if its expected return
is greater than or equal to that of « for all stages.




Optimal Value Functions

Solving a RL learning task means, roughly, finding a policy that achieves a lot of
reward over the long run.

For finite MDPs, we can precisely define an optimal policy by relying on the fact
that value functions define a partial ordering over policies.

A policy 7 1s defined to be better than or equal to policy n’ if its expected return
is greater than or equal to that of « for all stages.

In other words, 1 = 7° if and only if V™(s) = V7 (s) for all s € S.

There 1s always exists at least one policy that 1s better than or equal to all other
policies; this is an optimal policy.



Optimal Value Functions

* Denote the optimal policy by 7*; the optimal state-value function, denoted V* is
defined:

V *(s) =maxV”" (s)
forall s € S.

* Optimal policies also share the same optimal action-value function, denoted Q*,

defined:
Q*(s,a) =maxQ” (s,a)

forall s € S and a € A(s).

* Tor the state-action pair (s,a), this function gives the expected return for taking
action « in state s and thereafter following an optimal policy. Thus, we can write
Q* in terms of V* as follows:

Q*(s,a)= E['}+1+7/V*(St+1)|st S :aJ



Optimal Value Functions

* Because V* is the value function for a policy, it must satisty the self-consistency
condition given by the Bellman equation for state values:

- Za:n(s,a); P2[R&+ A" (s)]

* In addition, because it 1s the optimal value function, V*’s consistency condition
can be written in a special form without reference to any specific policy.

* 'This is known as the Bellman optimality equation. Intuitively, the Bellman

optimality equation expresses the fact that the value of a state under an optimal
policy must equal the expected return for the best action from that state:

V*(s)=maxQ™ (s,a)

aeA(s)

=maxE_.[R |s, =s,a =a]

= maxE,.. 7Y P T |5, = 5,8, = a}

k=0

_maXEI:t+1+7/V*(St+1)|St :S’a't :a:l

_maxz [Ra +V *(s )]



Optimal Value Functions

V*() maXE|:t+1 yV*(st+1)|st=s,a[:a}
_maxz L[R2 +V () |

* The Bellman optimality equation for Q* is given by:

El:t+1+7/Q t+1,a')|3t=S,at:a:|
S Z Re [RQZ +7maaXQ*(S',a')}

* The backup diagrams show graphically the spans of future states and actions
considered in the Bellman optimality equations for V* and Q*.

(u) S (b) s,a

r max

Figure 3.7: Backup diagrams for (a) v, and (b) .



Optimal Value Functions

E|:t+1+7/Q t+1,a’)|5t=3,at=a:|
S Z Pe [Rfs- +ymaxQ*(s a’)}
' a'
For finite MDPs, the Bellman optimality equation for V* has a unique solution

independent of the policy. The Bellman optimality “equation” 1s actually a system
of equations, one for each state (thus for N states one has N equations and N

unknowns).

If the dynamics of the environment are known (i.e. RS, and P, known), then in
principle one can solve this system of equations for V*; one can, in addition,
solve a related set of equations for Q*.



Optimal Value Functions

Once one has V* it is relatively easy to determine an optimal policy. For each
state s, there will be one or more actions at which the maximum is attained in the
Bellman optimality equation.

If you have the optimal value function V*, then the actions that appear best after
a one-step search will be optimal actions. Put another way, any policy that 1s
greedy with respect to the optimal value function V* is an optimal policy.

The beauty of V* 1s that if one uses it to evaluate the short-term consequences
of actions — specifically, the one-step consequences — then a greedy policy is
actually optimal in the long-term sense because V* already takes into account the
reward consequences of all future behavior.

Having Q* makes choosing optimal actions still easier. With Q*, the agent does
not even have to do a one-step-ahead search: for any state s, it can simply find any
action that maximizes Q*(s,a).



Value Functions: Gridwold Example

Returning to the Gridworld example from before:

Actions that would take the agent off the grid leave its location unchanged, but
also result in a reward of -1. Other actions result in a reward of 0, except those
that move the agent out of the special states A and B. From state A, all four
actions yleld a reward of +10 and take the agent to A’. From state B, all actions
yield a reward of +5 and take the agent to B’.

0] | B' +

A f Actions




Value Functions: Gridwold Example

* The optimal value solutions are given as follows:

Al |B 22.0(24.4/22.0[19.4(17.5 s <—I—> “ +{—> —

+5 19.8/22.0(19.8/17.8|16.0 il 1 Jle— |+«

+0| | B' 17.8/19.8/17.8/16.0/14.4 [ I P P P

16.0{17.8/16.0{14.4/13.0 L t ,_T J ,_T

A"f 14.4)16.0{14.4[13.0|11.7 L o O O O
a) gridworld b) Vx C) T,

where V™ is computed using the Bellman optimality equation:

V*(s)=max ) P R2 4V ()]



Value Functions: Practical Concerns

Recall the Bellman optimality equation:
V*(s)= max ; P2 [R;. +V *(s’)]

* Explicitly solving the Bellman optimality equation provides one route to finding an
optimal policy, and thus to solving the RL problem.

* However, this solution is rarely used in practice, as it is akin to an exhaustive search:
looking ahead at all possibilities, computing their probabilities of occurrence and
their desirabilities in terms of expected rewards.

