
Mixture Models & the EM Algorithm

CS 446/546

Outline
• k-Means and Analysis of k-Means

• Fuzzy c-Means

• GMMs (Gaussian Mixture Models)

• EM Algorithm

• HMMs (Hidden Markov Models)

Overview

• The EM algorithm (expectation-maximization) is used to find maximum

likelihood parameter estimates (i.e. MLE) for a model in cases where the

equations cannot be solved directly.

• Most commonly, these models incorporate latent/hidden variables (i.e.

unobserved data) in addition to known/observed variables.

Overview

• In some instances, the latent variables comprise intrinsic unknown quantities

(e.g. the unknown parameters of a mixture model); conversely, however, it

is also often useful to introduce latent variables extrinsically to model

complex dependencies among variables using simpler components for

increased tractability.

• In particular, mixture models (e.g. GMM, HMM) can be interpreted in terms

of discrete latent variables.

Overview

• In addition to providing a framework for building more complex probability

distributions, mixture models can also be used to cluster data.

• For mixture models, the latent variables can be interpreted as defining

assignments of data points to specific components of the mixture.

• Next we consider (3) classic applications of latent variable models commonly

used in combination with the EM algorithm: K-means, GMMs and HMMs.

Lastly, we discuss the EM algorithm in the general case.

Issues for clustering algorithms

• How to measure distance between pairs of instances?

• How many clusters to create?

• Should clusters be hierarchical? (i.e., clusters of clusters)

• Should clustering be “soft”? (i.e., an instance can belong to different

clusters, with “weighted belonging”)

• k-means is a very popular (and simple) clustering algorithm used in ML

and data science.

• k-means clustering aims to partition n observations into k clusters in

which each observation belongs to the cluster with the nearest mean,

serving as a prototype of the cluster. This results in a partitioning of the

data space into Voronoi cells.

k-Means

Vornoi

Tessellation; 20

points and their

Voroni cells.

• Given a set of observations (x1, x2, …, xn), where each observation is

a d-dimensional real vector, k-means clustering endeavors to partition

the n observations into k (≤ n) sets S={S1, S2, …, Sk} so as to

minimize the within-cluster sum of squares (WCSS) – which is to

say we desire a reasonably “tight” clustering.

k-Means

• Given a set of observations (x1, x2, …, xn), where each observation is

a d-dimensional real vector, k-means clustering endeavors to partition

the n observations into k (≤ n) sets S={S1, S2, …, Sk} so as to

minimize the within-cluster sum of squares (WCSS) – which is to

say we desire a reasonably “tight” clustering.

• Define binary indicator variables, 𝑟𝑛𝑘 ∈ 0,1 , where k=1,…,K

describing the cluster to which the xn datum is assigned.

• Formally, the objective is given by:

where μi is the mean of cluster Si.

k-Means

2

1 1

N K

nk n k

n k

J r
= =

= − x μ

• Formally, the objective is given by:

where μi is the mean of cluster Si.

• Our goal is to find values for the {rnk} and the {μk} as to minimize J.

• We can do this through an iterative procedure in which each iteration

involves two successive steps corresponding to successive optimizations

with respect to the rnk and μk.

k-Means

2

1 1

N K

nk n k

n k

J r
= =

= − x μ

• Formally, the objective is given by:

where μi is the mean of cluster Si.

• Our goal is to find values for the {rnk} and the {μk} as to minimize J.

• We can do this through an iterative procedure in which each iteration

involves two successive steps corresponding to successive optimizations

with respect to the rnk and μk.

Choose initial values for the μk.

(1) Minimize J wrt rnk keeping the μk fixed (E-step)

(2) Minimize J wrt μk keeping the rnk fixed (M-step)

Repeat until convergence.

k-Means

2

1 1

N K

nk n k

n k

J r
= =

= − x μ

• Formally, the objective is given by:

where μi is the mean of cluster Si.

(1) Minimize J wrt rnk keeping the μk fixed (E-step)

Let’s consider the determination of rnk.

• Notice that because J is a linear function of rnk, this optimization is

elementary and yields a closed form solution.

Q: What is the solution?

k-Means

2

1 1

N K

nk n k

n k

J r
= =

= − x μ

• Formally, the objective is given by:

where μi is the mean of cluster Si.

(1) Minimize J wrt rnk keeping the μk fixed (E-step)

Let’s consider the determination of rnk.

• Notice that because J is a linear function of rnk, this optimization is

elementary and yields a closed form solution.

(*) Intuitively: J involves the sum of n different (independent) terms, so

we can optimize for each n separately by choosing rnk to be 1 for

whichever value k minimizes – which is to say we simply assign the nth

datum to the closest cluster center.

k-Means

2

1 1

N K

nk n k

n k

J r
= =

= − x μ

• Formally, the objective is given by:

where μi is the mean of cluster Si.

(1) Minimize J wrt rnk keeping the μk fixed (E-step)

• The preceding argument yields:

k-Means

2

1 1

N K

nk n k

n k

J r
= =

= − x μ

2

j1 if k = arg min

0 else

n j
nkr

 −
= 


x μ

• Formally, the objective is given by:

where μi is the mean of cluster Si.

(2) Minimize J wrt μk keeping the rnk fixed (M-step)

Let’s consider the determination of μk with the rnk fixed.

Q: How do we proceed?

k-Means

2

1 1

N K

nk n k

n k

J r
= =

= − x μ

• Formally, the objective is given by:

where μi is the mean of cluster Si.

(2) Minimize J wrt μk keeping the rnk fixed (M-step)

Let’s consider the determination of μk with the rnk fixed.

(*) The objective function J is quadratic in μk and it can thus be minimized by

setting the derivative of J wrt μk equal to zero:

Where the denominator of the last expression is equal to the number of points

assigned to cluster k, and so this result has a simple interpretation: namely, we set

μk equal to the mean of all the data points xn assigned to cluster k.

k-Means

2

1 1

N K

nk n k

n k

J r
= =

= − x μ

()
1

2 0
nk nN

n
nk n k k

n nk

n

r

r
r=

− = → =





x

x μ μ

• Given an initial set of k means μ1
(1)
, … , μ𝑘

(1)
k-means alternates between the

following (2) steps:

(I) Assignment Step (i.e., the expectation step):

Assign each observation to the cluster whose mean has the least squared

Euclidean distance, this is intuitively the "nearest" mean. Mathematically, this means

partitioning the observations according to the Voroni tessellation generated by the

means.

(II) Update Step (i.e., the parameter maximization step):

• Calculate the new means to be the centroids of the observations in the new

clusters.

• The algorithm has converged when the assignments no longer change. There is

no guarantee that the optimum is found using this algorithm.

k-Means: Summary

(I) Assignment Step (i.e., the expectation step):

(II) Update Step (i.e., the parameter maximization step):

k-Means

Adapted from Andrew Moore,

http://www.cs.cmu.edu/~awm/tutori

als

Adapted from Andrew Moore,

http://www.cs.cmu.edu/~awm/tutori

als

Adapted from Andrew Moore,

http://www.cs.cmu.edu/~awm/tutori

als

Adapted from Andrew Moore,

http://www.cs.cmu.edu/~awm/tutori

als

K-means Clustering Algorithm Pseudocode

Distance metric: Chosen by user.

