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Introduction

• Most traditional statistical techniques (e.g. regression/classification) were 

developed in low-dimensional settings (i.e. n >> p where n is the data size and p

is the number of  features). 

•   Over the last several decades, new technologies have drastically changed the 

way that data are collected (see “big data age”). Consequently, it is now 

commonplace to work with data with a very large number of  features (i.e. p

>> n). 

•   While p can be extremely large, the number of  observations n is often limited 

due to cost, sample availability, or other considerations.  



Introduction
• Data containing more features than observations are typically referred to as 

high-dimensional. 

•    Issues pertaining to the bias-variance tradeoff  and overfitting are commonly 

exacerbated in high dimensions. 

•    With a large number of  features, statistical models (e.g. regression) can 

become too flexible and hence overfit the data. 

•   Recall the curse of  dimensionality, which poses two fundamental, associated 

problems: (1) “neighborhoods” become very large (this is problematic in 

particular for kernel and clustering methods), (2) we need a much larger data 

set to adequately “fill” the space for predictive modeling, etc. 



Interpretability in High Dimensions
• In high-dimensional settings we need to be cautious about how we 

interpret our results – that is to say if  they can be reasonably interpreted at 

all. 

•   Of  course, it is oftentimes adequate, depending on the application, to treat a 

machine learning model as a mere predictive “black box” (e.g. statistical 

arbitrage, government work). 

•   Conversely, if  we want to say that the features in our model directly impact 

the outcomes we observe (note: in ML we almost never use the c-word – viz.,  

variables caused observed effect) we need to be alert to multicollinearity. 

•    In high dimensions, it is very likely that some of  our model variables are 

mutually correlated. This means we can never know exactly which variables 

(if  any) are truly predictive of  the outcome. Moreover, we can rarely identify 

the optimal set of  features for a given phenomenon of  interest.  



Interpretability in High Dimensions

• The “first rule” of  data science and ML: one can always add more and 

more features to achieve zero classification/predictive error, a perfect 

correlation coefficient value, etc.  

•   In the end, however, this is a useless model.  We always need to report 

results on an independent test or validation set. 

•   In 2008, Hinton et al, developed a non-linear dimensionality technique known 

as t-SNE (t-distributed stochastic neighbor embedding) that is particularly well-suited 

for embedding high-dimensional data into 2 or 3 dimensions, which can be 

visualized with a scatter plot. 

•    Specifically, it models each high-dimensional object by a two- or three-dimensional 

point in such a way that similar objects are modeled by nearby points and 

dissimilar objects are modeled by distant points.



Dimensionality Reduction
• In general: the higher the number of  dimensions we have, the more training data 

we need. 

•    Additionally, computational cost is generally an explicit function of  

dimensionality. 

•    Dimensionality reduction can also remove noise in a data set, which can, in 

turn, significantly improve the results of  a learning algorithm.     

•   These are perhaps the strongest reasons why dimensionality reduction is useful 

(in addition to improving visualization/interpretability). 

In general, there are (3) common ways to perform dimensionality reduction: 

(1) Feature selection – determine whether the features available are actually useful, 

i.e. are they correlated with the output variables. 

(2) Feature derivation – means deriving new features from old ones, generally by 

applying transforms to the data set that change the coordinate system axes (e.g., 

by moving or rotating); this is usually achieved through matrix multiplication.

(3) Clustering – group together similar data points to see whether this allows fewer 

features to be used. 



PCA
PCA generates a particular set of  coordinate axes that capture the maximum 

variability in the data; furthermore, these new coordinate axes are orthogonal.

The figure shows two versions of  the same data set. 

•   In the first image, the data are arranged in an ellipse that runs at 45◦ axes; while in the 

second, the axes have been moved so that the data now runs along the x-axis and is 

centered on the origin. 

•   Key idea: the potential for dimensionality reduction rests in the fact that the y dimension 

now does not demonstrate much variability – and so it might be possible to ignore it and 

simply use the x axis values alone for learning, etc. 

(*) In fact, applying this dimensionality reduction often has the nice effect of  removing some 

of  the noise in the data. 



PCA

•   Note: In the eigendecomposition for cov(X), the dimensions with large eigenvalues have 

lots of  variation and are therefore useful dimensions. 

•    In order to perform a dimensionality reduction on our data set, we can therefore throw 

away dimensions for which the eigenvalues are very small (usually smaller than some 

chosen parameter). 

( )cov T= =Z X EDE



PCA
•  Here is the PCA algorithm: 

(1) Write N data points xi=(x1i,x2i,…,xMi) as row vectors.

(2) Put these vectors into the data matrix X (of  size N x M).

(3) Center the data by subtracting off  the mean of  each column, place into matrix B. 

(4) Computer the covariance matrix: 

(5) Computer the eigenvalues and eigenvectors of  C, so: 

where D is the diagonal matrix of  eigenvalues; V is the matrix of  corresponding eigenvectors. 

(6) Sort of  the columns of  D into order of  decreasing eigenvalues, and apply the same order to the 

columns of  V. 

(7) Reject those with eigenvalues less than some given threshold, leaving L dimensions in the data. 
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PCA for MNIST



PCA vs. LDA



Extending PCA

Q: What strong assumptions did we make about the surface for the directions of  maximum 

variation with PCA? 

A: We assumed these surfaces of  maximum variation are straight lines (this is a strong 

assumption!)

Q: How can are break the linear restriction for PCA? 

A: “Kernelize” PCA!



Kernel PCA
(*) All we have to do is express the covariance matrix C (recall this was the covariance of  the 

data matrix X after centering) in terms of  a kernel transformation: 

(*) Next we compute the eigendecomposition of  C and use the eigenvectors with the largest 

associated eigenvalues for PCA. 

