
Advanced Dimensionality Reduction Techniques

CS 446/546

Outline

• Overview / PCA recap

• SOM (self-organizing maps)

• AE (autoencoder)

• Spectral Clustering

• ISOMAP

Introduction

• Most traditional statistical techniques (e.g. regression/classification) were

developed in low-dimensional settings (i.e. n >> p where n is the data size and p

is the number of features).

• Over the last several decades, new technologies have drastically changed the

way that data are collected (see “big data age”). Consequently, it is now

commonplace to work with data with a very large number of features (i.e. p

>> n).

• While p can be extremely large, the number of observations n is often limited

due to cost, sample availability, or other considerations.

Introduction
• Data containing more features than observations are typically referred to as

high-dimensional.

• Issues pertaining to the bias-variance tradeoff and overfitting are commonly

exacerbated in high dimensions.

• With a large number of features, statistical models (e.g. regression) can

become too flexible and hence overfit the data.

• Recall the curse of dimensionality, which poses two fundamental, associated

problems: (1) “neighborhoods” become very large (this is problematic in

particular for kernel and clustering methods), (2) we need a much larger data

set to adequately “fill” the space for predictive modeling, etc.

Interpretability in High Dimensions
• In high-dimensional settings we need to be cautious about how we

interpret our results – that is to say if they can be reasonably interpreted at

all.

• Of course, it is oftentimes adequate, depending on the application, to treat a

machine learning model as a mere predictive “black box” (e.g. statistical

arbitrage, government work).

• Conversely, if we want to say that the features in our model directly impact

the outcomes we observe (note: in ML we almost never use the c-word – viz.,

variables caused observed effect) we need to be alert to multicollinearity.

• In high dimensions, it is very likely that some of our model variables are

mutually correlated. This means we can never know exactly which variables

(if any) are truly predictive of the outcome. Moreover, we can rarely identify

the optimal set of features for a given phenomenon of interest.

Interpretability in High Dimensions

• The “first rule” of data science and ML: one can always add more and

more features to achieve zero classification/predictive error, a perfect

correlation coefficient value, etc.

• In the end, however, this is a useless model. We always need to report

results on an independent test or validation set.

• In 2008, Hinton et al, developed a non-linear dimensionality technique known

as t-SNE (t-distributed stochastic neighbor embedding) that is particularly well-suited

for embedding high-dimensional data into 2 or 3 dimensions, which can be

visualized with a scatter plot.

• Specifically, it models each high-dimensional object by a two- or three-dimensional

point in such a way that similar objects are modeled by nearby points and

dissimilar objects are modeled by distant points.

Dimensionality Reduction
• In general: the higher the number of dimensions we have, the more training data

we need.

• Additionally, computational cost is generally an explicit function of

dimensionality.

• Dimensionality reduction can also remove noise in a data set, which can, in

turn, significantly improve the results of a learning algorithm.

• These are perhaps the strongest reasons why dimensionality reduction is useful

(in addition to improving visualization/interpretability).

In general, there are (3) common ways to perform dimensionality reduction:

(1) Feature selection – determine whether the features available are actually useful,

i.e. are they correlated with the output variables.

(2) Feature derivation – means deriving new features from old ones, generally by

applying transforms to the data set that change the coordinate system axes (e.g.,

by moving or rotating); this is usually achieved through matrix multiplication.

(3) Clustering – group together similar data points to see whether this allows fewer

features to be used.

PCA
PCA generates a particular set of coordinate axes that capture the maximum

variability in the data; furthermore, these new coordinate axes are orthogonal.

The figure shows two versions of the same data set.

• In the first image, the data are arranged in an ellipse that runs at 45◦ axes; while in the

second, the axes have been moved so that the data now runs along the x-axis and is

centered on the origin.

• Key idea: the potential for dimensionality reduction rests in the fact that the y dimension

now does not demonstrate much variability – and so it might be possible to ignore it and

simply use the x axis values alone for learning, etc.

(*) In fact, applying this dimensionality reduction often has the nice effect of removing some

of the noise in the data.

PCA

• Note: In the eigendecomposition for cov(X), the dimensions with large eigenvalues have

lots of variation and are therefore useful dimensions.

• In order to perform a dimensionality reduction on our data set, we can therefore throw

away dimensions for which the eigenvalues are very small (usually smaller than some

chosen parameter).

()cov T= =Z X EDE

PCA
• Here is the PCA algorithm:

(1) Write N data points xi=(x1i,x2i,…,xMi) as row vectors.

(2) Put these vectors into the data matrix X (of size N x M).

(3) Center the data by subtracting off the mean of each column, place into matrix B.

(4) Computer the covariance matrix:

(5) Computer the eigenvalues and eigenvectors of C, so:

where D is the diagonal matrix of eigenvalues; V is the matrix of corresponding eigenvectors.

(6) Sort of the columns of D into order of decreasing eigenvalues, and apply the same order to the

columns of V.

(7) Reject those with eigenvalues less than some given threshold, leaving L dimensions in the data.

T=C VDV

1 T

N
=C BB

PCA for MNIST

PCA vs. LDA

Extending PCA

Q: What strong assumptions did we make about the surface for the directions of maximum

variation with PCA?

A: We assumed these surfaces of maximum variation are straight lines (this is a strong

assumption!)

Q: How can are break the linear restriction for PCA?

A: “Kernelize” PCA!

Kernel PCA
(*) All we have to do is express the covariance matrix C (recall this was the covariance of the

data matrix X after centering) in terms of a kernel transformation:

(*) Next we compute the eigendecomposition of C and use the eigenvectors with the largest

associated eigenvalues for PCA.

(*) Recall (from SVM lecture) that by using a kernel function we implicitly perform a dot

product in a larger dimensional feature space (this is the crux of the kernel trick), with

the upshot of enhanced expressiveness.

() ()
1

1 N
T

n n

i

x x
N =

= C

t-SNE: H-D Data Visualization

• First, t-SNE constructs a probability distribution over pairs of high-dimensional

objects in such a way that similar objects have a high probability of being picked,

whilst dissimilar points have an extremely small probability of being picked.