For numerical attributes, often use L2 (Euclidean) distance:

Centroid of a cluster here refers to the mean of the points in the cluster.

(*) NB: Using a different distance function other than (squared) Euclidean

distance may stop the algorithm from converging. Various modifications

of k-means such as spherical k-means have been proposed to allow using

other distance measures.

d(x,y) = (xi - yi)
2

i=1

n

å

Example: Image segmentation by K-means

clustering by color
From http://vitroz.com/Documents/Image%20Segmentation.pdf

K=5, RGB space

K=10, RGB space

K=5, RGB space

K=10, RGB space

K=5, RGB space

K=10, RGB space

• A text document is represented as a feature vector of word frequencies

(see: Word2vec).

• Distance between two documents is the cosine of the angle between

their corresponding feature vectors.

Example: Clustering text documents

Figure 4. Two-dimensional map of the PMRA cluster solution, representing nearly 29,000 clusters

and over two million articles.

Boyack KW, Newman D, Duhon RJ, Klavans R, et al. (2011) Clustering More than Two Million Biomedical Publications: Comparing the

Accuracies of Nine Text-Based Similarity Approaches. PLoS ONE 6(3): e18029. doi:10.1371/journal.pone.0018029

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0018029

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0018029

K-means Analysis

• Convergence: k-means is guaranteed to converge in a finite number of

steps (irrespective of the initial centroid assignment). Why? In short: there

are only a finite number of ways to cluster n data points into k clusters

(although note that this number can be large). Usually convergence is

relatively fast in practice.

• NB: The algorithm is nevertheless not guaranteed to generate a

(globally) optimal clustering.

• Complexity: In general, finding the optimal solution to k-means for

observations in d dimensions is NP-hard (even in the 2-class case).

• The run-time of k-means is O(nkdi), where n is the size of the data set, d

is the dimension, k is the number of clusters and i is the number of

clusters needed until convergence. k-means is therefore oftentimes

considered a linear run-time algorithm; in the worst-case it is more aptly

described as superpolynomial.

Potential Issues for K-means
• The algorithm is only applicable if the mean is defined.

– For categorical data, use K-modes: The centroid is represented by the most frequent

values.

• The user needs to specify K.

• Cluster morphology can be severely limited (epsilon-balls, etc.)

• Algorithms makes hard cluster assignments (either element belongs to a particular cluster or

it does not).

• The algorithm is sensitive to outliers

– Outliers are data points that are very far away from expected range/other data points.

– Outliers could be errors in the data recording or some special data points with very

different values.

– Note the mode is a more robust measure of center (than, say the mean), meaning it is

less susceptible to outliers; thus, we can potentially use K-modes to safeguard against

influence of outliers.

Issues for K-means: Problems with outliers

Dealing with outliers

• One method is to remove some data points in the clustering process

that are much further away from the centroids than other data points.

– Expensive

– Not always a good idea!

• Another method is to perform random sampling. Since in sampling we

only choose a small subset of the data points, the chance of selecting

an outlier is very small.

– Assign the rest of the data points to the clusters by distance or

similarity comparison, or classification

Issues for K-means (cont …)

• The algorithm is sensitive to initial seeds.

+

+

• If we use different seeds: good results

• Often we can improve k-means results by performing

several random restarts.

• It is commonly helpful to use actual data values for the

initial seeds.

+
+

Issues for K-means (cont …)

• The K-means algorithm is not suitable for discovering clusters that are

not hyper-ellipsoids (or hyper-spheres).

+

Issues for K-means (cont …)

• In non-fuzzy clustering (also known as hard clustering), data is divided into

distinct clusters, where each data point can only belong to exactly one cluster.

(cf., k-means from previous slides).

• In fuzzy clustering (also: soft clustering), data points can potentially belong to

multiple clusters.

• Commonly, “membership grades” (i.e. class probabilities) are assigned to

each of the data points. These membership grades indicate the degree to

which data points belong to each cluster. Thus, points on the edge of a

cluster, with lower membership grades, may be in the cluster to a lesser degree

than points in the center of cluster.

Fuzzy c-means

• The FCM (fuzzy c-means (1973), as it is usually called) algorithm is very similar to the k-

means algorithm:

Here is the basic idea:

• Choose a number of clusters: c (a hyperparameter).

• Initially assign coefficients randomly to each data point for being in the clusters (these

are the initial membership grades).

• Repeat until the algorithm has converged/stopping condition:

(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the

clusters (e-step).

Fuzzy c-means

Here is the basic idea:

• Choose a number of clusters: c (a hyperparameter).

• Initially assign coefficients randomly to each data point for being in the clusters (these

are the initial membership grades).

• Repeat until the algorithm has converged/stopping condition:

(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the

clusters (e-step).

where C={c1,…,cc} are the cluster centers,

, and each element wij tells the

degree to which element xi, belongs to cluster cj (i.e. the w’s are the

membership grades); m>1 is a hyperparameter known as the fuzzifier

parameter which controls the amount of “fuzziness” in the

partition.

Fuzzy c-means

()

()

m

k

x
k m

k

x

w

w
=




x x

c
x

 , 0,1 , 1,..., , 1,...,i jW w i n j c=  = =

Here is the basic idea:

• Choose a number of clusters: c (a hyperparameter).

• Initially assign coefficients randomly to each data point for being in the clusters (these

are the initial membership grades).

• Repeat until the algorithm has converged/stopping condition:

(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the

clusters (e-step).

Fuzzy c-means

()

()

m

k

x
k m

k

x

w

w
=




x x

c
x

2

1

1

1
i j

mc
i j

k i k

w
−

=

=

 −
 
 −
 


x c

x c

Here is the basic idea:

• Choose a number of clusters: c (a hyperparameter).

• Initially assign coefficients randomly to each data point for being in the clusters (these

are the initial membership grades).

• Repeat until the algorithm has converged/stopping condition:

(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the

clusters (e-step).

(*) FCM aims to minimize the an objective function:

Fuzzy c-means

()

()

m

k

x
k m

k

x

w

w
=




x x

c
x

2

1

1

1
i j

mc
i j

k i k

w
−

=

=

 −
 
 −
 


x c

x c

2

1 1

arg min
n c

m

ij i j
C i j

w
= =

− x c

• For example, consider a simple 1-d data set, where we want to determine a plausible

clustering for 2 classes (A and B).

• Using “hard k-means” we associate each datum to a specific centroid; therefore the

membership function looks like this:

Fuzzy c-means

• For example, consider a simple 1-d data set, where we want to determine a plausible clustering for 2

classes (A and B).

• Using “hard k-means” we associate each datum to a specific centroid; therefore the membership

function looks like this:

• In the FCM approach, instead, the same given datum does not belong exclusively to a well defined

cluster. In this case, the membership function follows a smoother line to indicate that every datum

may belong to several clusters with different values of the membership coefficient.

Fuzzy c-means

• FCM was essentially, again, a “fuzzy” version of the k-means algorithm, where data

points are assigned to each cluster with an associated probability/membership grade.

