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Historical Notes
• Feedforward networks can be seen as efficient non-linear function approximators based on using 

gradient descent to minimize the error in a  function approximation.

•As such, the modern feedforward NN is the culmination of  centuries of  progress on the general 

function approximation task. 

• The chain rule underlying backprop was invented by Leibniz (1796), and due naturally to foundations 

also laid by Newton. 

• Calculus and algebra have been used to solve optimization problems in closed form since their 

inception, but gradient descent was not introduced as a technique for iteratively approximating the 

solution to optimization problems until 19C (Cauchy, 1847). 

Newton CauchyLeibniz Al-Khwarizmi Galois
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Hebb’s Postulate 



Neurons & the Brain 
– Human brain contains ~1011 neurons

– Each individiaul neuron connects to ~104 neuron

– ~1014 total synapses!



McCulloch & Pitts Neuron Model (1943)

(3) Components:

(1) Set of weighted inputs {wi} that correspond to synapses

(2) An “adder” that sums the input signals (equivalent to membrane of the cell that collects 

the electrical charge)

(3) An activation function (initially a threshold function) that decides whether the neuron 

fires (“spikes”) for the current inputs. 



McCulloch & Pitts Neuron Model (1943)

Limitations & Deviations of  the M-P Neuron Model:

• Summing is linear.

• No explicit model of  “spike trains” (sequence of  pulses that encodes 

information in biological neuron).

• Threshold value is usually fixed.

• Sequential updating implicit (biological neurons usually update themselves 

asynchronously)

• Weights can be positive (excitatory) or negative (inhibitory); biological 

neurons do not change in this way. 

• Real neurons can have synapses that link back to themselves (e.g. feedback 

loop) – see RNNs (recurrent neural networks). 

• Other biological aspects ignored: chemical concentrations, refractory 

periods, etc. 



Historical Notes
• Beginning in the 1940s, these function approximation techniques were used to motivate ML models 

such as the percepton. However, the earliest models were based on linear models.

• In the 1960s Rosenblatt proved that the perceptron learning rule converges to correct weights 

in a finite number of  steps, provided the training examples are linearly separable.

•Critics including Marvin Minsky point out several of  the flaws of  the linear model family, such as its 

inability to learn the XOR function, which led to a backlash against the entire NN approach. 

• Learning non-linear functions required the development of  a MLP (multi-layer perceptron) and a 

means of  computing the gradient through such a model. Efficient applications of  the chain rule based 

on DP (dynamic programming) began to appear in the 1960s and 1970s. 

Rosenblatt Minsky



Historical Notes
• 1969: Minsky and Papert proved that perceptrons cannot represent non-linearly 

separable target functions.

• However, they showed that adding a fully connected hidden layer makes the 

network more powerful.

– i.e., Multi-layer neural networks can represent non-linear decision surfaces.

• Later it was shown that by using continuous activation functions (rather than 

thresholds), a fully connected network with a single hidden layer can in principle 

represent any function.

• 1986: “rediscovery” of  backprop algorithm: Hinton et al.

• The Universal Approximation Theorem (1989) states that one hidden layer is 

sufficient to approximate any function to arbitrary accuracy with a NN. (we say: 

“NNs are universal function approximators”); RNNs are Turing Complete. 

 

FIGURE 4.10  Schematic of the effective learning shape at each stage of the MLP. 



Universal Approximation Properties
• A linear model, mapping from features to outputs via matrix multiplication, can 

by definition represent only linear functions. It has the advantage of  being easy to 

train because many loss functions result in convex optimization problems when 

applied to linear models. 

• The universal approximation theorem (UAT) states that a feedforward 

network with a linear output layer and at least one hidden layer with any 

“squashing” activation function can approximate any Borel measurable (e.g. 

a continuous function on a closed and bounded subset of  Rn) function 

from one finite-dimensional space to another with any desired non-zero 

amount of  error, provided the network is given enough hidden units. 

• The UAT states that regardless of  what function we are trying to learn, 

we know that a sufficiently large MLP will be able to represent this 

function. We are not guaranteed, however, that the training algorithm will 

be able to learn the function. 



Universal Approximation Properties
• Even if  the MLP is able to represent the function. Learning can fail for (2) different 

reasons:

(1) The optimization algorithm used for training may not be able to find the value of  the 

parameters that corresponds to the desired function. 

(2) The training algorithm might choose the wrong function as a result of  overfitting. 

• Feedforward networks provide a universal system for representing functions in the 

sense that, given a function, there exists a feedforward network that approximations 

the function; there is no universal procedure for examining a training set of  specific 

examples and choosing a function that will generalize to points not in the training set. 

*Note also that the theorem does not prescribe the size of  the network (some bounds can 

be approximated); unfortunately, in the worst case, an exponential number of  hidden units 

may be required. 

*Recall that any time we choose a specific ML algorithm, we are implicitly state some set 

of  prior beliefs we have about what kind of  function the algorithm should learn; choosing 

a deep model generally indicates that we want to learn a composition of  several simpler 

functions.



Historical Notes
•The “rediscovery” of  the backpropagation algorithm (Hinton & Rumelhardt) initialed a very active 

period of  research for MLPs. In particular, “connectionism” took root in the ML community, which 

placed emphasis on connections between neurons as the locus of  learning and memory (cf. 

distributed representation: each concept is represented by many neurons, each  neuron participates 

in the representation of  many concepts. 

http://www.cs.toronto.edu/~bonner/courses/2014s/csc321/lecture

s/lec5.pdf

http://www.jneurosci.org/content/35/13/5180



Historical Notes
• Following the success of  backprop, NN research gained popularity and reached a peak in the early 

1990s.Afterwards, other ML techniques became more popular until the modern deep learning 

renaissance that began in 2006. 