• Second, t-SNE defines a similar probability distribution over the points in the low-

dimensional map, and it minimizes the KL divergence (a standard measure of

“distance” between probability distributions) between the two distributions with

respect to the locations of the points in the map.

t-SNE for MNIST

t-SNE for Atari! (Deepmind)

Word2vec (2013)
• Word2vec is a group of related models (Google) that are used to produce

word embeddings.

• These models are shallow, two-layer neural network that are trained to

reconstruct linguistic contexts of words.

• Word2vec takes as its input a large corpus of text and produces a vector

space (usually of high dimensions), with each unique word in the corpus

being assigned a corresponding vector in the space.

• Word vectors are positioned in the vector space such that words that

share common contexts in the corpus are located in close proximity to

one another in the space.

t-SNE for word2vec

Self-Organizing Maps (SOMs)

• To date, we have only considered applications of NNs for supervised

learning, however, there exist several applications of NNs for unsupervised

learning, including self-organizing maps (SOMs, 1988, Kohonen).

• In the unsupervised setting (e.g., k-means), we wish to identify

meaningful data patterns in a self-organizing fashion (viz.,

without the use of labels). This process is often referred to as

learning a feature map – that is to say, a compression scheme

that illuminates structurally significant input features.

• Stated concisely, SOMs provide a way of performing dimensionality reduction

using vector quantization. Furthermore, SOMs are unique in that they preserve

topographic network properties that mimic biological processes in the brain.

Self-Organization & Complex Systems
(*) Self-organization is a process where some form of overall order arises from local interactions

between parts of an initially disordered system. The process is spontaneous, not needing control by any

external agent. It is often triggered by random fluctuations, amplified by positive feedback. The resulting

organization is wholly decentralized, distributed over all the components of the system. As such, the

organization is typically robust and able to survive or self-repair substantial perturbation.

Self-organization occurs in many physical, chemical, biological, robotic, and cognitive systems. Systems

formed from self-organization processes often exhibit emergent behavior.

Recommended reading: M. Mitchell, Complexity: A Guided Tour.

Topographic Maps & The Brain
• Neurobiological studies indicate that different sensory inputs (motor, visual, auditory, etc.) are

mapped onto corresponding areas of the cerebral cortex in an orderly fashion. This form of

map, known as a topographic map has (2) important properties:

(1) Each piece of information is kept in its proper context/neighborhood;

(2) neurons dealing with closely-related pieces of information are kept close together so that

they can interact using short synaptic connections.

(*) SOMs train an artificial topographic map through self-organization in a neurobiologically

inspired way, abiding by the principle of topographic map formation: “The spatial location of

an output neuron in a topographic map corresponds to a particular domain or feature drawn

from the input space.”

http://jov.arvojournals.org/article.aspx?articleid=2121362

SOMs: Overview
• The goal of a SOM is to transform the incoming signal pattern into a lower dimensional

discrete map, and to perform this transformation adaptively in a topographically-ordered fashion

(so that neurons that are close together represent inputs that are close together, while neurons

that are far apart represent inputs that are far apart).

• SOMs utilize a class of unsupervised learning techniques known as competitive learning, in

which output neurons compete amongst themselves to be activated, with the result being that

only one is activated for a given input.

• This activated neuron is called a winner-takes-all neuron (also: winning neuron). Neurons

become selectively tuned to various input patterns during the course of competitive learning.

SOMs
• Note that with SOMs, the relative locations of the neurons in the network matters (nearby

neuron correspond to similar input patterns) and the neurons are arranged in a lattice/grid

(usually in 1-D or 2-D) with connections between the neurons, rather than in layers with

connections only between different layers (as with the previous NNs we’ve seen). Each neuron is

fully connected to all the source nodes in the input layer.

• Each node has a specific topological position (an (x,y) coordinate in the lattice) and contains a

vector of weights.

• For training, neurons are tuned to conform with the topographic map criteria; in this way, the

winning neuron should pull other neurons that are close to it in the network closer to itself in

weight space, whereas neurons that are very far away should be ignored.

SOM Algorithm

SOM Algorithm: Overview

(I) Initialization: network parameters: determine number of neurons, dimension for the map (d)

-- can use a random initialization or begin with, say the PCA algorithm, using first d principal

components.

SOM Algorithm: Overview

(I) Initialization: network parameters: determine number of neurons, dimension for the map (d)

-- can use a random initialization or begin with, say the PCA algorithm, using first d principal

components.

(II) Learning:

(a) For each data point, select best-matching neuron (nb), using minimum

Euclidean distance.

(b) Update weight vector of nb:

(this update has the effect of moving the weight vector of nb closer to the datum), the learning

rate η(t) is decreased over time.

()()T T T

j j jt + −w w x w

SOM Algorithm: Recap
(II) Learning:

(a) For each data point, select best-matching neuron (nb), using minimum

Euclidean distance.

(b) Update weight vector of nb:

(this update has the effect of moving the weight vector of nb closer to the datum), the learning

rate η(t) is decreased over time.

(c) Update the weight vector of all other neurons using:

where ηn(t) is the learning rate for the neighborhood nodes, and h(nb,t) is the neighborhood

function with respect to node nb, which decides whether each neuron should be included in the

neighborhood of the winning neuron (e.g. n=1 for neighbors and n=0 for non-neighbors – or a

Gaussian function can be used).

()()T T T

j j jt + −w w x w

() ()(),T T T

j j n b jt h n t + −w w x w

SOM Algorithm: Recap
(II) Learning:

(a) For each data point, select best-matching neuron (nb), using minimum

Euclidean distance.

(b) Update weight vector of nb:

(this update has the effect of moving the weight vector of nb closer to the datum), the learning

rate η(t) is decreased over time.

(c) Update the weight vector of all other neurons using:

where ηn(t) is the learning rate for the neighborhood nodes, and h(nb,t) is the neighborhood

function with respect to node nb, which decides whether each neuron should be included in the

neighborhood of the winning neuron (e.g. n=1 for neighbors and n=0 for non-neighbods – or a

Gaussian function can be used).

