Advanced Dimensionality Reduction Techniques

CS 446/546

Outline

Overview / PCA recap
SOM (self-organizing maps)
AE (autoencoder)

Spectral Clustering

ISOMAP

Introduction

* Most traditional statistical techniques (e.g. regression/classification) were

developed in low-dimensional settings (1.e. » >> p where 7z 1s the data size and p
is the number of features).

* Opver the last several decades, new technologies have drastically changed the
way that data are collected (see “big data age”). Consequently, it 1s now

commonplace to work with data with a very large number of features (1.e. p
>> 7).

* While p can be extremely large, the number of observations 7 1s often limited
due to cost, sample availability, or other considerations.

Introduction

Data containing more features than observations are typically referred to as
high-dimensional

Issues pertaining to the bias-variance tradeoff and overfitting are commonly
exacerbated in high dimensions.

With a large number of features, statistical models (e.g. regression) can
become too flexible and hence overfit the data.

Recall the curse of dimensionality, which poses two fundamental, associated
problems: (1) “neighborhoods” become very large (this is problematic in
particular for kernel and clustering methods), (2) we need a much larger data
set to adequately “fill” the space for predictive modeling, etc.

00000000
1-=D o o

2-D - 3-D ® °

Interpretability in High Dimensions

In high-dimensional settings we need to be cautious about how we

interpret our results — that is to say if they can be reasonably interpreted at
all.

Of course, it is oftentimes adequate, depending on the application, to treat a
machine learning model as a mere predictive “black box™ (e.g. statistical
arbitrage, government work).

Conversely, if we want to say that the features in our model directly impact
the outcomes we observe (note: in ML, we almost never use the c-word — viz.,
variables caused observed effect) we need to be alert to multicollinearity.

In high dimensions, it 1s very likely that some of our model variables are
mutually correlated. This means we can never know exactly which variables
(if any) are truly predictive of the outcome. Moreover, we can rarely identify
the optimal set of features for a given phenomenon of interest.

Interpretability in High Dimensions

The “first rule” of data science and ML.: one can always add more and
more features to achieve zero classification/predictive error, a perfect
correlation coefficient value, etc.

In the end, however, this is a useless model We always need to report
results on an independent test or validation set.

In 2008, Hinton ef a/, developed a non-linear dimensionality technique known
as t-SINE (t-distributed stochastic neighbor embedding) that 1s particularly well-suited
for embedding high-dimensional data into 2 or 3 dimensions, which can be
visualized with a scatter plot.

Specifically, it models each high-dimensional object by a two- or three-dimensional
point in such a way that similar objects are modeled by nearby points and
dissimilar objects are modeled by distant points.

Dimensionality Reduction

* In general: the higher the number of dimensions we have, the more training data
we need.

e Additionally, computational cost is generally an explicit function of
dimensionality.

* Dimensionality reduction can also remove noise in a data set, which can, in
turn, significantly improve the results of a learning algorithm.

These are perhaps the strongest reasons why dimensionality reduction is useful
(in addition to improving visualization/interpretability).

In general, there are (3) common ways to perform dimensionality reduction:

(1) Feature selection — determine whether the features available are actually useful,
1.e. are they correlated with the output variables.

(2) Feature derivation — means deriving new features from old ones, generally by
applying transforms to the data set that change the coordinate system axes (e.g.,
by moving or rotating); this is usually achieved through matrix multiplication.

(3) Clustering — group together similar data points to see whether this allows fewer
features to be used.

Rifs\

PCA generates a particular set of coordinate axes that capture the maximum
variability in the data; furthermore, these new coordinate axes are orthogonal.

The figure shows two versions of the same data set.

o

/.:

VA

v

* In the first image, the data are arranged in an ellipse that runs at 45° axes; while in the
second, the axes have been moved so that the data now runs along the x-axis and 1s
centered on the origin.

e Key idea: the potential for dimensionality reduction rests in the fact that the y dimension
now does not demonstrate much variability — and so it might be possible to ignore it and
simply use the x axis values alone for learning, etc.

(*) In fact, applying this dimensionality reduction often has the nice effect of removing some
of the noise in the data.

PCA
Z =cov(X)=EDE'

* Note: In the eigendecomposition for cov(X), the dimensions with large eigenvalues have

lots of variation and are therefore useful dimensions.

* In order to perform a dimensionality reduction on our data set, we can therefore throw
away dimensions for which the eigenvalues are very small (usually smaller than some

chosen parameter).

Original dataset Reconstructed data after PCA

- |

Rifs\

* Here 1s the PCA algorithm:

(1) Write N data points X,=(X;;,Xy;,- - -,X)p;) 25 TOW VECtOTS.
(2) Put these vectors into the data matrix X (of size N x M).

(3) Center the data by subtracting off the mean of each column, place into matrix B.

1

(4) Computer the covariance matrix: = BBT

-
(5) Computer the eigenvalues and ezgenvectors ot C, so: C=VDV

where D is the diagonal matrix of eigenvalues; V is the matrix of corresponding eigenvectors.

(6) Sort of the columns of D into order of decreasing eigenvalues, and apply the same order to the
columns of V.

(7) Reject those with eigenvalues less than some given threshold, leaving I. dimensions in the data.

PCA for MNIST

MNIST Dataset reduced to 2 Components using PCA

Component 2

-4 -3 -2 -1 0 1
Component 1

PCA vs. LDA

PCA: LDA:

component axes that maximizing the component
maximize the variance axes for class-separation
bad projection xx Xxx xx xxx
A1 xx,,;x % xx xxx xx

good projection: separates classes well

Extending PCA

Q: What strong assumptions did we make about the surface for the directions of maximum
variation with PCA?

A: We assumed these surfaces of maximum variation are straight lines (this is a strong
assumption!)

QQ: How can are break the linear restriction for PCA?

A: “Kernelize” PCA!

linear PCA kernel PCA
\T R S R’ L A
B : -' . : - - '::: -
. - ,'_\'x .x - _,.x = x.xx S = : - _.h
b Y F
‘ - k(xy) = (xy) k(x,y) = (xy)

Fig. 1. Basic idea of kernel PCA: by using a nonlinear kernel function k instead of
the standard dot product, we implicitly perform PCA in a possibly high—dimensional
space F' which is nonlinearly related to input space. The dotted lines are contour lines
of constant feature value.

Kernel PCA

(*) All we have to do is express the covariance matrix C (recall this was the covariance of the
data matrix X after centering) in terms of a kernel transformation:

CzﬁiZN_l:d)(xn)-d)(xn)T

(*) Next we compute the eigendecomposition ot C and use the eigenvectors with the largest
associated eigenvalues for PCA.

(*) Recall (from SVM lecture) that by using a kernel function we implicitly perform a dot
product in a larger dimensional feature space (this is the crux of the kernel trick), with
the upshot of enhanced expressiveness.

PCA

U. ”‘f : . 15 :‘ .“f pCA

~'.5',' . o2 ™ ¢ ’ 04
0 e o 02 ;
Bintrl x o O 8 ot 3 e %
0 o Sk R © Kernel g ., 3 %
o R @ v e)
E 0 i &

t-SNE: H-D Data Visualization

First, t-SNE constructs a probability distribution over paits of high-dimensional
objects in such a way that similar objects have a high probability of being picked,
whilst dissimilar points have an extremely small probability of being picked.

Second, t-SNE defines a similar probability distribution over the points in the low-
dimensional map, and it minimizes the KL divergence (a standard measure of
“distance” between probability distributions) between the two distributions with
respect to the locations of the points in the map.

~—~ P(1)
Dy (P|Q) = P(1)In —=
KL ¢ L 0G)

D, (PO)

L4

DiiL(PlQ) = S _plx)logg(z) + . plx)logp(x)
H(P,Q) H(P)

S~ oI D IS 0N
[] [] [] ® L]

t-SNE for MNIST

el 1

©©0 0000000000000 0000C00000000G
coccococcococcococcocccoccccccoooco0o0o
©© 000000000000 00000C0000000GG
©0P 0000000000000 0000000000000
000000 J00000000000000000000
cococooobiNocooooocooor88Beococooe
cccococ2gy5fsoccccongiBEIErcoe
Hecdzt 28382 v¥3is
cococo8ferditococo28B88L89¥3so000
coccocolBoowBFgoco2Z28moococbBoooe
cococoiBecoooif§B8B588cco0o0egBoeoce
cocococoBBocooor¥FRB8Roo0co0o0o0o0g8gBooo
cccco3BococcopNFlEccccccocfBooo
g 28285 58
coccococffocco28EB8F8ccccogzgBoce
cococof¥rmoonBIRo2Z8558I2vooco
ceccoccg@renfiBoccogtitBRoccoce
cococovw8gREZEococococo0o0coco000co00000
cococococo3fif8roccoccococcoooocooe
coccoccocozB8iccoccooccococcococoocoe
coccococcoccccocc00c0000000000000
coccocococococccoccoccocoocococo0000000
ceccococccecocccoccocc0c0c0000000
cocococococococccccccooc0c0c0000000

28x28
784 pixels

i

gennenet

v

t-SNE for Ataril (Deepmind)

3 2 [e] [e] [e) [¢] [¢] (e] [e] [e]
5 <« A E L E L
m L3 B K Ed B4 B R 3
£

& X

8 .

S :

2 FEET N AR S R S
I

o

2

8 DD VIPUD V.
3 AN

& / N

8 y

S \

z R S e e)
2

5 . | O]]

3

S

H

5

8

Convolution
v
o |

Word2vec (2013)

* Word2vec is a group of related models (Google) that are used to produce
word embeddings.