• The core ideas behind modern feedforward nets have not changed substantially since the 1980s. The 

same backprop algorithm and the same approaches to gradient descent are still in use. Most of  the 

improvement in NN performance from 1986-2018 can be attributed to two factors: 

(1) Larger datasets have reduced the degree to which statistical generalization is a challenge for NNs. 

(2) NNs have come much larger because of  more powerful computer (including the use of  GPUs) 

and better software infrastructure. 



Historical Notes
•A small number of  algorithmic changes have also improved the performance of  NNs. 

One of  these algorithmic changes was the replacement of  mean squared error (MSE) with the cross-

entropy family of  loss functions. MSE was popular in the 1980s and 1990s but was gradually 

replaced by cross-entropy losses and the principles of  MLE as ideas spread between the statistics 

community and ML community. 

• The use of  cross-entropy losses greatly improved the performance of  models with sigmoid and 

softmax outputs, which had previously suffered from saturation and slow learning when using MSE. 

• The other major algorithmic change that has greatly improved the performance of  feedforward 

networks was the replacement of  sigmoid hidden units with piecewise linear hidden units, such as 

rectified linear units (RELUs). Rectification using the max{0,z} function was introduced in early NN 

models. 

As of  the early 2000s, rectified linear units were avoided due to the belief  that activation functions with 

non-differentiable points must be avoided. 

For small datasets, Jarrett et al. (2009) observed that using rectifying non-linearities is even more 

important than learning the weights of  the hidden layers. Random weights are sufficient to propagate 

useful information through a rectified linear network, enabling the classifier layer at the top to learn 

how to map different feature vectors to class identities. 



Historical Notes
• When more data are available, learning begins to extract enough useful knowledge to exceed the 

performance of  randomly chosen parameters. 

RELUs are also of  historical interest because they show that neuroscience has continued to have an 

influence on the development of  deep learning algorithms. Glorot et al. (2011) motivated RELUs from 

biological considerations. The half-rectifying non-linearity was intended to captured these properties of  

biological neurons: 

(1) For some inputs, biological neurons are completely inactive

(2) For some inputs, a biological neuron’s output is proportional to its inputs

(3) Most of  the time, biological neurson operate in the regime where they are inactive (i.e. they should 

have sparse activations).



Historical Notes
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A “two”-layer neural network

(activation represents

classification)

(internal representation)

(activations represent

feature vector for one training 

example)

inputs      

hidden layer

output layer

•Input layer—It contains those units (artificial neurons) which receive input from the outside 

world on which network will learn, recognize about or otherwise process.

•Output layer—It contains units that respond to the information about how it’s learned any task.

•Hidden layer—These units are in between input and output layers. The job of  hidden layer is to 

transform the input into something that output unit can use in some way.

Most neural networks are fully connected that means to say each hidden neuron is fully connected to 

the every neuron in its previous layer(input) and to the next layer (output) layer.



A Neural Network “Zoo”



Neural network notation

(activation 

represents

classification)

(internal 

representation)

(activations represent

feature vector for one 

training example)

xi : activation of input node i. 

hj : activation of hidden node j. 

ok : activation of output node k. 

wji : weight from node i to node j. 

σ : “sigmoid function”.  

For each node j in hidden layer,

For each node k in output layer, 
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Sigmoid function:



(*) Backpropagation is one particular instance of  a larger paradigm of  optimization algorithms know as 

Gradient Descent (also called “hill climbing”). 

(*) There exists a large array of  nuanced methodologies for efficiently training NNs (particularly DNNs), 

including the use of  regularization, momentum, dropout, batch normalization, pre-training regimes, 

initialization processes, etc. 

(*) Traditionally, the backpropagation algorithm has been used to efficiently train a NN; more recently the 

Adam stochastic optimization method (2014) has eclipsed backpropagation in practice: 

https://arxiv.org/abs/1412.6980

Gradient Descent 



DNNs Learn Hierarchical Feature Representations 



DNNs: AlexNet (2012) 

AlexNet was developed by Alex Krizhevsky, Geoffrey Hinton, and Ilya Sutskever; it uses CNNs with GPU 

support. The network achieved a top-5 error of  15.3%, more than 10.8 percentage points ahead of  the 

runner up. 

Among other innovations: AlexNet used GPUs, utilized RELU (rectified linear units) for activations, and 

“dropout” for training. 

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-

convolutional-neural-networks.pdf



DNNs: AlexNet (2012) 



DNNs: VGG (2014) 

• Team at Oxford produced influential DNN architecture (VGG).Using very small 

convolutional filters (3x3), they achieved a significant improvement on the prior-art 

configurations by pushing the depth to 16–19 weight layers. 

• Team achieved first and second place on the ImageNet Challenge 2015 for both 

localization and classification tasks, respectively. 

• Using pre-trained VGG is very common practice in research. 
https://arxiv.org/pdf/1409.1556.pdf



DNNs: Inception (2015, Google) 

• Team at Google (Szegedy et al.) produced an even deeper DNN (22 layers). No 

need to pick filter sizes explicitly, as network learns combinations of  filter 

sizes/pooling steps; upside: newfound flexibility for architecture design 

(architecture parameters themselves can be learned); downside: ostensibly requires 

a large amount of  computation – this can be reduced by using 1x1 convolutions 

for dimensionality reduction (prior to expensive convolutional operations).