(d) Reduce the learning rates and adjust the neighborhood function (neighborhood size

decreases over time).

()()T T T

j j jt + −w w x w

() ()(),T T T

j j n b jt h n t + −w w x w

h(nb,t) function

neighboorhood size

decreases over time

SOM Algorithm: Recap
(II) Learning:

(a) For each data point, select best-matching neuron (nb), using minimum

Euclidean distance.

(b) Update weight vector of nb:

(this update has the effect of moving the weight vector of nb closer to the datum), the learning

rate η(t) is decreased over time.

(c) Update the weight vector of all other neurons using:

where ηn(t) is the learning rate for the neighborhood nodes, and h(nb,t) is the neighborhood

function with respect to node nb, which decides whether each neuron should be included in the

neighborhood of the winning neuron (e.g. n=1 for neighbors and n=0 for non-neighbods – or a

Gaussian function can be used).

(d) Reduce the learning rates and adjust the neighborhood function (neighborhood size

decreases over time).

(III) Testing:

For each test point select best-matching neuron:

()()T T T

j j jt + −w w x w

() ()(),T T T

j j n b jt h n t + −w w x w

h(nb,t) function

neighboorhood size

decreases over time min T

b j
j

n = −x w

SOM vs PCA

One-dimensional SOM versus principal component analysis (PCA) for data

approximation. SOM is a red broken line with squares, 20 nodes. The first principal

component is presented by a blue line. Data points are the small grey circles. For

PCA, the fraction of variance unexplained in this example is 23.23%, for SOM it is

6.86%.

SOM for Semantic Maps

Semantic network (SOM) detects “logical similarity” between words based on

statistics of their contexts (e.g. word order).

https://www.semanticscholar.org/paper/Self-organizing-semantic-maps-Ritter-

Kohonen/7e6429291b65b4984a461350f7a07a3af1af7029

SOM for Atmospheric Science

SOM of sea level pressure anomaly patterns; different days fall into different

categories, allowing researchers to attribute causes for variation with greater

specificity.

https://www.intechopen.com/books/applications-of-self-organizing-maps/self-

organizing-maps-a-powerful-tool-for-the-atmospheric-sciences

SOM for Medical Diagnosis

Pipeline used to predict glioma (tumor) grade and subsequently guide therapeutic

strategies. First MRI data is acquired, the data was clustered in (2) steps beginning

with an SOM, followed by k-means; lastly classification between high and low

gliomas was done using an SVM.

https://www.nature.com/articles/srep30344

Dimensionality Reduction with

Autoencoders

• Hinton et al., devised a non-linear generalization of PCA that uses adaptive,

multilayer “encoder” networks to transform high-dimensional data into a

low-dimensional code and a similar “decoder” network to recover the data

from the code.

https://www.cs.toronto.edu/~hinton/science.pdf

• Note that PCA is intimately connected with MLPs.

(*) An MLP can perform (non-linear) PCA using what is called an auto-associator (more

commonly: auto-encoder).

(*) If we train the MLP where the output equals the input, we are asking the network to

learn a data “reconstruction” process; we therefore train to minimize the reconstruction error.

(*) Usually the hidden layers are smaller in dimension than the output/input layers so that

they form a compression “bottleneck”.

(*) The activations at the hidden layers

(i.e. the feature vectors) Encode a

dimensionality reduction of the data.

Dimensionality Reduction with

Autoencoders

PCA & Auto-encoders: Image

Denoising

Dimensionality Reduction with

Autoencoders
• It is difficult to optimize the weights in nonlinear autoencoders that have multiple

hidden layers (2–4). With large initial weights, autoencoders typically find poor local

minima; with small initial weights, the gradients in the early layers are tiny, making it

infeasible to train autoencoders with many hidden layers.

Dimensionality Reduction with

Autoencoders
• It is difficult to optimize the weights in nonlinear autoencoders that have multiple

hidden layers (2–4). With large initial weights, autoencoders typically find poor local

minima; with small initial weights, the gradients in the early layers are tiny, making it

infeasible to train autoencoders with many hidden layers.

• If the initial weights are close to a good solution, gradient descent works well, but

finding such initial weights requires a very different type of algorithm that learns one

layer of features at a time.

• Hinton et al. introduce a pretraining procedure for binary data, and generalize it to real-

valued data.

Aside: Restricted Boltzmann

Machines (RBMs)
• RBMs are shallow, two-layer neural nets that constitute the building blocks

of deep-belief networks (the layers of which can act as feature detectors). The first layer

of the RBM is called the visible, or input, layer, and the second is the hidden

layer.

Aside: Restricted Boltzmann

Machines (RBMs)
• RBMs are shallow, two-layer neural nets that constitute the building blocks

of deep-belief networks (the layers of which can act as feature detectors). The first layer

of the RBM is called the visible, or input, layer, and the second is the hidden

layer.

• The nodes are fully connected across the layers – but there are no intra-layer

connections (this is the indicated restriction in the RBM); the underlying graph

is, in other words, bipartite.

Aside: Restricted Boltzmann

Machines (RBMs)
• Each visible node takes a feature from the input (just as with perceptrons,

NNs, etc.)

• As usual, at each hidden node, each input x is multiplied by its respective

weight w. Each hidden node receives the inputs multiplied by their respective

weights. The sum of those products is again added to a bias, and the result is

passed through the activation algorithm producing one output for each hidden

node.

Aside: Restricted Boltzmann

Machines (RBMs)
• For reconstruction, the activations in the hidden layer now become the input for

backward phase.

• They are multiplied by the same weights, one per internode edge, just as x

was weight-adjusted on the forward pass. The sum of those products is added

to a visible-layer bias at each visible node, and the output of those operations

is a reconstruction; i.e. an approximation of the original input.

Aside: Restricted Boltzmann

Machines (RBMs)
• For the forward phase we can think of the RBM as using the inputs to make

predictions about node activations, i.e. P(a|x,w).

