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Overview 

• The EM algorithm (expectation-maximization) is used to find maximum 

likelihood parameter estimates (i.e. MLE) for a model in cases where the 

equations cannot be solved directly. 

• Most commonly, these models incorporate latent/hidden variables (i.e. 

unobserved data) in addition to known/observed variables. 



Overview 

• In some instances, the latent variables comprise intrinsic unknown quantities 

(e.g. the unknown parameters of  a mixture model); conversely, however, it 

is also often useful to introduce latent variables extrinsically to model 

complex dependencies among variables using simpler components for 

increased tractability. 

• In particular, mixture models (e.g. GMM, HMM) can be interpreted in terms 

of  discrete latent variables. 



Overview 

• In addition to providing a framework for building more complex probability 

distributions, mixture models can also be used to cluster data. 

• For mixture models, the latent variables can be interpreted as defining 

assignments of  data points to specific components of  the mixture. 

• Next we consider (3) classic applications of  latent variable models commonly 

used in combination with the EM algorithm: K-means, GMMs and HMMs. 

Lastly, we discuss the EM algorithm in the general case. 



Issues for clustering algorithms

• How to measure distance between pairs of  instances?

• How many clusters to create? 

• Should clusters be hierarchical?  (i.e., clusters of  clusters)

• Should clustering be “soft”?  (i.e., an instance can belong to different 

clusters, with “weighted belonging”)



• k-means is a very popular (and simple) clustering algorithm used in ML 

and data science. 

• k-means clustering aims to partition n observations into k clusters in 

which each observation belongs to the cluster with the nearest mean, 

serving as a prototype of  the cluster. This results in a partitioning of  the 

data space into Voronoi cells. 

k-Means 
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• Given a set of  observations (x1, x2, …, xn), where each observation is 

a d-dimensional real vector, k-means clustering endeavors to partition 

the n observations into k (≤ n) sets S={S1, S2, …, Sk} so as to 

minimize the within-cluster sum of  squares (WCSS) – which is to 

say we desire a reasonably “tight” clustering. 

k-Means 



• Given a set of  observations (x1, x2, …, xn), where each observation is 

a d-dimensional real vector, k-means clustering endeavors to partition 

the n observations into k (≤ n) sets S={S1, S2, …, Sk} so as to 

minimize the within-cluster sum of  squares (WCSS) – which is to 

say we desire a reasonably “tight” clustering. 

• Define binary indicator variables, 𝑟𝑛𝑘 ∈ 0,1 , where k=1,…,K

describing the cluster to which the xn datum is assigned. 

• Formally, the objective is given by: 

where μi is the mean of  cluster Si. 
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• Formally, the objective is given by: 

where μi is the mean of  cluster Si. 

• Our goal is to find values for the {rnk} and the {μk} as to minimize J. 

• We can do this through an iterative procedure in which each iteration 

involves two successive steps corresponding to successive optimizations 

with respect to the rnk and μk. 
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• Formally, the objective is given by: 

where μi is the mean of  cluster Si. 

• Our goal is to find values for the {rnk} and the {μk} as to minimize J. 

• We can do this through an iterative procedure in which each iteration 

involves two successive steps corresponding to successive optimizations 

with respect to the rnk and μk. 

Choose initial values for the μk.

(1) Minimize J wrt rnk keeping the μk fixed    (E-step)

(2) Minimize J wrt μk keeping the rnk fixed    (M-step)

Repeat until convergence. 
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• Formally, the objective is given by: 

where μi is the mean of  cluster Si. 

(1) Minimize J wrt rnk keeping the μk fixed    (E-step)

Let’s consider the determination of  rnk. 

• Notice that because J is a linear function of  rnk, this optimization is 

elementary and yields a closed form solution. 

Q: What is the solution?
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• Formally, the objective is given by: 

where μi is the mean of  cluster Si. 

(1) Minimize J wrt rnk keeping the μk fixed    (E-step)

Let’s consider the determination of  rnk. 

• Notice that because J is a linear function of  rnk, this optimization is 

elementary and yields a closed form solution.

(*) Intuitively: J involves the sum of  n different (independent) terms, so 

we can optimize for each n separately by choosing rnk to be 1 for 

whichever value k minimizes – which is to say we simply assign the nth

datum to the closest cluster center. 
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• Formally, the objective is given by: 

where μi is the mean of  cluster Si. 

(1) Minimize J wrt rnk keeping the μk fixed    (E-step)

• The preceding argument yields: 
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• Formally, the objective is given by: 

where μi is the mean of  cluster Si. 

(2) Minimize J wrt μk keeping the rnk fixed    (M-step)

Let’s consider the determination of  μk with the rnk fixed.

Q: How do we proceed? 
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• Formally, the objective is given by: 

where μi is the mean of  cluster Si. 

(2) Minimize J wrt μk keeping the rnk fixed    (M-step)

Let’s consider the determination of  μk with the rnk fixed.

(*) The objective function J is quadratic in μk and it can thus be minimized by 

setting the derivative of  J wrt μk  equal to zero: 

Where the denominator of  the last expression is equal to the number of  points 

assigned to cluster k, and so this result has a simple interpretation: namely, we set 

μk equal to the mean of  all the data points xn assigned to cluster k. 
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• Given an initial set of  k means μ1
(1)
, … , μ𝑘

(1)
k-means alternates between the 

following (2) steps:

(I) Assignment Step (i.e., the expectation step): 

Assign each observation to the cluster whose mean has the least squared   

Euclidean distance, this is intuitively the "nearest" mean. Mathematically, this means 

partitioning the observations according to the Voroni tessellation generated by the 

means. 