This solution relies on at least three assumptions that are rarely true in practice:

(1) We actually know the dynamics of the environment

(2) We have enough computational resources to complete the computation of the
solution

(3) Markov Property



Value Functions: Practical Concerns

* Naturally, an agent that learns an optimal policy has done very well, but in practice
this rarely happens.

* For “interesting”, real-world problems, optimal policies can be generated only with
extreme computational cost. However, a well-defined notion of optimality
nevertheless helps frame RL 1n a mathematically rigorous way.

In practice, optimal policies represent an ideal that agents can only approximate to

varying degrees.



Value Functions: Practical Concerns

* Oftentimes, it 1s also impossible to directly use Zabular methods to build up
approximations of value functions and policies, because there are far more states
than could possibly be entries in a table. In these cases the functions must be
approximated, using some sort of more compact parameterized function
representation (e.g. a DNN).

* Many useful techniques exist for dealing with very large search spaces, including
heuristic search methods. In approximating optimal behavior, there may be many
states the agent faces with very low probability; the on-line nature of RLL makes it
possible to approximate optimal policies in a way that puts more effort into learning
to make good decisions for frequently encountered states.

* With TD-Gammon (1992, IBM Watson Research Center), a classic RI.-based
Backgammon Al program, for instance, although the program performed at near
human expert level, it nonetheless makes bad decisions on board configurations that
rarely (or never) appear in games. Backgammon has on the order of ~10? states.



Dynamic Programming

* Dynamic Programming (DP) techniques can be used to compute optimal policies
given a perfect model of the environment as a MDP; in practice DP techniques can
be computationally expensive for RL, but they nevertheless provide an essential
foundation across RL frameworks.

* The key idea of DP in conjunction with RL is the use of value functions to

organize and structure the search for good policies.

* One can easily obtain optimal policies once we have found the optimal value
functions, V* or Q*, which satisty the Bellman equations (from before):

V*() maXE[t+1+7/V*(S1+1)|Sf:Saat:a:| |:z+1+7/Q S )|Sr:SJar:a:|
—maxz [R"’ IAE(s )] :ZH:-[RSS-JW’IHE}XQ*(S"“’)}

(*) Key idea: Turn the Bellman equations into iterative assighment updates for

approximating the desired value functions.



Dynamic Programming: Policy Evaluation

* First we consider how to compute the state-value function V™ for any arbitrary
policy =; this is called policy evaluation.

Recall that forall s € S:
Z;z (s,a) ZP“’ | RL+y77 (') ]

* If the environment’s dynamics are completely known (»73., we have a

complete model), then the equation above is a system of |S| unknowns; we
consider an iterative solution.

* Consider a sequence of approximate value functions: V,, V, V,, where V, is
initialized arbitrarily.

* Each successive approximation for V" can be updated as follows:

V,..(s)=E [t+1+yv (s+1)]s, —s}

:Za: saz RGN (9)]




Dynamic Programming: Policy Evaluation

Vk+1(S) e E;r I:rt+1 +7/Vk (S+1) | St = S:|

=X r(sa) P R+ V(8]

* This 1s known as #terative policy evaluation.

e NB: It can be shown that {V, } converges to V™ as k — (as V,=V7" is a fixed
point for the Bellman equation).

* TFor implementation, iterative policy evaluation uses a “full backup”; meaning that
in order to approximate V., from V , we replace the old value of s with a new
value obtained from the old values of the successor states of .

Input 7, the policy to be evaluated

Initialize an array V(s) =0, for all s € 8"
Repeat
A0
For each s € §:
v V(s)

Vi(s) < >, m(als) > ., p(s' r]s,a) [r + 7.'[(5’)]
A+ max(A, v —V(s)])

until A < # (a small positive number)

Output V = v,

igure 4.1: rativ icy evaluation.
Figure 4.1: Iterative policy evaluation



Dynamic Programming: Policy Improvement

* The reason for computing value functions for a policy is to assist in the search for
better policies; naturally, given a policy, we would like to determine whether we
should change its action for a particular state in order to improve the policy.

To this end, define:
Qﬁ(s’a): Eﬂ|:rt+1+7/vﬁ(st+1)|st =195, :a:l
=ZP§'[R§- + V(s ]

This quantity considers selecting « in state s and thereafter following the existing
policy, .

*The key criterion is whether this is greater than or less than V*(s). If it is greater,
then one would expect it to be better still to select 2 every time s is encountered.

This 1s in general true, as stated by the policy improvement theorem.



Dynamic Programming: Policy Improvement

* Policy improvement theorem:
Let m and 7’ be any pair of deterministic policies such that, for all s € S:
Q" (.7() 2V ()

Then policy ©°” must be as good as, or better than, n. Thus for all s € S, it follows
that:

V7 (s)=V7*(s)



Dynamic Programming: Policy Improvement

* In summary, given a policy and its value function, we can easily evaluate a change in
the policy at a single state to a particular action.

* As an extension, we can consider changes at all states and to all possible actions,
selecting at each state the action that appears best according to Q*(s,a).

In other words, to consider the new greedy policy, 7°, given by:

7'(s)=argmaxQ” (s,a)=argmax E,| r,, + V" (s,,)|s =s.3 =a]
=argmax ) P: [st. A (s’)]
The greedy policy takes the action that looks best in the short term — after one step

of lookahead — according to V™.