* These models are shallow, two-layer neural network that are trained to
reconstruct linguistic contexts of words.

* Word2vec takes as its input a large corpus of text and produces a vector
space (usually of high dimensions), with each unique word in the corpus
being assigned a corresponding vector in the space.

* Word vectors are positioned 1n the vector space such that words that
share common contexts in the corpus are located in close proximity to
one another in the space.

Country and Capital Vectors Projected by PCA
2 T T T T

Beijing
Load up the word vectors So + 15}k Rt

OUEEN pu ik
K
05
T, =
KING \}‘ ING Poland:

05 Italy:

t-SNE for word2vec

Relations Learned by Word2vec

Word2vec model computed from 6 billion word corpus of news articles

Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo Norway hoh.day
All capital cities Astana Kazakhstan Harare Zimbabwe
o 2 ANz . 14 Christmas
Currency Angola kwanza Iran rial Me"mgran ® ¢, gamadan
City-in-state Chicago Illinois Stockton California # ° ©
b © ; M t Pentecost
Man-Woman brother sister grandson | granddaughter A"ggci’i‘oteszgnt o Kisbir
— - - Roman_CatholiReformed €y B -."p
Adjective to adverb apparent apparently rapid rapidly Opope © ri nor
Opposite possibly impossibly ethical unethical Bible
Comparative great greater tough tougher mlerrwﬁhgue T°’5"gy %gg%?“e chemﬂ%r?%%m WS'Cﬁ(
Superlative easy easiest lucky luckiest |5‘am1‘”. temple e i
. . Ny .) olo ?W Yy
Present Participle think thinking read reading SCIengIIOﬁ"*.‘W.‘I"'W R gyhef"ar‘c
x " & " - . 2 geriatric_me: ﬂm"mw
Nationality adjective || Switzerland Swiss Cambodia | Cambodian netlc! rbgmzteommgy Taekwon_Do ndigRe
s ’ alki ralke e E SW2 Hindulgdhism . ° he
Past tense walking walked swimming swam setsin cendir Sl 8'.‘ m: preventive_m amu,gy NW!RWW”QY ke"dpwate |°,.l S r®
Plural nouns mouse mice dollar dollars sexism ® F gnfﬁm onamlég‘g ww ! clay_| pngeon shooting
i) ' . mee ragemMnation . . > W musical
Plural verbs work works speak speaks e o cens:rsmp relro.unal ‘g’;ogmphy wgr etta sTRAE l‘ém“‘-“"“i(“
chera
] i o 2 { ¥ ” R i} slavery concordat Kkind demographlcs °Pe’3 boxing *° _.takn:\;; ue
Efficient Estimation of Word Representations in Vector Space” Tomas Mikolov, Kai) mankin s A .. wreafieid kabgdd TG @
2 civil_rights values lw@(It
Chen, Greg Corrado, Jeffrey Dean, Arxiv 2013 N e #af(@me‘v'”m'cs SO ha@sophy°™I%2" oi=ve. c.assica[_mu%e iy 5‘“’*“‘?3‘ Sgbaseball
iystice constitution dlks'y". .MG"""‘“'“""‘ LR da;:é:: e s
democra 'y ° dmuta _schoo) ker w_w
dl:tatom V"°n ‘} dfama Vi hurling © @ ecricl ° er_polo
Riciary mountaigs, ities k L] im [2
a‘gbal wams 'y S) educatldtac chool bby @ roller_hockey
parliam rivers 2, G L4 shinty Bugby_sevens
isters nanctechnoluq, Tsity en anna ,._(a itecture) rba® hand|
acekeepin fal’é? o, o g 0pg” ° .
?'ﬁﬁeé ks s 9. et MW °"Ege >, " Uestrniom i
invasive_sj Pe o il bullfighting
p® in band 8ige Iog 'y
war endanfered_spe '?ﬁ disabled pointinare @ 2
abomon { coh d tl adults [[l ting
eutha® divorce. e e ¢ horticulture ;ly< Do i PLAL ifSting rreestﬂ’
seffEEE B gl B amore i o soc nemor%.w iy Selgton M% sk,:e.mm@?mg
coal etmcs vaccines
{
3 AnulLoss 1,8 pharmeutical oo - ‘ﬂ%ﬂ?a‘cefcm ’f”ﬁ” tramgiten pentatrqa Nordlc c,sking ’Af’r':'c';ﬂm"g
marriage ° wlallon ® park drawing mountaineering
taxan “# me e pool qmmqamuatam bRing
sating. dlsor%g pfescm%oﬂ’uégs L] J6PEr furmiturd®™'g 9 Fincng rmtorci irsvin
' welfary nimal @ e svomngqooqa, e R swifpniin
illegaingratioants addi®ionearigditease retraln}re\ﬁuces ﬁea ith watd® y thmg & [rfin®
L’“& » o umcable dls’;aﬁ e harﬂlﬁes gk < cyclo_cross rowing_ 9
epigemfercer occupati p taijuc 99 “%’e"""."."""“ mrwﬁﬂe"’ \MSWG
mmms . 1’;:5 empfbyment msurace @R fzge& d"nks eiec[rom;ﬁem pt
Iy T
Unemmﬂym&a hazal P ‘ﬁ??olesale gam maus metal ol ﬁ‘m%chakgﬁless J;alr .mu‘ig\m" Jegatta
porn &W"e dalkabehy unigrike 4 . gatering shlpbuglldmg q‘miu'eunus y
famine .'msgm ® mortgage P°g°! Jeielire T i
drug_t (raft‘tﬂnsg .o:gh(mallﬁ&k"ﬁese.'sf”ﬂ*ﬂut"&vel "0(.9'5 e pa (as:'"g &‘leﬁlsgggns
tefrorSMmioterrorism giaster bonds' Hugsm ® Jotng e
WIB#M o e 1l E®ent: . bar nightclub
- corruption e% uake mutua n.e % weather ° esta#mgglmgerenda
: 3 ident Y lon calf_roping
vokcanic eruﬁmﬁ winds®rms cafe Gleo®
priberieft ® exploSion shareholder . L Formula One m&?d. brnn
iberghet Y
; ment Ie\ﬁra?é&fﬁﬂ!ﬁ)t defense avalasche A
nst bombings stogkimggack @ itigation gﬂ‘%ﬁa@g
. ® e i courbgration
prices lawmﬁmpnson e o
i .
° [) arson fire witness Jai_Alai
fl [\ogﬂc:d@ 2 ey adifig 3 S reesacining
deflation
inﬂ:lon ® sexua ke o Qﬂw@?’g
HEht kidna g
messtag ey e h‘jac.k{; A
tariff
(]

Medicaie
[}

Selt-Organizing Maps (SOMs)

* To date, we have only considered applications of NNs for supervised
learning, however, there exist several applications of NNs for unsupervised

learning, including self-organizing maps (SOMs, 1988, Kohonen).

* In the unsupervised setting (e.g., k-means), we wish to identity
meaningful data patterns in a se/f-organizing fashion (viz.,

without the use of labels). This process is often referred to as
learning a feature map — that is to say, a compression scheme
that illuminates structurally significant input features.

* Stated concisely, SOMs provide a way of performing dimensionality reduction
using vector quantization. Furthermore, SOMs are unique in that they preserve
topographic network properties that mimic biological processes in the brain.

Selt-Organization & Complex Systems

(*) Self-organization is a process where some form of overall order arises from local interactions
between parts of an initially disordered system. The process is spontaneous, not needing control by any
external agent. It is often triggered by random fluctuations, amplified by positive feedback. The resulting
organization is wholly decentralized, distributed over all the components of the system. As such, the
organization is typically robust and able to survive or self-repair substantial perturbation.

Self-organization occurs in many physical, chemical, biological, robotic, and cognitive systems. Systems
formed from self-organization processes often exhibit emergent behavior.

Topographic Maps & The Brain

* Neurobiological studies indicate that different sensory inputs (motort, visual, auditory, etc.) are

mapped onto corresponding areas of the cerebral cortex in an orderly fashion. This form of

map, known as a topographic map has (2) important properties:

(1) Each piece of information is kept in its proper context/neighborhood;

(2) neurons dealing with closely-related pieces of information are kept close together so that
they can interact using short synaptic connections.

(*) SOMs train an artificial topographic map through self-organization in a neurobiologically
inspired way, abiding by the principle of topographic map formation: “The spatial location of
an output neuron in a topographic map corresponds to a particular domain or feature drawn
from the input space.”

Electrical stimulation

PART-BASED RESPONSES é

Motor cortex: —___
movement i

Somatosensory cortex:
somatic sensation

| 1apnoys
pesH

'sxaﬁugj
pueH
wy

C Right visual field stimulation Left visual field stimulation @ s o)
Left hemispheric channels - - Right hemispheric channels s Lips Yo) ;/TOGS
- u .

Whole Gap
Ty a
A4 b

Misaligned ’ Whole
-

- 5
)
w "

5

Tongue

: on
I 1 - Tongue @
Gap Misaligned Swallowin&,
as -

&

- - - Motor cortex Somatosensory cortex
& h—4 A4

http://jov.arvojournals.org/article.aspx?articleid=2121362

SOMs: Overview

* The goal of a SOM is to transform the incoming signal pattern into a lower dimensional
discrete map, and to perform this transformation adaptively in a topographically-ordered fashion
(so that neurons that are close together represent inputs that are close together, while neurons

that are far apart represent inputs that are far apart).

* SOMs utilize a class of unsupervised learning techniques known as competitive learning, in
which output neurons compete amongst themselves to be activated, with the result being that

only one is activated for a given input.