•Conversely, in the backward phase, because the activations are fed in and

reconstruction approximations are outputted, this phase can be as summarized

as approximating the distribution: P(x|a,w).

• Together, then, these two estimates together represent the joint distribution:

P(x,a|w).

Aside: Restricted Boltzmann

Machines (RBMs)
• The reconstruction process is making guesses about the distribution of the

input. Consequently, reconstruction is an instance of generative learning.

• Since RBMs are learning to reconstruct the input, we can think of an RBM as

minimizing the “difference” between the input (distribution) and

reconstruction (distribution).

• Put another way – the RBM works to minimize the KL divergence of these

two distributions.

Aside: Restricted Boltzmann

Machines (RBMs)
• The process of learning reconstructions is, in a sense, learning which groups

of pixels tend to co-occur for a given set of images.

•If, say, an RBM were only fed images of dogs and cats (with only two output

nodes, one for each). The question the RBM is asking itself on the forward

pass is: Given these pixels, should my weights send a stronger signal to the dog

node or the cat node? And the question the RBM asks on the backward pass is:

Given, say, a dog, which distribution of pixels should I expect?

Aside: Restricted Boltzmann

Machines (RBMs)
• The process of learning reconstructions is, in a sense, learning which groups

of pixels tend to co-occur for a given set of images.

•If, say, an RBM were only fed images of dogs and cats (with only two output

nodes, one for each). The question the RBM is asking itself on the forward

pass is: Given these pixels, should my weights send a stronger signal to the dog

node or the cat node? And the question the RBM asks on the backward pass is:

Given, say, a dog, which distribution of pixels should I expect?

• Note that RBMs have two biases. This is one aspect that distinguishes them

from other autoencoders. The hidden bias helps the RBM produce the

activations on the forward pass (since biases impose a floor so that at least

some nodes fire no matter how sparse the data), while the bias in the visible

nodes helps the RBM learn the reconstructions on the backward pass.

Aside: Restricted Boltzmann

Machines (RBMs)
• Once the RBM learns the structure of the input data as it relates to the

activations of the first hidden layer, then the data is passed one layer down the

net.

• The first hidden layer takes on the role of visible layer. The activations now

effectively become your input, and they are multiplied by weights at the nodes

of the second hidden layer, to produce another set of activations.

Aside: Restricted Boltzmann

Machines (RBMs)
• Once the RBM learns the structure of the input data as it relates to the

activations of the first hidden layer, then the data is passed one layer down the

net.

• The first hidden layer takes on the role of visible layer. The activations now

effectively become your input, and they are multiplied by weights at the nodes

of the second hidden layer, to produce another set of activations.

• This process of creating sequential sets of activations by grouping features

and then grouping groups of features is the basis of a feature hierarchy, by which

neural networks learn more complex and abstract representations of data.

• With each new hidden layer, the weights are adjusted until that layer is able to

approximate the input from the previous layer. This is greedy, layer-wise and

unsupervised pre-training. It requires no labels to improve the weights of the

network, which means you can train on unlabeled data, untouched by human

hands, which is the vast majority of data in the world.

Aside: Restricted Boltzmann

Machines (RBMs)
• RBMs are one example of so-called energy-based models in ML (e.g. simulated

annealing, Ising model) – meaning that they are (loosely) analogous to physical systems

for which “stable” states (sometimes called basins of attraction/attractors) represent

low-energy configurations of the system.

•RBMS are typically trained with an algorithm called Contrastive Divergence*

(details omitted here for brevity).

• Once an RBM is trained, another RBM is "stacked" atop it, taking its input from

the final trained layer. This forms a Deep Belief Network DBN). The fact that

DBNs can be trained greedily, one layer at a time, led to one of the first

effective deep learning algorithms.**

*http://www.cs.toronto.edu/~fritz/absps/cdmiguel.pdf

**http://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf

Aside: Restricted Boltzmann

Machines (RBMs)
• One can sample from a trained RBM in order to generate reconstructed samples –

Hinton equated this with the algorithm “dreaming.”

• More formally, Gibbs sampling can be used to generate these samples by

beginning with the hidden layer (for some initial, random string), sample the visible

layer, generating a new string and then repeat this process for many iterations.

Aside: Restricted Boltzmann

Machines (RBMs)

Dimensionality Reduction with NNs*
• An ensemble of binary vectors (e.g., images) can be modeled using a two-layer

RBM in which stochastic, binary pixels are connected to stochastic, binary feature

detectors using symmetrically weighted connections.

• The pixels correspond to “visible” units of the RBM because their states are

observed; the feature detectors correspond to “hidden” units. A joint

configuration (v, h) of the visible and hidden units has an energy given by:

()
,

, i i j j i j ij

i pixels j features i j

E bv b h v h w

= − − − v h

*https://www.cs.toronto.edu/~hinton/science.pdf

where vi and hj are the binary states of pixel i and feature j, bi and bj are their biases,

and wij is the weight between them. The network assigns a probability to every possible

image via this energy function (as we explained previously).

• The probability of a training image can be raised by adjusting the weights and biases

to lower the energy of that image and to raise the energy of similar, reconstructed

images that the network would prefer to the real data.

Dimensionality Reduction with NNs
• Given a training image, the binary state hj of each feature detector j is set to 1

with probability σ(bj +σ𝑖 𝑣𝑖𝑤𝑖𝑗), where σ(x) is the logistic function, bj is the bias of

j, vi is the state of pixel i, and wij is the weight between i and j.

•Once binary states have been chosen for the hidden units, a “confabulation” is

produced by setting each vi to 1 with probability σ(bj +j σ ℎ𝑗𝑤𝑖𝑗), where bi is the

bias of i. The states of the hidden units are then updated once more so that they

represent features of the confabulation. The change in a weight is given by:

where η is the learning rate, <vihj>data is the fraction of times that the pixel i and

feature detector j are on together when the feature detectors are being driven by

data, and <vihj>reconstruction is the corresponding fraction for confabulations. A

simplified version of the same learning rule is used for the biases.