* By construction, the greedy policy meets the conditions of the policy improvement
theorem; these results are naturally extended to the case of stochastic policies.



Policy Improvement: GridWorld
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Figure 4.2: Convergence of iterative policy evaluation on a small gridworld.
The left column is the sequence of approximations of the state-value function
for the random policy (all actions equal). The right column is the sequence
of greedy policies corresponding to the value function estimates (arrows are
shown for all actions achieving the maximum). The last policy is guaranteed
only to be an improvement over the random policy, but in this case it, and all
policies after the third iteration, are optimal.



Dynamic Programming: Policy Iteration

* Once a policy, w, has been improved using V™ to yield a better policy, n’, we can then
compute V* and improve it again to yield an ever better 1. We can thus obtain a
sequence of monotonically improving policies and value functions:

E I E I E I E
o — Unyg > 1 7 Uny D) > e > Ty — Ux,

Where E denotes a policy evalunation and 1 denotes a policy improvement. Each policy is
guaranteed to be a strict improvement over the previous one.

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation
Repeat
A+0
For each s € S:
(O ‘(s)
V(s) « Y ., p(s,r|s,m(s)) [r - ‘}"(,s',)}
A + max(A, |v — V(s)|)
until A < # (a small positive number)

3. Policy Improvement
policy-stable < true
For each s € S:
a < m(s)
m(s) « argmax, Y . . p(s',7|s,a) [r B 7\'(5’”
If a # 7(s), then policy-stable < false
If policy-stable, then stop and return V' and 7; else go to 2




Dynamic Programming: Value Iteration

* The policy evaluation step of policy iteration can be truncated in several ways
without losing the convergence guarantees of policy iteration.

* One importance special case 1s when policy evaluation is stopped after just one
sweep (1.e. one backup of each state).

* This particular algorithm is called value iteration; it can be written as a particularly
simple backup operation that combines the policy improvement and truncated policy
evaluation steps:

k+1 |:t+1+7/vk S+1)|S _Sa‘t a:| maxz [R;'_F}/Vk(s,)]
*This 1s equivalent to turning the Bellman optimality equation into an update rule:

V*(s)=max ) Py, |Re+V*(s") ]



Dynamic Programming: Value Iteration

Vi (5)=E,[r + NV, (s+1)|s,=s,a =a]= maxz [st.+yvk(s’)]

Initialize array V arbitrarily (e.g., V(s) = 0 for all s € 8)

Repeat
A0
For each s € §:
v V(s)
V(s) « max, Y p(s',r|s, a) [r - “,V(s’)}
A+ max(A,|v—V(s)|)
until A < 6 (a small positive number)

Output a deterministic policy, 7, such that
m(s) = argmax, Y, p(s'.r|s,a)[r + V()]

Figure 4.5: Value iteration.



Dynamic Programming: Practical Considerations

* A significant drawback to the DP methods discussed, is that they involve operations
over the entire state set of the MDP, 1.e., sweeps of the state set.

* If the state set is very large, then even a single sweep can be prohibitively expensive
(e.g. backgammon has over 10 states).

* Asynchronous DP algorithms are in-place iterative DP algorithms that are not
organized in terms of systematic sweeps of the state set. These algorithms back up

the values of states in anv order whatsoever.




Dynamic Programming: General Policy Iteration

* Policy iteration consists of two simultaneous, interacting processes, one making the
value function consistent with the current policy (policy evaluation), and the other
making the policy greedy with respect to the current value function (po/icy
umprovenment).

* In policy iteration, these two processes alternate, each completing before the other

begins, but this it not really necessary. In value iteration, for example, only a single
iteration of policy evaluation 1s performed in between each policy improvement.

*Almost all RI. methods can be described as generalized policy iteration procedures (GPI).

evaluation
m
T 1%
TC—>greedy(V) Yo
) Vi T
improvement
) T = g‘eed\’b)
L]
T e— V= One can think of the interaction between the evaluation and
improvement processes in GPI in terms of constraints.
Figure 4.7: Generalized policy iteration: Value and policy functions interact Each process drives the value function or pOI|Cy toward one

until they are optimal and thus consistent with each other. another; the goals aCCOI’dingly interact.



Dynamic Programming: Efficiency

* DP may not be practical for large problems, but compared with other methods for
solving MDPs, DP methods are actually quite efficient (remember that DP also
requires an environment model).

* In the worst-case, DP methods find an optimal policy in polynomial time (wrt the
number of states and actions).

* Linear programming methods can also be used to solve RL problems, but these
methods become impractical at a much smaller number of states than DP methods.



Monte Carlo Methods

 Unlike Dynamic Programming methods, Monte Carlo methods (MCM) do not
assume complete knowledge of the environment.

* MCM require only experience — sample sequence of states, actiona, and rewards from
on-line or simulated interaction with an environment.

Learning from on-line experience is striking because it requires no prior knowledge

of the environment’s dynamics, yet can still attain optimal behavior.

* MCM are ways of solving the RL problem based on averaging sample returns.

* Despite their differences, the most important ideas from DP carry over to the
MCM case. In particular, MCM attain optimality in essentially the same was as DP

methods.