* This activated neuron is called a winner-takes-all neuron (also: winning neuron). Neurons
become selectively tuned to various input patterns during the course of competitive learning.

We have points x in the input space mapping to points /(x) in the output space:

Continuous Feature e s ’ '
Map @ O O O O O O e O R0

High Dimensional
Input Space 0 R/ O-—0 .O .O O .O
O 0-0-0 00

00000000

Discrete

Low Dimensional
Output Space

Each point / in the output space will map to a corresponding point w(/) in the input space.

SOMs

* Note that with SOMs, the relative locations of the neurons in the network matters (nearby
neuron correspond to similar input patterns) and the neurons are arranged in a lattice /grid
(usually in 1-D or 2-D) with connections between the neurons, rather than in layers with
connections only between different layers (as with the previous NNs we’ve seen). Each neuron 1s
fully connected to all the source nodes in the input layer.

* Each node has a specific topological position (an (x,y) coordinate in the lattice) and contains a
vector of weights.

* For training, neurons are tuned to conform with the topographic map criteria; in this way, the
winning neuron should pull other neurons that are close to it in the network closer to itself in
weight space, whereas neurons that are very far away should be ignored.

Sizex

=,
\

Yy

ol
N

input vector

SOM Algorithm

The Self-Organising Feature Map Algorithm

¢ Initialisation
— choose a size (munber of nenrons) and mnober of dimensions d for
the map
— FEitlwer:

* choose random values for the weight vectors so that they are
all differemt OR
set the weight values to inerease in the direction of the first d
principal components of the dataset
s Learning

= repeat:
* for each {lat.upnillt.:
« gelect the best-matehing neuron ng, using the minimun Ea-

clidean distance between the weights and the input,

rg = inin ||x - w:" (9.8)
¥

« update the weight vector of the best-matching node using:

w;r e w,T bl (x ~ w;r). (9.9)
where n(t) is the learning rate.

« update the weight vector of all other neurons using:

wl —w] 4 na(t)h(ng, t)(x — w]), (9.10)
where 5,,(1) is the learning rate for neighbourhood nodes, and
h(ng, t) is the neighbourhood function, which decides whether
each neuron should be included in the neighbourhood of the
winning neuron (so & = 1 for neighbours and h = 0 for non-
neighbours)

+ reduce the learning rates and adjust the neighbourhood fune-
tion, typically by n{t + 1) = an(t)*/ % where 0 < a < 1
decides how fast the size decreases, k is the number of itera-
tions the algorithm has been running for, and Ay, is when you
want the learning to stop. The same equation is used for both
learning rates (17, i,) and the neighbourhood function h(my,).

~ until the map stops changing or some maximum number of itera-
tions is exceeded

¢ Usage

~ for each test point:

» select the best-matching neuron ny using the minimmum Eu-
clidean distance between the weights and the input:

ny = min ||x = w | (9.11)
J

SOM Algorithm: Overview

(D) Initialization: network parameters: determine number of neurons, dimension for the map (d)
-- can use a random initialization or begin with, say the PCA algorithm, using first 4 principal

components.

SOM Algorithm: Overview

(D) Initialization: network parameters: determine number of neurons, dimension for the map (d)
-- can use a random initialization or begin with, say the PCA algorithm, using first 4 principal

components.

(II) Learning: P

(a) For each data point, select best-matching neuron (1), using minimum
Huclidean distance.

(b) Update weight vector of n,: WTJ- S WTJ- o 79 (t) (X E WTj)
this update has the effect of moving the weight vector of n, closer to the datum), the learnin
% g g b g

rate 7(t) 1s decreased over time.

, SOM Algorithm: Recap
(IT) Learning:

(a) For each data point, select best-matching nenron (), using minimum
Euclidean distance.

(b) Update weight vector of ny: WTJ- - WTj i n(t)(x —WTj)
(this update has the effect of moving the weight vector of n, closer to the datum), the learning

rate 7)(t) is decreased over time. g g

(c) Update the weight vector of all other neurons using: W «— W +n, (t)h(n,,t)(x —WE)

where 7, (t) 1s the learning rate for the neighborhood nodes, and A(ny,t) is the neighborhood
function with respect to node n;, which decides whether each neuron should be included in the

neighborhood of the winning neuron (e.g. n=1 for neighbors and n=0 for non-neighbors — or a
Gaussian function can be used).

, SOM Algorithm: Recap
(IT) Learning:

a) For each data point, select best-matching neuron (n,), using minimum
(2) point, 4 b)> USING
Euclidean distance.

(b) Update weight vector of ny: WTJ- - WI i (t) (X — WTj)
(this update has the effect of moving the weight vector of n, closer to the datum), the learning

rate 7)(t) is decreased over time. g g

(c) Update the weight vector of all other neurons using: W «— W +n, (t)h(n,,t)(x —WE)

where 7, (t) 1s the learning rate for the neighborhood nodes, and A(ny,t) is the neighborhood
function with respect to node n;, which decides whether each neuron should be included in the
neighborhood of the winning neuron (e.g: n=1 for neighbors and n=0 for non-neighbods — or a
Gaussian function can be used).

(d) Reduce the learning rates and adjust the neighborhood function (neighborhood size
decreases over time).

0oBe8eedeCoc
300000000 0C ooooo
0000ee0:
0000060000
©0000C0C0a

neighboorhood size

. decreases over time
h(n,,t) function

, SOM Algorithm: Recap
(IT) Learning:

a) For each data point, select best-matching neuron (n,), using minimum
(2) point, 4 b)> USING
Euclidean distance.

(b) Update weight vector of ny: WTJ- - WTj i n(t)(x —WTj)
(this update has the effect of moving the weight vector of n, closer to the datum), the learning

rate 7(t) is decreased over time. §

(c) Update the weight vector of all other neurons using: W «— W +n, (t)h(n,, t)(X —WE)

where 7, (t) 1s the learning rate for the neighborhood nodes, and A(ny,t) is the neighborhood
function with respect to node n;, which decides whether each neuron should be included in the
neighborhood of the winning neuron (e.g: n=1 for neighbors and n=0 for non-neighbods — or a
Gaussian function can be used).

(d) Reduce the learning rates and adjust the neighborhood function (neighborhood size
decreases over time).

0oBe8eedeCoc
30000B0QB0CC

(III) Testing:

For each test point select best-matching neuron: SORRERRPY - o

i, = m_ion—wTj H
J

neighboorhood size

. decreases over time
h(n,,t) function

SOM vs PCA

YWariance
LUnexplaine

& g @ 23.23%
e ®e 5 $go * @ SOM F.B6%

One-dimensional SOM versus principal component analysis (PCA) for data
approximation. SOM is a red broken line with squares, 20 nodes. The first principal
component is presented by a blue line. Data points are the small grey circles. For
PCA, the fraction of variance unexplained in this example is 23.23%, for SOM it is

6.86%.

SOM for Semantic Maps

sells visits works . phones . Mary
buys . speaks . Jim
eats cat
Bah
runs dog
. drinks . horse .
bread
meat
much :
poorly . little often fast
well . seldem slowly .

Semantic network (SOM) detects “logical similarity” between words based on
statistics of their contexts (e.g. word order).

https://www.semanticscholar.org/paper/Self-organizing-semantic-maps-Ritter-
Kohonen/7e6429291b65b4984a461350f7a07a3aflaf7029

SOM for Atmospheric Science

30
0

(@)

SOM of sea level pressure anomaly patterns; different days fall into different

categories, allowing researchers to attribute causes for variation with greater

specificity.
https://www.intechopen.com/books/applications-of-self-organizing-maps/self-
organizing-maps-a-powerful-tool-for-the-atmospheric-sciences

SOM tfor Medical Diagnosis

Feature Extraction Clustering Classification

MRI acqu|smon Input vectors Defining regions of interest
Calculation of 7 DTls [X1, X2, X, X0, X5, Xe, X7] <— 3D-T1
Intensity Normalization ‘
Batch-Learning ——
‘ o 0 o ‘ ’

Calculation of a class ratio

l Self-organizing map (SOM) 1 Log scaling

K-means clustering on SOM .:.:ED
R |:> . }

J Leave-one out cross validation

Log-Ratio Value
Subjects 1,....n

- Feature Extraction

Support Vector Machine (SVM)

Subjects 1,...,n 1 Calculation of clustering maps
eg.K=6

l Stacking

Input vectors for clustering
[X1, X2, X3, X4, X5, Xe, X7]

DTl-based clustered Image (DTcl) | | L> Decision (Low or High)

Pipeline used to predict glioma (tumor) grade and subsequently guide therapeutic
strategies. First MRI data is acquired, the data was clustered in (2) steps beginning
with an SOM, followed by k-means; lastly classification between high and low
gliomas was done using an SVM.

https://www.nature.com/articles/srep30344

Dimensionality Reduction with
Autoencodetrs

* Hinton et al., devised a non-linear generalization of PCA that uses adaptive,
multilayer “encoder” networks to transform high-dimensional data into a
low-dimensional code and a similar “decoder” network to recover the data
from the code.

https://www.cs.toronto.edu/~hinton/science.pdf

Dimensionality Reduction with
Autoencoders

* Note that PCA is intimately connected with MLPs.

(*) An MLP can perform (non-linear) PCA using what 1s called an auto-associator (more
commonly: auto-encoder).

(*) If we train the MLP where the output equals the input, we are asking the network to
learn a data “reconstruction” process; we therefore train to minimize the reconstruction error.

(*) Usually the hidden layers are smaller in dimension than the output/input layers so that
they form a compression “bottleneck”.