(*) Recall (from SVM lecture) that by using a kernel function we implicitly perform a dot 

product in a larger dimensional feature space (this is the crux of  the kernel trick), with 

the upshot of  enhanced expressiveness.
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t-SNE: H-D Data Visualization

• First, t-SNE constructs a probability distribution over pairs of  high-dimensional 

objects in such a way that similar objects have a high probability of  being picked, 

whilst dissimilar points have an extremely small probability of  being picked. 

•    Second, t-SNE defines a similar probability distribution over the points in the low-

dimensional map, and it minimizes the KL divergence (a standard measure of  

“distance” between probability distributions) between the two distributions with 

respect to the locations of  the points in the map. 



t-SNE for MNIST 



t-SNE for Atari! (Deepmind) 



Word2vec (2013) 
•  Word2vec is a group of  related models (Google) that are used to produce 

word embeddings. 

•  These models are shallow, two-layer neural network that are trained to 

reconstruct linguistic contexts of  words.  

•  Word2vec takes as its input a large corpus of  text and produces a vector 

space (usually of  high dimensions), with each unique word in the corpus 

being assigned a corresponding vector in the space.

•  Word vectors are positioned  in the vector space such that words that 

share common contexts in the corpus are located in close proximity to 

one another in the space.



t-SNE for word2vec



Self-Organizing Maps (SOMs)

• To date, we have only considered applications of  NNs for supervised 

learning, however, there exist several applications of  NNs for unsupervised 

learning, including self-organizing maps (SOMs, 1988, Kohonen).

• In the unsupervised setting (e.g., k-means), we wish to identify

meaningful data patterns in a self-organizing fashion (viz., 

without the use of  labels). This process is often referred to as 

learning a feature map – that is to say, a compression scheme

that illuminates structurally significant input features. 

• Stated concisely, SOMs provide a way of  performing dimensionality reduction 

using vector quantization. Furthermore, SOMs are unique in that they preserve 

topographic network properties that mimic biological processes in the brain. 



Self-Organization & Complex Systems 
(*) Self-organization is a process where some form of  overall order arises from local interactions 

between parts of  an initially disordered system. The process is spontaneous, not needing control by any 

external agent. It is often triggered by random fluctuations, amplified by positive feedback. The resulting 

organization is wholly decentralized, distributed over all the components of  the system. As such, the 

organization is typically robust and able to survive or self-repair substantial perturbation. 

Self-organization occurs in many physical, chemical, biological, robotic, and cognitive systems. Systems 

formed from self-organization processes often exhibit emergent behavior. 

Recommended reading: M. Mitchell, Complexity: A Guided Tour. 



Topographic Maps & The Brain
• Neurobiological studies indicate that different sensory inputs (motor, visual, auditory, etc.) are 

mapped onto corresponding areas of  the cerebral cortex in an orderly fashion. This form of  

map, known as a topographic map has (2) important properties: 

(1) Each piece of  information is kept in its proper context/neighborhood;

(2) neurons dealing with closely-related pieces of  information are kept close together so that 

they can interact using short synaptic connections. 

(*) SOMs train an artificial topographic map through self-organization in a neurobiologically 

inspired way, abiding by the principle of  topographic map formation: “The spatial location of  

an output neuron in a topographic map corresponds to a particular domain or feature drawn 

from the input space.” 

http://jov.arvojournals.org/article.aspx?articleid=2121362



SOMs: Overview
• The goal of  a SOM is to transform the incoming signal pattern into a lower dimensional 

discrete map, and to perform this transformation adaptively in a topographically-ordered fashion 

(so that neurons that are close together represent inputs that are close together, while neurons 

that are far apart represent inputs that are far apart). 

• SOMs utilize a class of  unsupervised learning techniques known as competitive learning, in 

which output neurons compete amongst themselves to be activated, with the result being that 

only one is activated for a given input. 

• This activated neuron is called a winner-takes-all neuron (also: winning neuron). Neurons 

become selectively tuned to various input patterns during the course of  competitive learning. 



SOMs
• Note that with SOMs, the relative locations of  the neurons in the network matters (nearby 

neuron correspond to similar input patterns) and the neurons are arranged in a lattice/grid 

(usually in 1-D or 2-D) with connections between the neurons, rather than in layers with 

connections only between different layers (as with the previous NNs we’ve seen). Each neuron is 

fully connected to all the source nodes in the input layer.  

• Each node has a specific topological position (an (x,y) coordinate in the lattice) and contains a 

vector of  weights.

• For training, neurons are tuned to conform with the topographic map criteria; in this way, the 

winning neuron should pull other neurons that are close to it in the network closer to itself  in 

weight space, whereas neurons that are very far away should be ignored. 



SOM Algorithm



SOM Algorithm: Overview

(I) Initialization: network parameters: determine number of  neurons, dimension for the map (d) 

-- can use a random initialization or begin with, say the PCA algorithm, using first d principal                        

components.



SOM Algorithm: Overview

(I) Initialization: network parameters: determine number of  neurons, dimension for the map (d) 

-- can use a random initialization or begin with, say the PCA algorithm, using first d principal                        

components.

(II) Learning: 

(a) For each data point, select best-matching neuron (nb), using minimum 

Euclidean distance. 

(b) Update weight vector of  nb: 

(this update has the effect of  moving the weight vector of  nb closer to the datum), the learning 

rate η(t) is decreased over time.  

( )( )T T T

j j jt + −w w x w



SOM Algorithm: Recap
(II) Learning: 

(a) For each data point, select best-matching neuron (nb), using minimum 

Euclidean distance. 

(b) Update weight vector of  nb: 

(this update has the effect of  moving the weight vector of  nb closer to the datum), the learning     

rate η(t) is decreased over time.

(c) Update the weight vector of  all other neurons using:

where ηn(t) is the learning rate for the neighborhood nodes, and h(nb,t) is the neighborhood    

function with respect to node nb, which decides whether each neuron should be included in the 

neighborhood of  the winning neuron (e.g. n=1 for neighbors and n=0 for non-neighbors – or a 

Gaussian function can be used).