(II)  Update Step (i.e., the parameter maximization step): 

• Calculate the new means to be the centroids of  the observations in the new 

clusters.

• The algorithm has converged when the assignments no longer change. There is 

no guarantee that the optimum is found using this algorithm.

k-Means: Summary 



(I) Assignment Step (i.e., the expectation step): 

(II)  Update Step (i.e., the parameter maximization step): 

k-Means 
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K-means Clustering Algorithm Pseudocode

Distance metric:  Chosen by user.

For numerical attributes, often use L2 (Euclidean) distance:

Centroid of  a cluster here refers to the mean of  the points in the cluster. 

(*) NB: Using a different distance function other than (squared) Euclidean 

distance may stop the algorithm from converging. Various modifications 

of  k-means such as spherical k-means have been proposed to allow using 

other distance measures.

d(x,y) = (xi - yi )
2

i=1

n

å



Example:  Image segmentation by K-means 

clustering by color
From http://vitroz.com/Documents/Image%20Segmentation.pdf

K=5, RGB space

K=10, RGB space



K=5, RGB space

K=10, RGB space



K=5, RGB space

K=10, RGB space



• A text document is represented as a feature vector of  word frequencies 

(see: Word2vec). 

• Distance between two documents is the cosine of  the angle between 

their corresponding feature vectors. 

Example: Clustering text documents



Figure 4. Two-dimensional map of the PMRA cluster solution, representing nearly 29,000 clusters 

and over two million articles.

Boyack KW, Newman D, Duhon RJ, Klavans R, et al. (2011) Clustering More than Two Million Biomedical Publications: Comparing the 

Accuracies of Nine Text-Based Similarity Approaches. PLoS ONE 6(3): e18029. doi:10.1371/journal.pone.0018029

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0018029

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0018029


K-means Analysis

• Convergence: k-means is guaranteed to converge in a finite number of  

steps (irrespective of  the initial centroid assignment). Why? In short: there 

are only a finite number of  ways to cluster n data points into k clusters 

(although note that this number can be large). Usually convergence is 

relatively fast in practice. 

• NB: The algorithm is nevertheless not guaranteed to generate a 

(globally) optimal clustering. 

• Complexity: In general, finding the optimal solution to k-means for 

observations in d dimensions is NP-hard (even in the 2-class case). 

• The run-time of  k-means is O(nkdi), where n is the size of  the data set, d

is the dimension, k is the number of  clusters and i is the number of  

clusters needed until convergence. k-means is therefore oftentimes 

considered a linear run-time algorithm; in the worst-case it is more aptly 

described as superpolynomial. 



Potential Issues for K-means
• The algorithm is only applicable if  the mean is defined. 

– For categorical data, use K-modes: The centroid is represented by the most frequent 

values. 

• The user needs to specify K.

• Cluster morphology can be severely limited (epsilon-balls, etc.) 

• Algorithms makes hard cluster assignments (either element belongs to a particular cluster or 

it does not). 

• The algorithm is sensitive to outliers

– Outliers are data points that are very far away from expected range/other data points. 

– Outliers could be errors in the data recording or some special data points with very 

different values. 

– Note the mode is a more robust measure of  center (than, say the mean), meaning it is 

less susceptible to outliers; thus, we can potentially use K-modes to safeguard against 

influence of  outliers. 



Issues for K-means: Problems with outliers



Dealing with outliers

• One method is to remove some data points in the clustering process 

that are much further away from the centroids than other data points. 

– Expensive

– Not always a good idea!

• Another method is to perform random sampling. Since in sampling we 

only choose a small subset of  the data points, the chance of  selecting 

an outlier is very small. 

– Assign the rest of  the data points to the clusters by distance or 

similarity comparison, or classification



Issues for K-means (cont …)

• The algorithm is sensitive to initial seeds.

+

+



• If  we use different seeds: good results

• Often we can improve k-means results by performing 

several random restarts. 

• It is commonly helpful to use actual data values for the 

initial seeds. 

+
+

Issues for K-means (cont …)



• The K-means algorithm is not suitable for discovering clusters that are 

not hyper-ellipsoids (or hyper-spheres). 

+

Issues for K-means (cont …)



• In non-fuzzy clustering (also known as hard clustering), data is divided into 

distinct clusters, where each data point can only belong to exactly one cluster. 

(cf., k-means from previous slides). 

• In fuzzy clustering (also: soft clustering), data points can potentially belong to 

multiple clusters. 

• Commonly, “membership grades” (i.e. class probabilities) are assigned to 

each of  the data points. These membership grades indicate the degree to 

which data points belong to each cluster. Thus, points on the edge of  a 

cluster, with lower membership grades, may be in the cluster to a lesser degree 

than points in the center of  cluster.

Fuzzy c-means



• The FCM (fuzzy c-means (1973), as it is usually called) algorithm is very similar to the k-

means algorithm:

Here is the basic idea: 

•    Choose a number of  clusters: c (a hyperparameter).

• Initially assign coefficients randomly to each data point for being in the clusters (these 

are the initial membership grades). 

• Repeat until the algorithm has converged/stopping condition: 

(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the       

clusters (e-step). 

Fuzzy c-means



Here is the basic idea: 

•    Choose a number of  clusters: c (a hyperparameter).

• Initially assign coefficients randomly to each data point for being in the clusters (these 

are the initial membership grades). 