“botileneck” hidden layer

(*) The activations at the hidden layers \ l /

(i.e. the feature vectors) Encode a ~~—

T

/alllayers are fully connected but not\

drawn

input layer output layer

(reconstruction of input layer)

dimensionality reduction of the data.

PCA & Auto-encoders: Image
Denoising

Original
iiiii

Encoder

—>E—> Decoder —>
Reconstructed
input

eeeeeeeeee
representation

The image
shows how a
"denoising"
autoencoder
may be used to
generate correct
input from
corrupted input.

corrupt input

ORI 7EEL | [B10E50
GIGIOI0I¥IYER TIS]S
MME S EEATEO
AR 9 L | DI KBS
SISEAIOEH 9 E 1A 7
HI19] 2] 21818109
7N 1])] 61010
=] 1) K i i i FY R A
OIOI31 311415191419
/p?ﬂﬂﬂﬂ@@ﬂﬂ

cleaned input

Dimensionality Reduction with
Autoencoders

* It is difficult to optimize the weights in nonlinear autoencoders that have multiple
hidden layers (2—4). With large initial weights, autoencoders typically find poor local
minima; with small initial weights, the gradients in the early layers are tiny, making it

infeasible to train autoencoders with many hidden layers.

“botleneck” hidden layer
N~)
| \ / |
T

/alllayers are fully connected but not\

drawn

input layer

Dimensionality Reduction with
Autoencoders

* It is difficult to optimize the weights in nonlinear autoencoders that have multiple
hidden layers (2—4). With large initial weights, autoencoders typically find poor local
minima; with small initial weights, the gradients in the early layers are tiny, making it
infeasible to train autoencoders with many hidden layers.

o If the initial weights are close to a good solution, gradient descent works well, but
finding such initial weights requires a very different type of algorithm that learns one
layer of features at a time.

* Hinton ef a/. introduce a pretraining procedure for binary data, and generalize it to real-

Vahled data. “botleneck” hidden layer
. / \\\ s
/alllayers are fully connected but not\
drawn

input layer

Aside: Restricted Boltzmann
Machines (RBMs)

* RBMs are shallow, two-layer neural nets that constitute the building blocks

of deep-belief networks (the layers of which can act as feature detectors). The first layer
of the RBM is called the visible, or input, layer, and the second is the hidden
layer.

Two Layers
visible hidden
layer layer

O00O0
X X

Aside: Restricted Boltzmann
Machines (RBMs)

* RBMs are shallow, two-layer neural nets that constitute the building blocks
of deep-belief networks (the layers of which can act as feature detectors). The first layer
of the RBM is called the visible, or input, layer, and the second is the hidden

layer.

* The nodes are fully connected across the layers — but there are no intra-layer
connections (this is the indicated restriction in the RBM); the underlying graph
is, in other words, bipartite.

Aside: Restricted Boltzmann
Machines (RBMs)

* Each visible node takes a feature from the input (just as with perceptrons,

NN, etc.
’) Multiple Inputs

visible hidden activation
layer layer function
X
+b » / =23
X
input +b + _/ =a
X
+b »+ _/ =a
X
wW; .. W

* As usual, at each hidden node, each input x is multiplied by its respective
weight w. Each hidden node recetves the inputs multiplied by their respective
weights. The sum of those products is again added to a bias, and the result is
passed through the activation algorithm producing one output for each hidden

node.

Aside: Restricted Boltzmann
Machines (RBMs)

* For reconstruction, the activations in the hidden layer now become the input for

backward phase.

* They are multiplied by the same weights, one per internode edge, just as x
was welight-adjusted on the forward pass. The sum of those products is added
to a visible-layer bias at each visible node, and the output of those operations
is a reconstruction; i.e. an approximation of the original input.

Reconstruction

visible hidden
these biases are new Iayer layer 1
r= b +
<+ 3
i — - . ¢
reac?nfr:ruﬁg&"ls r=b activations
eome : a are the new
pu r=b+ input
a
r=b+
Wi o Wy

weights are the same

Aside: Restricted Boltzmann
Machines (RBMs)

* For the forward phase we can think of the RBM as using the inputs to make
predictions about node activations, i.e. P(a|x,w).

*Conversely, in the backward phase, because the activations are fed in and
reconstruction approximations are outputted, this phase can be as summarized
as approximating the distribution: P(x | a,w).

* Together, then, these two estimates together represent the joint distribution:
P(x,a|w).

Reconstruction

visible hidden
these biases are\n:w layer layer 1
r=b+
<+
: . %
re;onts':rucr:‘tnons r=b activations
reome tew a are the new
pu r=b+ input
a
r=b+
Wi .. Wy

weights are the same

Aside: Restricted Boltzmann
Machines (RBMs)

* The reconstruction process 1s making guesses about the distribution of the
input. Consequently, reconstruction is an instance of generative learning.

e Since RBMs are learning to reconstruct the input, we can think of an RBM as
minimizing the “difference” between the input (distribution) and
reconstruction (distribution).

* Put another way — the RBM works to minimize the KL divergence of these
two distributions.

p(x) | >.‘__ q(x)

)3

Aside: Restricted Boltzmann
Machines (RBMs)

* The process of learning reconstructions is, in a sense, learning which groups
of pixels tend to co-occur for a given set of images.

*If, say, an RBM were only fed images of dogs and cats (with only two output
nodes, one for each). The question the RBM is asking itself on the forward
pass 1s: Given these pixels, should my weights send a stronger signal to the dog
node or the cat node? And the question the RBM asks on the backward pass is:
Given, say, a dog, which distribution of pixels should I expect?

Aside: Restricted Boltzmann
Machines (RBMs)

* The process of learning reconstructions is, in a sense, learning which groups
of pixels tend to co-occur for a given set of images.

*If, say, an RBM were only fed images of dogs and cats (with only two output
nodes, one for each). The question the RBM is asking itself on the forward
pass 1s: Given these pixels, should my weights send a stronger signal to the dog
node or the cat node? And the question the RBM asks on the backward pass is:
Given, say, a dog, which distribution of pixels should I expect?

* Note that RBMs have two biases. This is one aspect that distinguishes them
from other autoencoders. The hidden bias helps the RBM produce the
activations on the forward pass (since biases impose a floor so that at least
some nodes fire no matter how sparse the data), while the bias in the visible
nodes helps the RBM learn the reconstructions on the backward pass.

Aside: Restricted Boltzmann
Machines (RBMs)

* Once the RBM learns the structure of the input data as it relates to the
activations of the first hidden layer, then the data is passed one layer down the
net.

* The first hidden layer takes on the role of visible layer. The activations now
effectively become your input, and they are multiplied by weights at the nodes
of the second hidden layer, to produce another set of activations.

Aside: Restricted Boltzmann
Machines (RBMs)

* Once the RBM learns the structure of the input data as it relates to the
activations of the first hidden layer, then the data is passed one layer down the
net.

* The first hidden layer takes on the role of visible layer. The activations now
effectively become your input, and they are multiplied by weights at the nodes

of the second hidden layer, to produce another set of activations.

* This process of creating sequential sets of activations by grouping features

and then grouping groups of features is the basis of a feature hierarchy, by which

neural networks learn more complex and abstract representations of data.

* With each new hidden layer, the weights are adjusted until that layer is able to
approximate the input from the previous layer. This is greedy, layer-wise and
unsupervised pre-training. It requires no labels to improve the weights of the
network, which means you can train on unlabeled data, untouched by human
hands, which is the vast majority of data in the world.

Aside: Restricted Boltzmann
Machines (RBMs)

* RBMs are one example of so-called energy-based models in ML (e.g. szzzulated
annealing, Ising model) — meaning that they are (loosely) analogous to physical systems
for which “stable” states (sometimes called basins of attraction/ attractors) represent
low-energy configurations of the system.

RBMS are typically trained with an algorithm called Contrastive Divergence®
(details omitted here for brevity).

* Once an RBM is trained, another RBM is "stacked" atop it, taking its input from
the final trained layer. This forms a Deep Belief Network DBN). The fact that
DBNss can be trained greedily, one layer at a time, led to one of the first

effective deep learning algorithms.**

*http:/ /www.cs.toronto.edu/ ~fritz/absps/cdmiguel.pdf
**http:/ /www.iro.umontreal.ca/ ~lisa/pointeurs/TR1312.pdf

Aside: Restricted Boltzmann
Machines (RBMs)

* One can sample from a trained RBM in order to generate reconstructed samples —
Hinton equated this with the algorithm “dreaming.”

* More formally, Gibbs sampling can be used to generate these samples by
beginning with the hidden layer (for some 1initial, random string), sample the visible
layer, generating a new string and then repeat this process for many iterations.

Aside: Restricted Boltzmann
Machines (RBMs)

Human names

Here are some samples drawn from a model trained on the full names of 1.5m actors from IMDB (more here):

omar vole

r.j. pen

ronald w. males
jean-paul recan
marxel sode
samuel j. wvarga
licnel cone

Some examples from an order-4 model trained on the US place nhames dataset:

Bonny Maringer City of Lake
Sour Motoruk Mountain

Mount Branchorage Lakes
Duck Kill Bar Rock

Goatyard Point

Noblit Hollow

Spenceton

Jay Canal Cemetery
Oriflamming Beach

Dimensionality Reduction with NNs*

* An ensemble of binary vectors (e.g,, images) can be modeled using a two-layer
RBM in which stochastic, binary pixels are connected to stochastic, binary feature
detectors using symmetrically weighted connections.

* The pixels correspond to “visible” units of the RBM because their states are
observed; the feature detectors correspond to “hidden’ units. A joint
configuration (v, h) of the visible and hidden units has an energy given by:

- > bvi— > bh ZvIJ ”
i€ pixels J € features
where v; and h, are the binaty states of pixel 7and feature /, b, and b; are their biases,
and w;; is the weight between them. The network assigns a probability to every possible
image via this energy function (as we explained previously).