( )( )T T T

j j jt + −w w x w

( ) ( )( ),T T T
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SOM Algorithm: Recap
(II) Learning: 

(a) For each data point, select best-matching neuron (nb), using minimum 

Euclidean distance. 

(b) Update weight vector of  nb: 

(this update has the effect of  moving the weight vector of  nb closer to the datum), the learning     

rate η(t) is decreased over time.

(c) Update the weight vector of  all other neurons using:

where ηn(t) is the learning rate for the neighborhood nodes, and h(nb,t) is the neighborhood    

function with respect to node nb, which decides whether each neuron should be included in the 

neighborhood of  the winning neuron (e.g. n=1 for neighbors and n=0 for non-neighbods – or a 

Gaussian function can be used).

(d) Reduce the learning rates and adjust the neighborhood function (neighborhood size 

decreases over time). 

( )( )T T T

j j jt + −w w x w

( ) ( )( ),T T T

j j n b jt h n t + −w w x w

h(nb,t) function

neighboorhood size 

decreases over time 



SOM Algorithm: Recap
(II) Learning: 

(a) For each data point, select best-matching neuron (nb), using minimum 

Euclidean distance. 

(b) Update weight vector of  nb: 

(this update has the effect of  moving the weight vector of  nb closer to the datum), the learning     

rate η(t) is decreased over time.

(c) Update the weight vector of  all other neurons using:

where ηn(t) is the learning rate for the neighborhood nodes, and h(nb,t) is the neighborhood    

function with respect to node nb, which decides whether each neuron should be included in the 

neighborhood of  the winning neuron (e.g. n=1 for neighbors and n=0 for non-neighbods – or a 

Gaussian function can be used).

(d) Reduce the learning rates and adjust the neighborhood function (neighborhood size 

decreases over time). 

(III) Testing: 

For each test point select best-matching neuron:

( )( )T T T

j j jt + −w w x w

( ) ( )( ),T T T

j j n b jt h n t + −w w x w

h(nb,t) function

neighboorhood size 

decreases over time min T
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j
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SOM vs PCA

One-dimensional SOM versus principal component analysis (PCA) for data 

approximation. SOM is a red broken line with squares, 20 nodes. The first principal 

component is presented by a blue line. Data points are the small grey circles. For 

PCA, the fraction of  variance unexplained in this example is 23.23%, for SOM it is 

6.86%.



SOM for Semantic Maps

Semantic network (SOM) detects “logical similarity” between words based on 

statistics of  their contexts (e.g. word order).

https://www.semanticscholar.org/paper/Self-organizing-semantic-maps-Ritter-

Kohonen/7e6429291b65b4984a461350f7a07a3af1af7029



SOM for Atmospheric Science

SOM of  sea level pressure anomaly patterns; different days fall into different 

categories, allowing researchers to attribute causes for variation with greater 

specificity. 

https://www.intechopen.com/books/applications-of-self-organizing-maps/self-

organizing-maps-a-powerful-tool-for-the-atmospheric-sciences



SOM for Medical Diagnosis

Pipeline used to predict glioma (tumor) grade and subsequently guide therapeutic 

strategies. First MRI data is acquired, the data was clustered in (2) steps beginning 

with an SOM, followed by k-means; lastly classification between high and low 

gliomas was done using an SVM. 

https://www.nature.com/articles/srep30344



Dimensionality Reduction with 

Autoencoders

• Hinton et al., devised a non-linear generalization of  PCA that uses adaptive, 

multilayer “encoder” networks to transform high-dimensional data into a 

low-dimensional code and a similar “decoder” network to recover the data 

from the code. 

https://www.cs.toronto.edu/~hinton/science.pdf



• Note that PCA is intimately connected with MLPs. 

(*) An MLP can perform (non-linear) PCA using what is called an auto-associator (more 

commonly: auto-encoder). 

(*) If  we train the MLP where the output equals the input, we are asking the network to 

learn a data “reconstruction” process; we therefore train to minimize the reconstruction error. 

(*) Usually the hidden layers are smaller in dimension than the output/input layers so that 

they form a compression “bottleneck”. 

(*) The activations at the hidden layers 

(i.e. the feature vectors) Encode a 

dimensionality reduction of  the data. 

Dimensionality Reduction with 

Autoencoders



PCA & Auto-encoders: Image 

Denoising 



Dimensionality Reduction with 

Autoencoders
• It is difficult to optimize the weights in nonlinear autoencoders that have multiple 

hidden layers (2–4). With large initial weights, autoencoders typically find poor local 

minima; with small initial weights, the gradients in the early layers are tiny, making it 

infeasible to train autoencoders with many hidden layers. 



Dimensionality Reduction with 

Autoencoders
• It is difficult to optimize the weights in nonlinear autoencoders that have multiple 

hidden layers (2–4). With large initial weights, autoencoders typically find poor local 

minima; with small initial weights, the gradients in the early layers are tiny, making it 

infeasible to train autoencoders with many hidden layers. 

• If  the initial weights are close to a good solution, gradient descent works well, but 

finding such initial weights requires a very different type of  algorithm that learns one 

layer of  features at a time. 

• Hinton et al. introduce a pretraining procedure for binary data, and generalize it to real-

valued data.



Aside: Restricted Boltzmann 

Machines (RBMs)
• RBMs are shallow, two-layer neural nets that constitute the building blocks 

of deep-belief  networks (the layers of  which can act as feature detectors). The first layer 

of  the RBM is called the visible, or input, layer, and the second is the hidden 

layer.



Aside: Restricted Boltzmann 

Machines (RBMs)
• RBMs are shallow, two-layer neural nets that constitute the building blocks 

of deep-belief  networks (the layers of  which can act as feature detectors). The first layer 

of  the RBM is called the visible, or input, layer, and the second is the hidden 

layer.