• Repeat until the algorithm has converged/stopping condition: 

(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the       

clusters (e-step). 

where C={c1,…,cc} are the cluster centers, 

, and each element wij tells the  

degree to which element xi, belongs to cluster cj (i.e. the w’s are the 

membership grades); m>1 is a hyperparameter known as the fuzzifier

parameter which controls the amount of  “fuzziness” in the  

partition. 
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Here is the basic idea: 

•    Choose a number of  clusters: c (a hyperparameter).

• Initially assign coefficients randomly to each data point for being in the clusters (these 

are the initial membership grades). 

• Repeat until the algorithm has converged/stopping condition: 

(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the       

clusters (e-step). 
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Here is the basic idea: 

•    Choose a number of  clusters: c (a hyperparameter).

• Initially assign coefficients randomly to each data point for being in the clusters (these 

are the initial membership grades). 

• Repeat until the algorithm has converged/stopping condition: 

(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the       

clusters (e-step). 

(*) FCM aims to minimize the an objective function: 

Fuzzy c-means
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• For example, consider a simple 1-d data set, where we want to determine a plausible 

clustering for 2 classes (A and B).  

• Using “hard k-means” we associate each datum to a specific centroid; therefore the 

membership function looks like this: 

Fuzzy c-means



• For example, consider a simple 1-d data set, where we want to determine a plausible clustering for 2 

classes (A and B).  

• Using “hard k-means” we associate each datum to a specific centroid; therefore the membership 

function looks like this: 

• In the FCM approach, instead, the same given datum does not belong exclusively to a well defined 

cluster. In this case, the membership function follows a smoother line to indicate that every datum 

may belong to several clusters with different values of  the membership coefficient.

Fuzzy c-means



• FCM was essentially, again, a “fuzzy” version of  the k-means algorithm, where data 

points are assigned to each cluster with an associated probability/membership grade. 

• An additional, commonly used soft clustering model is the GMM (Gaussian mixture 

model); with GMMs, we assume (a priori) that the clusters resemble tightly-packed balls 

(i.e. Gaussian distributions).

GMMs



GMMs: Gaussian Distribution Review



GMMs: Gaussian Distribution Review



Main ideas for clustering using GMM: 

(*) Initialization: given a data set, fix k, the number of  clusters; initialize the mean (μ) and 

covariance matrices (Σ) for the k Gaussian clusters. 

(*) Assign the data points to the k clusters (using a soft clustering)    (assignment step/E-

step) 

(*) Update the parameters (i.e. μ, Σ) for each of  the clusters.    (update step/M-step) 

…repeat until stopping condition/convergence 

GMMs



Main ideas for clustering using GMM: 

(*) Initialization: given a data set, fix k, the number of  clusters; initialize the mean (μ) and 

covariance matrices (Σ) for the k Gaussian clusters. 

(*) Assign the data points to the k clusters (using a soft clustering)    (assignment step/E-

step) 

(*) Update the parameters (i.e. μ, Σ) and prior class estimates (P(Ci|x) (for each of  the 

clusters.    (update step/M-step) 

…repeat until stopping condition/convergence 

What makes this problem challenging? There are, ostensibly, many unknowns! 

(*) Strictly speaking, we don’t know the cluster assignments nor any of  the Gaussian 

distribution parameters.  

GMMs



What makes this problem challenging? There are, ostensibly, many unknowns! 

(*) Strictly speaking, we don’t know the cluster assignments nor any of  the Gaussian 

distribution parameters.  

How can we simplify things? 

A nice trick…Solve each subproblem separately! 

(1) For instance, to find the optimal class assignments for each datum, use the current 

approximations for the Gaussian parameters distributions (i.e. treat μ and Σ as known 

for each cluster, as well as each class prior) and compute the class posterior: P(Ci|x) 

using Bayes’ Rule. 

(2) Conversely, to find the optimal estimates for μ and Σ for each cluster, in addition to 

the class priors, use the current (soft) class posterior assignments and compute the 

MLE. 

GMMs



• The GMM distribution can be written as a linear superposition of  Gaussians in the form: 

Each Gaussian density N (x|μk,Σk) is called a component of  the mixture and has its own 

mean and covariance; πk are called mixing coefficients and satisfy: σ𝑘 π𝑘 = 1.

GMMs

( ) ( )
1

| ,
N

k k k

k

p N
=

= x x μ



• The GMM distribution can be written as a linear superposition of  Gaussians in the form: 

Each Gaussian density N (x|μk,Σk) is called a component of  the mixture and has its own 

mean and covariance; πk are called mixing coefficients and satisfy: σ𝑘 π𝑘 = 1.

• Let us introduce a K-dimensional binary random variable z having a 1-of-K 

representation in which a particular element zk is equal to 1 and all other elements are 

equal to 0 (i.e. this is a one-hot encoding). 

(*) The values of  zk therefore satisfy zk ∈{0,1} and σ𝑘 𝑧𝑘 = 1 . 

•We shall define the joint distribution p(x,z) in terms of  a marginal distribution p(z) and a 

conditional distribution p(x|z), corresponding to the following graphical model: 

GMMs
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• The marginal distribution over z is specified in terms of  the mixing coefficients πk such 

that: p(zk = 1) = πk, where the parameters {πk} satisfy: 0 ≤ πk ≤ 1  &  σ𝑘 π𝑘 = 1.

Because z uses a 1-of-K representation, we can also write this distribution in the form:

GMMs
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• The marginal distribution over z is specified in terms of  the mixing coefficients πk such 

that: p(zk = 1) = πk, where the parameters {πk} satisfy: 0 ≤ πk ≤ 1  &  σ𝑘 π𝑘 = 1.