* The probability of a training image can be raised by adjusting the weights and biases
to lower the energy of that image and to raise the energy of similar, reconstructed
images that the network would prefer to the real data.

*https://www.cs.toronto.edu/~hinton/science.pdf

Dimensionality Reduction with NNs

* Given a training image, the binary state h; of each feature detector j is set to 1
with probability o(b, a2 v,W;;), where o(x) is the logistic function, b, is the bias of
J» v; is the state of pixel i, and w; is the weight between 1 and j.

*Once binary states have been chosen for the hidden units, a “confabulation” 1is

produced by setting each v; to 1 with probability o(b; +] 2 hwy;), where b is the

bias of 1. The states of the hidden units are then updated once more so that they
represent features of the confabulation. The change in a weight 1s given by:

AVVU- =n (<Vi hj >data b <Vi hj >reconstructi0n)

where 7 is the learning rate, <v;h>,, is the fraction of times that the pixel 7 and
feature detector 7 are on together when the feature detectors are being driven by
data’ and <Vihj>reconstruction
simplified version of the same learning rule is used for the biases.

is the corresponding fraction for confabulations. A

Dimensionality Reduction with NNs

* A single layer of binary features is not the best way to model the structure in a set
of images. After learning one layer of feature detectors, we can treat their
activities—when they are being driven by the data—as data for learning a second

layer of features. The first layer of feature detectors then become the visible units
for learning the next RBM, etc. This yields a stacked RBM model.

 Each layer of features captures strong, high-order correlations between the
activities of units in the layer below. For a wide variety of data sets, this is an
efficient way to progressively reveal low-dimensional, nonlinear structure.

Dimensionality Reduction with NN

* After pretraining multiple layers of feature detectors, the model is “unrolled” to
produce encoder and decoder networks that initially use the same weights. The global
finetuning stage then replaces stochastic activities by deterministic, real-valued
probabilities and uses backpropagation through the whole autoencoder to fine-tune the

weights for optimal reconstruction.

...

| I L T— | M
[2000
Lw,
-
. \ el
RBM i Encoder

Pretraining Unrolling

oy

Fine-tuning

Pretraining consists of learning a
stack of restricted Boltzmann
machines (RBMs), each having
only one layer of feature
detectors. The learned feature
activations of one RBM are used
as the “data” for training the next
RBM in the stack. After the
pretraining, the RBMs are
“unrolled” to create a deep
autoencoder, which is then fine-
tuned using backpropagation of
error derivatives.

Dimensionality Reduction with NN
C /23 456718

3 4ys &8

FRL o Tl A,

s L3 8

Q
Q
q
a

* Top to bottom: A random test image from each class; reconstructions by the 30-
dimensional autoencoder; reconstructions by 30- dimensional logistic PCA and
standard PCA. The average squared errors for the last three rows are 3.00, 8.01, and

511 P T

L}Awl ‘H".”NSF ,

* Top to bottom: Random samples from the test data set; reconstructions by the 30-

dimensional autoencoder; reconstructions by 30-dimensional PCA. The average
squared errors are 126 and 135.

Dimensionality Reduction with NN

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

CoNOOMBEWN-—-O

+ 0 O 4

Dimensionality Reduction with NN

Fig. 4. (A) The fraction of
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C)
The codes produced by a 2000-
500-250-125-2 autoencoder.

A

Accuracy

05—
045}
04}
0356}
03}
025}
02}
015}
01}
005}

1

Autoencoder-10D

3 7 15 31 63 127 255 511 1023
Number of retrieved documents

European Community
Interbank markets monetary/economic

Disasters and

accidents
33
-’
ey \ . ..&' - e
: . T AR R CTTARRLY -
Leading economic® .~ ‘) k: }h _* -"”:“ Legaljudicial
indicators . ‘? PR i \
N 5 oy
’o . '.' f‘
3.%%
A Dl 7 Government
r'\.l :\._}-.-
Accounts/ e borrowings
o5

eamings 5

Spectral Clustering

* Spectral clustering techniques make use of the spectrum (i.e. eigenvalues) of
the similarity matrix of a data set to perform dimensionality reduction

before before clustering in fewer dimensions. Spectral clustering is a non-linear

dimensionality reduction scheme and can therefore represent a richer set of (low-
dimensional) manifolds than linear dimensionality reduction schemes (e.g. PCA).

* The similarity matrix S (a symmetric matrix) 1s provided as an input and consists
of a quantitative assessment of the relative similarity of each pair of points in the
dataset.

Spectral Clustering

* The goal when constructing sizzilarity graphs (NB: the similarity graph is simply the
weighted undirected graph defined by its similarity matrix S) is to model the local
neighborhood relationships between the data points. Moreover, most of the
constructions below lead to a sparse representation of the data, which has

computational advantages

Spectral Clustering

* The goal when constructing sizilarity graphs (NB: the similarity graph is simply the
weighted undirected graph defined by its similarity matrix S) is to model the local

neighborhood relationships between the data points. Moreover, most of the
constructions below lead to a sparse representation of the data, which has

computational advantages.

e Similarity can be defined according to different criteria; here are some of the
most common criteria used in practice to define similarity:

The =-neighborhood graph: Here we connect all points whose pairwise distances are smaller than . As the
distances between all connected points are roughly of the same scale (at most €), weighting the edges would not
incorporate more information about the data to the graph. Hence, the s-neighborhood graph is usually considered
as an unweighted graph.

k-nearest neighbor graphs: Here the goal is to connect vertex v; with vertex v; if v; is among the k nearest
neighbors of v;. However, this definition leads to a directed graph, as the neighborhood relationship is not sym-
metric. Now there are two ways of making this graph undirected. The first way is to simply ignore the directions
of the edges, that is we connect v; and v; with an undirected edge if v; is among the k-nearest neighbors of v; or
if v; is among the k-nearest neighbors of v;. The resulting graph is what is usually called the k-nearest neighbor
graph. The second choice is to connect vertices v; and v; if both v; is among the k-nearest neighbors of v; and
v; is among the k-nearest neighbors of v;. The resulting graph is called the mutual k-nearest neighbor graph.
In both cases, after connecting the appropriate vertices we weight the edges by the similarity of the adjacent points.

The fully connected graph: Here we simply connect all points with positive similarity with each other, and we
weight all edges by s;;. As the graph should model the local neighborhood relationships, this construction is
usually only chosen if the similarity function itself already encodes mainly local neighborhoods. An example for a

P 2
similarity function where this is the case is the Gaussian similarity function s(x;, z;) = exp(— %). Here the
parameter o controls the width of the neighborhoods, similarly to the parameter ¢ in case of the £-neighborhood
graph.

Spectral Clustering

* One can consider clustering in terms of graph cuts. If we want to find a
partition from the similarity graph for a data set into K clusters, say A, ...,Ay, a
natural criterion is to minimize:

cut(A&,---,AK)=%kZ;W(AWEV)

where W denotes the similarity graph, A, =V\A, is the complement of A,, and
WAB)=Yiea jep Wy;- This criterion is, in other words, just the standard min-cut

criterion.

SOurc '
min-cut

Spectral Clustering

* One can consider clustering in terms of graph cuts. If we want to find a
partition from the similarity graph for a data set into K clusters, say A, ...,Ay, a
natural criterion 1s to minimize:

cut(A&,---,AK)=%kZ;,W(AWE¥)

where W denotes the similarity graph, A, =V\A, is the complement of A,, and
WAB)=Yiea jep Wy;- This criterion is, in other words, just the standard min-cut

criterion.

More commonly, researchers use the normalized cut criterion, defined as:

W (AA)
kzzll vol (A,)

where vol(A)=X.;e4 d;, where d, is the weighted degree of vertex 7 in the similarity
graph.

NGUL(A, . A) =

(*) This splits the graph into K clusters such that nodes within each cluster are
similar to one another, but are different to nodes in other clusters.

Spectral Clustering: Graph Laplacian

* Let W be the symmetric weight matrix for a graph where w;=w; = 0. Let

D=diag(d,) be the diagonal matrix containing the weighted degree of each node.

The graph Laplacian is defined as: L =D — W

Labeled graph Degree matrix Adjacency matrix Laplacian matrix
/2 0 0 0 O U\ (0 1 0 0 1 U\ / 2 -1 0 0 -1 O\
@ 0 3 00 0 O 1 01 0 1 0 —1 3 -1 0 -1 0
o e o 0 0 2 0 0 O 01 01 0 0O 0 -1 2 -1 0 0
.‘ 0 0 03 0 O 0 01 0 1 1 0 0 -1 3 -1 -1
eo 0000 30 110100 -1 -1 0 -1 3 0
\o 0 o001/ \ooo100/ \o 0o o0 -1 o0 1)

Spectral Clustering: Graph Laplacian

* The graph Laplacian is defined as: L. = D — W.

The Laplacian possesses several useful properties, including the fact that it 1s
symmetric and positive semi-definite.

(*) Consequently, L has non-negative, real-valued eigenvalues: 0 < Ay = A, ... = A
(this property holds by virtue of L being positive semi-definite)

How is this helpful for clustering?

Spectral Clustering: Graph Laplacian

* The graph Laplacian is defined as: L = D — W.

The Laplacian possesses several useful properties, including the fact that it 1s
symmetric and positive semi-definite.

(*) Consequently, L. has non-negative, real-valued eigenvalues: 0 = Ay S A, ... = A
How is this helpful for clustering?