• The nodes are fully connected across the layers – but there are no intra-layer 

connections (this is the indicated restriction in the RBM); the underlying graph 

is, in other words, bipartite. 



Aside: Restricted Boltzmann 

Machines (RBMs)
• Each visible node takes a feature from the input (just as with perceptrons, 

NNs, etc.) 

• As usual, at each hidden node, each input x is multiplied by its respective 

weight w. Each hidden node receives the inputs multiplied by their respective 

weights. The sum of  those products is again added to a bias, and the result is 

passed through the activation algorithm producing one output for each hidden 

node. 



Aside: Restricted Boltzmann 

Machines (RBMs)
• For reconstruction, the activations in the hidden layer now become the input for 

backward phase. 

• They are multiplied by the same weights, one per internode edge, just as x 

was weight-adjusted on the forward pass. The sum of  those products is added 

to a visible-layer bias at each visible node, and the output of  those operations 

is a reconstruction; i.e. an approximation of  the original input.



Aside: Restricted Boltzmann 

Machines (RBMs)
• For the forward phase we can think of  the RBM as using the inputs to make 

predictions about node activations, i.e. P(a|x,w). 

•Conversely, in the backward phase, because the activations are fed in and 

reconstruction approximations are outputted, this phase can be as summarized 

as approximating the distribution: P(x|a,w). 

• Together, then, these two estimates together represent the joint distribution: 

P(x,a|w). 



Aside: Restricted Boltzmann 

Machines (RBMs)
• The reconstruction process is making guesses about the distribution of  the 

input. Consequently, reconstruction is an instance of  generative learning. 

• Since RBMs are learning to reconstruct the input, we can think of  an RBM as 

minimizing the “difference” between the input (distribution) and 

reconstruction (distribution). 

• Put another way – the RBM works to minimize the KL divergence of  these 

two distributions.  



Aside: Restricted Boltzmann 

Machines (RBMs)
• The process of  learning reconstructions is, in a sense, learning which groups 

of  pixels tend to co-occur for a given set of  images. 

•If, say, an RBM were only fed images of  dogs and cats (with only two output 

nodes, one for each). The question the RBM is asking itself  on the forward 

pass is: Given these pixels, should my weights send a stronger signal to the dog 

node or the cat node? And the question the RBM asks on the backward pass is: 

Given, say, a dog,  which distribution of  pixels should I expect?



Aside: Restricted Boltzmann 

Machines (RBMs)
• The process of  learning reconstructions is, in a sense, learning which groups 

of  pixels tend to co-occur for a given set of  images. 

•If, say, an RBM were only fed images of  dogs and cats (with only two output 

nodes, one for each). The question the RBM is asking itself  on the forward 

pass is: Given these pixels, should my weights send a stronger signal to the dog 

node or the cat node? And the question the RBM asks on the backward pass is: 

Given, say, a dog,  which distribution of  pixels should I expect?

• Note that RBMs have two biases. This is one aspect that distinguishes them 

from other autoencoders. The hidden bias helps the RBM produce the 

activations on the forward pass (since biases impose a floor so that at least 

some nodes fire no matter how sparse the data), while the bias in the visible 

nodes helps the RBM learn the reconstructions on the backward pass.



Aside: Restricted Boltzmann 

Machines (RBMs)
• Once the RBM learns the structure of  the input data as it relates to the 

activations of  the first hidden layer, then the data is passed one layer down the 

net. 

• The first hidden layer takes on the role of  visible layer. The activations now 

effectively become your input, and they are multiplied by weights at the nodes 

of  the second hidden layer, to produce another set of  activations.



Aside: Restricted Boltzmann 

Machines (RBMs)
• Once the RBM learns the structure of  the input data as it relates to the 

activations of  the first hidden layer, then the data is passed one layer down the 

net. 

• The first hidden layer takes on the role of  visible layer. The activations now 

effectively become your input, and they are multiplied by weights at the nodes 

of  the second hidden layer, to produce another set of  activations.

• This process of  creating sequential sets of  activations by grouping features 

and then grouping groups of  features is the basis of  a feature hierarchy, by which 

neural networks learn more complex and abstract representations of  data.

• With each new hidden layer, the weights are adjusted until that layer is able to 

approximate the input from the previous layer. This is greedy, layer-wise and 

unsupervised pre-training. It requires no labels to improve the weights of  the 

network, which means you can train on unlabeled data, untouched by human 

hands, which is the vast majority of  data in the world. 



Aside: Restricted Boltzmann 

Machines (RBMs)
• RBMs are one example of  so-called energy-based models in ML (e.g. simulated 

annealing, Ising model) – meaning that they are (loosely) analogous to physical systems 

for which “stable” states (sometimes called basins of  attraction/attractors) represent 

low-energy configurations of  the system. 

•RBMS are typically trained with an algorithm called Contrastive Divergence* 

(details omitted here for brevity).

• Once an RBM is trained, another RBM is "stacked" atop it, taking its input from 

the final trained layer. This forms a Deep Belief  Network DBN). The fact that 

DBNs can be trained greedily, one layer at a time, led to one of  the first 

effective deep learning algorithms.**

*http://www.cs.toronto.edu/~fritz/absps/cdmiguel.pdf

**http://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf



Aside: Restricted Boltzmann 

Machines (RBMs)
• One can sample from a trained RBM in order to generate reconstructed samples –

Hinton equated this with the algorithm “dreaming.” 

• More formally, Gibbs sampling can be used to generate these samples by 

beginning with the hidden layer (for some initial, random string), sample the visible 

layer, generating a new string and then repeat this process for many iterations. 



Aside: Restricted Boltzmann 

Machines (RBMs)



Dimensionality Reduction with NNs*
• An ensemble of  binary vectors (e.g., images) can be modeled using a two-layer 

RBM in which stochastic, binary pixels are connected to stochastic, binary feature 

detectors using symmetrically weighted connections. 