Because z uses a 1-of-K representation, we can also write this distribution in the form:

• Similarly, the conditional distribution of  x given a particular value for z is a Gaussian:

Which can also be written in the form: 
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• The joint distribution is given by p(z)p(x|z) and the marginal distribution of  x is then 

obtained by summing the joint distribution over all possible states of  z to give: 

(*) Note that instead of  using the marginal distribution p(x) directly, the formula above allows 

us to work with the joint p(x,z), which will lead to significant simplifications, most notably 

through the introduction of  the EM algorithm. 
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• The joint distribution is given by p(z)p(x|z) and the marginal distribution of  x is then 

obtained by summing the joint distribution over all possible states of  z to give: 

(*) Note that instead of  using the marginal distribution p(x) directly, the formula above allows 

us to work with the joint p(x,z), which will lead to significant simplifications, most notably 

through the introduction of  the EM algorithm. 

• An additional quantity of  interest is the conditional probability of  z given x. We shall use γ(zk) 

to denote p(zk=1|x), whose value can be ascertained via Bayes’ Theorem as follows: 

(*) We view πk as the prior probability of  zk = 1, and the quantity γ(zk) as the 

corresponding posterior probability once we have observed x; note that γ(zk) is often 

referred to as the responsibility that component k takes for “explaining” the observation 

x. 
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• Suppose we have a data set of  observations {x1,…,xN}, and we wish to model this data 

using a mixture of  Gaussians. We can represent this data set as an N x D matrix X in 

which the nth row is given by 𝒙𝑛
𝑇 . 

• If  we assume the data points are drawn independently from the distribution, then we can 

express the Gaussian mixture model for this IID data set using the graphical 

representation shown; the log likelihood function is given by:

Q: Why do we use the log likelihood as opposed to simply the likelihood in practice for MLE 

calculations? 

GMMs: MLE

( ) ( )
1 1

ln | , , ln | ,
N K

k k k

n k

p X N
= =

 
 =  

 
 π μ x μ



• It is important to be aware that when using the MLE to render a GMM, (2) significant 

pathologies can frequently arise. 

(1) The presence of  singularities

(*) It is not uncommon for GMMs to yield singularities in which one (or more) of  the Gaussian 

components collapses onto a single data point. 

Why does this occur?  The “collapsed” component will contribute an ever-increasing additive 

value to the log likelihood expression – the maximization of  the log likelihood function for 

GMMs is therefore not a well-posed problem. 

• Singularities provide another example of  extreme over-fitting that can occur with the MLE 

approach. How can one remedy this situation? Be Bayesian! (See “variational Bayes” methods). 

GMMs: MLE



• It is important to be aware that when using the MLE to render a GMM, (2) significant 

pathologies can frequently arise. 

(2) Identifiability

(*) A further issue in finding MLE solutions occurs due to the fact that for any given MLE 

solution, a K-component mixture will have a total of  K! equivalent solutions corresponding to 

the K! ways of  assigning K sets of  parameters to K components. 

• This means that for any given point in the space of  parameters values there will be a further 

K!-1 additional points all of  which give rise to exactly the same distribution. 

• Identifiability can be a serious issue when we wish to interpret the parameter values 

discovered by a model. 

GMMs: MLE



• The EM algorithm has broad applicability across ML. Subsequently we will give a more 

general treatment of  the EM algorithm – for now we start with a relatively informal 

application in relation to GMMs. 

• To begin, we take the derivatives of  ln p(X|π,μ,Σ) with respect to the means μk of  the 

Gaussians components and set this equal to zero: 

EM for GMMs
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• The EM algorithm has broad applicability across ML. Subsequently we will give a more 

general treatment of  the EM algorithm – for now we start with a relatively informal 

application in relation to GMMs. 

(1) To begin, we take the derivatives of  ln p(X|π,μ,Σ) with respect to the means μk of  the 

Gaussians components and set this equal to zero: 

Solving yields: 

(*) One can interpret the quantity Nk as the “effective number of  points assigned to 

cluster k. Notice that μk for the kth Gaussian component is obtained by taking a weighted 

mean of  all the points in the data set, in which the weighting factor for data point xn is 

given by the posterior probability γ(znk) that component k was responsible for generating 

xn. 
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(2) We set the derivative of  ln p(X|π,μ,Σ) with respect to Σk to zero, and solve, 

producing:

which is merely the covariance formula with each datum weighted by the corresponding 

posterior probability and with the denominator given by the effective number of  points 

associated with the corresponding component. 
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(2) We set the derivative of  ln p(X|π,μ,Σ) with respect to Σk to zero, and solve, 

producing:

which is merely the covariance formula with each datum weighted by the corresponding 

posterior probability and with the denominator given by the effective number of  points 

associated with the corresponding component. 

(3) Lastly, we maximize ln p(X|π,μ,Σ) wrt to the mixing coefficients πk. Here we must 

take into account the constraint: σ𝑘 π𝑘 = 1. 

Q: How do we conventionally solve a constrained optimization question? 
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(2) We set the derivative of  ln p(X|π,μ,Σ) with respect to Σk to zero, and solve, 

producing:

which is merely the covariance formula with each datum weighted by the corresponding 

posterior probability and with the denominator given by the effective number of  points 

associated with the corresponding component. 

(3) Lastly, we maximize ln p(X|π,μ,Σ) wrt to the mixing coefficients πk. Here we must 

take into account the constraint: σ𝑘 π𝑘 = 1. 

Q: How do we conventionally solve a constrained optimization question? 