A handy theorem states that the set of eigenvectors of L. with eigenvalue 0 1s
spanned by the indicator vectors 1,,,...,1,,, where A, are the K connected

components of the graph.

(*) Consequently, the number of connected components of the graph is given
by the dimension of the nullspace of L (also called simply the “nullity of 1" in
linear algebra); put another way: the algebraic multiplicity ot the zero eigenvalue

equals the number of connected components of the graph.

Spectral Clustering: Graph Laplacian

* The graph Laplacian is defined as: L = D — W.
(*) Consequently, L. has non-negative, real-valued eigenvalues: 0 < A <k, ... = A

(*) Consequently, the number of connected components of the graph is given
by the dimension of the nullspace of L; put another way: the algebraic multiplicity the

of the zero eigenvalue equals the number of connected components of the graph.

(*) Thus, in the “ideal” case for which the data graph consists of £ disconnected
components, then the multiplicity of the zero eigenvalue for L equals the number
of connected components (namely, £) and the eigenspace is spanned by the
indicator vectors of the connected components.

In this case L. would form a block diagonal matrix:

,_
i
.
%]
o0 = o0
=,

Spectral Clustering: Graph Laplacian

* Thus, in the “ideal” case for which the data graph consists of £ disconnected
components, then the multiplicity of the zero eigenvalue for L equals the number
of connected components (namely, £) and the eigenspace is spanned by the
indicator vectors of the connected components.

* In reality, we don’t expect a graph derived from a real similarity matrix to have
isolated connected components — that would be too easy (“real data is messy”).

Spectral Clustering: Graph Laplacian

* Thus, in the “ideal” case for which the data graph consists of £ disconnected
components, then the multiplicity of the zero eigenvalue for L equals the number
of connected components (namely, £) and the eigenspace is spanned by the
indicator vectors of the connected components.

* In reality, we don’t expect a graph derived from a real similarity matrix to have
isolated connected components — that would be too easy.

* But it 1s reasonable to suppose the graph is some small “perturbation” from such
a situation. In this case, one can use results from perturbation theory to show the
eigenvectors of the perturbed Laplacian will be close to these i1deal indicator
functions.

(*) Briefly stated: the perturbation argument says that if we do not have a
completely ideal situation where the between-cluster similarity is exactly 0, but if
we have a situation where the between-cluster similarities are very small, then the
eigenvectors of the first £ eigenvalues should be very close to the ones in the ideal

case. Thus we should still be able to recover the clustering from those eigenvectors.

Spectral Clustering: Graph Laplacian

* This suggests the following algorithm:

Compute the first £ eigenvectors of L (k will represent the dimension of our
low-dimensional manifold upon which we project the data). Form an n x k (n is
the original data set size) matrix U with the eigenvectors of L as the columns. Now
one can apply k-means over the rows of U to recover the connected components
of the graph. This clustering determines the low-dimensional clustering
assignment.

o -- Datum

Y
X

Spectral Clustering: Graph Laplacian

* This suggests the following algorithm:

Compute the first £ eigenvectors of L (& will represent the dimension of the
low-dimensional manifold upon which we project the data). Form an n x k (7 1s the
original data set size) matrix U with the eigenvectors of L as the columns. Now
one can apply k-means over the rows of U to recover the connected components
of the graph. This clustering determines the low-dimensional clustering
assignment.

(*) In practice, it is important to normalize the graph Laplacian, to account for the

fact that some nodes are more highly connected than others. There are two
common ways to do with (one using the notion of random walks) — here 1s the
symmetric normalized Laplacian (as used by Ng ¢z a/.)

L. =D LD =

sym

recall that D 1s the diagonal matrix of vertex degrees.

Spectral Clustering: Graph Laplacian

® This suggests the following algorithm:

Compute the first £ eigenvectors of L (£ will represent the dimension of the low-
dimensional manifold upon which we project the data). Form an n x k (# is the original data
set size) matrix U with the eigenvectors of L as the columns. Now one can apply k-means
over the rows of U to recover the connected components of the graph. This clustering
determines the low-dimensional clustering assignment.

(*) In practice, 1t 1s important to normalize the graph Laplacian, to account for the fact that

some nodes are more highly connected than others. There are two common ways to do with
(one using the notion of random walks) — here is the symmetric normalized Laplacian (as

used by Ng e¢f al.) 1 1

L, =D 2LD ?

More commonly, researchers use the normalized cut criterion, defined as:

. . 1 & W (4,4,
(*) One can show that this algorithm corresponds| Neut(dysesde) =5 3, w(,](” Ak;)
Wlth ﬁndlng 2 normahz ed mlnlmum cut 1n where vol(A)=M;c4 d;, where d, is the weighted degree of vertex /1in the similarity

the similarity graph for the data (as discussed graph.

(*) This splits the graph into K clusters such that nodes within each cluster are

on pr c€vious Shde S) . stmilar to one another, but are different to node 1n other clusters.

Spectral Clustering: Graph Laplacian

Histogram of the sample

8
1]
4
2
o
0 2 4 6 8 10
Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
*
0.08
c = =0.1 05
£ 0.06 £ 04 -0.2 0.4 04
S 0.04 3 =0.3 o
g * E 0.2 -0.4 0.2 02
c 0.02 . ¥ c
. -0.5 -05
[——— 0 1] o
1234567 8 910 2 4 6 8 2 4 6 B 2 4 6 8 2 4 6 48 2 4 6 8
Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
opaf — - —- 0] 0
c =
c c o1
= 0.03 = 01 -0.05 -0.05 -0.05
E 002 E 0
0.05
E 0.01 E =01 -0.1 -0.1 -01
oot saast? ol
2345678 910 2 4 86 & 2 4 6 B 2 4 6 8 2 4 6 8 2 4 6 8
Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
*
= . ®F* = 0.5
B 08 * @ -0.1451 01 0.1 01
m (=]
= D'G = 0
E‘ 04 .Fé =0.1451 0] o
02 =01 - 0.1
-0.1451 0.1
g La** 2 -05
12 3 4567 8 910 2 4 6 8 2 4 &6 8 2 4 6 8 2 4 6 8 2 4 6 8
Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
& w8 K =
o il 0.8
GO0A5f - — — 4 —— - — - © -0.0707 0.05 006 0.0 ’
3 0.1 2 — o
Eﬂ) E -0.0707 0 0 0 04
0.05 -0.05 _ -0.05 02
§ 2 ? ¢ E -0.0707 008 ol
= 3
23 45678 910 2 4 6 8 2 4 6 8 2 4 86 8 2 4 6 8 2 4 6 8

Figure 1: Toy example for spectral clustering. Left upper corner: histogram of the data. First and second row: eigenvalues and
eigenvectors of L, and L based on the k-nearest neighbor graph. Third and fourth row: eigenvalues and eigenvectors of Ly
and L based on the fully connected graph. For all plots, we used we use the Gaussian kernel with & = 1 as similarity function.

Spectral Clustering

On Spectral Clustering:
Analysis and an algorithm

Andrew Y. Ng Michael I. Jordan Yair Weiss
CS Division CS Div. & Dept. of Stat. School of CS & Engr.
U.C. Berkeley U.C. Berkeley The Hebrew Univ.
ang@cs.berkeley. edu jordan@ecs. berkeley. edu yweiss@cs.huji.ac.il
Abstract

Despite many empirical successes of spectral clustering methods—
algorithms that cluster points using eigenvectors of matrices de-
rived from the data—there are several unresolved issues. First,
there are a wide variety of algorithms that use the eigenvectors
in slightly different ways. Second, many of these algorithms have
no proof that they will actually compute a reasonable clustering.
In this paper, we present a siwple speciral clustering algorithin
that can be implemented using a few lines of Matlab. Using tools
from matrix perturbation theory, we analyze the algorithm, and
give conditions under which it can be expected to do well. We
also show surprisingly good experimental results on a number of
challenging clustering problems.

(*) NIPS 2001 paper, Ng et al., on spectral clustering ~6500
citations

Spectral Clustering

On Spectral Clustering:
Analysis and an algorithm

Andrew Y. Ng Michael I. Jordan Yair Weiss
CS Division CS Div. & Dept. of Stat. School of CS & Engr.
U.C. Berkeley U.C. Berkeley The Hebrew Univ.
ang@cs.berkeley. edu jordan@ecs. berkeley. edu yweiss@cs.huji.ac.il
2 Algorithm
Given a set of points S = {s1,...,s,} in R that we want to cluster into k subsets:

1. Form the affinity matrix A € R"*" defined by A;; = exp(—||s; — s;||?/207) if
) # j, and A‘gﬂ; = U.

2. Define D to be the diagonal matrix whose (i,i)-element is the sum of A’s i-th
row, and construct the matrix L = DY/2Ap-1/21

3. Find z1,x2,... ,x, the k largest eigenvectors of L (chosen to be orthogonal
to each other in the case of repeated eigenvalues), and form the matrix X =
[z1z2...z] € R*™* by stacking the eigenvectors in columns.

4. Form the matrix ¥ from X by renormalizing each of X’s rows to have unit length
(ie Yij = Xi5/(3; X5)'?).

5. Treating each row of ¥ as a point in R*, cluster them into k clusters via K-means
or any other algorithm (that attempts to minimize distortion).

6. Finally, assign the original point s; to cluster j if and only if row i of the matrix
Y was assigned to cluster j.

Spectral Clustering

k-means spectral clustering

15

10

Colored by specral clustering Colored by k-means

Tutorial on spectral clustering: https://arxiv.org/pdf/0711.0189.pdf

Github demo: https://github.com/pin3da/spectral-clustering (python)

https://arxiv.org/pdf/0711.0189.pdf
https://github.com/pin3da/spectral-clustering

Spectral Clustering: Applications

Naturally, one can use spectral clustering for image segmentation applications
(in addition to various dimensionality reduction applications).