• Team achieved new state of  the art for classification and detection in the 

ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14; 6% top-5 

error rate for classification. 

https://arxiv.org/pdf/1409.1556.pdf



Cross-Entropy Loss
• As mentioned, cross-entropy loss is generally preferred to MSE, particularly for classification 

problems with DNNs (it can also be used in non-classification settings).  

Cross-entropy loss is defined:

Where c refers to one hot encoded classes (or labels), whereas p refers to softmax applied probabilities

(2) Properties make cross-entropy a natural loss function:

(1) E ≥ 0; all individual terms are negative and there is a minus outside. 

(2) If  the neuron's actual output is close to the desired output for all training inputs, x, then the cross-

entropy will be close to zero. To demonstrate this, we assume (WLOG) that the desired outputs c are 

all either 0 or 1. Suppose for example that c = 0 and p ≈ 0, for some input x (so the neuron has done 

well on this input). The first term in E vanishes, while the second term is close to zero; a similar 

analysis holds when c = 1 and p ≈ 1. 

     log 1 log 1i i i iE c p c p    



Cross-Entropy Loss
• Cross-entropy loss is defined:

One can show that, for example, that the partial derivative of  the cross-entropy loss function is:

*(σ denotes the sigmoid function) Which indicates that the gradient is larger (i.e. learning is faster) the 

larger the error; in addition, the cross-entropy loss function does not in general “bottom out” like the 

MSE loss. 

     log 1 log 1i i i iE c p c p    
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RELU & Their Generalizations
• Rectified linear units use the activation function g(z) = max{0, z}.

• These units are easy to optimize because they are so similar to linear units; the only difference being 

the RELU is zero across half  of  its domain. This makes the derivatives through a RELU remain large 

whenever the unit is active. 

• The gradients are therefore not only large but consistent.

RELUs are typically used on top of  an affine transformation:

(in practice one can set all elements of  b to a small positive value such as 0.1; doing so makes it very 

likely that the RELUs will be initially active for most of  the inputs in the training set and allow 

derivatives to pass through). 

•One drawback of  RELU: is that they cannot learn via gradient-based methods on examples for which 

their activation is zero; various generalizations of  RELUs guarantee they receive gradient everywhere.

*affine transformations preserve points, straight lines, planes, and parallelism. 

 Tg h W x b



RELU & Their Generalizations
(3) Generalizations of  RELUs are based on using a non-zero slope αi when zi < 0:

(1) Absolute value rectification fixes αi = -1, to obtain g(z)=|z|; this method has been used for 

object recognition from images, where it makes sense to seek features that are invariant under poliartiy

reversal of  the input illumination. 

(2) Leaky RELU fixes αi to a small value like 0.01.

(3) Maxout units (Goodfellow, 2013); instead of  applying an element-wise function g(z), maxout units 

divide z into groups of  k values. Each maxout unit then outputs the maximum element of  one of  

those groups. 

This provides a way of  learning a piecewise linear function that responds to multiple directions in the 

input x space.  Each maxout unit can learn a piecewise linear, convex function with up to k pieces; 

maxout units can thus be seen as learning the activation function itself  rather than just the relationship 

between units; with enough k, a maxout unit can learn to approximate any convex function with 

arbitrary fidelity. 

     , max 0, min 0,i i i ii
h g z z  z α



Regularization
• Regularization can be defined as “any modification we make to a learning algorithm that is intended 

to reduce its generalization error but not its training error.”

• There are many different regularization strategies; some put extra constraints on an ML model; some 

add extra terms to the objective function that can be though of  as soft constraints applied to the 

parameter values. If  chosen correctly, these extra constraints and penalties can lead to improve 

performance. 

• Sometimes these constraints and penalties encode prior beliefs. Conversely, they are designed to 

express a generic preference for a simpler model class in order to promote generalization; sometimes 

these penalties are necessary to make an underdetermined problem determined or soluble; ensemble 

methods can also be considered a general form of  regularization. 



Regularization
• Regularization has been used for decades prior to the advent of  deep learning. Linear models such as 

linear regression and logistic regression allow simple and effective regularization strategies. 

• Many regularization approaches are based on limiting the capacity of  models, such as NNs, linear 

regression, or logistic regression, by adding a parameter norm penalty: Ω(θ) to the objective function J. 

Denote the regularized objective function: 

Where α ∈ [0, ∞) is a hyperparameter that weights the relative contribution of  the norm penalty term, 

Ω, relative to the standard object function J. Setting α = 0 results in no regularization. Larger values of  

α correspond to more regularization.

* In practice it is common to choose a parameter norm penalty Ω that penalizes only the weights of  

the affine transformation at each layer and leaves the biases unregularized (regularizing the bias 

parameters can introduce a significant amount of  underfitting). 

     ; , ; ,J J   θ X y θ X y θ



L2 Regularization
• L2 regularization (also called: weight decay, ridge regression) rives the weights closer to the original by 

adding a regularization term: Ω(θ) = 
1

2
𝑤 2

2 to the objective function. 