• An additional, commonly used soft clustering model is the GMM (Gaussian mixture

model); with GMMs, we assume (a priori) that the clusters resemble tightly-packed balls

(i.e. Gaussian distributions).

GMMs

GMMs: Gaussian Distribution Review

GMMs: Gaussian Distribution Review

Main ideas for clustering using GMM:

(*) Initialization: given a data set, fix k, the number of clusters; initialize the mean (μ) and

covariance matrices (Σ) for the k Gaussian clusters.

(*) Assign the data points to the k clusters (using a soft clustering) (assignment step/E-

step)

(*) Update the parameters (i.e. μ, Σ) for each of the clusters. (update step/M-step)

…repeat until stopping condition/convergence

GMMs

Main ideas for clustering using GMM:

(*) Initialization: given a data set, fix k, the number of clusters; initialize the mean (μ) and

covariance matrices (Σ) for the k Gaussian clusters.

(*) Assign the data points to the k clusters (using a soft clustering) (assignment step/E-

step)

(*) Update the parameters (i.e. μ, Σ) and prior class estimates (P(Ci|x) (for each of the

clusters. (update step/M-step)

…repeat until stopping condition/convergence

What makes this problem challenging? There are, ostensibly, many unknowns!

(*) Strictly speaking, we don’t know the cluster assignments nor any of the Gaussian

distribution parameters.

GMMs

What makes this problem challenging? There are, ostensibly, many unknowns!

(*) Strictly speaking, we don’t know the cluster assignments nor any of the Gaussian

distribution parameters.

How can we simplify things?

A nice trick…Solve each subproblem separately!

(1) For instance, to find the optimal class assignments for each datum, use the current

approximations for the Gaussian parameters distributions (i.e. treat μ and Σ as known

for each cluster, as well as each class prior) and compute the class posterior: P(Ci|x)

using Bayes’ Rule.

(2) Conversely, to find the optimal estimates for μ and Σ for each cluster, in addition to

the class priors, use the current (soft) class posterior assignments and compute the

MLE.

GMMs

• The GMM distribution can be written as a linear superposition of Gaussians in the form:

Each Gaussian density N (x|μk,Σk) is called a component of the mixture and has its own

mean and covariance; πk are called mixing coefficients and satisfy: σ𝑘 π𝑘 = 1.

GMMs

() ()
1

| ,
N

k k k

k

p N
=

= x x μ

• The GMM distribution can be written as a linear superposition of Gaussians in the form:

Each Gaussian density N (x|μk,Σk) is called a component of the mixture and has its own

mean and covariance; πk are called mixing coefficients and satisfy: σ𝑘 π𝑘 = 1.

• Let us introduce a K-dimensional binary random variable z having a 1-of-K

representation in which a particular element zk is equal to 1 and all other elements are

equal to 0 (i.e. this is a one-hot encoding).

(*) The values of zk therefore satisfy zk ∈{0,1} and σ𝑘 𝑧𝑘 = 1 .

•We shall define the joint distribution p(x,z) in terms of a marginal distribution p(z) and a

conditional distribution p(x|z), corresponding to the following graphical model:

GMMs

() ()
1

| ,
N

k k k

k

p N
=

= x x μ

• The marginal distribution over z is specified in terms of the mixing coefficients πk such

that: p(zk = 1) = πk, where the parameters {πk} satisfy: 0 ≤ πk ≤ 1 & σ𝑘 π𝑘 = 1.

Because z uses a 1-of-K representation, we can also write this distribution in the form:

GMMs

() ()
1

| ,
N

k k k

k

p N
=

= x x μ

()
1

k

K
z

k

k

p 
=

=z

• The marginal distribution over z is specified in terms of the mixing coefficients πk such

that: p(zk = 1) = πk, where the parameters {πk} satisfy: 0 ≤ πk ≤ 1 & σ𝑘 π𝑘 = 1.

Because z uses a 1-of-K representation, we can also write this distribution in the form:

• Similarly, the conditional distribution of x given a particular value for z is a Gaussian:

Which can also be written in the form:

GMMs

() ()
1

| ,
N

k k k

k

p N
=

= x x μ

()
1

k

K
z

k

k

p 
=

=z

() ()| 1 | ,k k kp z N= = x x μ

() ()
1

| | , k

K
z

k k

k

p N
=

= x z x μ

• The joint distribution is given by p(z)p(x|z) and the marginal distribution of x is then

obtained by summing the joint distribution over all possible states of z to give:

(*) Note that instead of using the marginal distribution p(x) directly, the formula above allows

us to work with the joint p(x,z), which will lead to significant simplifications, most notably

through the introduction of the EM algorithm.

GMMs

() () () ()
1

| | ,
N

k k k

k

p p p N
=

= =  
z

x z x z x μ

marginalization

• The joint distribution is given by p(z)p(x|z) and the marginal distribution of x is then

obtained by summing the joint distribution over all possible states of z to give:

(*) Note that instead of using the marginal distribution p(x) directly, the formula above allows

us to work with the joint p(x,z), which will lead to significant simplifications, most notably

through the introduction of the EM algorithm.

• An additional quantity of interest is the conditional probability of z given x. We shall use γ(zk)

to denote p(zk=1|x), whose value can be ascertained via Bayes’ Theorem as follows:

(*) We view πk as the prior probability of zk = 1, and the quantity γ(zk) as the

corresponding posterior probability once we have observed x; note that γ(zk) is often

referred to as the responsibility that component k takes for “explaining” the observation

x.

GMMs

() () () ()
1

| | ,
N

k k k

k

p p p N
=

= =  
z

x z x z x μ

marginalization

() ()
() ()

() ()

()

()
1 1

1 | 1 | ,
1|

1 | 1 | ,

k k k k k

k k K K

j j j j j

j j

p z p z N
z p z

p z p z N





= =

= = 
= = =

= =  

x x μ
x

x x μ

• Suppose we have a data set of observations {x1,…,xN}, and we wish to model this data

using a mixture of Gaussians. We can represent this data set as an N x D matrix X in

which the nth row is given by 𝒙𝑛
𝑇 .

• If we assume the data points are drawn independently from the distribution, then we can

express the Gaussian mixture model for this IID data set using the graphical

representation shown; the log likelihood function is given by:

Q: Why do we use the log likelihood as opposed to simply the likelihood in practice for MLE

calculations?

GMMs: MLE

() ()
1 1

ln | , , ln | ,
N K

k k k

n k

p X N
= =

 
 =  

 
 π μ x μ

• It is important to be aware that when using the MLE to render a GMM, (2) significant

pathologies can frequently arise.

(1) The presence of singularities

(*) It is not uncommon for GMMs to yield singularities in which one (or more) of the Gaussian

components collapses onto a single data point.

Why does this occur? The “collapsed” component will contribute an ever-increasing additive

value to the log likelihood expression – the maximization of the log likelihood function for

GMMs is therefore not a well-posed problem.

• Singularities provide another example of extreme over-fitting that can occur with the MLE

approach. How can one remedy this situation? Be Bayesian! (See “variational Bayes” methods).