• The pixels correspond to “visible” units of  the RBM because their states are 

observed; the feature detectors correspond to “hidden” units. A joint 

configuration (v, h) of  the visible and hidden units has an energy given by:

( )
,

, i i j j i j ij

i pixels j features i j

E bv b h v h w
 

= − − −  v h

*https://www.cs.toronto.edu/~hinton/science.pdf

where vi and hj are the binary states of  pixel i and feature j, bi and bj are their biases, 

and wij is the weight between them. The network assigns a probability to every possible 

image via this energy function (as we explained previously). 

• The probability of  a training image can be raised by adjusting the weights and biases 

to lower the energy of  that image and to raise the energy of  similar, reconstructed 

images that the network would prefer to the real data.



Dimensionality Reduction with NNs
• Given a training image, the binary state hj of  each feature detector j is set to 1 

with probability σ(bj +σ𝑖 𝑣𝑖𝑤𝑖𝑗), where σ(x) is the logistic function, bj is the bias of  

j, vi is the state of  pixel i, and wij is the weight between i and j. 

•Once binary states have been chosen for the hidden units, a “confabulation”  is 

produced by setting each vi to 1 with probability σ(bj +j σ ℎ𝑗𝑤𝑖𝑗), where bi is the 

bias of  i. The states of  the hidden units are then updated once more so that they 

represent features of  the confabulation. The change in a weight is given by:

where η is the learning rate, <vihj>data is the fraction of  times that the pixel i and 

feature detector j are on together when the feature detectors are being driven by 

data, and <vihj>reconstruction is the corresponding fraction for confabulations. A 

simplified version of  the same learning rule is used for the biases.

( )ij i j i jdata reconstruction
w v h v h = −



Dimensionality Reduction with NNs
• A single layer of  binary features is not the best way to model the structure in a set 

of  images. After learning one layer of  feature detectors, we can treat their 

activities—when they are being driven by the data—as data for learning a second 

layer of  features. The first layer of  feature detectors then become the visible units 

for learning the next RBM, etc. This yields a stacked RBM model. 

• Each layer of  features captures strong, high-order correlations between the 

activities of  units in the layer below. For a wide variety of  data sets, this is an 

efficient way to progressively reveal low-dimensional, nonlinear structure.



Dimensionality Reduction with NNs
• After pretraining multiple layers of  feature detectors, the model is “unrolled” to 

produce encoder and decoder networks that initially use the same weights. The global 

finetuning stage then replaces stochastic activities by deterministic, real-valued 

probabilities and uses backpropagation through the whole autoencoder to fine-tune the 

weights for optimal reconstruction. 

Pretraining consists of learning a 

stack of restricted Boltzmann 

machines (RBMs), each having 

only one layer of feature 

detectors. The learned feature 

activations of one RBM are used 

as the ‘‘data’’ for training the next 

RBM in the stack. After the 

pretraining, the RBMs are 

‘‘unrolled’’ to create a deep 

autoencoder, which is then fine-

tuned using backpropagation of 

error derivatives.



Dimensionality Reduction with NNs

• Top to bottom: A random test image from each class; reconstructions by the 30-

dimensional autoencoder; reconstructions by 30- dimensional logistic PCA and 

standard PCA. The average squared errors for the last three rows are 3.00, 8.01, and 

13.87.

• Top to bottom: Random samples from the test data set; reconstructions by the 30-

dimensional autoencoder; reconstructions by 30-dimensional PCA. The average 

squared errors are 126 and 135.



Dimensionality Reduction with NNs



Dimensionality Reduction with NNs



Spectral Clustering
• Spectral clustering techniques make use of  the spectrum (i.e. eigenvalues) of  

the similarity matrix of  a data set to perform dimensionality reduction 

before before clustering in fewer dimensions. Spectral clustering is a non-linear 

dimensionality reduction scheme and can therefore represent a richer set of  (low-

dimensional) manifolds than linear dimensionality reduction schemes (e.g. PCA).

• The similarity matrix S (a symmetric matrix) is provided as an input and consists 

of  a quantitative assessment of  the relative similarity of  each pair of  points in the 

dataset.



Spectral Clustering
• The goal when constructing similarity graphs (NB: the similarity graph is simply the 

weighted undirected graph defined by its similarity matrix S) is to model the local 

neighborhood relationships between the data points. Moreover, most of  the 

constructions below lead to a sparse representation of  the data, which has 

computational advantages 



Spectral Clustering
• The goal when constructing similarity graphs (NB: the similarity graph is simply the 

weighted undirected graph defined by its similarity matrix S) is to model the local 

neighborhood relationships between the data points. Moreover, most of  the 

constructions below lead to a sparse representation of  the data, which has 

computational advantages. 

• Similarity can be defined according to different criteria; here are some of  the 

most common criteria used in practice to define similarity: 



Spectral Clustering
• One can consider clustering in terms of  graph cuts. If  we want to find a 

partition from the similarity graph for a data set into K clusters, say A1, …,AK, a 

natural criterion is to minimize:  

where W denotes the similarity graph, 𝐴𝑘=V\Ak is the complement of  Ak, and 

W(A,B)=σ𝑖∈𝐴,𝑗∈𝐵𝑤𝑖𝑗. This criterion is, in other words, just the standard min-cut 

criterion. 
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Spectral Clustering
• One can consider clustering in terms of  graph cuts. If  we want to find a 

partition from the similarity graph for a data set into K clusters, say A1, …,AK, a 

natural criterion is to minimize:  

where W denotes the similarity graph, 𝐴𝑘=V\Ak is the complement of  Ak, and 

W(A,B)=σ𝑖∈𝐴,𝑗∈𝐵𝑤𝑖𝑗. This criterion is, in other words, just the standard min-cut 

criterion. 