We can gain insight into the behavior of  weight decay regularization by studying the gradient of  the 

regularization objective function. To simplify the presentation, we assume no bias parameter, so θ is 

just w. Such a model has the following total objective function: 

With the corresponding parameter gradient: 

To take a single gradient step to update the weights, we perform this update: 

Written another way, this update is: 

   ; , ; ,
2

TJ J


 w X y w w w X y

   ; , ; ,w wJ J  w X y w w X y

  ; ,wJ   w w w w X y

   1 ; ,wJ    w w w X y



L2 Regularization

• We can see that the addition of  the weight decay term has modified the learning rule to 

multiplicatively shrink the weight vector by a constant factor on each step, just before performing the 

usual gradient update. 

• It is also useful to study the effect of  L2 regularization on linear regression to ascertain a sense of  

how L2 regularization operates in the ML framework more generally.  

• For linear regression, the cost function is the sum of  squared errors (SSE): 

• When we add L2 regularization, the objective function changes to: 

• This changes the normal equations for the solution from: 

   1 ; ,wJ    w w w X y

   
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   
1 1

T T T T
 

   w X X X y w X X I X y



L2 Regularization

• Using L2 regularization replaces the matrix XTX with the matrix (XTX+αI)-1; the new matrix is the 

same as the original, but with the addition of  α to the diagonal. 

• The diagonal entries of  this matrix correspond to the variance of  each input features. We see that L2

regularization causes the learning algorithm to “perceive” the input X as having higher variance, which 

makes it shrink the weights on features whose covariance with the output target is low compared to 

this added noise. 

   
1 1

T T T T
 

   w X X X y w X X I X y



L1 Regularization

• L1 regularization on the model parameter w is defined as:

Thus, the regularized objective function is given by: 

with the corresponding gradient: 

Where sign(w) is simply the sign of  w applied element-wise. 

* By inspection, we can see immediately that the effect of  L1 regularization is quite different from L2

regularization. Specifically, the regularization contribution to the gradient no longer scales linearly with 

each wi; instead, it is a constant factor with a sign equation to sign(wi). 

   
1 1

T T T T
 

   w X X X y w X X I X y

 
1 i

i

w  θ w

   
1

; , ; ,J J w X y w w X y

     ; , ; ,w wJ sign J  w X y w w X y



L1 Regularization
• In comparison to L2 regularization, L1 regularization results in a solution is more sparse. Sparsity in 

this context refers to the fact that some parameters have an optimal value of  zero. The sparsity of  L1

regularization is a qualitatively different behavior than arises with L2 regularization. 

• The sparsity property induced by L1 regularization has been used extensively as  a feature selection 

mechanism; feature selection simplifies an ML problem by choosing which subset of  the available 

features should be used. The L1 penalty causes a subset of  the weights to become zero, suggesting that 

the corresponding features may safely be discarded. 



Regularization and Under-Constrained Problems
• In some cases, regularization is necessary for ML problems to be properly defined. 

• Many linear models, including regression and PCA, depend on inverting the matrix XTX; this is not 

possible when XTX is singular. This matrix can be singular whenever the data-generating distribution 

truly has no variance in one direction, or when no variance is observed because they are fewer 

examples (i.e. rows of  X) than input features (columns of  X). 

• In this case, many forms of  regularization correspond to inverting XTX+αI instead; this regularized 

matrix is guaranteed to be invertible (diagonally dominant matrices are non-singular). 

One can solve underdetermined linear equations using the Moore-Penrose pseudoinverse; it is 

defined as X+ of  the matrix X:

* This equation can be seen as performing linear regression with weight decay; specifically, the equation 

is the limit as the regularization coefficient shrinks to zero. Thus we can interpret the pseudoinverse as 

stabilizing underdetermined problems using regularization. 
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Data Augmentation
• The best way to make an ML model generalize better is to train it on more data. Of  course, data are 

limited/expensive. 

• One way to get around this problem is to generate synthetic data and add it to the training set. 

• This approach is easiest for classification. A classifier needs to take a complicated, high-dimensional 

input x and summarize it with a single category identity y. This means that the main task facing a 

classifier is to be invariant to a wide variety of  transformations; we can generate new (x, y) pairs easily 

by transforming the x inputs in our training set. 

• Dataset augmentation has been particularly effective for object recognition; operations like 

translating the training images a few pixels in each direction can often greatly improve generalization; 

many operations such as rotating the image or scaling the image are also quite effective (one needs to 

be careful that the transformation does not alter the correct image class). 

• Injecting noise in the input to a NN can also be seen as a form of  data augmentation; one way to 

improve the robustness of  a NN is to simply train them with random noise applied to their inputs. 



Early Stopping
• When training large models with sufficient representation capacity to overfit the task, we often 

observe that training error decreases steadily over time, but validation set error begins to rise again. 

• This means we can obtain a model with better validation set error (and hopefully better test error) by 

returning to the parameter setting at the point in time with the lowest validation set error. Every time 

the error on the validation set improves, we store a copy of  the model parameters; when the training 

terminates, we return these parameters, rather than the latest parameters. 

* This strategy is known as early stopping; it is one of  the most common forms of  regularization 

used in deep learning.



Early Stopping
• The only significant cost to choosing the training time “hyperparameter” is running the validation set 

evaluation periodically during training. 

• An additional cost to early stopping is the need to maintain a copy of  the best parameters; this cost is 

usually negligible, because it is acceptable to store these parameters in a slower and larger form of  

memory. 

• Early stopping is an “unobtrusive” form of  regularization – it requires almost no change in the 

underlying training procedure, the objective function, or the set of  allowable parameter values (this is in 

contrast to weight decay). 

There are (2) conventional schema for early stopping: 

(1) Initialize the model again and retrain on all the data; however, there is not a good way of  knowing 

whether to retrain for the same number of  parameter updates or the same number of  passes 

through the dataset. 