A: Langrange multipliers. 
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(2) We set the derivative of  ln p(X|π,μ,Σ) with respect to Σk to zero, and solve, 

producing:

which is merely the covariance formula with each datum weighted by the corresponding 

posterior probability and with the denominator given by the effective number of  points 

associated with the corresponding component. 

(3) Lastly, we maximize ln p(X|π,μ,Σ) wrt to the mixing coefficients πk. Here we must 

take into account the constraint: σ𝑘 π𝑘 = 1. 

According to the method of  Langrange multipliers, we maximize the following quantity: 

GMMs

( )( )( )
1

1 N
T

k nk n k n k

nk

z
N


=

 = − − x μ x μ

( )
( )

( )1 1

1

| ,
ln | , , 1 0

| ,

K N
k n k k

k K
k n

j n j j

j

N
p X

N


  

= =

=

 
 + − → + = 

  
 



x μ
π μ

x μ



(3) Lastly, we maximize ln p(X|π,μ,Σ) wrt to the mixing coefficients πk. Here we must 

take into account the constraint: σ𝑘 π𝑘 = 1. 

According to the method of  Langrange multipliers, we maximize the following quantity:

(*) Multiplying both sides by πk and summing over k gives λ = -N; we then eliminate λ, 

rearrange and obtain: 

So that the mixing coefficient of  the kth component is given by the average 

responsibility which that component takes for explaining the data points. 
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In summary, we have the GMM MLE parameter formulae: 

Each parameter estimate is used as an iterative update in the EM algorithm. First we 

choose some initial values for the means, covariances and mixing coefficients. 

Then we alternate between the two update steps:

(1) E-step: (expectation) here we use the current values for the parameters to evaluate 

the posterior probabilities/responsibilities.

(2) M-step: (maximization) here we update the parameter values for the means and 

covariances with the responsibilities kept constant. 
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• Each parameter estimate is used as an iterative update in the EM algorithm. First we choose 

some initial values for the means, covariances and mixing coefficients. 

Then we alternate between the two update steps:

(1) E-step: (expectation) here we use the current values for the parameters to evaluate the 

posterior probabilities/responsibilities.

(2) M-step: (maximization) here we update the parameter values for the means and covariances 

with the responsibilities kept constant. 

GMMs: Summary 

(*) Note that the EM algorithm takes many 

more iterations to reach (approximate) 

convergence than k-means in general. 

It is consequently common practice to run 

the k-means algorithm in order to find a 

suitable initialization for a Gaussian mixture 

model that is subsequently adaped using 

EM; in addition, initial covariance matrices 

are often based on sample covariances of 

cluster generated by k-means; likewise 

mixing coefficients can be initialized 

similarly. 



• Demo: https://lukapopijac.github.io/gaussian-mixture-model/

GMMs



• From the Bishop text, pp.438-439. 

GMM: Summary



• Conventionally, the EM algorithm is considered in relation to latent variables (i.e. hidden 

variables). We now review the EM algorithm in this slightly more abstract setting, and then relate it 

concretely to the k-means algorithm for the purposes of  review. 

(*) The goal of  the EM algorithm is to find the MLE solutions for models with latent variables. 

• We denote the set of  all observed data by X, in which the nth row represents 𝒙𝑛
𝑇 , and similarly 

we denote the set of  all latent variables by Z corresponding with row 𝒛𝑛
𝑇 . 

EM: An Alternative View



• Conventionally, the EM algorithm is considered in relation to latent variables (i.e. hidden 

variables). We now review the EM algorithm in this slightly more abstract setting, and then relate it 

concretely to the k-means algorithm for the purposes of  review. 

(*) The goal of  the EM algorithm is to find the MLE solutions for models with latent variables. 

• We denote the set of  all observed data by X, in which the nth row represents 𝒙𝑛
𝑇 , and similarly 

we denote the set of  all latent variables by Z corresponding with row 𝒛𝑛
𝑇 . 

The set of  all model parameters is denoted by θ, and so the log likelihood function is:
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• The log likelihood function is:

A key observation is that the summation over the latent variables appears inside the log 

expression. We’ll call the set {X, Z} the complete data set, and we will likewise refer to the actual 

observed data X as incomplete. 

• In practice we are not given the complete data set {X, Z} – but only the incomplete data X. Our 

state of  knowledge of  the values of  the latent variables in Z is given only by the posterior 

distribution p(Z|X,θ). 

(*) Because we cannot use the complete-data log likelihood, we consider instead its expected value 

under the posterior distribution of  the latent variable (this corresponds with the E-step); in the 

subsequent M-step, we maximize this expectation. 
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• In the E-step, we use the current parameter values θold to find the posterior distribution of  the 

latent variables given by p(Z|X, θold). We then use this posterior distribution to find the 

expectation of  the complete-data log likelihood evaluated for some general parameter value theta. 

Define Q(θ, θold): 

EM: An Alternative View
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• In the E-step, we use the current parameter values θold to find the posterior distribution of  the 

latent variables given by p(Z|X, θold). We then use this posterior distribution to find the 

expectation of  the complete-data log likelihood evaluated for some general parameter value theta. 

Define Q(θ, θold): 

In the M-step, we determine the revised parameter estimate θnew by maximizing this function:

EM: An Alternative View
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EM: An Alternative View

• From the Bishop text, pp.440-441. 



• Comparison of  the k-means algorithm with the EM algorithm for Gaussian mixtures 

shows that there is a close similarity. 

• Whereas the k-means algorithms performs a hard assignment of  data points to clusters, in 

which each data point is associated uniquely with one cluster, the EM algorithm makes a 

soft assignment based on the posterior probabilities. 