Monte Carlo Methods

* Let’s consider MCM for learning the state-value function for a given policy.

* Recall that the value of a state is the expected return — expected cumulative future
discounted reward — starting from that state.

* An obvious way to estimate it from experience. then. 1s simply to averaoce the
y 5 5 } S

returns observed after visits to that state. As more returns are observed, the average

should converge to the expected value; this is the core idea underyling all MCM.

* One such method 1s called the first-visit MCM; this process just averages the
returns following the first visits to .

* By the law of large numbers, the first-visit MCM converges to V™(s) as the number of
first visits to s goes to infinity.

Initialize:
7 +— policy to be evaluated
V « an arbitrary state-value function
Returns(s) < an empty list, for all s € §

Repeat forever:
Generate an episode using 7
For each state s appearing in the episode:
G + return following the first occurrence of s
Append G to Returns(s)

V(s) «+ average(Returns(s))



Monte Carlo Methods: Blackjack

After 10,000 episodes After 500,000 episodes

No
usable
ace

Figure 5.1: Approximate state-value functions for the blackjack policy that sticks only on 20 or 21, computed
by Monte Carlo policy evaluation. |

* Blackjack as an MDP: rewards of +1, -1, 0 are given for winning, losing and
drawing respectively; no discount applied; cards drawn with replacement; policy
considered: stick of player’s sum is 20 or 21; state-value function approximated using
MCM (DP would be difficult to apply here, since we require transition probabilities
and associated rewards for all states).



Monte Carlo Methods

* If a model is not available, then it is particularly useful to estimate action values
rather than state values. With a model, state values alone are sufficient to determine a
policy; simply look ahead one step and choose whoever action leads to the best

combination of reward and next state.

* Without a model, however, state values are insufficient. One must explicitly
estimate the value of each action in order for the values to be useful in suggesting a
policy. Thus we should estimate Q*.

* The first-visit MC method averages the returns following the first time in each
episode that the state was visited and the action was selected; these methods
converge quadratically to the true expected values as the number of wvisits to each

state-action pair approaches infinity.

* The only complication here 1s that many relevant state-action pairs may never be

visited; one common remedy is to consider only policies that are stochastic with a
nonzero probability of selecting all actions.



Monte Carlo Control

* How is MCM used to approximate optimal policies?

* The general pattern 1s to proceed as we did with regard to DP; we maintain both an
approximate policy and an approximate value function. The value function is
repeatedly altered to more closely approximate the value function for the current
policy, and the policy is repeatedly improved with respect to the current value

function: evaluation
m
T Q)

7~ greedy(Q)

improvement

* MCM version of classical policy iteration entails performing alternating complete
steps of policy evaluation and policy improvement, beginning with an arbitrary policy
1, and ending with the optimal action-value function:

E 1 E I E I E
MO —> Qng —> M1 —> Qr, —> Mg —> =+ + —> Ty — (s,



Monte Carlo Control

E | E | E I E
T — Qng — T1 — (r, > Mg — -+« > T — (s

* Policy evaluation i1s done exactly as described previously; many episodes are
experienced, with the approximate action-value function approaching the true
function asymptotically.

* Under some basic assumptions (e.g;, infinite number of episodes), the MCM will
compute Q™ exactly, for arbitrary T,.

* Policy improvement 1s achieved by making the policy greedy with respect to the
current value function. In this case, we have an action-value function, and
therefore no model is needed to construct the greedy policy.

* Tor any action-value function Q), the corresponding greedy policy is the one that
deterministically chooses:

z(s)=argmaxQ(s,a)

a

* Policy improvement then can be done by constructing each m,, as the greedy
policy wrt Q7.



Monte Carlo Control

* Define Monte Carlo ES as the MC algorithm that alternates between evaluation
and improvement on an episode-by-episode basis:

Initialize, for all s € 8, a € A(s):
Q(s,a) « arbitrary
m(s) « arbitrary
Returns(s,a) < empty list

Repeat forever:
Choose Sy € 8§ and Ay € A(Sp) s.t. all pairs have probability > 0
Generate an episode starting from Sy, A, following 7
For each pair s,a appearing in the episode:
(G « return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) «+ average( Returns(s,a))
For each s in the episode:
m(s) + argmax, (s, a)

Ty
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Figure 5.5: The optimal policy and state-value function for blackjack, found by
Monte Carlo ES (Figure 5.4). The state-value function shown was computed
from the action-value function found by Monte Carlo ES.



Monte Carlo Methods : On-Policy

* There are two general approaches to ensure that all actions are selected infinitely
often: on-policy and off-policy methods.

* On-policy methods attempt to evaluate or improve the policy that 1s used to make
decisions.

In on-policy control methods, the policy is generally soft, meaning that n(s,a)>0 for
alls € S and all a € A(S).

* One common on-policy method uses the epsilon-greedy approach, meaning that most
of the time they choose and action that has maximal estimated action value, but with
probability epsilon they instead select an action at random.