()ij i j i jdata reconstruction
w v h v h = −

Dimensionality Reduction with NNs
• A single layer of binary features is not the best way to model the structure in a set

of images. After learning one layer of feature detectors, we can treat their

activities—when they are being driven by the data—as data for learning a second

layer of features. The first layer of feature detectors then become the visible units

for learning the next RBM, etc. This yields a stacked RBM model.

• Each layer of features captures strong, high-order correlations between the

activities of units in the layer below. For a wide variety of data sets, this is an

efficient way to progressively reveal low-dimensional, nonlinear structure.

Dimensionality Reduction with NNs
• After pretraining multiple layers of feature detectors, the model is “unrolled” to

produce encoder and decoder networks that initially use the same weights. The global

finetuning stage then replaces stochastic activities by deterministic, real-valued

probabilities and uses backpropagation through the whole autoencoder to fine-tune the

weights for optimal reconstruction.

Pretraining consists of learning a

stack of restricted Boltzmann

machines (RBMs), each having

only one layer of feature

detectors. The learned feature

activations of one RBM are used

as the ‘‘data’’ for training the next

RBM in the stack. After the

pretraining, the RBMs are

‘‘unrolled’’ to create a deep

autoencoder, which is then fine-

tuned using backpropagation of

error derivatives.

Dimensionality Reduction with NNs

• Top to bottom: A random test image from each class; reconstructions by the 30-

dimensional autoencoder; reconstructions by 30- dimensional logistic PCA and

standard PCA. The average squared errors for the last three rows are 3.00, 8.01, and

13.87.

• Top to bottom: Random samples from the test data set; reconstructions by the 30-

dimensional autoencoder; reconstructions by 30-dimensional PCA. The average

squared errors are 126 and 135.

Dimensionality Reduction with NNs

Dimensionality Reduction with NNs

Spectral Clustering
• Spectral clustering techniques make use of the spectrum (i.e. eigenvalues) of

the similarity matrix of a data set to perform dimensionality reduction

before before clustering in fewer dimensions. Spectral clustering is a non-linear

dimensionality reduction scheme and can therefore represent a richer set of (low-

dimensional) manifolds than linear dimensionality reduction schemes (e.g. PCA).

• The similarity matrix S (a symmetric matrix) is provided as an input and consists

of a quantitative assessment of the relative similarity of each pair of points in the

dataset.

Spectral Clustering
• The goal when constructing similarity graphs (NB: the similarity graph is simply the

weighted undirected graph defined by its similarity matrix S) is to model the local

neighborhood relationships between the data points. Moreover, most of the

constructions below lead to a sparse representation of the data, which has

computational advantages

Spectral Clustering
• The goal when constructing similarity graphs (NB: the similarity graph is simply the

weighted undirected graph defined by its similarity matrix S) is to model the local

neighborhood relationships between the data points. Moreover, most of the

constructions below lead to a sparse representation of the data, which has

computational advantages.

• Similarity can be defined according to different criteria; here are some of the

most common criteria used in practice to define similarity:

Spectral Clustering
• One can consider clustering in terms of graph cuts. If we want to find a

partition from the similarity graph for a data set into K clusters, say A1, …,AK, a

natural criterion is to minimize:

where W denotes the similarity graph, 𝐴𝑘=V\Ak is the complement of Ak, and

W(A,B)=σ𝑖∈𝐴,𝑗∈𝐵𝑤𝑖𝑗. This criterion is, in other words, just the standard min-cut

criterion.

()1

1

1
(,...,) ,

2

K

K k k

k

cut A A W A A
=

=

Spectral Clustering
• One can consider clustering in terms of graph cuts. If we want to find a

partition from the similarity graph for a data set into K clusters, say A1, …,AK, a

natural criterion is to minimize:

where W denotes the similarity graph, 𝐴𝑘=V\Ak is the complement of Ak, and

W(A,B)=σ𝑖∈𝐴,𝑗∈𝐵𝑤𝑖𝑗. This criterion is, in other words, just the standard min-cut

criterion.

More commonly, researchers use the normalized cut criterion, defined as:

where vol(Ak)=σ𝑖∈𝐴𝑑𝑖, where di is the weighted degree of vertex i in the similarity

graph.

(*) This splits the graph into K clusters such that nodes within each cluster are

similar to one another, but are different to nodes in other clusters.

()1

1

1
(,...,) ,

2

K

K k k

k

cut A A W A A
=

=

()
()

1

1

,1
(,...,)

2

K
k k

K

k k

W A A
Ncut A A

vol A=

=

Spectral Clustering: Graph Laplacian

• Let W be the symmetric weight matrix for a graph where wij=wji ≥ 0. Let

D=diag(di) be the diagonal matrix containing the weighted degree of each node.

The graph Laplacian is defined as: L = D – W

Spectral Clustering: Graph Laplacian

• The graph Laplacian is defined as: L = D – W.

The Laplacian possesses several useful properties, including the fact that it is

symmetric and positive semi-definite.

(*) Consequently, L has non-negative, real-valued eigenvalues: 0 ≤ λ1 ≤ λ2 … ≤ λN.

(this property holds by virtue of L being positive semi-definite)

How is this helpful for clustering?

Spectral Clustering: Graph Laplacian

• The graph Laplacian is defined as: L = D – W.

The Laplacian possesses several useful properties, including the fact that it is

symmetric and positive semi-definite.

(*) Consequently, L has non-negative, real-valued eigenvalues: 0 ≤ λ1 ≤ λ2 … ≤ λN.

How is this helpful for clustering?

A handy theorem states that the set of eigenvectors of L with eigenvalue 0 is

spanned by the indicator vectors 1A1,…,1AK, where Ak are the K connected

components of the graph.

(*) Consequently, the number of connected components of the graph is given

by the dimension of the nullspace of L (also called simply the “nullity of L” in

linear algebra); put another way: the algebraic multiplicity of the zero eigenvalue

equals the number of connected components of the graph.

Spectral Clustering: Graph Laplacian

• The graph Laplacian is defined as: L = D – W.