GMMs: MLE

• It is important to be aware that when using the MLE to render a GMM, (2) significant

pathologies can frequently arise.

(2) Identifiability

(*) A further issue in finding MLE solutions occurs due to the fact that for any given MLE

solution, a K-component mixture will have a total of K! equivalent solutions corresponding to

the K! ways of assigning K sets of parameters to K components.

• This means that for any given point in the space of parameters values there will be a further

K!-1 additional points all of which give rise to exactly the same distribution.

• Identifiability can be a serious issue when we wish to interpret the parameter values

discovered by a model.

GMMs: MLE

• The EM algorithm has broad applicability across ML. Subsequently we will give a more

general treatment of the EM algorithm – for now we start with a relatively informal

application in relation to GMMs.

• To begin, we take the derivatives of ln p(X|π,μ,Σ) with respect to the means μk of the

Gaussians components and set this equal to zero:

EM for GMMs

() ()
()

()

()

()1

1 1 1

| ,
ln | , , ln | , 0

| ,

nk

N K N
k n k k

k k k k n k

n k nk k j n j j

j

z

N
p X N

N








−

= = =

   
 =  =  − = 

   
  



x μ
π μ x μ x μ

μ μ x μ

• The EM algorithm has broad applicability across ML. Subsequently we will give a more

general treatment of the EM algorithm – for now we start with a relatively informal

application in relation to GMMs.

(1) To begin, we take the derivatives of ln p(X|π,μ,Σ) with respect to the means μk of the

Gaussians components and set this equal to zero:

Solving yields:

(*) One can interpret the quantity Nk as the “effective number of points assigned to

cluster k. Notice that μk for the kth Gaussian component is obtained by taking a weighted

mean of all the points in the data set, in which the weighting factor for data point xn is

given by the posterior probability γ(znk) that component k was responsible for generating

xn.

EM for GMMs

() ()
()

()

()

()1

1 1 1

| ,
ln | , , ln | , 0

| ,

nk

N K N
k n k k

k k k k n k

n k nk k j n j j

j

z

N
p X N

N








−

= = =

   
 =  =  − = 

   
  



x μ
π μ x μ x μ

μ μ x μ

() ()
1 1

1
 with

N N

k nk n k nk

n nk

z N z
N

  
= =

= = x

(2) We set the derivative of ln p(X|π,μ,Σ) with respect to Σk to zero, and solve,

producing:

which is merely the covariance formula with each datum weighted by the corresponding

posterior probability and with the denominator given by the effective number of points

associated with the corresponding component.

GMMs

()()()
1

1 N
T

k nk n k n k

nk

z
N


=

 = − − x μ x μ

(2) We set the derivative of ln p(X|π,μ,Σ) with respect to Σk to zero, and solve,

producing:

which is merely the covariance formula with each datum weighted by the corresponding

posterior probability and with the denominator given by the effective number of points

associated with the corresponding component.

(3) Lastly, we maximize ln p(X|π,μ,Σ) wrt to the mixing coefficients πk. Here we must

take into account the constraint: σ𝑘 π𝑘 = 1.

Q: How do we conventionally solve a constrained optimization question?

GMMs

()()()
1

1 N
T

k nk n k n k

nk

z
N


=

 = − − x μ x μ

(2) We set the derivative of ln p(X|π,μ,Σ) with respect to Σk to zero, and solve,

producing:

which is merely the covariance formula with each datum weighted by the corresponding

posterior probability and with the denominator given by the effective number of points

associated with the corresponding component.

(3) Lastly, we maximize ln p(X|π,μ,Σ) wrt to the mixing coefficients πk. Here we must

take into account the constraint: σ𝑘 π𝑘 = 1.

Q: How do we conventionally solve a constrained optimization question?

A: Langrange multipliers.

GMMs

()()()
1

1 N
T

k nk n k n k

nk

z
N


=

 = − − x μ x μ

(2) We set the derivative of ln p(X|π,μ,Σ) with respect to Σk to zero, and solve,

producing:

which is merely the covariance formula with each datum weighted by the corresponding

posterior probability and with the denominator given by the effective number of points

associated with the corresponding component.

(3) Lastly, we maximize ln p(X|π,μ,Σ) wrt to the mixing coefficients πk. Here we must

take into account the constraint: σ𝑘 π𝑘 = 1.

According to the method of Langrange multipliers, we maximize the following quantity:

GMMs

()()()
1

1 N
T

k nk n k n k

nk

z
N


=

 = − − x μ x μ

()
()

()1 1

1

| ,
ln | , , 1 0

| ,

K N
k n k k

k K
k n

j n j j

j

N
p X

N


  

= =

=

 
 + − → + = 

  
 



x μ
π μ

x μ

(3) Lastly, we maximize ln p(X|π,μ,Σ) wrt to the mixing coefficients πk. Here we must

take into account the constraint: σ𝑘 π𝑘 = 1.

According to the method of Langrange multipliers, we maximize the following quantity:

(*) Multiplying both sides by πk and summing over k gives λ = -N; we then eliminate λ,

rearrange and obtain:

So that the mixing coefficient of the kth component is given by the average

responsibility which that component takes for explaining the data points.

GMMs

()
()

()1 1

1

| ,
ln | , , 1 0

| ,

K N
k n k k

k K
k n

j n j j

j

N
p X

N


  

= =

=

 
 + − → + = 

  
 



x μ
π μ

x μ

k
k

N

N
 =

In summary, we have the GMM MLE parameter formulae:

Each parameter estimate is used as an iterative update in the EM algorithm. First we

choose some initial values for the means, covariances and mixing coefficients.

Then we alternate between the two update steps:

(1) E-step: (expectation) here we use the current values for the parameters to evaluate

the posterior probabilities/responsibilities.

(2) M-step: (maximization) here we update the parameter values for the means and

covariances with the responsibilities kept constant.

GMMs

k
k

N

N
 =

• Each parameter estimate is used as an iterative update in the EM algorithm. First we choose

some initial values for the means, covariances and mixing coefficients.

Then we alternate between the two update steps:

(1) E-step: (expectation) here we use the current values for the parameters to evaluate the

posterior probabilities/responsibilities.

(2) M-step: (maximization) here we update the parameter values for the means and covariances

with the responsibilities kept constant.

GMMs: Summary

(*) Note that the EM algorithm takes many

more iterations to reach (approximate)

convergence than k-means in general.

It is consequently common practice to run

the k-means algorithm in order to find a

suitable initialization for a Gaussian mixture

model that is subsequently adaped using

EM; in addition, initial covariance matrices

are often based on sample covariances of

cluster generated by k-means; likewise

mixing coefficients can be initialized

similarly.

• Demo: https://lukapopijac.github.io/gaussian-mixture-model/

GMMs

• From the Bishop text, pp.438-439.

GMM: Summary

• Conventionally, the EM algorithm is considered in relation to latent variables (i.e. hidden

variables). We now review the EM algorithm in this slightly more abstract setting, and then relate it

concretely to the k-means algorithm for the purposes of review.

(*) The goal of the EM algorithm is to find the MLE solutions for models with latent variables.