(*) In fact, we can derive the k-means algorithm as a particular limit of  EM for Gaussian 

mixtures. 

EM: k-means Revisited



• Consider a Gaussian mixture model in which the covariance matrices of  the 

mixture components are given by an isotropic spherical covariance matrix: εI, where ε is a 

variance parameter that is shared by all of  the components, so that: 

• Consider the EM algorithm for a mixture of  K Gaussians of  this form where we 

treat ε as a fixed constant, instead of  a parameter to be re-estimated. 

• Recall the previous definition for the posterior probabilities (i.e. responsibilities) for a 

particular data point is given by: 

EM: k-means Revisited
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• If  we consider the limit ε → 0, we see that in the denominator, the term for which 

𝑥𝑛 − 𝜇𝑗
2 is smallest will go to zero more slowly, and hence the responsibilities 

γ(znk) for the data point xn all go to zero except for the j term, for which the 

responsibility γ(znj) will go to one (this holds independently of  the πk, so long as 

none are zero).  

• Thus, in the limit, we obtain a hard assignment of  data points to clusters, just as in 

the k-means algorithm so that γ(znk) → rnk (where rnk is the binary hard assignment 

of  the cluster with closest centroid to the given datum). 

EM: k-means Revisited
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• In the limit ε → 0, the EM estimation for μk:  

reduces to the familiar k-means estimate: 

EM: k-means Revisited
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• In the limit ε → 0, the EM estimation for μk:  

reduces to the familiar k-means estimate: 

• Similarly, the re-estimation of  the mixing coefficients, πk, simply resets the value of πk

to be equal to the fraction of  data points assigned to cluster k.  

EM: k-means Revisited
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• Lastly, in the limit ε → 0, the expected complete-data log likelihood, becomes: 

Thus we can see that in this limit, maximizing the expected complete-data log 

likelihood is equivalent to minimizing J for the k-means algorithm. 

In summary: we have shown that k-means represents a special case of  the EM 

algorithm applied to GMMs in the case of  an isotropic spherical covariance matrix 

εI taken in limit ε → 0.

EM: k-means Revisited
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• EM is a general technique for finding MLE solutions for probabilistic models with 

latent variables. We now take up the EM algorithm in the most general case. 

•Consider a probabilistic model with observed variables X and hidden variables given 

by Z (for simplicity we assume Z is discrete). The joint distribution p(X,Z|θ) is 

governed by a set of  parameters denoted θ. Our goal is to maximize the likelihood 

function given by:

EM: General Case

( ) ( )ln | ln , |p p
 

=  
 


Z

X θ X Z θ



• EM is a general technique for finding MLE solutions for probabilistic models with 

latent variables. We now take up the EM algorithm in the most general case. 

Consider a probabilistic model with observed variables X and hidden variables given by 

Z (for simplicity we assume Z is discrete). The joint distribution p(X,Z|θ) is governed 

by a set of  parameters denoted θ. Our goal is to maximize the likelihood function given 

by:

We shall suppose, naturally, that the direct optimization of  p(X|θ) is difficult (e.g. the 

case in which class labels are unknown), but that the optimization of  the complete-data 

likelihood function p(X,Z|θ) is significantly easier.
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• Next we introduce a distribution q(Z) defined over the latent variables, and we 

observe that, for any choice of  q(Z), the following decomposition holds: 

Where we define:
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• To verify the decomposition:                                                            ,

we first utilize the product rule of  probability

to get: 

which we then substitute into the expression for L(q,θ). This gives rise to (2) terms, one 

of  which cancels KL(q||p) while the other gives the required log likelihood ln p(X|θ) 

after noting that q(Z) is a normalized distribution. 

Let’s show this in more detail…
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• To verify the decomposition:                                                            ,

we first utilize the product rule of  probability

to get: 

EM: General Case
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• To verify the decomposition:                                                            ,

we first utilize the product rule of  probability

to get: 

EM: General Case
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we first utilize the product rule of  probability
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EM: General Case
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• We note that KL(q| p is the KL-divergence between q(Z) (the distribution over the 

hidden variables) and the posterior distribution p(Z|X,θ). Recall that the K-L 

divergence satisfies: KL(q| p ≥ 0 with equality iff q(Z) = p(Z|X,θ). 

(*)  It therefore follows that L(q,θ) ≤ ln p(X|θ) – which is to say that L(q,θ) forms a 

lower bound for ln p(X|θ).

EM: General Case

( ) ( ) ( )ln | , ||p L q KL q p= +X θ



•The EM algorithm is a two-stage iterative optimization technique for finding MLE 

solutions. Let’s demonstrate that decomposition above confirms that EM does in fact 

maximize the log likelihood.

• Suppose that the current value of  the parameter vector is θold. In the E-step, the lower 

bound L(q, θold) is maximized with respect to q(Z) while holding θold  fixed. 

EM: General Case
( ) ( ) ( )ln | , ||p L q KL q p= +X θ



•The EM algorithm is a two-stage iterative optimization technique for finding MLE 

solutions. Let’s demonstrate that decomposition above confirms that EM does in fact 

maximize the log likelihood.

• Suppose that the current value of  the parameter vector is θold. In the E-step, the lower 

bound L(q, θold) is maximized with respect to q(Z) while holding θold  fixed. 

• The solution to this maximization problem is easily seen by noting that the value of  

lnp(X|θold) does not depend on q(Z) and so the largest value of  L(q, θold) will occur 

when the K-L divergence vanishes (i.e. when q(Z)=p(Z|X, θold). In this case the lower 

bound will equal the log likelihood, as shown below. 