(2) Another strategy is to keep the parameters obtained from the first round of  training and then 

continue training, but now using all the data; this strategy avoids the high cost of  training the 

model from scratch. 



Sparse Representations
• Weight decay acts by placing a penalty directly on the model parameters; another strategy is to place a 

penalty on the activations of  the units in a NN, encouraging their activations to be sparse. This 

indirectly imposes a complexity penalty on the model parameters. 

• Recall that L1 regularization induces a sparse parameterization – meaning that many of  the parameters 

become zero (or close to zero). Representational sparsity on the other hand, describes a 

representation where many of  the elements of  the representation are zero (or close to zero).

• One can achieve representational sparsity with a norm penalty by setting: Ω(h) = 𝒉 1; yet another 

method is to directly formulate a constrained optimization problem: 
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Dropout

• Dropout (Srivastava et al., 2014) provides a computationally inexpensive but powerful method of  regularizing a 

broad family of  models (it is akin to bagging). 

• Dropout trains the ensemble consisting of  all subnetworks that can be formed by removing nonoutput units from 

an underlying base network. Recall that to learn with bagging, we define k different models, construct k different 

datasets by sampling from the training set with replacement, and then train model i on dataset i. Dropout aims to 

approximate this process, but with an exponentially large number of  NNs. 

• In practice, each time we load an example into a minibatch for training, we randomly sample a different binary 

mask to apply to all input and hidden units in the network; the mask is sampled independently for each unit (e.g. 0.8 

probability for including an input unit and 0.5 for hidden units). 

• In the case of  bagging, the models are all independent; for dropout, the models share parameters. 



Adversarial Training

• Szegedy et al. (2014) found that even NNs that perform at human level accuracy have a nearly 100 percent error rate on 

examples that are intentionally construction by using an optimization procedure to search for an input x’ near a data point x

such that the model output is very different from x’ (oftentimes such adversarial examples are indiscernible to humans). 

• In the context of  regularization, one can reduce the error rate on the original i.i.d. test set via adversarial training –

training on adversarially perturbed examples from the training set. 

• Goodfellow et al. (2014), showed that one of  the primary cause of  these adversarial examples is excessive linearity. NNs are 

primarily built out of  linear parts, and so the overall function that they implement proves to be highly linear as a result. 

• These linear functions are easily optimized; unfortunately, the value of  a linear function can change very rapidly if  it has 

numerous inputs. Adversarial training discourages this highly sensitive locally linear behavior by encouraging the network to 

be locally constant in the neighborhood of  the training data. 

• Adversarial training help to illustrate the power of  using a large function family in combination with aggressive 

regularization – a major theme in contemporary deep learning. 



Challenges for DNN Optimization

• Traditionally, ML implementations avoid the difficulty of  general optimization by carefully designing the 

objective function and constraints to ensure that the optimization problem is convex. 

• When training NNs, however, we must confront the general non-convex case. 

Convex Function Non-Convex Function



Challenges for DNN Optimization: Ill-Conditioning

• A mathematical problem is ill-conditioned if  a small change in the independent variable (input) leads to a 

large change in the dependent variable (output). This can lead to numerical and related computational 

problems. If  a system of  equations is ill-conditioned, the solution exists, but it if  very difficult to find. 

• More specifically, as it related to ML, if  the Hessian matrix

(wrt the model inputs and loss function) is ill-conditioned*, it means

that the basins of  the loss functions form elongated ellipsoids, rather

than being close to “spherical.” 

* Optimization methods such as gradient descent will be slow to converge in this case, as they will render a 

protracted, zig-zagging path. 

• The condition number of  a matrix quantifies

the degree to which a system is ill-conditioned: 
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Challenges for DNN Optimization: Local Minima

• For a convex function, any local minimum is guaranteed to be a global minimum. 

• With non-convex functions, such as NNs, it is possible to have many local minima. Moreover, nearly any 

DNN is essentially guaranteed to have a very large number of  local minimal (even uncountably many). 

• One of  the chief  reasons for the presence of  many local minima for NNs, is due to the problem of  model 

identifiability. A model is said to be identifiable if  a sufficiently large training set can rule out all but one 

setting of  the mode’s parameters. 

• Models with latent variables (e.g. hidden neurons) are not in general identifiable because we can obtain 

equivalent models by exchanging latent variables with one another. In addition, in maxout and RELU 

networks, for instance, one can arbitrarily scale the incoming/outgoing weights and biases to achieve non-

identifiability. 

• Local minima are problematic if  they correspond with high

cost (vis-à-vis the global minimum). 



Challenges for DNN Optimization: Plateaus, Saddle Points

• For many high-dimensional, non-convex functions, local minima (and maxima) are in fact rare compared to 

saddle points. 

• Some points around a saddle point have greater cost than the saddle point, while others have lowers cost. At 

a saddle point, the Hessian matrix has both positive and negative eigenvalues. 

• Why are saddle points more common than local extrema in high dimensions? The basic intuition is this: in 

order to render a local extreme value, all of  the eigenvalues must be of  the same sign (naturally, this is very 

unlikely – all things being equal – in high dimensions). 

• In fact, eigenvalues of  the Hessian are more likely to be positive as we reach regions of  lower cost; this 

means that local minima are much more likely to have low cost than high cost. For first-order optimization, 

saddle points are not necessarily a significant problem (Goodfellow); however, for second-order methods, they 

clearly constitute a problem. 