• We denote the set of all observed data by X, in which the nth row represents 𝒙𝑛
𝑇 , and similarly

we denote the set of all latent variables by Z corresponding with row 𝒛𝑛
𝑇 .

EM: An Alternative View

• Conventionally, the EM algorithm is considered in relation to latent variables (i.e. hidden

variables). We now review the EM algorithm in this slightly more abstract setting, and then relate it

concretely to the k-means algorithm for the purposes of review.

(*) The goal of the EM algorithm is to find the MLE solutions for models with latent variables.

• We denote the set of all observed data by X, in which the nth row represents 𝒙𝑛
𝑇 , and similarly

we denote the set of all latent variables by Z corresponding with row 𝒛𝑛
𝑇 .

The set of all model parameters is denoted by θ, and so the log likelihood function is:

EM: An Alternative View

() ()ln | ln , |p p
 

=  
 


Z

X θ X Z θ

• The log likelihood function is:

A key observation is that the summation over the latent variables appears inside the log

expression. We’ll call the set {X, Z} the complete data set, and we will likewise refer to the actual

observed data X as incomplete.

• In practice we are not given the complete data set {X, Z} – but only the incomplete data X. Our

state of knowledge of the values of the latent variables in Z is given only by the posterior

distribution p(Z|X,θ).

(*) Because we cannot use the complete-data log likelihood, we consider instead its expected value

under the posterior distribution of the latent variable (this corresponds with the E-step); in the

subsequent M-step, we maximize this expectation.

EM: An Alternative View

() ()ln | ln , |p p
 

=  
 


Z

X θ X Z θ

• In the E-step, we use the current parameter values θold to find the posterior distribution of the

latent variables given by p(Z|X, θold). We then use this posterior distribution to find the

expectation of the complete-data log likelihood evaluated for some general parameter value theta.

Define Q(θ, θold):

EM: An Alternative View

() () (), , | ln , |old oldQ p p=
Z

θ θ X Z θ X Z θ

• In the E-step, we use the current parameter values θold to find the posterior distribution of the

latent variables given by p(Z|X, θold). We then use this posterior distribution to find the

expectation of the complete-data log likelihood evaluated for some general parameter value theta.

Define Q(θ, θold):

In the M-step, we determine the revised parameter estimate θnew by maximizing this function:

EM: An Alternative View

() () (), , | ln , |old oldQ p p=
Z

θ θ X Z θ X Z θ

()arg max ,new oldQ =
θ

θ θ

EM: An Alternative View

• From the Bishop text, pp.440-441.

• Comparison of the k-means algorithm with the EM algorithm for Gaussian mixtures

shows that there is a close similarity.

• Whereas the k-means algorithms performs a hard assignment of data points to clusters, in

which each data point is associated uniquely with one cluster, the EM algorithm makes a

soft assignment based on the posterior probabilities.

(*) In fact, we can derive the k-means algorithm as a particular limit of EM for Gaussian

mixtures.

EM: k-means Revisited

• Consider a Gaussian mixture model in which the covariance matrices of the

mixture components are given by an isotropic spherical covariance matrix: εI, where ε is a

variance parameter that is shared by all of the components, so that:

• Consider the EM algorithm for a mixture of K Gaussians of this form where we

treat ε as a fixed constant, instead of a parameter to be re-estimated.

• Recall the previous definition for the posterior probabilities (i.e. responsibilities) for a

particular data point is given by:

EM: k-means Revisited

()
()

2

/2

1 1
| , exp

22
k k kM

p


 
 = − − 

 
x μ x μ

()
 
 

2

2

exp / 2

exp / 2

k n k

nk

j n j

j

z
 


 

− −
=

− −

x μ

x μ

• If we consider the limit ε → 0, we see that in the denominator, the term for which

𝑥𝑛 − 𝜇𝑗
2 is smallest will go to zero more slowly, and hence the responsibilities

γ(znk) for the data point xn all go to zero except for the j term, for which the

responsibility γ(znj) will go to one (this holds independently of the πk, so long as

none are zero).

• Thus, in the limit, we obtain a hard assignment of data points to clusters, just as in

the k-means algorithm so that γ(znk) → rnk (where rnk is the binary hard assignment

of the cluster with closest centroid to the given datum).

EM: k-means Revisited

()
 
 

2

2

exp / 2

exp / 2

k n k

nk

j n j

j

z
 


 

− −
=

− −

x μ

x μ

• In the limit ε → 0, the EM estimation for μk:

reduces to the familiar k-means estimate:

EM: k-means Revisited

()
 
 

2

2

exp / 2

exp / 2

k n k

nk

j n j

j

z
 


 

− −
=

− −

x μ

x μ
()

0
lim nk nkz r



→

=

• In the limit ε → 0, the EM estimation for μk:

reduces to the familiar k-means estimate:

• Similarly, the re-estimation of the mixing coefficients, πk, simply resets the value of πk

to be equal to the fraction of data points assigned to cluster k.

EM: k-means Revisited

()
 
 

2

2

exp / 2

exp / 2

k n k

nk

j n j

j

z
 


 

− −
=

− −

x μ

x μ
()

0
lim nk nkz r



→

=

• Lastly, in the limit ε → 0, the expected complete-data log likelihood, becomes:

Thus we can see that in this limit, maximizing the expected complete-data log

likelihood is equivalent to minimizing J for the k-means algorithm.

In summary: we have shown that k-means represents a special case of the EM

algorithm applied to GMMs in the case of an isotropic spherical covariance matrix

εI taken in limit ε → 0.

EM: k-means Revisited

() () () 
2

1 1 1 1

1
ln , | , , ln ln | , .

2

N K N K

Z nk k n k k nk n k

n k n k

E p z N r const 
= = = =

 = +  →− − +    X Z μ π x μ x μ

• EM is a general technique for finding MLE solutions for probabilistic models with

latent variables. We now take up the EM algorithm in the most general case.

•Consider a probabilistic model with observed variables X and hidden variables given

by Z (for simplicity we assume Z is discrete). The joint distribution p(X,Z|θ) is

governed by a set of parameters denoted θ. Our goal is to maximize the likelihood

function given by:

EM: General Case

() ()ln | ln , |p p
 

=  
 


Z

X θ X Z θ

• EM is a general technique for finding MLE solutions for probabilistic models with

latent variables. We now take up the EM algorithm in the most general case.

Consider a probabilistic model with observed variables X and hidden variables given by

Z (for simplicity we assume Z is discrete). The joint distribution p(X,Z|θ) is governed

by a set of parameters denoted θ. Our goal is to maximize the likelihood function given

by:

We shall suppose, naturally, that the direct optimization of p(X|θ) is difficult (e.g. the

case in which class labels are unknown), but that the optimization of the complete-data

likelihood function p(X,Z|θ) is significantly easier.