EM: General Case
( ) ( ) ( )ln | , ||p L q KL q p= +X θ



• In the M-step, the distribution q(Z) is held fixed and the lower bound L(q, θ) is 

maximized with respect to theta to give some new value θnew. This will cause the lower 

bound L to increase (unless it is already at a maximum), which will necessarily cause the 

corresponding log likelihood function to increase. 

• Because the distribution q is determined using the old parameter values rather than 

the new values and is held fixed during the M-step, it will not equal the new posterior 

distribution p(Z|X, θnew), and hence there will be a non-zero KL divergence. 

EM: General Case
( ) ( ) ( )ln | , ||p L q KL q p= +X θ



• In the M-step, the distribution q(Z) is held fixed and the lower bound L(q, θ) is 

maximized with respect to theta to give some new value θnew. This will cause the lower 

bound L to increase (unless it is already at a maximum), which will necessarily cause the 

corresponding log likelihood function to increase. 

• Because the distribution q is determined using the old parameter values rather than 

the new values and is held fixed during the M-step, it will not equal the new posterior 

distribution p(Z|X, θnew), and hence there will be a non-zero KL divergence. 

• The increase in the log likelihood function is therefore greater than the increase in the 

lower bound, as shown in the figure below. 

EM: General Case
( ) ( ) ( )ln | , ||p L q KL q p= +X θ



• If  we substitute q(Z)=p(Z|X, θold) into

We see that, after the E-step, the lower bound takes the form:

where the constant is simply the entropy of  the q distribution and is therefore 

independent of  theta. 

(*) Thus in the M-step, the quantity being maximized is the expectation of  the 

complete-data log likelihood, as we saw earlier in the case of  the GMM model. 
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• The operation of  the EM algorithm can also be viewed in the space of  parameters as 

shown below. 

• Here the red curve depicts the (incomplete data) log likelihood function whose value 

we wish to maximize. We start with some initial parameter value θold, and in the first E-

step we evaluate the posterior distribution over latent variables, which gives rise to a 

lower bound L(q, θold ) whose value equals the log likelihood at θold , so that both curves 

have the same gradient (the bound is a convex function). 

• In the M-step, the bound is maximized giving the value θnew which yields a larger value 

of  log likelihood than theta old. 

• The subsequent E-step then constructs a bound that is tangential at θnew , as shown by 

the green curve. 

EM: General Case



• Markov models represent a classic paradigm for modeling sequential data. 

• Given a time series (say of  observed weather from day to day), we would like to 

predict the current system state (e.g. the weather forecast today). 

• Notice that if  we treat the data as I.I.D., then the only information we can glean from 

the data is the relative frequency of  various weather outcomes (i.e. how many times it 

was sunny, raining, etc.). Naturally, in practice weather and other time series data 

modalities, e.g., “stock market outlook”, are highly dependent on previous states. A 

Markov model encodes these dependencies. 

Markov Models

Audio signals 

represent a 

natural 
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sequential data



• WLOG (without loss of  generality) we can use the (generalized) product rule of  

probability to express any joint distribution for a sequence of  observations in the 

form:

Markov Models

( ) ( )1 1 1

2

,..., | ,...,
N

N n n

n

p x x p x x x −

=

=



• WLOG (without loss of  generality) we can use the (generalized) product rule of  

probability to express any joint distribution for a sequence of  observations in the 

form:

(*) Now if  we impose the assumption that each conditional distribution on the RHS 

above is independent of  all previous observations – except the most recent – we obtain a 

first-order Markov chain. 

For a first-order Markov chain, the conditional 

distribution for xn given all previous 

observations is given by: 
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=  Graphical Model representing I.I.D. 

sequential data 
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• In order to encode higher-order data dependencies, we can use a higher-order 

Markov chain. If, for example, we allow the predictions of  the current state to depend 

also on the previous two states, we obtain a second-order Markov chain; this idea 

generalizes in the natural way. 

• As before, one can easily show (using d-separation*) that for a second-order Markov 

chain, the conditional distribution for xn given all previous observations reduces to: 

(*) See: Daphne Koller’s text for a thorough treatment of  topics 

on graphical models, including d-separation. 
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• First-order Markov chain: 

• Second-order Markov chain: 

• One can similarly consider extensions to an Mth order Markov chain, in which the 

conditional distribution for a particular variable depends on the previous M variables. 

Q: What is the price we pay for this increased flexibility? 
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• First-order Markov chain: 

• Second-order Markov chain: 

• One can similarly consider extensions to an Mth order Markov chain, in which the 

conditional distribution for a particular variable depends on the previous M variables. 

Q: What is the price we pay for this increased flexibility? 

A: In a first-order Markov chain – where we assume K distinct possible discrete states –

the conditional probability p(xn|xn-1) expressed as, say, a look-up table consists of  

K(K-1) parameters. Why? 

(*) In general, an Mth order Markov chain contains KM(K-1) parameters. Clearly, an 

arbitrarily large order Markov chain is impractical in general (in practice M ≤ 4 is 

common)
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• Many ML applications naturally admit of  latent/hidden variables or information (e.g. 

NLP); furthermore, it is often useful to simply introduce latent variables into a model in 

order to permit a rich class of  models to be constructed out of  simple components. 

• For each observation xn, we introduce a corresponding latent variable zn (which may 

be of  different type or dimensionality to the observed variable). 

• We now assume that it is the hidden variables that form a Markov chain, giving rise to 

a graphical structure known as a state space model, as shown in the figure.