Initialize, for all s € 8, a € A(s):
Q(s,a) + arbitrary
Returns(s, a) + empty list
m(al|s) < an arbitrary e-soft policy

Repeat forever:

(a) Generate an episode using 7

(b) For each pair s, a appearing in the episode:
G « return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) + average(Returns(s,a))

(¢) For each s in the episode:
a* + argmax, (s, a)
For all a € A(s):

l1—e+¢/|A(s)| ifa=a*
m(als) < {

e/l A(s) if a # a*

Figure 5.6: An on-policy first-visit MC control algorithm for e-soft policies.



Monte Carlo Methods : Off-Policy

* On-policy methods estimate the value of a policy while using it for control.

* In off-policy methods these two functions are separated. The policy used to
generate behavior, called the behavior policy, may in fact be unrelated to the policy that
is evaluated and improved, called the estimation policy.

An advantage of this separation is that the estimation policy may be deterministic
(e.g. greedy), while the behavior policy can continue to sample all possible actions.

* Off-policy MC control methods use the technique previously presented from
estimating the value function for one policy while following another. They follow

the behavior policy while learning about and improving the estimation policy (to
explore all possibilities, we require that the behavior policy be soft).



Temporal-Ditterence Learning

* Temporal-Difference (ID) learning is a combination of Monte Carlo ideas and
dynamic programming ideas.

* Like MC methods, TD methods can learn directly from raw experience without a

model of the environment’s dvhamics.

* Like DP, TD methods update estimates based in part on other learned estimates,
without waiting for a final outcome (they bootstrap).

* The relationship between TD, DP and MC methods is a recurring theme in RL.



Temporal-Ditterence Learning

* Both TD and MC methods use experience to solve the prediction problem.

* Given some experience following a policy m, both methods update their estimate V
of V™. If a nonterminal state s, is visited at time 7 then both methods update their
estimate V(s,) based on what happens after that visit. Roughly speaking, MC methods
wait until the return following the visit is known, then use that return as a target for

V(s,).

A simple, every-visit MC method suitable for nonstationary environments is:
V(s) <V (s)+a|R-V(s)]

Where R, is the actual return following time #and « is a constant step-size parameter.
Call this method constant-a MC.



Temporal-Ditterence Learning

* Whereas MC methods must wait until the end of the episode to determine the
increment to V(s,) (only R, is known), TD methods need wait only until the next time

step.

e At time t+1 they immediately form a target and make a useful update using the
observed reward r ,, and the estimate V(s. ). The simplest TD method, known as

TD(0) is:

* In effect, the target for the MC update 1s R, whereas the target for the TD update is
t 4 TYV. (s Because TD method bases its update in part on an existing estimate,
we say that is a bootstrapping method (like DP).



Temporal-Ditterence Learning

V(s) <V (s)+al hy+N(s.)-V(s)]

* In effect, the target for the MC update 1s R, whereas the target for the TD update is
r 1 TyYV.(s4). Because TD method bases its update in part on an existing estimate,
we say that is a bootstrapping method (like DP).

* The TD target is an estimate because it samples the expected value and it uses the
current estimate V, instead of the true V”. Thus, TD methods combine the sampling
of MC with the bootstrapping of DP.



Temporal-Ditterence Learning

Some advantages of TD learning:

* TD methods do not require a model of the environment (DP does)

* TD can be naturally implemented in an on-line, fully incremental fashion. With MC
methods, one needs to wait until the end of an episode, because only then is the
return known, whereas with TD methods one need wait only one time step.

* Surprisingly, this turns out to be a critical consideration (NB: some applications
have very long episodes).

*TD has been shown to converge to V7, in the mean for a sufficiently small constant
step-size parameter.



Q-Learning

* Q-learning is an off-policy TD control algorithm. In its simplest form, one-step
Q-learning, it 1s defined by:

Q(5:8) < Q(sa )+ fy+ymaxQ(s.0,8)~(s,a) |

* In this case, the learned action-value function, Q, directly approximates Q*, the
optimal action-value function, independent of the policy being followed. This
dramatically simplifies the analysis of the algorithm and enabled early convergence
proofs.

* The policy still has an effect in that it determines which state-action pairs are visited
and updated. However, all that is required for correct convergence is that all pairs
continue to be updated.



Q-Learning
How do we use Q-learning in practice?
Initialize QQ(s,a) to all zeros
Initialize s
Repeat until stopping condition:
-- select action a

-- take action a and receive reward r
—- observe new state s’

-- update Q(s,a):

Q(51a) « Q518 )+a| .y +7maxQ(s.1,3)~(5,a) |

- update s < §’



Example

A Is our agent, who takes an action
at each timestep.

$5

Only action in square 1 is Forward.

Actions in squares 2 and 3 are
(Forward, Back)

Being in square 4 gives reward of $5
Only action in square 4 Is Stop

No other rewards or penalties.
Sety=.9

Sety=1



Q(s,a) <= Q(s,@) + n (r+ymax, Q(s’,a") - Q(s, a))

4
A $5

Episode 1
Currentstates =1

Q(s,a) Forward Back Stop

1 0 X X

x| o| o
o X | X

0
0
X

WD




Q(s,a) <= Q(s,@) + n (r +ymax, Q(s,a") - Q(s, a))