More commonly, researchers use the normalized cut criterion, defined as: 

where vol(Ak)=σ𝑖∈𝐴𝑑𝑖, where di is the weighted degree of  vertex i in the similarity 

graph. 

(*) This splits the graph into K clusters such that nodes within each cluster are 

similar to one another, but are different to nodes in other clusters. 
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Spectral Clustering: Graph Laplacian

• Let W be the symmetric weight matrix for a graph where wij=wji ≥ 0. Let 

D=diag(di) be the diagonal matrix containing the weighted degree of  each node. 

The graph Laplacian is defined as: L = D – W



Spectral Clustering: Graph Laplacian

• The graph Laplacian is defined as: L = D – W.

The Laplacian possesses several useful properties, including the fact that it is 

symmetric and positive semi-definite.

(*) Consequently, L has non-negative, real-valued eigenvalues: 0 ≤ λ1 ≤ λ2 … ≤ λN. 

(this property holds by virtue of  L being positive semi-definite)

How is this helpful for clustering? 



Spectral Clustering: Graph Laplacian

• The graph Laplacian is defined as: L = D – W.

The Laplacian possesses several useful properties, including the fact that it is 

symmetric and positive semi-definite.

(*) Consequently, L has non-negative, real-valued eigenvalues: 0 ≤ λ1 ≤ λ2 … ≤ λN.

How is this helpful for clustering? 

A handy theorem states that the set of  eigenvectors of  L with eigenvalue 0 is 

spanned by the indicator vectors 1A1,…,1AK, where Ak are the K connected 

components of  the graph. 

(*) Consequently, the number of  connected components of  the graph is given 

by the dimension of  the nullspace of  L (also called simply the “nullity of  L” in 

linear algebra); put another way: the algebraic multiplicity of  the zero eigenvalue 

equals the number of  connected components of  the graph. 



Spectral Clustering: Graph Laplacian

• The graph Laplacian is defined as: L = D – W.

(*) Consequently, L has non-negative, real-valued eigenvalues: 0 ≤ λ1 ≤ λ2 … ≤ λN.

(*) Consequently, the number of  connected components of  the graph is given 

by the dimension of  the nullspace of  L; put another way: the algebraic multiplicity the 

of  the zero eigenvalue equals the number of  connected components of  the graph.

(*) Thus, in the “ideal” case for which the data graph consists of  k disconnected 

components, then the multiplicity of  the zero eigenvalue for L equals the number 

of  connected components (namely, k) and the eigenspace is spanned by the 

indicator vectors of  the connected components. 

In this case L would form a block diagonal matrix: 



Spectral Clustering: Graph Laplacian

• Thus, in the “ideal” case for which the data graph consists of  k disconnected 

components, then the multiplicity of  the zero eigenvalue for L equals the number 

of  connected components (namely, k) and the eigenspace is spanned by the 

indicator vectors of  the connected components. 

• In reality, we don’t expect a graph derived from a real similarity matrix to have 

isolated connected components – that would be too easy (“real data is messy”).



Spectral Clustering: Graph Laplacian

• Thus, in the “ideal” case for which the data graph consists of  k disconnected 

components, then the multiplicity of  the zero eigenvalue for L equals the number 

of  connected components (namely, k) and the eigenspace is spanned by the 

indicator vectors of  the connected components. 

• In reality, we don’t expect a graph derived from a real similarity matrix to have 

isolated connected components – that would be too easy. 

• But it is reasonable to suppose the graph is some small “perturbation” from such 

a situation. In this case, one can use results from perturbation theory to show the 

eigenvectors of  the perturbed Laplacian will be close to these ideal indicator 

functions. 

(*) Briefly stated: the perturbation argument says that if  we do not have a 

completely ideal situation where the between-cluster similarity is exactly 0, but if  

we have a situation where the between-cluster similarities are very small, then the 

eigenvectors of  the first k eigenvalues should be very close to the ones in the ideal 

case. Thus we should still be able to recover the clustering from those eigenvectors.



Spectral Clustering: Graph Laplacian

• This suggests the following algorithm: 

Compute the first k eigenvectors of  L (k will represent the dimension of  our   

low-dimensional manifold upon which we project the data). Form an n x k (n is 

the original data set size) matrix U with the eigenvectors of  L as the columns. Now 

one can apply k-means over the rows of  U to recover the connected components 

of  the graph. This clustering determines the low-dimensional clustering 

assignment. 



Spectral Clustering: Graph Laplacian
• This suggests the following algorithm: 

Compute the first k eigenvectors of  L (k will represent the dimension of  the   

low-dimensional manifold upon which we project the data). Form an n x k (n is the 

original data set size) matrix U with the eigenvectors of  L as the columns. Now 

one can apply k-means over the rows of  U to recover the connected components 

of  the graph. This clustering determines the low-dimensional clustering 

assignment. 

(*) In practice, it is important to normalize the graph Laplacian, to account for the 

fact that some nodes are more highly connected than others. There are two 

common ways to do with (one using the notion of  random walks) – here is the 

symmetric normalized Laplacian (as used by Ng et al.)

recall that D is the diagonal matrix of  vertex degrees. 

1 1

2 2
symL D LD

− −

=



Spectral Clustering: Graph Laplacian
• This suggests the following algorithm: 

Compute the first k eigenvectors of  L (k will represent the dimension of  the low-

dimensional manifold upon which we project the data). Form an n x k (n is the original data 

set size) matrix U with the eigenvectors of  L as the columns. Now one can apply k-means 

over the rows of  U to recover the connected components of  the graph. This clustering 

determines the low-dimensional clustering assignment. 

(*) In practice, it is important to normalize the graph Laplacian, to account for the fact that 

some nodes are more highly connected than others. There are two common ways to do with 

(one using the notion of  random walks) – here is the symmetric normalized Laplacian (as 

used by Ng et al.)

(*) One can show that this algorithm corresponds 

with finding a normalized minimum cut in

the similarity graph for the data (as discussed

on previous slides). 