• Degenerate locations such as plateaus can pose major problems for all

numerical algorithms. 



Challenges for DNN Optimization: Cliffs, Exploding and 

Vanishing Gradients 
• NNs with many layers often have extremely steep regions resembling cliffs. This is due to the multiplication 

of  several large weights together. On the face of  an extremely steep cliff  structure, the gradient update step 

can alter the parameters drastically. 

• Gradient clipping, a heuristic technique, can help avoid this issue. When the traditional gradient descent 

algorithm proposes making a large step, the gradient clipping heuristic intervenes to reduce the step size, 

thereby making it less likely to go outside the region where the gradient indicates the direction of  

approximately steepest descent. 

• When the computational graph for a NN becomes very large (e.g. RNNs), the issue of  exploding/vanishing 

gradients can arise. Vanishing gradients make it difficult to known which direction the parameters should 

move to improve the cost function, while exploding gradients can make learning unstable. 

*LSTMs, RELU, and ResNet (Microsoft) have been applied to solve the vanishing gradient problem. 



Basic Algorithms: SGD



Basic Algorithms: SGD

• Stochastic Gradient Descent (SGD) and its variants are some of  the most frequently used optimization 

algorithms in ML. Using a minibatch of  i.i.d. samples, one can obtain an unbiased estimate of  the gradient 

(where examples are drawn from the data-generating distribution). 

•A crucial parameter for the SGD algorithm is the learning rate, ε. In practice, it is necessary to gradually 

decrease the learning rate over time. This is because the SGD gradient estimator introduces a source of  noise 

(the random sampling of  m training examples) that does not vanish even when we arrive at a minimum. 

A sufficient condition to guarantee convergence of  SGD is that: 

In practice, it is common to decay the learning rate linearly until iteration τ:

* Note that for SGD, the computation time per update does not grow with the number of  training examples. 

This allows convergence even when the number of  training examples becomes very large. 
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Momentum
• The method of  momentum is designed to accelerate learning, especially in the face of  high curvature, small 

but consistent gradients, or noisy gradients. 

• The momentum algorithm accumulates an exponentially decaying moving average of  past gradients and 

continues to move in their direction. 

• Formally, the momentum algorithm introduces a variable v that plays the role of  velocity – it is the direction 

and speed at which the parameters move through parameter space. The velocity is set to an exponentially 

decaying average of  the negative gradient. 

• The name momentum derives from a physical analogy, in which the negative gradient is a force moving a 

particle through parameter space, according to Newton’s laws of  motion. If  the only force is the gradient of  

the cost function, then the particle might never come to rest. To resolve this problem, we add one other force, 

proportional to v(t); in physics terminology this force corresponds to viscous drag, as the if  the particle must 

push through a resistant medium such as syrup.  

• The velocity v accumulates the gradient elements; the larger alpha is relative to epsilon, the more previous 

gradients affect the current direction. 



Momentum



Weight Initialization
• Training algorithms for DNN models are usually iterative and thus require the user to specify some initial 

point from which to begin the iterations. Moreover, training deep models is a sufficiently difficult task that 

most algorithms are strongly affected by the choice of  initialization.

• The initial point can determine whether the algorithm converges at all, with some initial points being so 

unstable that the algorithm encounters numerical difficultiess and fails altogether. When learning does 

converge, the initial point can determine how quickly learning converges and whether it converges to a point 

with high or low cost. 

• Modern initialization strategies are usually simple and heuristic; designing improves initialization strategies is 

a difficult task because NN optimization is not yet well understood. 

• The most general guideline agreed upon by most practitioners is known as “symmetry-breaking.” If  two 

hidden units with the same activation function are connected to the same inputs, then these units have 

different initial parameters. If  the training is deterministic, “symmetric” units will update identically (and 

hence be useless); even if  the training is stochastic, it is usually best to initialize each unit to compute a 

different function from all the other units. 



Weight Initialization
• The goal of  having each unit compute a different function motivates random initialization of  the 

parameters. Moreover, random initialization from a high-entropy distribution over a high-dimensional space is 

computationally cheaper than explicitly searching for, say a large set of  basis functions that are all mutually 

different from one another. 

• Typically, the biases for each unit are set to heuristically chosen constants, and we only initialize the weights 

randomly. It is common practice to initialize all the weights in the model to values drawn randomly from a 

Gaussian or uniform distribution.

• Note that the scale of  the initial distribution does have a large effect on both the outcome of  the 

optimization procedure and the ability of  the network to generalize. 

• Larger initial weights will yield a strong symmetry-breaking effect, helping to avoid redundant units; in 

addition, they will also potentially help avoid the problem of  vanishing gradients. Nevertheless, they may 

conversely exacerbate the exploding gradient problem; in RNNs, large initial weights can manifest chaotic 

behavior. 

* Sparse initialization (Martens, 2010) fixes the number of  non-zero weights for initialization; Xavier 

initialization draws random initial values from a distribution with zero mean and variance inversely 

proportional to the size of  the previous layer in the network. 



• It is well known that the learning rate is reliably one of  the most difficult to set hyperparameters because it 

significantly affects model performance. The cost function is often highly sensive to some directions in 

parameters space and insensitive to others. 

• While the momentum algorithm mitigates these issues somewhat, it does so at the expense of  introducing 

another hyperparameters. 

• Recently, a number of  incremental methods have been introduced that adapt the learning rates of  model 

parameters. 