1 2 3
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Current state s =1

Action = F
Q(s,a) Forward Back Stop
1 0 X X
2 0) 0 X
3 0 0 X
4 X X 0




Q(s,a) <= Q(s,@) + n (r +ymax, Q(s,a") - Q(s, a))
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Action = F
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Q(s,a) <= Q(s,@) + n (r +ymax, Q(s,a") - Q(s, a))
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Action = F
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Q(s,a) <= Q(s,@) + n (r +ymax, Q(s,a") - Q(s, a))
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Q(s,a) <= Q(s,@) + n (r +ymax, Q(s,a") - Q(s, a))
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Action = F
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1 0 X X
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Q(s,a) <= Q(s,@) + n (r +ymax, Q(s,a") - Q(s, a))
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Episode 1

Current state s = 2

Action = F
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Q(s,a) <= Q(s,@) + n (r +ymax, Q(s,a") - Q(s, a))
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Action = F
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Q(s,a) Forward Back Stop
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Q(s,a) <= Q(s,@) + n (r +ymax, Q(s,a") - Q(s, a))
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Q(s,a) <= Q(s,@) + n (r +ymax, Q(s,a") - Q(s, a))
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Q(s,a) Forward Back Stop
1 $4.05 X X
2 $4.50 $3.65 X
3 $5 0 X
4 X X 0




Q(s,a) <= Q(s,@) +n (r +ymax, Q(s",a") — Q(s, a))

Episode 3
Currentstates =1

Q(s,a) Forward Back Stop
1 $4.05 X X
2 $4.50 $3.65 X
3 $5 0 X
4 X X 0




Q(s,a) <= Q(s,@) +n (r +ymax, Q(s",a") — Q(s, a))

1 2 3
A $5

Episode 3

Current state s =1

Action = F
Q(s,a) Forward Back Stop
1 $4.05 X X
2 $4.50 $3.65 X
3 $5 0 X
4 X X 0




Q(s,a) <= Q(s,@) +n (r +ymax, Q(s",a") — Q(s, a))

1 2 3
A $5

Episode 3

Current state s =1

Action = F

r=0

s'=2
Q(s,a) Forward Back Stop
1 $4.05 X X
2 $4.50 $3.65 X
3 $5 0 X
4 X X 0




Q(s,a) <= Q(s,@) + n (r +ymax, Q(s,a") - Q(s, a))

1 2 4
$5

Episode 3

Currentstates =1

Action = F

r=0 O F)=%4.05+(0+.9maxO(s',a") - $4.05)

$'=2 $4.05+0+(.9)($4.50) - $4.05 = $4.05
Q(s,a) Forward Back Stop
1 $4.05 X X
2 $4.50 $3.65 X
3 $5 0 X
4 X X 0




Q-Learning

* Results: Q-learning converges to optimal policy — even if you’re acting sub-
optimally!

e 'This is called off-policy learning.

Caveats:
* You have to explore sufficiently.

* You have to make learning rate small enough (but also not decrease it too

quickly).



Q-Learning

Note that in all of the previous discussion, Q(s, @) was assumed to be a look-
up table, with a distinct table entry for each distinct (5,2) pair.

More commonly, Q(s, @) 1s represented as a function (e.g., a neural network),
and the function 1s estimated (e.g;, through back-propagation).



Summary of RL

In addition to the agent and environment, there are (4) key ingredients to RL:
(1) A policy (usually denoted ) is a mapping,: S = A . The policy is the decision-making function for the agent.

(2) A reward function maps each perceived state (or state-action pair) of the environment to its corresponding reward
value: y: § x 4 - R; r(s;,a,) = r, - Most often the reward function is unknown to the agent.

(3) A value function specifies what is ‘good’ in the long-run for the agent. In this sense, the value of a state is the total
amount of reward an agent can expect to accumulate over the future, starting from that state.

Formally, Ve (S) 7 E{Z 7’i’7+i+1 |5, = S:] , with “discount’ 0<y<1,
i=0

(4) A model of the environment, consisting of the triple: (5,4,8:5XA—S5)  Where S is the ‘state space’
(assumed finite), A is the “action space’ (normatively, |A| < |S]) and o is the transition function inherent to the
environment.

Put simply, the goal of the learning task is to learn an optimal policy, 7*,
that maximizes V7(s) for all states.



Summary of RL

At first blush, it seems as though the best strategy for learning thevoptimal policy, ¥, mightv be to directly learn V*(s).

To do so, we could solve the recurrence relation:

Vis)=E ¥ : =8 |=..= P | RL+V™ (s
(S) |:§}/r!+l+] Sr S:| Z ﬂ'(S,a) Z ‘:’5_‘ [ S8 5, (S )]

a GEE o
prob. of taking Iransition
probability

action a in state s
This equation is known as the Bellman Equation for V™. The Bellman equation averages over all the possibilities, weighting each by its
probability of occurring. It states that the value of the start state must equal the (discounted) value of the expected next state, plus the reward
expected along the way.

When the agent has complete knowledge of its environment, then, in theory, we could directly solve (or even approximate) for the value
function.

; _ . _ , 7r*(s)=argmax[r(s,a)+}/V*(§(s,a))] _ ) _
In this fashion, the optimal policy would be defined as follows: a , so that action a is chosen in such a
way so as to maximize the sum of the immediate reward and the discounted expected reward for the successor state.

The problem, however, with this approach is that it requires full knowledge of the transition and reward functions which are unknown to the
agent.