1 1

2 2
symL D LD

− −

=



Spectral Clustering: Graph Laplacian



Spectral Clustering

(*) NIPS 2001 paper, Ng et al., on spectral clustering ~6500 

citations



Spectral Clustering



Spectral Clustering

Tutorial on spectral clustering: https://arxiv.org/pdf/0711.0189.pdf

Github demo: https://github.com/pin3da/spectral-clustering (python)

https://arxiv.org/pdf/0711.0189.pdf
https://github.com/pin3da/spectral-clustering


Spectral Clustering: Applications
Naturally, one can use spectral clustering for image segmentation applications 

(in addition to various dimensionality reduction applications). 

(*) A significant challenge for image segmentation applications of  spectral clustering 

relates to the construction/definition of  the Laplacian (i.e. similarity/affinity) matrix. 

This is a deep question that concerns feature selection more broadly in ML and 

data mining.

Segmentation 

based on spectral 

clustering. 



Spectral Clustering: Applications
Sindhumol, et al. “Spectral clustering independent component analysis for 

tissue classification from brain MRI”

The authors use a variant of  spectral clustering (spectral clustering ICA) to 

improve brain tissue classification from MRI scans; results were 98% 

accuracy for clinical abnormality analysis. 

https://www.sciencedirect.com/science/article/pii/S174680941300092X



ISOMAP
• Like spectral clustering, Isomap is a non-linear dimensionality reduction method. 

• More specifically, Isomap is an isometric mapping method (isometric mappings 

preserve distance) that provides an extension of  a general class of  algorithms 

known as metric multidimensional scaling (MDS) methods.



ISOMAP
• Like spectral clustering, Isomap is a non-linear dimensionality reduction method. 

• More specifically, Isomap is an isometric mapping method (isometric mappings 

preserve distance) that provides an extension of  a general class of  algorithms 

known as metric multidimensional scaling (MDS) methods.

• MDS performs a low-dimensional embedding of  a data set based on pairwise 

distances between data points (simply by using straight-line Euclidean distance). 

Alternatively, Isomap incorporates instead the geodesic distance between two 

vertices in a graph. 



ISOMAP
• Like spectral clustering, Isomap is a non-linear dimensionality reduction method. 

• More specifically, Isomap is an isometric mapping method (isometric mappings 

preserve distance) that provides an extension of  a general class of  algorithms 

known as metric multidimensional scaling (MDS) methods.

• MDS performs a low-dimensional embedding of  a data set based on pairwise 

distances between data points (simply by using straight-line Euclidean distance). 

Alternatively, Isomap incorporates instead the geodesic distance between two 

vertices in a graph. 

• The geodesic distance is defined as the sum of  the edge weights in a shortest 

path between two vertices. 

Q: How is geodesic distance more informative than Euclidean distance? 



ISOMAP
• Like spectral clustering, Isomap is a non-linear dimensionality reduction method. 

• More specifically, Isomap is an isometric mapping method (isometric mappings 

preserve distance) that provides an extension of  the metric multidimensional 

scaling (MDS) method.

• MDS performs a low-dimensional embedding of  a data set based on pairwise 

distances between data points (simply by using straight-line Euclidean distance). 

Alternatively, Isomap incorporates instead the geodesic distance between two 

vertices in a graph. 

• The geodesic distance is defined as the sum of  the edge weights in a shortest 

path between two vertices. 

Geodesic distance incorporates 

the manifold structure in the resulting

embedding.



ISOMAP

The original Isomap paper, by Tenebaum et al. (same Tenebaum from 

Bayesian concept learning as discussed previously, Science, December 

2000, ~11k citations. 

http://web.mit.edu/cocosci/Papers/sci_reprint.pdf



ISOMAP
• The Isomap algorithm combines the major algorithmic features of  PCA and 

MDS – computational efficiency, global optimality, and asymptotic convergence 

guarantees – with the flexibility to learn a broad class of  non-linear manifolds. 

• In particular, Isomap seeks to preserve the intrinsic geometry of  the data, as 

captured in the geodesic manifold distances between pairs of  points. 



ISOMAP
• The Isomap algorithm combines the major algorithmic features of  PCA and 

MDS – computational efficiency, global optimality, and asymptotic convergence 

guarantees – with the flexibility to learn a broad class of  non-linear manifolds. 

• In particular, Isomap seeks to preserve the intrinsic geometry of  the data, as 

captured in the geodesic manifold distances between pairs of  points. 

• The key step deals with estimating the geodesic distance between distant 

points, given only input-space distances. 

• For neighboring points, the input-space distance provides a good 

approximation to geodesic distance. For faraway points, the geodesic distance 

can be approximated by adding up a sequence of  “short hops” between 

neighboring points. These approximations can be computed by finding a 

shortest path. 



ISOMAP
(*) The Isomap algorithm is comprised of  (3) general steps:

(1) The first step determines which points are neighbors on the manifold M, 

based on the distance dX(i,j) between pairs of  points i,j in the input space X. 

As we mentioned previously in the this lecture, there are several options for 

determining “neighborhoods”, including the use of  k-NN or to connect a point 

to each point within some fixed radius ε, etc. 

From here, we construct the neighborhood graph G (again, each point, say, 

could be connected to another if  it is a K nearest neighbor, or the edge weights 

could simply equal the Euclidean distance between points). 



ISOMAP
(*) The Isomap algorithm is comprised of  (3) general steps:

(2) In its second step, Isomap estimates the geodesic distances dM(i,j) 

between all pairs of  points on the manifold M by computing their shortest path 

distances dG(i,j) in the graph G. 

Q: What is a well-known algorithm to compute these geodesic distance (i.e. 

shortest paths in G)? 



ISOMAP
(*) The Isomap algorithm is comprised of  (3) general steps:

(2) In its second step, Isomap estimates the geodesic distances dM(i,j) between 

all pairs of  points on the manifold M by computing their shortest path 

distances dG(i,j) in the graph G. 