Algorithms with Adaptive Learning Rates



• The AdaGrad algorithm (Duchi et al, 2011) individually adapts the learning rates of  all model parameters by 

scaling them inversely proportional to the square root of  the sum of  all the historical squared values of  the 

gradient.

• The parameters with the largest partial derivative of  the loss have a correspondingly rapid decrease in their 

learning rate, while parameters with small partial derivates have a relatively small decrease in their learning 

rate. The net effect is greater progress in the more gently sloped directions of  parameter space. 

*Note: empirically, for training DNNs, the accumulation of  squared gradients from the beginning of  training can 

result in premature and excessive decrease in the effective learning rate. 

AdaGrad



• The RMSProp algorithm (Hinton, 2012) modifies AdaGrad to perform better in the non-convex setting by 

changing the gradient accumulation into an exponentially-weighted moving average. Where AdaGRad shrinks 

the learning rate according to the entire history of  the squared gradient, RMSProp uses an exponentially 

decaying average to discard history from the extreme past so that it can converge rapidly after finding a 

convex bowl. 

• Empirically, RMSProp has been to shown to be an effective and practical optimization algorithm for DNNs. 

RMSProp



• Adam (Kingman and Ba, 2014) is another adaptive learning rate optimization algorithm (“adaptive 

moments”). It can be seen as a variant on the combination of  RMSProp and momentum with several 

distinctions. 

• First, in Adam, momentum is incorporated directly as an estimate of  the first-order moment (with 

exponential weighting) of  the gradient. Second, Adam includes bias corrections to the estimates of  both the 

first-order moments (the momentum term) and the (uncentered) second-order moments to account for their 

initialization at the origin. 

• RMSProp also incorporates an estimate of  the (uncentered) second-order moment; however, it lacks the 

correction factor. Thus, unlike in Adam, the RMSProp second-order moment estimate may have high bias 

early in training. *Adam is generally regarded as being fairly robust to the choice of  hyperparameters. 

Adam 



Second-Order Methods: Newton’s Method

• Newton’s method is a classical second-order iterative approximation method. In contrast to first-order 

methods, second-order methods make use of  second derivatives (i.e. the curvature of  the loss function) to 

improve optimization.

• Newton’s method is an optimization scheme based on using a second-order Taylor series expansion to 

approximate J(theta) near some point θ0, ignoring derivatives of  higher order: 

Where H is the Hessian of  J wrt θ evaluated at θ0. If  we then solve for the critical point of  this function, we 

obtain the Newton parameter update rule: 
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Second-Order Methods: Newton’s Method

• If  the objective function is convex but not quadratic, this update can be iterated, yielding a training 

algorithm. For surfaces that are not quadratic, as long as the Hessian remains positive definite, Newton’s 

method can be applied iteratively. This implies a two-step procedure: (1) update or compute the inverse 

Hessian; (2) update the parameters according to the equation above. 

* In deep learning, the surface of  the objective function is usually non-convex; with many features and 

potential saddle points, this is a potential problem for Newton’s Method. 

• Commonly, researchers apply a regularization strategy, for which the update becomes (this regularization is 

used in approximations to Newton’s Method including the Levenberg-Marquardt algorithm): 

• Beyond the challenges of  saddle points, the application of  Newton’s method for training large NNs is 

limited by its significant computational requirements; ostensibly, Newton’s method requires the inversion of  a 

matrix (O(n3)); as a consequence, only networks with a very small number of  parameters can be practically 

trained via Newton’s method. 
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Second-Order Methods: Newton’s Method



Convolutional Neural Networks
• So what is the fundamental difference between a generic NN and a CNN?

• CNNs conventionally take images as inputs. Recall that NNs (a fortiori: fully-connected NNs) do not 

scale well for high dimensional data! 

• CNNs take advantage of  the fact that the input consists of  images and the architecture is constrained 

accordingly. 

• In particular, unlike the layers of  a conventional NN, CNNs have neurons arranged in 3 dimensions, 

including depth (usually corresponding with color channels). As such, neurons in a CNN are only 

connected to a small region of  the layer before it, instead of  in a fully-connected manner. 

• Left: A regular 3-layer Neural Network. Right: A CNN arranges its neurons in three dimensions (width, 

height, depth), as visualized in one of  the layers. Every layer of  a CNN transforms the 3D input volume 

to a 3D output volume of  neuron activations. In this example, the red input layer holds the image, so its 

width and height would be the dimensions of  the image, and the depth would be 3 (Red, Green, Blue 

channels).



Convolutional Neural Networks

• CNNs consist of  a sequence of  (3) types of  layers, in general: Convolutional Layers, Pooling Layers 
and Fully-Connected Layers. These layers are stacked to form a full CNN architecture. 

Example Architecture: 

INPUT [32x32x3] will hold the raw pixel values of  the image, in this case an image of  width 32, height 32, and with three 
color channels R,G,B.

CONV layer will compute the output of  neurons that are connected to local regions in the input, each computing a dot 
product between their weights and a small region they are connected to in the input volume. This may result in volume such 
as [32x32x12] if  we decided to use 12 filters.

RELU layer will apply an elementwise activation function, such as the max(0,x)max(0,x) thresholding at zero.
This leaves the size of  the volume unchanged ([32x32x12]). (can help with ‘vanishing gradient’ problem)

POOL layer will perform a downsampling operation along the spatial dimensions (width, height), resulting in volume such as 
[16x16x12].

FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of  size [1x1x10], where each of  the 10 
numbers correspond to a class score, such as among the 10 categories for images. As with ordinary Neural Networks and as 
the name implies, each neuron in this layer will be connected to all the numbers in the previous volume.