EM: General Case

() ()ln | ln , |p p
 

=  
 


Z

X θ X Z θ

• Next we introduce a distribution q(Z) defined over the latent variables, and we

observe that, for any choice of q(Z), the following decomposition holds:

Where we define:

EM: General Case

() ()ln | ln , |p p
 

=  
 


Z

X θ X Z θ

() () ()ln | , ||p L q KL q p= +X θ

Goal of EM: Maximize

Likelihood

() ()
()

()

() ()
()

()

, |
, ln

| ,
|| ln

p
L q q

q

p
KL q p q

q


  

=  
  

  
= −  

  





Z

Z

X Z θ
Z

Z

Z X θ
Z

Z

• To verify the decomposition: ,

we first utilize the product rule of probability

to get:

which we then substitute into the expression for L(q,θ). This gives rise to (2) terms, one

of which cancels KL(q||p) while the other gives the required log likelihood ln p(X|θ)

after noting that q(Z) is a normalized distribution.

Let’s show this in more detail…

EM: General Case

() () ()ln | , ||p L q KL q p= +X θ

() ()
()

()

() ()
()

()

, |
, ln

| ,
|| ln

p
L q q

q

p
KL q p q

q


  

=  
  

  
= −  

  





Z

Z

X Z θ
Z

Z

Z X θ
Z

Z

() () ()ln , | ln | , ln |p p p= +Z X θ Z X θ X θ

• To verify the decomposition: ,

we first utilize the product rule of probability

to get:

EM: General Case

() () ()ln | , ||p L q KL q p= +X θ

() ()
()

()

() ()
()

()

, |
, ln

| ,
|| ln

p
L q q

q

p
KL q p q

q


  

=  
  

  
= −  

  





Z

Z

X Z θ
Z

Z

Z X θ
Z

Z

() () ()ln , | ln | , ln |p p p= +Z X θ Z X θ X θ

() () ()
()

()
()

()

()

, | | ,
, || ln ln

p p
L q KL q p q q

q q


      
+ = −   

      
 

Z Z

X Z θ Z X θ
Z Z

Z Z

• To verify the decomposition: ,

we first utilize the product rule of probability

to get:

EM: General Case

() () ()ln | , ||p L q KL q p= +X θ

() ()
()

()

() ()
()

()

, |
, ln

| ,
|| ln

p
L q q

q

p
KL q p q

q


  

=  
  

  
= −  

  





Z

Z

X Z θ
Z

Z

Z X θ
Z

Z

() () ()ln , | ln | , ln |p p p= +Z X θ Z X θ X θ

() () ()
()

()
()

()

()

, | | ,
, || ln ln

p p
L q KL q p q q

q q


      
+ = −   

      
 

Z Z

X Z θ Z X θ
Z Z

Z Z

()
() ()

()
()

()

()

| , | | ,
ln ln

p p p
q q

q q

      
= −   

      
 

Z Z

Z X θ X θ Z X θ
Z Z

Z Z

Why?

• To verify the decomposition: ,

we first utilize the product rule of probability

to get:

EM: General Case

() () ()ln | , ||p L q KL q p= +X θ

() ()
()

()

() ()
()

()

, |
, ln

| ,
|| ln

p
L q q

q

p
KL q p q

q


  

=  
  

  
= −  

  





Z

Z

X Z θ
Z

Z

Z X θ
Z

Z

() () ()ln , | ln | , ln |p p p= +Z X θ Z X θ X θ

() () ()
()

()
()

()

()

, | | ,
, || ln ln

p p
L q KL q p q q

q q


      
+ = −   

      
 

Z Z

X Z θ Z X θ
Z Z

Z Z

()
() ()

()
()

()

()

| , | | ,
ln ln

p p p
q q

q q

      
= −   

      
 

Z Z

Z X θ X θ Z X θ
Z Z

Z Z

By

product

rule

()
()

()
() () ()

()

()

| , | ,
ln ln | ln

p p
q q p q

q q

      
= + −   

      
  

Z Z Z

Z X θ Z X θ
Z Z X θ Z

Z Z

• To verify the decomposition: ,

we first utilize the product rule of probability

to get:

EM: General Case

() () ()ln | , ||p L q KL q p= +X θ

() ()
()

()

() ()
()

()

, |
, ln

| ,
|| ln

p
L q q

q

p
KL q p q

q


  

=  
  

  
= −  

  





Z

Z

X Z θ
Z

Z

Z X θ
Z

Z

() () ()ln , | ln | , ln |p p p= +Z X θ Z X θ X θ

() () ()
()

()
()

()

()

, | | ,
, || ln ln

p p
L q KL q p q q

q q


      
+ = −   

      
 

Z Z

X Z θ Z X θ
Z Z

Z Z

()
() ()

()
()

()

()

| , | | ,
ln ln

p p p
q q

q q

      
= −   

      
 

Z Z

Z X θ X θ Z X θ
Z Z

Z Z

By

product

rule

()
()

()
() () ()

()

()

| , | ,
ln ln | ln

p p
q q p q

q q

      
= + −   

      
  

Z Z Z

Z X θ Z X θ
Z Z X θ Z

Z Z

() () ()ln | ln |q p p= =
Z

Z X θ X θ

Why?

• To verify the decomposition: ,

we first utilize the product rule of probability

to get:

EM: General Case

() () ()ln | , ||p L q KL q p= +X θ

() ()
()

()

() ()
()

()

, |
, ln

| ,
|| ln

p
L q q

q

p
KL q p q

q


  

=  
  

  
= −  

  





Z

Z

X Z θ
Z

Z

Z X θ
Z

Z

() () ()ln , | ln | , ln |p p p= +Z X θ Z X θ X θ

() () ()
()

()
()

()

()

, | | ,
, || ln ln

p p
L q KL q p q q

q q


      
+ = −   

      
 

Z Z

X Z θ Z X θ
Z Z

Z Z

()
() ()

()
()

()

()

| , | | ,
ln ln

p p p
q q

q q

      
= −   

      
 

Z Z

Z X θ X θ Z X θ
Z Z

Z Z

()
()

()
() () ()

()

()

| , | ,
ln ln | ln

p p
q q p q

q q

      
= + −   

      
  

Z Z Z

Z X θ Z X θ
Z Z X θ Z

Z Z

() () ()ln | ln |q p p= =
Z

Z X θ X θ This verifies the decomposition of

the likelihood of the observed data

• We note that KL(q| p is the KL-divergence between q(Z) (the distribution over the

hidden variables) and the posterior distribution p(Z|X,θ). Recall that the K-L

divergence satisfies: KL(q| p ≥ 0 with equality iff q(Z) = p(Z|X,θ).

(*) It therefore follows that L(q,θ) ≤ ln p(X|θ) – which is to say that L(q,θ) forms a

lower bound for ln p(X|θ).

EM: General Case

() () ()ln | , ||p L q KL q p= +X θ

•The EM algorithm is a two-stage iterative optimization technique for finding MLE

solutions. Let’s demonstrate that decomposition above confirms that EM does in fact

maximize the log likelihood.

• Suppose that the current value of the parameter vector is θold. In the E-step, the lower

bound L(q, θold) is maximized with respect to q(Z) while holding θold fixed.

EM: General Case
() () ()ln | , ||p L q KL q p= +X θ

•The EM algorithm is a two-stage iterative optimization technique for finding MLE

solutions. Let’s demonstrate that decomposition above confirms that EM does in fact

maximize the log likelihood.