Q: What is a well-known algorithm to compute these geodesic distance (i.e. 

shortest paths in G)? 

There are several options: Dijkstra’s Algorithm is perhaps the best-known 

(one can also can use Floyd-Warshall, for instance). 



Shortest path network.

Directed graph G = (V, E).

Source s, destination t.

Length e = length of  edge e.

Shortest path problem:  find shortest directed path from s to t.

Cost of path s-2-3-5-t
=  9 + 23 + 2 + 16
= 50.

cost of path = sum of edge costs in path
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Aside: Dijkstra’s Algorithm 

The famous 

“seven bridges 

of Koningsberg” 

problem that led 

to the inception 

of graph theory 

Euler



Dijkstra's algorithm.

Maintain a set of  explored nodes S for which we have determined the 

shortest path distance d(u) from s to u.

Initialize S = { s }, d(s) = 0.

Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = (v).

(Note: (v) represents a “temporary” distance label the algorithm runs) 

,)(min)(
:),(

e
Suvue

udv +=
=



s

v

u

d(u)

S

e

shortest path to some u in explored 
part, followed by a single edge (u, v)

Aside: Dijkstra’s Algorithm 



Find shortest path from s to t.
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Aside: Dijkstra’s Algorithm 
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Dijkstra's Shortest Path Algorithm
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For each node u  S, d(u) is the length of  the shortest s-u path.

Pf.  (by induction on |S|)

Base case: |S| = 1 is trivial.

Inductive hypothesis: Assume true for |S| = k   1.

Let v be next node added to S, and let u-v be the chosen edge.

(Claim) The shortest s-u path plus (u, v) is an s-v path of  length (v).

Consider any s-v path P. We'll see that it's no shorter than (v).

Let x-y be the first edge in P that leaves S,

and let P' be the subpath to x.

P is already too long as soon as it leaves S.

 (P)   (P') +  (x,y)  d(x) +  (x, y)  (y)   (v)

Nonnegative weights 

(triangle inequality)

inductive
hypothesis

defn of (y) Dijkstra chose v
instead of y

S

s

y

v

x

P

u

P'
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For each unexplored node, explicitly maintain 

Next node to explore = node with minimum (v).

When exploring v, for each incident edge e = (v, w), update

Efficient implementation.  Maintain a priority queue of  unexplored nodes, 

prioritized by (v).

PQ Operation

Insert

ExtractMin

ChangeKey

Binary heap

log n

log n

log n

Array

n

n

1

IsEmpty 11

Total m log nn2

Dijkstra

n

n

m

n

  

 

 (v) = min
e = (u,v) : u  S

d (u) + e  .

 

(w) = min { (w), (v)+ e }.

Aside: Dijkstra’s Algorithm 



ISOMAP 
(*) The Isomap algorithm is comprised of  (3) general steps:

(2) In its second step, Isomap estimates the geodesic distances dM(i,j) between 

all pairs of  points on the manifold M by computing their shortest path 

distances dG(i,j) in the graph G. 

There are several options here: Dijkstra’s Algorithm is perhaps the best-

known (also can use Floyd-Warshall, for instance). 



ISOMAP 
(*) The Isomap algorithm is comprised of  (3) general steps:

(3) The final step applies classical MDS to the matrix of  graph distances 

DG={dG(i,j)}, constructing an embedding of  the data in a d-dimensional 

Euclidean space Y that best preserves the manifold’s estimates of  the intrinsic 

geometry of  the data. 



ISOMAP 
(*) The Isomap algorithm is comprised of  (3) general steps:

(3) The final step applies classical MDS to the matrix of  graph distances 

DG={dG(i,j)}, constructing an embedding of  the data in a d-dimensional 

Euclidean space Y that best preserves the manifold’s estimates of  the intrinsic 

geometry of  the data. 

The coordinate vectors yi for points in Y are chosen to minimize the cost 

function:

• Where DY denotes the matrix of  Euclidean distances {dY(i,j)= 𝒚𝑖 − 𝒚𝑗 } 

and · 2 in the equation above is the L2 matrix norm. The τ operator converts 

distances to inner products which uniquely characterizes the geometry of  the 

data in a form that supports efficient optimization. 

The global minimum of  the equation above is achieved by setting the 

coordinates yi to the top d eigenvectors of  the matrix τ(DG).

( ) ( )
2G YE D D = −



ISOMAP 
(*) The Isomap algorithm is comprised of  (3) general steps:

(3) The final step applies classical MDS to the matrix of  graph distances 

DG={dG(i,j)}, constructing an embedding of  the data in a d-dimensional 

Euclidean space Y that best preserves the manifold’s estimates intrinsic 

geometry. 

(*) This third step in the Isomap algorithm might seem somewhat complicated 

– however, it is really equivalent to performing PCA on the (centered) square of  

a distance matrix D (for a data set). 

• In other words, you take the distance matrix D, square it, and center. Then 

compute the eigendecomposition for the top eigenvalues and project the data 

into this smaller dimensional space (just as with PCA). 



ISOMAP 

Potential Issues for Isomap: The connectivity of  each data point in the neighborhood graph 

is defined as its nearest k Euclidean neighbors in the high-dimensional space. This step is 

vulnerable to "short-circuit errors" if k is too large with respect to the manifold structure or if  

noise in the data moves the points slightly off  the manifold. Even a single short-circuit error 

can alter many entries in the geodesic distance matrix, which in turn can lead to a drastically 

different (and incorrect) low-dimensional embedding. Conversely, if k is too small, the 

neighborhood graph may become too sparse to approximate geodesic paths accurately. But 

improvements have been made to this algorithm to make it work better for sparse and noisy 

data sets.
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ISOMAP 

Python implementation: 

http://scikit-learn.org/stable/modules/manifold.html
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