\o—L A : N
“/)\ﬁ- - { * ~-5“:‘4
- =
/&\ . Segmentation
« based on spectral
clustering.

(*) A significant challenge for image segmentation applications of spectral clustering
relates to the construction/definition of the Laplacian (i.e. similarity/affinity) matrix.

This 1s a deep question that concerns feature selection more broadly in ML and

data mining.

Spectral Clustering: Applications

Sindhumol, et al. “Spectral clustering independent component analysis for
tissue classification from brain MRI”

The authors use a variant of spectral clustering (spectral clustering ICA) to
improve brain tissue classification from MRI scans; results were 98%
accuracy for clinical abnormality analysis.

https://www.sciencedirect.com/science/article/pii/S174680941300092X

I[SOMAP

* Like spectral clustering, Isomap is a non-linear dimensionality reduction method.

* More specifically, Isomap is an isometric mapping method (isometric mappings
preserve distance) that provides an extension of a general class of algorithms
known as metric multidimensional scaling (MDS) methods.

I[SOMAP

* Like spectral clustering, Isomap is a non-linear dimensionality reduction method.

* More specifically, Isomap is an isometric mapping method (isometric mappings
preserve distance) that provides an extension of a general class of algorithms
known as metric multidimensional scaling (MDS) methods.

* MDS performs a low-dimensional embedding of a data set based on pairwise
distances between data points (simply by using straight-line Euclidean distance).
Alternatively, Isomap incorporates instead the geodesic distance between two

vertices in a graph.

I[SOMAP

* Like spectral clustering, Isomap is a non-linear dimensionality reduction method.

* More specifically, Isomap is an isometric mapping method (isometric mappings
preserve distance) that provides an extension of a general class of algorithms
known as metric multidimensional scaling (MDS) methods.

* MDS performs a low-dimensional embedding of a data set based on pairwise
distances between data points (simply by using straight-line Euclidean distance).
Alternatively, Isomap incorporates instead the geodesic distance between two
vertices in a graph.

* The geodesic distance is defined as the sum of the edge weights in a shortest
path between two vertices.

Q: How is geodesic distance more informative than Euclidean distance?

ISOMAP

e] .ike spectral clustering. Isomap is a non-linear dimensionality reduction method.
p g, p y

* More specifically, Isomap 1s an isometric mapping method (isometric mappings
preserve distance) that provides an extension of the metric multidimensional

scaling (MDS) method.

* MDS performs a low-dimensional embedding of a data set based on pairwise
distances between data points (simply by using straight-line Euclidean distance).
Alternatively, Isomap incorporates instead the geodesic distance between two
vertices in a graph.

* The geodesic distance 1s defined as the sum of the edge weights in a shortest
path between two vertices.

7 / ’
m_hi(_) , ¢’ - Geodesic distance

Geodesic distance incorporates o
the manifold structure in the resulting //

embedding. /

ISOMAP

A Global Geometric Framework
for Nonlinear Dimensionality
Reduction

Joshua B. Tenenbaum,’* Vin de Silva,? John C. Langford®

Scientists working with large volumes of high-dimensional data, such as global
climate patterns, stellar spectra, or human gene distributions, regularly con-
front the problem of dimensionality reduction: finding meaningful low-dimen-
sional structures hidden in their high-dimensional observations. The human
brain confronts the same problem in everyday perception, extracting from its
high-dimensional sensory inputs—30,000 auditory nerve fibers or 10° optic
nerve fibers—a manageably small number of perceptually relevant features.
Here we describe an approach to solving dimensionality reduction problems
that uses easily measured local metric information to learn the underlying
global geometry of a data set. Unlike classical techniques such as principal
component analysis (PCA) and multidimensional scaling (MDS), our approach
is capable of discovering the nonlinear degrees of freedom that underlie com-
plex natural observations, such as human handwriting or images of a face under
different viewing conditions. In contrast to previous algorithms for nonlinear
dimensionality reduction, ours efficiently computes a globally optimal solution,
and, for an important class of data manifolds, is guaranteed to converge
asymptotically to the true structure.

A canonical problem in dimensionality re- ality may be quite high (e.g., 4096 for thess

The original Isomap paper, by Tenebaum et al. (same Tenebaum from
Bayesian concept learning as discussed previously, Science, December
2000, ~11k citations.

http://web.mit.edu/cocosci/Papers/sci_reprint.pdf

ISOMAP

* The Isomap algorithm combines the major algorithmic features of PCA and
MDS — computational efficiency, global optimality, and asymptotic convergence
guarantees — with the flexibility to learn a broad class of non-linear manifolds.

* In particular, Isomap seeks to preserve the intrinsic geometry of the data, as
captured in the geodesic manifold distances between pairs of points.

ISOMAP

* The Isomap algorithm combines the major algorithmic features of PCA and
MDS — computational efficiency, global optimality, and asymptotic convergence
guarantees — with the flexibility to learn a broad class of non-linear manifolds.

* In particular, Isomap seeks to preserve the intrinsic geometry of the data, as
captured in the geodesic manifold distances between pairs of points.

* The key step deals with estimating the geodesic distance between distant
points, given only input-space distances.

* For neighboring points, the input-space distance provides a good
approximation to geodesic distance. For faraway points, the geodesic distance
can be approximated by adding up a sequence of “short hops” between
neighboring points. These approximations can be computed by finding a
shortest path.

ISOMAP

(*) The Isomap algorithm 1s comprised of (3) general steps:

(1) The first step determines which points are neighbors on the manifold M,
based on the distance d(1,)) between pairs of points 7 in the input space X.

As we mentioned previously in the this lecture, there are several options for
determining “neighborhoods”, including the use of k-NN or to connect a point
to each point within some fixed radius e, etc.

From here, we construct the neighborhood graph G (again, each point, say,
could be connected to another if it 1s a K nearest neighbor, or the edge weights
could simply equal the Euclidean distance between points).

ISOMAP

(*) The Isomap algorithm 1s comprised of (3) general steps:

(2) In its second step, Isomap estimates the geodesic distances dy(1,))
between all pairs of points on the manifold M by computing their shortest path
distances d;(i,j) in the graph G.

Q: What 1s a well-known algorithm to compute these geodesic distance (i.e.
shortest paths in G)?

ISOMAP

(*) The Isomap algorithm 1s comprised of (3) general steps:

(2) In its second step, Isomap estimates the geodesic distances d,,(1,)) between
all pairs of points on the manifold M by computing their shortest path
distances d;(i,j) in the graph G.

Q: What 1s a well-known algorithm to compute these geodesic distance (i.e.
shortest paths in G)?

There are several options: Dijkstra’s Algorithm is perhaps the best-known
(one can also can use Floyd-Warshall, for instance).

Shortest path network.
o Directed graph G = (V, E).
» Source s, destination t.

» Length /. = length of edge e.

Euler
Shortest path problem: find shortest directed path from s to t. ‘The famo.u 3
\ seven bridges
of Koningsberg”
cost of path = sum of edge costs in path prob|em that led
to the inception
of graph theory

O

14

30 i 19 Cost of pa’rh s-2-3-b-t
15 = 9+23+2+16
6 = 50.

20 16

Aside: Diyjkstra’s Algorithm

Dijkstra's algorithm.

n]

Maintain a set of explored nodes S for which we have determined the
shortest path distance d(u) from s to u.
Initialize S = {s }, d(s) = 0.

Repeatedly choose unexplored node v which minimizes

z(v)= min d(u)+/,,

e=(u,v):ues
add v to S> and set d(V) = TE<V)' shortest path to some u in explored
part, followed by a single edge (u, v)

(Note: T(v) represents a “temporary”’ distance label the algorithm runs)

14

e

d(u)

Aside: Dijkstra’s Algorithm

Find shortest path from s to t.

30
11
15 \@é

Aside: Dijkstra’s Algorithm

S={}
PQ={s,2,3,4,56,7,t)}

(00)

/@ 24

18

14
1 19
15

o0
30 0
5 /
20
7

0] 9

44
distance label = =

Aside: Dijkstra’s Algorithm

S={}
PQ={s,2,3,4,56,7,t)}

min
1 00
0 , —®
14
15
7

distance label =

94

Aside: Dijkstra’s Algorithm

S={s}
PQ={2,3,4,56,7,t}

decrease key

D" ©

x 9

9/@ >4

18

14
1 19
15

X 14
30 y
5 /'
20
7

44
distance label == » 15 =

Aside: Dijkstra’s Algorithm

S={s}
PQ={2,3,4,56,7,t}

min
) 91 "

distance label == » 15 =

Aside: Dijkstra’s Algorithm

S={s,2}
PQ=(3,4,5,6,7,1}

o0
24
18
14 X 14
30 o) 1 19
15
5 /
20
7 4
» 15

4

Aside: Dijkstra’s Algorithm

S={s,2}
PQ=(3,4,5,6,7,1}

decrease key

X% 33
24 v
18
X 14
30 o
5 /
20
=
» 15

14
15

44

Aside: Dijkstra’s Algorithm

S={s,2}
PQ=(3,4,5,6,7,1}

Aside: Dijkstra’s Algorithm

S={s,2,6}
PQ=(3,4,5,7,1}

% 15 e

Aside: Dijkstra’s Algorithm

S={s,2,6}
PQ=(3,4,5,7,1}

% 15 4mm min —

Aside: Dijkstra’s Algorithm

S={s,2,6,7}
PQ=(3,4,5t}

Aside: Dijkstra’s Algorithm

S={s,2,6,7}
PQ:{3,4,5,T} m|n

Aside: Dijkstra’s Algorithm

$={s,2,3,6,7}
PQ={4,51}

Aside: Dijkstra’s Algorithm

$={s,2,3,6,7}
PQ={4,51}

Aside: Dijkstra’s Algorithm

5={s,2,3,5,6,7}
PQ={4,1)