(*) Consequently, L has non-negative, real-valued eigenvalues: 0 ≤ λ1 ≤ λ2 … ≤ λN.

(*) Consequently, the number of connected components of the graph is given

by the dimension of the nullspace of L; put another way: the algebraic multiplicity the

of the zero eigenvalue equals the number of connected components of the graph.

(*) Thus, in the “ideal” case for which the data graph consists of k disconnected

components, then the multiplicity of the zero eigenvalue for L equals the number

of connected components (namely, k) and the eigenspace is spanned by the

indicator vectors of the connected components.

In this case L would form a block diagonal matrix:

Spectral Clustering: Graph Laplacian

• Thus, in the “ideal” case for which the data graph consists of k disconnected

components, then the multiplicity of the zero eigenvalue for L equals the number

of connected components (namely, k) and the eigenspace is spanned by the

indicator vectors of the connected components.

• In reality, we don’t expect a graph derived from a real similarity matrix to have

isolated connected components – that would be too easy (“real data is messy”).

Spectral Clustering: Graph Laplacian

• Thus, in the “ideal” case for which the data graph consists of k disconnected

components, then the multiplicity of the zero eigenvalue for L equals the number

of connected components (namely, k) and the eigenspace is spanned by the

indicator vectors of the connected components.

• In reality, we don’t expect a graph derived from a real similarity matrix to have

isolated connected components – that would be too easy.

• But it is reasonable to suppose the graph is some small “perturbation” from such

a situation. In this case, one can use results from perturbation theory to show the

eigenvectors of the perturbed Laplacian will be close to these ideal indicator

functions.

(*) Briefly stated: the perturbation argument says that if we do not have a

completely ideal situation where the between-cluster similarity is exactly 0, but if

we have a situation where the between-cluster similarities are very small, then the

eigenvectors of the first k eigenvalues should be very close to the ones in the ideal

case. Thus we should still be able to recover the clustering from those eigenvectors.

Spectral Clustering: Graph Laplacian

• This suggests the following algorithm:

Compute the first k eigenvectors of L (k will represent the dimension of our

low-dimensional manifold upon which we project the data). Form an n x k (n is

the original data set size) matrix U with the eigenvectors of L as the columns. Now

one can apply k-means over the rows of U to recover the connected components

of the graph. This clustering determines the low-dimensional clustering

assignment.

Spectral Clustering: Graph Laplacian
• This suggests the following algorithm:

Compute the first k eigenvectors of L (k will represent the dimension of the

low-dimensional manifold upon which we project the data). Form an n x k (n is the

original data set size) matrix U with the eigenvectors of L as the columns. Now

one can apply k-means over the rows of U to recover the connected components

of the graph. This clustering determines the low-dimensional clustering

assignment.

(*) In practice, it is important to normalize the graph Laplacian, to account for the

fact that some nodes are more highly connected than others. There are two

common ways to do with (one using the notion of random walks) – here is the

symmetric normalized Laplacian (as used by Ng et al.)

recall that D is the diagonal matrix of vertex degrees.

1 1

2 2
symL D LD

− −

=

Spectral Clustering: Graph Laplacian
• This suggests the following algorithm:

Compute the first k eigenvectors of L (k will represent the dimension of the low-

dimensional manifold upon which we project the data). Form an n x k (n is the original data

set size) matrix U with the eigenvectors of L as the columns. Now one can apply k-means

over the rows of U to recover the connected components of the graph. This clustering

determines the low-dimensional clustering assignment.

(*) In practice, it is important to normalize the graph Laplacian, to account for the fact that

some nodes are more highly connected than others. There are two common ways to do with

(one using the notion of random walks) – here is the symmetric normalized Laplacian (as

used by Ng et al.)

(*) One can show that this algorithm corresponds

with finding a normalized minimum cut in

the similarity graph for the data (as discussed

on previous slides).

1 1

2 2
symL D LD

− −

=

Spectral Clustering: Graph Laplacian

Spectral Clustering

(*) NIPS 2001 paper, Ng et al., on spectral clustering ~6500

citations

Spectral Clustering

Spectral Clustering

Tutorial on spectral clustering: https://arxiv.org/pdf/0711.0189.pdf

Github demo: https://github.com/pin3da/spectral-clustering (python)

https://arxiv.org/pdf/0711.0189.pdf
https://github.com/pin3da/spectral-clustering

Spectral Clustering: Applications
Naturally, one can use spectral clustering for image segmentation applications

(in addition to various dimensionality reduction applications).

(*) A significant challenge for image segmentation applications of spectral clustering

relates to the construction/definition of the Laplacian (i.e. similarity/affinity) matrix.

This is a deep question that concerns feature selection more broadly in ML and

data mining.

Segmentation

based on spectral

clustering.

Spectral Clustering: Applications
Sindhumol, et al. “Spectral clustering independent component analysis for

tissue classification from brain MRI”

The authors use a variant of spectral clustering (spectral clustering ICA) to

improve brain tissue classification from MRI scans; results were 98%

accuracy for clinical abnormality analysis.

https://www.sciencedirect.com/science/article/pii/S174680941300092X

ISOMAP
• Like spectral clustering, Isomap is a non-linear dimensionality reduction method.

• More specifically, Isomap is an isometric mapping method (isometric mappings

preserve distance) that provides an extension of a general class of algorithms

known as metric multidimensional scaling (MDS) methods.

ISOMAP
• Like spectral clustering, Isomap is a non-linear dimensionality reduction method.

• More specifically, Isomap is an isometric mapping method (isometric mappings

preserve distance) that provides an extension of a general class of algorithms

known as metric multidimensional scaling (MDS) methods.

• MDS performs a low-dimensional embedding of a data set based on pairwise

distances between data points (simply by using straight-line Euclidean distance).

Alternatively, Isomap incorporates instead the geodesic distance between two

vertices in a graph.

ISOMAP
• Like spectral clustering, Isomap is a non-linear dimensionality reduction method.