• Note that for training, the parameters in the CONV/FC layers are trained with gradient descent so that 
the class scores that the CNN computes are consistent with the labels in the training set for each image. 



Convolutional Neural Networks

• Schematics of  spatial arrangement. 

• In the leftmost example there is only one spatial dimension (x-axis), one neuron with a receptive field size 
of  F = 3, the input size is W = 5, and there is zero padding of  P = 1. Left (top): The neuron strided
across the input in stride of  S = 1, giving output of  size (5 - 3 + 2)/1+1 = 5. Right (top): The neuron 
uses stride of  S = 2, giving output of  size (5 - 3 + 2)/2+1 = 3. Notice that stride S = 3 could not be used 
since it wouldn't fit neatly across the volume. In terms of  the equation, this can be determined since (5 - 3 
+ 2) = 4 is not divisible by 3.

• The neuron weights are in this example [1,0,-1]                                                                                 
(shown on very right), and its bias is zero.                                                                                 
These weights are shared across all yellow neurons.

• Weight/parameter sharing is a common (and key)                                                                               
feature of  CNNs, and is used to control the                                                                                  
number of  parameters. 



Convolutional Neural Networks
• Learned filters

• Example filters learned by Krizhevsky et al. Each of  the 96 filters shown here is of  size [11x11x3], and 
each one is shared by the 55*55 neurons in one depth slice. Notice that the parameter sharing assumption 
is relatively reasonable: If  detecting a horizontal edge is important at some location in the image, it should 
intuitively be useful at some other location as well due to the translationally-invariant structure of  images. 
There is therefore no need to relearn to detect a horizontal edge at every one of  the 55*55 distinct 
locations in the Conv layer output volume.

• Schematic of  pooling

• Pooling layer downsamples the volume spatially, independently in each depth slice of  the input 
volume. Left: In this example, the input volume of  size [224x224x64] is pooled with filter size 2, stride 2 
into output volume of  size [112x112x64]. Notice that the volume depth is preserved. Right: The most 
common downsampling operation is max, giving rise to max pooling, here shown with a stride of  2. That 
is, each max is taken over 4 numbers (little 2x2 square).
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One-Shot Learning: Siamese Networks
• Typically, with deep learning, we require a large amount of  data, and the quality of  our results generally 

scales with the size (and quality) of  our dataset. 

• An alternative to this “big data” paradigm, however, is one-shot learning. In this paradigm we learn from 

only a few (even just one) example. One can plausibly argue that a great deal of  real-world, “biological” 

learning also occurs in a “low data” regime. 

• Consider the problem of  facial recognition. We would like to determine whether an individual is a member 

of  a database, based on only a single instance/photo (e.g. security applications).

• One conventional approach to this problem is to train a CNN for the image processing task. However, 

CNNs cannot be trained effectively with very small datasets; in addition, it would be highly cumbersome to 

retrain the model every time we encounter a new individual. 

• A Siamese network will, by contrast, allow us to solve this problem. 



One-Shot Learning: Siamese Networks

• A Siamese neural network uses two identical sub-networks (e.g. pretrained CNNs) in tandem, with the 

overall objective to determine how similar two comparable things are (e.g. signature verification, face 

recognition.). The sub-networks have the same parameters and weights.

• Each sub-network is fed an input (e.g. an image of  a face), producing the respective outputs. If  the distance 

between the two encodings: 

is less than some threshold (i.e. a hyperparameter), we consider the images to be the same, otherwise they are 

different. 

   1 2W WG X G X

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf



One-Shot Learning: Siamese Networks

• To train a Siamese network we can apply gradient descent on a triplet loss function which is simply a loss function using three 

images: an anchor image A, a positive image P(same person as the anchor), as well as a negative image N (different person than the 

anchor). So, we want the distance d(A, P) between the encoding of  the anchor and the encoding of  the positive example to be less

than or equal to the distance d(A, N) between the encoding of  the anchor and the encoding of  the negative example. In other 

words, we want pictures of  the same person to be close to each other, and pictures of  different persons to be far from each other. 

• The problem here is that the model can learn to make the same encoding for different images, which means that distances will be 

zero, and unfortunately, it will satisfy the triplet loss function. For this reason, we add a margin α (a hyperparameter), to prevent this 

from happening, and to always have a gap between A and P versus A and N. 



One-Shot Learning: Siamese Networks
Define the triplet loss function:

The max means as long as d(A, P)—d(A, N)+ alpha is less than or equal to zero, the loss L(A, P, N) is zero, but if  it is greater than 

zero, the loss will be positive, and the function will try to minimize it to zero or less than zero.

The cost function is the sum of  all individual losses on different triplets from all the training set:

The training set should contain multiple pictures of  the same person to have the pairs A and P, then once the model is trained, we’ll 

be able to recognize a person with only one picture.

If  we choose the triplets for training at random, it will be easy to satisfy the constraint of  the loss function because the distance is 

going to be generally large; in this case gradient descent will not learn much from the training set. For this reason, we need to find 

A, P, and N so that A and P are so close to N. Our objective is to make it harder to train the model to push the gradient descent to 

learn more.



GANs: Generative Adversarial Networks 

https://arxiv.org/abs/1406.2661



GANs: Generative Adversarial Networks 

https://arxiv.org/pdf/1609.04802.pdf

https://arxiv.org/pdf/1612.00005.pdf

https://junyanz.github.io/CycleGAN/

https://arxiv.org/abs/1605.05396