Alternatively, a common approach for learning an optimal policy in RL with incomplete environmental knowledge is to use temporal-
difference learning (TD), including Q learning.




Summary of RL

Define the value of the state-action pair as the mapping:Q:Sx4 >R ;let Q" (s,a)=E [Z e s Ssar= aJ
i=0

Q™ denotes the action-value for policy 7, which is to say, the expected return starting from state s, taking action a and
following policy 7 henceforth.

One-step Q learning is defined as the following iterative update:

Q(.s;,a,)(—Q(s,,a,)+ Qﬁ ’ I’;H+}"maXQ(SHl,a)—Q(S,,Cl,)
— -4 _—

learning rate

old value old value

<7
estimate of optimal
Sfuture value

Here the learned action-value function, Q, directly approximates Q*, the optimal action-value function, independent of
the policy being followed (we say the method is “off-policy’).

Initialize Q(s,a),¥s € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) +— Q(S, A) + a[R + ymax, Q(5",a) — Q(S, A)J
S+ 8"

until S is terminal

Q learning algorithm schematic:

Figure 6.12: Q-learning: An off-policy TD control algorithm.

Famously, Tesauro (early 1990s) developed TD-Gammon using Q-learning (computed with NN equipped with 50
hidden units; trained originally on 300,00 games against itself); by 1995 TD-Gammon was competitive with best
human players in the world.
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Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih  Koray Kavukcuoglu  David Silver  Alex Graves Ioannis Antonoglou

Daan Wierstra  Martin Riedmiller

DeepMind Technologies

Abstract

We present the first deep learning model to successfully learn control policies di-
rectly from high-dimensional sensory input using reinforcement learni The
model is a convolutional neural network, trained with a variant of Q-learning,
whose input is raw pixels and whose output is a value function estimating future
rewards. We apply our method to seven Atari 2600 games from the Arcade Learn-
ing Environment, with no adjustment of the architecture or learning algorithm. We
find that it outperforms all previous approaches on six of the games and surpasses
a human expert on three of them.

1 Introduction

Learning to control agents directly from high-dimensional sensory inputs like vision and speech is
one of the long-standing challenges of reinforcement learning (RL). Most successful RL applica-
tions that operate on these domains have relied on hand-crafted features combined with linear value
functions or policy representations. Clearly, the performance of such systems heavily relies on the
quality of the feature representation.

Recent advances in deep learning have made it possible to extract high-level features from raw sen-
sory data, leading to breakthroughs in computer vision [11, 22, 16] and speech recognition [6, 7].
These methods utilise a range of neural network architectures, including convolutional networks,

multilayer perceptrons, restricted Boltzmann machines and recurrent neural networks, and have ex-
loiied badl a4 gy 3 ) L seileaaleon aioail .

Demis Hassabis (co-founder DeepMind)

https://youtu.be/rbsgaJwpubA
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Deep learning:
Requires large amount of hand-labeled data

Assumes data samples are 1id, with stationary distribution

Reinforcement learning:
Must learn from sparse, noisy, delayed reward function
“Samples” are not independent

Data distribution can change as system learns “online”
Uses convolutional neural network (CNN):
— Input is raw pixels of video frames (~ the “state”)

Output is estimated Q(s,4) for each possible action
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System learns to play Atart 2600 games;
210x160 RGB video at 60 Hz.
Designed to be difficult for human players

“Our goal is to create a single neural network agent that is able to successfully
learn to play as many of the games as possible.”

No game-specific info provided. No hand-designed visual features.

Learns exclustively from video input, the reward, and terminal signals.
Network architecture and hyperparameters kept constant across all games.
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Methodological details

+ Model Architecture: The researchers developed a novel agent, a deep Q-network (DON) which
is able to combine RL with ‘deep” NNs (that is to say they have many layers).

» Hassabis e7 a/. use a deep CNN, which employs hierarchical layers of tiled convolutional filters to
mimic the effects of ‘receptive fields’.

 The goal of the game-playing agent is to select actions in a fashion that maximizes cumulative
feature rewards. Formally, the deep CNN is used to approximate the optimal action-value, which is
the maximum sum of discounted rewards achievable by a behavior policy 7 = P(al S) :

Q*(s,a)=MaxE| 1+, +7°L,, +..[5 =58 =27 |

+ RL is known to be numerically unstable when NNs are used to approximate Q functions; this is
largely due to (2) issues: (1) many data sequences of state action pairs are highly correlated; (2)
minute updates in Q-value approximations can significantly impact the behavior of an optimal
policy.

» To get around these potential shortcomings, the authors propose: (1) the use of ‘experience
replay’ that randomizes over the data and thus removes many data correlations; and (2) the use of
iterative updates to Q-values that are only periodically updated.
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+ Model Architecture (cont’d):

+ In previous approaches, researchers applied NNs to approximate QQ-values using histories + actions as
inputs to the NN. This scheme presents a significant drawback, however, since a separate forward pass is
required to compute the Q-value for each individual action.

- Instead, in the current method, the outputs correspond to the predicted Q-values of the individual actions

for the input state. This presents a significant computational advantage over previous methods; Q-values

are accordingly computed for all possible actions in a given state with only a single forward pass through
the network.
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Deep Reinforcement Learning
- Model Architecture (cont’d):

» The input to the NN consists of an 84x84x4 image produced by the preprocessing map.
» The first hidden layer convolves 32 filters of size 8x8 with stride 4 and applies a RELU.