This model satisfies the key conditional independent property that zn-1 and zn+1 are 

independent given zn, so that: 

Markov Models: HMMs
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• This model satisfies the key conditional independent property that zn-1 and zn+1 are 

independent given zn, so that: 

The joint distribution of  this model is given by:

(*) Notice that the predictive distribution for observation xn+1 given all previous 

observations: p(xn+1|x1,…,xn) does not exhibit any conditional independent properties, 

and so our predictions for xn+1 depend on all previous observations. The observed 

variables. Typically the latent variables are discrete and the observed variables are either 

discrete or continuous. 

Markov Models: HMMs
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• HMMs are widely used in NLP applications (e.g., speech recognition, on-line 

handwriting recognition, parts-of-speech tagging), gesture recognition, and 

bioinformatics (DNA sequencing) 

• Consider the observed variables denoted by x and latent variables are K-dimensional 

binary variables denoted by z. We assume that the hidden variables that form a first-

order Markov chain, giving rise to a graphical structure known as a state space model.

• The conditional distribution over the latent variables corresponds to a table that we 

denote by A, the elements of  which are known as transition probabilities.  

Markov Models: HMMs



• Consider the observed variables denoted by x and latent variables are K-dimensional 

binary variables denoted by z. We assume that the hidden variables that form a first-

order Markov chain, giving rise to a graphical structure known as a state space model.

• The conditional distribution over the latent variables corresponds to a table that we 

denote by A, the elements of  which are known as transition probabilities.  

• They are given by Ajk=p(zn,k=1|zn-1,j), and because they are probabilities, they satisfy    

0 ≤ Ajk ≤ 1 with σ𝑘 𝐴𝑗𝑘 = 1 , so that the matrix A has K(K-1) independent parameters. 

We can then write the conditional distribution explicitly in the form:

• The initial latent node z1 is special in that it does not have a parent node, and so it has 

a marginal distribution p(z1) represented by a vector of  probabilities π with elements   

πk = p(z1k= 1) so that 
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• Recall that the latent variables are usually discrete and that the state variables are either 

discrete or continuous. The emission probability for an HMM is the distribution of  

the visible variable, given the latent variable: 

where φ represent the parameters of  the emission distributions (e.g. μ, σ).

• The joint probability distribution over both latent and observed variables is then given 

by: 

where: X={x1,…,xN}, Z={z1,…,zN} and θ = {π,A,φ} are the parameters governing the 

model. 
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• If  we have observed a data set X = {x1,…,xN}, we can determine the parameters of  

an HMM using maximum likelihood. 

The likelihood function is obtained from the joint via marginalization: 

Due to the presence of  both observed and hidden variables, we can turn to the EM 

framework to generate the MLE for HMMs. 

Recall:

The EM algorithm starts with some initial selection for the model parameters: θold

In the E-step, we take these parameter values and find the posterior distribution of  

the latent variables p(Z|X, θold). We then use this posterior distribution to evaluate the 

expectation of  the logarithm of  the complete-data likelihood function, as a function of  

the parameters θ, to give the function Q(θ, θold) defined by:
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Recall:

The EM algorithm starts with some initial selection for the model parameters: θold

In the E-step, we take these parameter values and find the posterior distribution of  

the latent variables p(Z|X, θold). We then use this posterior distribution to evaluate the 

expectation of  the logarithm of  the complete-data likelihood function, as a function of  

the parameters θ, to give the function Q(θ, θold) defined by:

(*) Introducing some convenient notation: we shall use γ(zn) to denote the marginal 

posterior distribution of  a latent variable zn, and ξ(zn-1,zn) to denote the joint posterior 

distribution of  two successive latent variables so that: 
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(*) Introducing some convenient notation: we shall use γ(zn) to denote the marginal 

posterior distribution of  a latent variable zn, and ξ(zn-1,zn) to denote the joint posterior 

distribution of  two successive latent variables so that: 

• For each value of  n, we can store γ(zn) using a set of  K non-negative numbers that 

sum to unity, and similarly we can store ξ(zn-1,zn) using a K x K matrix of  non-negative 

numbers that again sum to unity. We shall also use γ(znk) to connote the conditional 

probability of  znk=1, with a similar use of  notation for ξ(zn-1,j,znk). 

Note that the expected value of  a binary random variable is just the probability that it 

takes value 1, giving us: 
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(*) We can now re-write:

• In the M-step, we maximize Q(θ, θold) with respect to the parameter set θ = {π,A,φ} 

in which we treat γ(zn) and ξ(zn-1,zn) as a constant. Maximization with respect to π and 

A is achieved using Lagrange multipliers: 
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(*) We can now re-write:

• In the M-step, we maximize Q(θ, θold) with respect to the parameter set θ = {π,A,φ} 

in which we treat γ(zn) and ξ(zn-1,zn) as a constant. Maximization with respect to π and 

A is achieved using Lagrange multipliers: 

If  the diffusion densities are Gaussians, then the maximization yields the GMM 

parameter formulae: 
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(*) Note that it still remains to devise an efficient procedure to evaluate the quantities: 

γ(zn) and ξ(zn-1,zn), corresponding to the E-step in the EM algorithm. 

(*) Because the HMM is a tree, one can use a “message passing” algorithm to estimate 

the posterior distribution of  the latent variables. For HMMs in particular this message 

passing algorithm is known as the forward-backward algorithm. For brevity, we omit 

the details here.*

(*) An additional useful algorithm for HMMs that finds the most probable sequence of  

hidden states is called the Viterbi algorithm.** 
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