• More specifically, Isomap is an isometric mapping method (isometric mappings

preserve distance) that provides an extension of a general class of algorithms

known as metric multidimensional scaling (MDS) methods.

• MDS performs a low-dimensional embedding of a data set based on pairwise

distances between data points (simply by using straight-line Euclidean distance).

Alternatively, Isomap incorporates instead the geodesic distance between two

vertices in a graph.

• The geodesic distance is defined as the sum of the edge weights in a shortest

path between two vertices.

Q: How is geodesic distance more informative than Euclidean distance?

ISOMAP
• Like spectral clustering, Isomap is a non-linear dimensionality reduction method.

• More specifically, Isomap is an isometric mapping method (isometric mappings

preserve distance) that provides an extension of the metric multidimensional

scaling (MDS) method.

• MDS performs a low-dimensional embedding of a data set based on pairwise

distances between data points (simply by using straight-line Euclidean distance).

Alternatively, Isomap incorporates instead the geodesic distance between two

vertices in a graph.

• The geodesic distance is defined as the sum of the edge weights in a shortest

path between two vertices.

Geodesic distance incorporates

the manifold structure in the resulting

embedding.

ISOMAP

The original Isomap paper, by Tenebaum et al. (same Tenebaum from

Bayesian concept learning as discussed previously, Science, December

2000, ~11k citations.

http://web.mit.edu/cocosci/Papers/sci_reprint.pdf

ISOMAP
• The Isomap algorithm combines the major algorithmic features of PCA and

MDS – computational efficiency, global optimality, and asymptotic convergence

guarantees – with the flexibility to learn a broad class of non-linear manifolds.

• In particular, Isomap seeks to preserve the intrinsic geometry of the data, as

captured in the geodesic manifold distances between pairs of points.

ISOMAP
• The Isomap algorithm combines the major algorithmic features of PCA and

MDS – computational efficiency, global optimality, and asymptotic convergence

guarantees – with the flexibility to learn a broad class of non-linear manifolds.

• In particular, Isomap seeks to preserve the intrinsic geometry of the data, as

captured in the geodesic manifold distances between pairs of points.

• The key step deals with estimating the geodesic distance between distant

points, given only input-space distances.

• For neighboring points, the input-space distance provides a good

approximation to geodesic distance. For faraway points, the geodesic distance

can be approximated by adding up a sequence of “short hops” between

neighboring points. These approximations can be computed by finding a

shortest path.

ISOMAP
(*) The Isomap algorithm is comprised of (3) general steps:

(1) The first step determines which points are neighbors on the manifold M,

based on the distance dX(i,j) between pairs of points i,j in the input space X.

As we mentioned previously in the this lecture, there are several options for

determining “neighborhoods”, including the use of k-NN or to connect a point

to each point within some fixed radius ε, etc.

From here, we construct the neighborhood graph G (again, each point, say,

could be connected to another if it is a K nearest neighbor, or the edge weights

could simply equal the Euclidean distance between points).

ISOMAP
(*) The Isomap algorithm is comprised of (3) general steps:

(2) In its second step, Isomap estimates the geodesic distances dM(i,j)

between all pairs of points on the manifold M by computing their shortest path

distances dG(i,j) in the graph G.

Q: What is a well-known algorithm to compute these geodesic distance (i.e.

shortest paths in G)?

ISOMAP
(*) The Isomap algorithm is comprised of (3) general steps:

(2) In its second step, Isomap estimates the geodesic distances dM(i,j) between

all pairs of points on the manifold M by computing their shortest path

distances dG(i,j) in the graph G.

Q: What is a well-known algorithm to compute these geodesic distance (i.e.

shortest paths in G)?

There are several options: Dijkstra’s Algorithm is perhaps the best-known

(one can also can use Floyd-Warshall, for instance).

Shortest path network.

Directed graph G = (V, E).

Source s, destination t.

Length e = length of edge e.

Shortest path problem: find shortest directed path from s to t.

Cost of path s-2-3-5-t
= 9 + 23 + 2 + 16
= 50.

cost of path = sum of edge costs in path

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

Aside: Dijkstra’s Algorithm

The famous

“seven bridges

of Koningsberg”

problem that led

to the inception

of graph theory

Euler

Dijkstra's algorithm.

Maintain a set of explored nodes S for which we have determined the

shortest path distance d(u) from s to u.

Initialize S = { s }, d(s) = 0.

Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = (v).

(Note: (v) represents a “temporary” distance label the algorithm runs)

,)(min)(
:),(

e
Suvue

udv +=
=

s

v

u

d(u)

S

e

shortest path to some u in explored
part, followed by a single edge (u, v)

Aside: Dijkstra’s Algorithm

Find shortest path from s to t.