Aside: Dijkstra’s Algorithm

5={s,2,3,5,6,7}
PQ={4,1)

Dijkstra's Shortest Path Algorithm

S={s,2,3,4,56,7)
PQ={1}

108

Aside: Dijkstra’s Algorithm

S={s,2,3,4,56,7)
PQ={1}

min m) 50 % 59 X%

Aside: Dijkstra’s Algorithm

S={s,2,3,4,5,6,7,t})
PQ={}

PQ={}
32
% 9 X 3%
/@ o f’fﬂ
9
18~
14 X 14 5 £
24 36 34 45 X
30 X 1 19
15 \
5 /
6
= = \\/
U 44 =b

Aside: Dijkstra’s Algorithm

5={s,2,3,4,5,6,7,t}

X 15

Aside: Dijkstra’s Algorithm

For each node u € §, d(u) is the length of the shortest s-u path.
Pf. (by induction on |S|)
Base case: |S| =1 is trivial.
Inductive hypothesis: Assume true for |S| =k = 1.
» Let v be next node added to S, and let u-v be the chosen edge.
o (Claim) The shortest s-u path plus (u, v) 1s an s-v path of length 7(v).
» Consider any s-v path P. We'll see that it's no shorter than mt(v).
» Let x-y be the first edge in P that leaves §,
and let P' be the subpath to x.

o P is already too long as soon as it leaves S.

PP) 2P+l (xy) = dx)+ 2 (x,y) = n(y) = n(v)
T I T I

Nonnegative weights inductive defnof n(y) Dijkstra chose v

hypothesi .
(triangle inequality) T instead of y

Aside: Dijkstra’s Algorithm

For each unexplored node, explicitly maintain (V) = (mi)n . d(u)+ ¢,
e=uVv)iue

» Next node to explore = node with minimum 7t(v).

» When exploring v, for each incident edge e = (v, w), update

2(w) = min { z(w), 7(v)+Ce}.

Efficient implementation. Maintain a priority queue of unexplored nodes,
prioritized by 7(v).

PQ Operation | Dijkstra | Arra Binary hea
P J Y Y heap

log n

n
1
1

Total n? m log n

log n
1

ISOMAP

(*) The Isomap algorithm 1s comprised of (3) general steps:

(2) In its second step, Isomap estimates the geodesic distances d,,(1,)) between
all pairs of points on the manifold M by computing their shortest path
distances d;(i,j) in the graph G.

There are several options here: Dijkstra’s Algorithm is perhaps the best-
known (also can use Floyd-Warshall, for instance).

ISOMAP

(*) The Isomap algorithm 1s comprised of (3) general steps:

(3) The final step applies classical MDS to the matrix of graph distances
D;=1{ds(,)) }, constructing an embedding of the data in a d-dimensional
Euclidean space Y that best preserves the manifold’s estimates of the intrinsic

geometry of the data.

ISOMAP

(*) The Isomap algorithm 1s comprised of (3) general steps:

(3) The final step applies classical MDS to the matrix of graph distances
D;=1{ds(,)) }, constructing an embedding of the data in a d-dimensional
Euclidean space Y that best preserves the manifold’s estimates of the intrinsic
geometry of the data.

The coordinate vectors y; for points in Y are chosen to minimize the cost
function:

E =||Z'(DG)—Z'(DY)”2

* Where I?Y denotes t.he matrix .of Euclidean Flistances {dy@p=lly; =yl }
and ||+]|, in the equation above is the 1.2 matrix norm. The 1 operator converts

distances to inner products which uniquely characterizes the geometry of the
data in a form that supports efficient optimization.

The global minimum of the equation above is achieved by setting the
coordinates y; to the top 4 eigenvectors of the matrix t(D,).

ISOMAP

(*) The Isomap algorithm i1s comprised of (3) general steps:

(3) The final step applies classical MDS to the matrix of graph distances
D;=1{ds(,)) }, constructing an embedding of the data in a d-dimensional
Euclidean space Y that best preserves the manifold’s estimates intrinsic
geometry.

(*) This third step in the Isomap algorithm might seem somewhat complicated
— however, it is really equivalent to performing PCA on the (centered) sguare of

a distance matrix D (for a data set).

* In other words, you take the distance matrix D, square it, and center. Then
compute the eigendecomposition for the top eigenvalues and project the data

into this smaller dimensional space (just as with PCA).

PCA

* Here 1s the PCA algorithm

1) Write N data points X,=(x,,%

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K = 7 and N =

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).

Potential Issues for Isomap: The connectivity of each data point in the neighborhood graph
is defined as its nearest £ Euclidean neighbors in the high-dimensional space. This step is

vulnerable to "short-circuit errors" if £ is too large with respect to the manifold structure or if
noise in the data moves the points slightly off the manifold. Even a single short-circuit error
can alter many entries in the geodesic distance matrix, which in turn can lead to a drastically
different (and incorrect) low-dimensional embedding. Conversely, if £ 1s too small, the
neighborhood graph may become too sparse to approximate geodesic paths accurately. But
improvements have been made to this algorithm to make it work better for sparse and noisy
data sets.

ISOMAP

Table 1. The Isomap algorithm takes as input the distances d, (i,j) between all pairs i,j from N data points
in the high-dimensional input space X, measured either in the standard Euclidean metric (as in Fig. 1A)
or in some domain-specific metric (as in Fig. 1B). The algorithm outputs coordinate vectors y, in a
d-dimensional Euclidean space Y that (according to Eq. 1) best represent the intrinsic geometry of the
data. The only free parameter (e or K) appears in Step 1.

Step

1 Construct neighborhood graph Define the graph G over all data points by connecting
points i and j if [as measured by d,[(i,j)] they are
closer than € (e-lsomap), or if i is one of the K
nearest neighbors of j (K-Isomap). Set edge lengths
equal to d,[(i,j).

2 Compute shortest paths Initialize d__(i,j) = d,(i,j) if ij are linked by an edge;
d(i,j) = = otherwise. Then for each value of k =
1, 2, ..., N in turn, replace all entries d_(i,j) by
min{d(i,j), d_(i.k) + d.(k,j)}. The matrix of final
values D = {d_(i,j)} will contain the shortest path
distances between all pairs of points in G (76, 79).

3 Construct d-dimensional embedding Let A_ be the p-th eigenvalue (in decreasing order) of
the matrix 7(D;) (77), and v, be the i-th
component of the p-th eigenvector. Then set the
p-th component of the d-dimensional coordinate
vector y, equal to \/h_PvL.

ISOMAP

Fig. 1. (A) A canonical dimensionality reduction
problem from visual perception. The input consists
of a sequence of 4096-dimensional vectors, rep-
resenting the brightness values of 64 pixel by 64
pixel images of a face rendered with different
poses and lighting directions. Applied to N = 698
raw images, Isomap (K = 6) learns a three-dimen-
sional embedding of the data’s intrinsic geometric
structure. A two-dimensional projection is shown,
with a sample of the original input images (red
circles) superimposed on all the data points (blue)
and horizontal sliders (under the images) repre-
senting the third dimension. Each coordinate axis
of the embedding correlates highly with one de-
gree of freedom underlying the original data: left-
right pose (x axis, R = 0.99), up-down pose (y
axis, R = 0.90), and lighting direction (slider posi-
tion, R = 0.92). The input-space distances d,(i,j)
given to Isomap were Euclidean distances be-
tween the 4096-dimensional image vectors. (B)

>

. > 2
. B . v .
‘ .

Up-down pose

"
2

®

0]

B
R
™

e

0]

L

.

1 !]E*

-

e i

P

!

-

v & °

-4

®

®

DO

=

oD

i}

t]! ... g
‘R

@

. l/\.j ...

5 1

"

o

Lighting direction

Left-right pose

: ISOMAP
o0t i i

K B O
EEEEE e
e

IsoMap projection

Cc
. — =
BB EE .
"“FT“ ~3. R R
‘0 .‘,\ 00 &
EEEREE] gty :.*.' R G,
\5‘) . 3" 0‘0.0
Fig. 4. Interpolations along straight lines in “3‘:-,-' .‘,\.‘i’:é "‘
the Isomap coordinate space (analogous to AT * ‘:‘. < "‘-"‘.'
the blue line in Fig. 3C) implement perceptu- 5 :':'“. (2 W '_'. Y V’\-
ally natural but highly nonlinear "morphs” of o) N T o B -
the corresponding high-dimensional observa- - Vo’
tions (43) by transforming them approxi-

mately along geodesic paths (analogous to
the solid curve in Fig. 3A). (A) Interpolations
in a three-dimensional embedding of face
images (Fig. 1A). (B) Interpolations in a four-
dimensional embedding of hand images (20)
appear as natural hand movements when A : .

Vreﬁved in quick succession, even though no Python |mp|ementat|0n

such motions occurred in the observed data. (C)) o .

Interpolations in a six-dimensional embedding of http //SC' klt'learn . Org/Stab|e/mOd u |€S/m an |f0|d . html
handwritten "2"s (Fig. 1B) preserve continuity not

only in the visual features of loop and arch artic-

ulation, but also in the implied pen trajectories,

which are the true degrees of freedom underlying

those appearances.