• Suppose that the current value of the parameter vector is θold. In the E-step, the lower

bound L(q, θold) is maximized with respect to q(Z) while holding θold fixed.

• The solution to this maximization problem is easily seen by noting that the value of

lnp(X|θold) does not depend on q(Z) and so the largest value of L(q, θold) will occur

when the K-L divergence vanishes (i.e. when q(Z)=p(Z|X, θold). In this case the lower

bound will equal the log likelihood, as shown below.

EM: General Case
() () ()ln | , ||p L q KL q p= +X θ

• In the M-step, the distribution q(Z) is held fixed and the lower bound L(q, θ) is

maximized with respect to theta to give some new value θnew. This will cause the lower

bound L to increase (unless it is already at a maximum), which will necessarily cause the

corresponding log likelihood function to increase.

• Because the distribution q is determined using the old parameter values rather than

the new values and is held fixed during the M-step, it will not equal the new posterior

distribution p(Z|X, θnew), and hence there will be a non-zero KL divergence.

EM: General Case
() () ()ln | , ||p L q KL q p= +X θ

• In the M-step, the distribution q(Z) is held fixed and the lower bound L(q, θ) is

maximized with respect to theta to give some new value θnew. This will cause the lower

bound L to increase (unless it is already at a maximum), which will necessarily cause the

corresponding log likelihood function to increase.

• Because the distribution q is determined using the old parameter values rather than

the new values and is held fixed during the M-step, it will not equal the new posterior

distribution p(Z|X, θnew), and hence there will be a non-zero KL divergence.

• The increase in the log likelihood function is therefore greater than the increase in the

lower bound, as shown in the figure below.

EM: General Case
() () ()ln | , ||p L q KL q p= +X θ

• If we substitute q(Z)=p(Z|X, θold) into

We see that, after the E-step, the lower bound takes the form:

where the constant is simply the entropy of the q distribution and is therefore

independent of theta.

(*) Thus in the M-step, the quantity being maximized is the expectation of the

complete-data log likelihood, as we saw earlier in the case of the GMM model.

EM: General Case
() () ()ln | , ||p L q KL q p= +X θ

() ()
()

()

, |
, ln

p
L q q

q


  
=  

  


Z

X Z θ
Z

Z

() ()
()

()
() () () ()

()

, |
, ln | , ln , | | , ln | ,

,

old old old

old

p
L q q p p p p

q

Q const


  

= = − 
  

= +

  
Z Z Z

X Z θ
Z Z X θ X Z θ Z X θ Z X θ

Z

θ θ

• The operation of the EM algorithm can also be viewed in the space of parameters as

shown below.

• Here the red curve depicts the (incomplete data) log likelihood function whose value

we wish to maximize. We start with some initial parameter value θold, and in the first E-

step we evaluate the posterior distribution over latent variables, which gives rise to a

lower bound L(q, θold) whose value equals the log likelihood at θold , so that both curves

have the same gradient (the bound is a convex function).

• In the M-step, the bound is maximized giving the value θnew which yields a larger value

of log likelihood than theta old.

• The subsequent E-step then constructs a bound that is tangential at θnew , as shown by

the green curve.

EM: General Case

• Markov models represent a classic paradigm for modeling sequential data.

• Given a time series (say of observed weather from day to day), we would like to

predict the current system state (e.g. the weather forecast today).

• Notice that if we treat the data as I.I.D., then the only information we can glean from

the data is the relative frequency of various weather outcomes (i.e. how many times it

was sunny, raining, etc.). Naturally, in practice weather and other time series data

modalities, e.g., “stock market outlook”, are highly dependent on previous states. A

Markov model encodes these dependencies.

Markov Models

Audio signals

represent a

natural

modality for

sequential data

• WLOG (without loss of generality) we can use the (generalized) product rule of

probability to express any joint distribution for a sequence of observations in the

form:

Markov Models

() ()1 1 1

2

,..., | ,...,
N

N n n

n

p x x p x x x −

=

=

• WLOG (without loss of generality) we can use the (generalized) product rule of

probability to express any joint distribution for a sequence of observations in the

form:

(*) Now if we impose the assumption that each conditional distribution on the RHS

above is independent of all previous observations – except the most recent – we obtain a

first-order Markov chain.

For a first-order Markov chain, the conditional

distribution for xn given all previous

observations is given by:

Markov Models

() ()1 1 1

2

,..., | ,...,
N

N n n

n

p x x p x x x −

=

=

() () ()1 1 1

2

,..., |
N

N n n

n

p x x p x p x x −

=

=  Graphical Model representing I.I.D.

sequential data

Graphical Model representing a

first-order Markov chain() ()1 1 1| ,..., |n n n np x x x p x x− −=

• In order to encode higher-order data dependencies, we can use a higher-order

Markov chain. If, for example, we allow the predictions of the current state to depend

also on the previous two states, we obtain a second-order Markov chain; this idea

generalizes in the natural way.

• As before, one can easily show (using d-separation*) that for a second-order Markov

chain, the conditional distribution for xn given all previous observations reduces to:

(*) See: Daphne Koller’s text for a thorough treatment of topics

on graphical models, including d-separation.

Markov Models

() () () ()1 1 2 1 1 2

3

,..., | | ,
N

n n n n

n

p x x p x p x x p x x x− −

=

= 

Graphical Model depicting a

second-order Markov chain

() ()1 1 1 2| ,..., | ,n n n n np x x x p x x x− − −=

• First-order Markov chain:

• Second-order Markov chain:

• One can similarly consider extensions to an Mth order Markov chain, in which the

conditional distribution for a particular variable depends on the previous M variables.

Q: What is the price we pay for this increased flexibility?

Markov Models

() () () ()1 1 2 1 1 2

3

,..., | | ,
N

n n n n

n

p x x p x p x x p x x x− −

=

= 

• First-order Markov chain:

• Second-order Markov chain:

• One can similarly consider extensions to an Mth order Markov chain, in which the

conditional distribution for a particular variable depends on the previous M variables.

Q: What is the price we pay for this increased flexibility?

A: In a first-order Markov chain – where we assume K distinct possible discrete states –

the conditional probability p(xn|xn-1) expressed as, say, a look-up table consists of

K(K-1) parameters. Why?

(*) In general, an Mth order Markov chain contains KM(K-1) parameters. Clearly, an

arbitrarily large order Markov chain is impractical in general (in practice M ≤ 4 is

common)

Markov Models

() () () ()1 1 2 1 1 2

3

,..., | | ,
N

n n n n

n

p x x p x p x x p x x x− −

=

= 

• Many ML applications naturally admit of latent/hidden variables or information (e.g.

NLP); furthermore, it is often useful to simply introduce latent variables into a model in

order to permit a rich class of models to be constructed out of simple components.

• For each observation xn, we introduce a corresponding latent variable zn (which may

be of different type or dimensionality to the observed variable).

• We now assume that it is the hidden variables that form a Markov chain, giving rise to

a graphical structure known as a state space model, as shown in the figure.