» The second hidden layer convolves 64 filters of size 4x4 with stride 2, again followed by a
RELU.

» The third hidden layer convolves 64 filters of size 3x3 with stride 1, with RELU.

» The final hidden layer is fully-connected and consists of 512 rectifier units. The output layer is
a fully-connected layer with an output for each action. The number of valid actions varies
between 4 and 18 in the games considered.

Jeep Q-Network

. ¢ 1st hidden 2nd hidden 3rd hidden bt
P layer layer layer aarl ke

{‘T-‘:\'.:“ % (G)l A\I | ’Ill l

:\\ ( ‘) (8¢, @ 1)
\: ., fully : fully 2

: nected : (;)I.\,.ll |

connected :connecte

T 1ax4x16 filter ™. :
i stride 2 Wp

84x84x4 20x20x16 9x9x32 256 4~18
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Algorithm Details:

Sequences of actions and observations, §,= x,d,,X,,...,d, ;,X, are input to the algorithm, which then
learns game strategies depending upon these sequences.

This formalism gives rise to a large (but finite) Markov decision process (MDP).

The optimal action-value function in this setting obeys the aforementioned Bellman equation. Normally,
where possible, one would use the Bellman equation as an iterative update for the action-value
approximation.

In practice for large sequence MDPs, this approach is impractical because it requires estimating the
action-value function for each sequence separately, without any generalization.

Alternatively, the authors use a NN, 2:z., a Q-Network (with parameter set ¢) for the approximation:
. Q(s,@,0)=Q*(s,a)

Note that without an efficient state-action value approximation, the number of action pair values is
astronomically large (~1067970)!

The Q-Network is trained by adjusting the parameters 0;at each iteration to reduce the MSE in the
Bellman equation, this yields the loss function:

L(6)= E[(yQ(S,a;f?i))z}rE[V[y]T , with:y=r+ymax_,Q*(s',a’;6)

Differentiating this loss function wrt the weights yields a gradient used in stochastic gradient descent.
Note that state-action sequences are generated off-policy; the behavior distribution is e-greedy.
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- Putting it all together...

+ The agent selects and executes actions according to an e—greedy policy based on Q. The Q-function
works on fixed length representations of histories produced by the pre-processing function ¢.

» The algorithm modifies standard online Q-learning in (2) ways to make it suitable for training a

large NN.

* (1) The authors employ a technique called ‘experience replay’, in which the agent’s experiences at
cach time step ¢=(s,a,7,5,.,) are stored in a data set D,={¢,,...,¢,} pooled over many episodes.

* During the inner loop of the algorithm the authors apply Q-learning updates to samples of
experience, (s,a,1,s")~U(D), drawn at random from the pool of stored samples. (this improves data
efficiency and reduces correlations between samples and the presence of feedback loops in the in
training process).

- By using experience replay, the behavior distribution is averaged over many of its previous states,
thereby smoothing out learning and avoiding oscillations or avoidance in the parameters.

» Note that the uniform sampling gives equal importance to all transitions in the replay memory (a
possible improvement would be to apply a more sophisticated sampling strategy similar to
prioritized sweeping).

* (2) To further improve stability, a separate network for generating the targets (y;s) in the Q-learning
update. More precisely, every C updates the authors cloned the network QQ to obtain a target
network that is used for generating Q-learning targets for the following C updates to Q.
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Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
Initialize target action-value function Q with weights 6~ = 0
For episode = 1, M do
Initialize sequence s, = {x; } and preprocessed sequence ¢, =¢(s;)
Fort= 1T do
With probability ¢ select a random action a,
otherwise select a, =argmax_ Q(¢(s,).a: 0)
Execute action a, in emulator and observe reward r, and image x; ; ,
Set s 4+1==5¢,a1,X: +1 and preprocess @, ., =P(s¢+1)
Store transition (¢,.a,.r,.¢,,,) in D

Sample random minibatch of transitions ( i @,15,0; +1) from D

T if episode terminates at step j+ 1
SeEn= rj+7y maxy Q(cﬁj“.a’: U“) otherwise

2
Perform a gradient descent step on (yj - Q( 8 0)) with respect to the
network parameters 0/

Every C steps reset Q= Q
End For
End For
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Results

The DQN agent performed at a level comparable to that of a professional human games
test across the set of 49 games, achieving more than 75% of the human score on more
than half the games.

The authors’ method was able to train large NNs using RL with stochastic gradient
descent in a stable manner — illustrated by the temporal evolution of two indices of
learning (the agent’s average score-per-episode and average predicted Q-values).
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Mastering the game of Go without
human knowledge

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in

challe: g domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The

tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were
trained by supervised learning from human expert moves, and by reinforcement learning from self - play. Here we introduce

an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game

rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also

the winner of AlphaGo’s pes. This neural network improves the strength of the tree search, resulting in higher quality

move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved
superhuman performance, winning 100-0 against the previously published, champion-defeating AlphaGo.

Reinforcement learning in AlphaGo Zero

https://www.youtube.com/watch?v=53YLZBSS0cc


https://www.youtube.com/watch?v=53YLZBSS0cc