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

Aside: Dijkstra’s Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

distance label

S = { }

PQ = { s, 2, 3, 4, 5, 6, 7, t }

Aside: Dijkstra’s Algorithm

94

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

distance label

S = { }

PQ = { s, 2, 3, 4, 5, 6, 7, t }

min

Aside: Dijkstra’s Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

distance label

S = { s }

PQ = { 2, 3, 4, 5, 6, 7, t }

decrease key

X

X

X

Aside: Dijkstra’s Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

distance label

S = { s }

PQ = { 2, 3, 4, 5, 6, 7, t }

X

X

X

min

Aside: Dijkstra’s Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2 }

PQ = { 3, 4, 5, 6, 7, t }

X

X

X

Aside: Dijkstra’s Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2 }

PQ = { 3, 4, 5, 6, 7, t }

X

X

X

decrease key

X 33

Aside: Dijkstra’s Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2 }

PQ = { 3, 4, 5, 6, 7, t }

X

X

X

X 33

min

Aside: Dijkstra’s Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 6 }

PQ = { 3, 4, 5, 7, t }

X

X

X

X 33

44
X

X

32

Aside: Dijkstra’s Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 6 }

PQ = { 3, 4, 5, 7, t }

X

X

X

44
X

min

X 33X

32

Aside: Dijkstra’s Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 6, 7 }

PQ = { 3, 4, 5, t }

X

X

X

44
X

35X

59 X

24

X 33X

32

Aside: Dijkstra’s Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 6, 7 }

PQ = { 3, 4, 5, t }

X

X

X

44
X

35X

59 X

min

X 33X

32

Aside: Dijkstra’s Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 6, 7 }

PQ = { 4, 5, t }

X

X

X

44
X

35X

59 XX51

X 34

X 33X

32

Aside: Dijkstra’s Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 6, 7 }

PQ = { 4, 5, t }

X

X

X

44
X

35X

59 XX51

X 34

min

X 33X

32

24

Aside: Dijkstra’s Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 5, 6, 7 }

PQ = { 4, t }

X

X

X

44
X

35X

59 XX51

X 34

24

X50

X45

X 33X

32

Aside: Dijkstra’s Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 5, 6, 7 }

PQ = { 4, t }

X

X

X

44
X

35X

59 XX51

X 34

24

X50

X45

min

X 33X

32

Aside: Dijkstra’s Algorithm

108

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 4, 5, 6, 7 }

PQ = { t }

X

X

X

44
X

35X

59 XX51

X 34

24

X50

X45

X 33X

32

s

3

t

2

6

7

4

5

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 4, 5, 6, 7 }

PQ = { t }

X

X

X

44
X

35X

59 XX51

X 34

X50

X45

min

X 33X

32

24

Aside: Dijkstra’s Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 4, 5, 6, 7, t }

PQ = { }

X

X

X

44
X

35X

59 XX51

X 34

X50

X45

X 33X

32

Aside: Dijkstra’s Algorithm

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

14

0

S = { s, 2, 3, 4, 5, 6, 7, t }

PQ = { }

X

X

X

44
X

35X

59 XX51

X 34

X50

X45

X 33X

32

Aside: Dijkstra’s Algorithm

For each node u S, d(u) is the length of the shortest s-u path.

Pf. (by induction on |S|)

Base case: |S| = 1 is trivial.

Inductive hypothesis: Assume true for |S| = k 1.

Let v be next node added to S, and let u-v be the chosen edge.

(Claim) The shortest s-u path plus (u, v) is an s-v path of length (v).

Consider any s-v path P. We'll see that it's no shorter than (v).

Let x-y be the first edge in P that leaves S,

and let P' be the subpath to x.

P is already too long as soon as it leaves S.

 (P) (P') + (x,y) d(x) + (x, y) (y) (v)

Nonnegative weights

(triangle inequality)

inductive
hypothesis

defn of (y) Dijkstra chose v
instead of y

S

s

y

v

x

P

u

P'

Aside: Dijkstra’s Algorithm

For each unexplored node, explicitly maintain

Next node to explore = node with minimum (v).

When exploring v, for each incident edge e = (v, w), update

Efficient implementation. Maintain a priority queue of unexplored nodes,

prioritized by (v).

PQ Operation

Insert

ExtractMin

ChangeKey

Binary heap

log n

log n

log n

Array

n

n

1

IsEmpty 11

Total m log nn2

Dijkstra

n

n

m

n

 (v) = min
e = (u,v) : u S

d (u) + e .

(w) = min { (w), (v)+ e }.

Aside: Dijkstra’s Algorithm

ISOMAP
(*) The Isomap algorithm is comprised of (3) general steps:

(2) In its second step, Isomap estimates the geodesic distances dM(i,j) between

all pairs of points on the manifold M by computing their shortest path

distances dG(i,j) in the graph G.

There are several options here: Dijkstra’s Algorithm is perhaps the best-

known (also can use Floyd-Warshall, for instance).

ISOMAP
(*) The Isomap algorithm is comprised of (3) general steps:

(3) The final step applies classical MDS to the matrix of graph distances

DG={dG(i,j)}, constructing an embedding of the data in a d-dimensional

Euclidean space Y that best preserves the manifold’s estimates of the intrinsic

geometry of the data.

ISOMAP
(*) The Isomap algorithm is comprised of (3) general steps:

(3) The final step applies classical MDS to the matrix of graph distances

DG={dG(i,j)}, constructing an embedding of the data in a d-dimensional

Euclidean space Y that best preserves the manifold’s estimates of the intrinsic

geometry of the data.

The coordinate vectors yi for points in Y are chosen to minimize the cost

function:

• Where DY denotes the matrix of Euclidean distances {dY(i,j)= 𝒚𝑖 − 𝒚𝑗 }

and · 2 in the equation above is the L2 matrix norm. The τ operator converts

distances to inner products which uniquely characterizes the geometry of the

data in a form that supports efficient optimization.

The global minimum of the equation above is achieved by setting the

coordinates yi to the top d eigenvectors of the matrix τ(DG).

() ()
2G YE D D = −

ISOMAP
(*) The Isomap algorithm is comprised of (3) general steps:

(3) The final step applies classical MDS to the matrix of graph distances

DG={dG(i,j)}, constructing an embedding of the data in a d-dimensional

Euclidean space Y that best preserves the manifold’s estimates intrinsic

geometry.

(*) This third step in the Isomap algorithm might seem somewhat complicated

– however, it is really equivalent to performing PCA on the (centered) square of

a distance matrix D (for a data set).

• In other words, you take the distance matrix D, square it, and center. Then

compute the eigendecomposition for the top eigenvalues and project the data

into this smaller dimensional space (just as with PCA).

ISOMAP

Potential Issues for Isomap: The connectivity of each data point in the neighborhood graph

is defined as its nearest k Euclidean neighbors in the high-dimensional space. This step is

vulnerable to "short-circuit errors" if k is too large with respect to the manifold structure or if

noise in the data moves the points slightly off the manifold. Even a single short-circuit error

can alter many entries in the geodesic distance matrix, which in turn can lead to a drastically

different (and incorrect) low-dimensional embedding. Conversely, if k is too small, the

neighborhood graph may become too sparse to approximate geodesic paths accurately. But

improvements have been made to this algorithm to make it work better for sparse and noisy

data sets.

ISOMAP

ISOMAP

ISOMAP

Python implementation:

http://scikit-learn.org/stable/modules/manifold.html

Fin