This model satisfies the key conditional independent property that zn-1 and zn+1 are

independent given zn, so that:

Markov Models: HMMs

1 1 |n n nz z z+ −⊥

• This model satisfies the key conditional independent property that zn-1 and zn+1 are

independent given zn, so that:

The joint distribution of this model is given by:

(*) Notice that the predictive distribution for observation xn+1 given all previous

observations: p(xn+1|x1,…,xn) does not exhibit any conditional independent properties,

and so our predictions for xn+1 depend on all previous observations. The observed

variables. Typically the latent variables are discrete and the observed variables are either

discrete or continuous.

Markov Models: HMMs

1 1 |n n nz z z+ −⊥

() () () ()1 1 1 1

2 1

,..., , ,..., | |
N N

n N n n n n

n n

p x x z z p z p z z p x z−

= =

 
=  

 
 

• HMMs are widely used in NLP applications (e.g., speech recognition, on-line

handwriting recognition, parts-of-speech tagging), gesture recognition, and

bioinformatics (DNA sequencing)

• Consider the observed variables denoted by x and latent variables are K-dimensional

binary variables denoted by z. We assume that the hidden variables that form a first-

order Markov chain, giving rise to a graphical structure known as a state space model.

• The conditional distribution over the latent variables corresponds to a table that we

denote by A, the elements of which are known as transition probabilities.

Markov Models: HMMs

• Consider the observed variables denoted by x and latent variables are K-dimensional

binary variables denoted by z. We assume that the hidden variables that form a first-

order Markov chain, giving rise to a graphical structure known as a state space model.

• The conditional distribution over the latent variables corresponds to a table that we

denote by A, the elements of which are known as transition probabilities.

• They are given by Ajk=p(zn,k=1|zn-1,j), and because they are probabilities, they satisfy

0 ≤ Ajk ≤ 1 with σ𝑘 𝐴𝑗𝑘 = 1 , so that the matrix A has K(K-1) independent parameters.

We can then write the conditional distribution explicitly in the form:

• The initial latent node z1 is special in that it does not have a parent node, and so it has

a marginal distribution p(z1) represented by a vector of probabilities π with elements

πk = p(z1k= 1) so that

Markov Models: HMMs

() 1

1

1

| where 1k

K
z

k k

kk

p  
=

= =z π

() 1, ,

1

1 1

| , n j n k

K K
z z

n n jk

k j

p A −

−

= =

=z z A

• Recall that the latent variables are usually discrete and that the state variables are either

discrete or continuous. The emission probability for an HMM is the distribution of

the visible variable, given the latent variable:

where φ represent the parameters of the emission distributions (e.g. μ, σ).

• The joint probability distribution over both latent and observed variables is then given

by:

where: X={x1,…,xN}, Z={z1,…,zN} and θ = {π,A,φ} are the parameters governing the

model.

Markov Models: HMMs

() ()
1

| , | nk

K
z

n n n k

k

p x p x 
=

=z

() () () ()1 1

2 1

, | | | , | ,
N N

n n m m

n m

p p p p x −

= =

 
=  

 
 X Z θ z π z z A z

• If we have observed a data set X = {x1,…,xN}, we can determine the parameters of

an HMM using maximum likelihood.

The likelihood function is obtained from the joint via marginalization:

Due to the presence of both observed and hidden variables, we can turn to the EM

framework to generate the MLE for HMMs.

Recall:

The EM algorithm starts with some initial selection for the model parameters: θold

In the E-step, we take these parameter values and find the posterior distribution of

the latent variables p(Z|X, θold). We then use this posterior distribution to evaluate the

expectation of the logarithm of the complete-data likelihood function, as a function of

the parameters θ, to give the function Q(θ, θold) defined by:

Markov Models: MLE for HMMs

() ()| , |p p=
Z

X θ X Z θ

() () (), , | ln , |old oldQ p p=
Z

θ θ X Z θ X Z θ

Recall:

The EM algorithm starts with some initial selection for the model parameters: θold

In the E-step, we take these parameter values and find the posterior distribution of

the latent variables p(Z|X, θold). We then use this posterior distribution to evaluate the

expectation of the logarithm of the complete-data likelihood function, as a function of

the parameters θ, to give the function Q(θ, θold) defined by:

(*) Introducing some convenient notation: we shall use γ(zn) to denote the marginal

posterior distribution of a latent variable zn, and ξ(zn-1,zn) to denote the joint posterior

distribution of two successive latent variables so that:

Markov Models: MLE for HMMs

() ()

()1 1

| ,

, (, | ,)

old

n n

old

n n n n

p

p



 − −

=

=

z z X θ

z z z z X θ

() () (), | , ln , |old oldQ p p=
Z

θ θ Z X θ X Z θ

(*) Introducing some convenient notation: we shall use γ(zn) to denote the marginal

posterior distribution of a latent variable zn, and ξ(zn-1,zn) to denote the joint posterior

distribution of two successive latent variables so that:

• For each value of n, we can store γ(zn) using a set of K non-negative numbers that

sum to unity, and similarly we can store ξ(zn-1,zn) using a K x K matrix of non-negative

numbers that again sum to unity. We shall also use γ(znk) to connote the conditional

probability of znk=1, with a similar use of notation for ξ(zn-1,j,znk).

Note that the expected value of a binary random variable is just the probability that it

takes value 1, giving us:

Markov Models: MLE for HMMs

() ()

()1 1

| ,

, (, | ,)

old

n n

old

n n n n

p

p



 − −

=

=

z z X θ

z z z z X θ

()   ()

() ()
1

1, 1, 1,

,

, ,

n

n n

nk nk nk

n j nk n j nk n j nk

z E z z

z z E z z z z

 

 
−

− − −

= =

 = = 





z

z z

z

z

(*) We can now re-write:

• In the M-step, we maximize Q(θ, θold) with respect to the parameter set θ = {π,A,φ}

in which we treat γ(zn) and ξ(zn-1,zn) as a constant. Maximization with respect to π and

A is achieved using Lagrange multipliers:

Markov Models: MLE for HMMs

() () (), | , ln , |old oldQ p p=
Z

θ θ Z X θ X Z θ

(*) We can now re-write:

• In the M-step, we maximize Q(θ, θold) with respect to the parameter set θ = {π,A,φ}

in which we treat γ(zn) and ξ(zn-1,zn) as a constant. Maximization with respect to π and

A is achieved using Lagrange multipliers:

If the diffusion densities are Gaussians, then the maximization yields the GMM

parameter formulae:

Markov Models: MLE for HMMs

() () (), | , ln , |old oldQ p p=
Z

θ θ Z X θ X Z θ

(*) Note that it still remains to devise an efficient procedure to evaluate the quantities:

γ(zn) and ξ(zn-1,zn), corresponding to the E-step in the EM algorithm.

(*) Because the HMM is a tree, one can use a “message passing” algorithm to estimate

the posterior distribution of the latent variables. For HMMs in particular this message

passing algorithm is known as the forward-backward algorithm. For brevity, we omit

the details here.*

(*) An additional useful algorithm for HMMs that finds the most probable sequence of

hidden states is called the Viterbi algorithm.**

Markov Models: MLE for HMMs

