
Deep Learning

CS 446/546

Outline
• Historical Notes

• Activation Functions

• Regularization Techniques

• Deep Learning Challenges

• SGD, Momentum, Parameter Initialization, AdaGrad, Adam, Newton’s Method

• CNNs

• Siamese Networks: One-Shot Learning, Similarity Learning; GANs

Historical Notes
• Feedforward networks can be seen as efficient non-linear function approximators based on using

gradient descent to minimize the error in a function approximation.

•As such, the modern feedforward NN is the culmination of centuries of progress on the general

function approximation task.

• The chain rule underlying backprop was invented by Leibniz (1796), and due naturally to foundations

also laid by Newton.

• Calculus and algebra have been used to solve optimization problems in closed form since their

inception, but gradient descent was not introduced as a technique for iteratively approximating the

solution to optimization problems until 19C (Cauchy, 1847).

Newton CauchyLeibniz Al-Khwarizmi Galois

Historical Notes

Neurons & the Brain

Neurons & the Brain

Hebb’s Postulate

Neurons & the Brain
– Human brain contains ~1011 neurons

– Each individiaul neuron connects to ~104 neuron

– ~1014 total synapses!

McCulloch & Pitts Neuron Model (1943)

(3) Components:

(1) Set of weighted inputs {wi} that correspond to synapses

(2) An “adder” that sums the input signals (equivalent to membrane of the cell that collects

the electrical charge)

(3) An activation function (initially a threshold function) that decides whether the neuron

fires (“spikes”) for the current inputs.

McCulloch & Pitts Neuron Model (1943)

Limitations & Deviations of the M-P Neuron Model:

• Summing is linear.

• No explicit model of “spike trains” (sequence of pulses that encodes

information in biological neuron).

• Threshold value is usually fixed.

• Sequential updating implicit (biological neurons usually update themselves

asynchronously)

• Weights can be positive (excitatory) or negative (inhibitory); biological

neurons do not change in this way.

• Real neurons can have synapses that link back to themselves (e.g. feedback

loop) – see RNNs (recurrent neural networks).

• Other biological aspects ignored: chemical concentrations, refractory

periods, etc.

Historical Notes
• Beginning in the 1940s, these function approximation techniques were used to motivate ML models

such as the percepton. However, the earliest models were based on linear models.

• In the 1960s Rosenblatt proved that the perceptron learning rule converges to correct weights

in a finite number of steps, provided the training examples are linearly separable.

•Critics including Marvin Minsky point out several of the flaws of the linear model family, such as its

inability to learn the XOR function, which led to a backlash against the entire NN approach.

• Learning non-linear functions required the development of a MLP (multi-layer perceptron) and a

means of computing the gradient through such a model. Efficient applications of the chain rule based

on DP (dynamic programming) began to appear in the 1960s and 1970s.

Rosenblatt Minsky

Historical Notes
• 1969: Minsky and Papert proved that perceptrons cannot represent non-linearly

separable target functions.

• However, they showed that adding a fully connected hidden layer makes the

network more powerful.

– i.e., Multi-layer neural networks can represent non-linear decision surfaces.

• Later it was shown that by using continuous activation functions (rather than

thresholds), a fully connected network with a single hidden layer can in principle

represent any function.

• 1986: “rediscovery” of backprop algorithm: Hinton et al.

• The Universal Approximation Theorem (1989) states that one hidden layer is

sufficient to approximate any function to arbitrary accuracy with a NN. (we say:

“NNs are universal function approximators”); RNNs are Turing Complete.

FIGURE 4.10 Schematic of the effective learning shape at each stage of the MLP.

Universal Approximation Properties
• A linear model, mapping from features to outputs via matrix multiplication, can

by definition represent only linear functions. It has the advantage of being easy to

train because many loss functions result in convex optimization problems when

applied to linear models.

• The universal approximation theorem (UAT) states that a feedforward

network with a linear output layer and at least one hidden layer with any

“squashing” activation function can approximate any Borel measurable (e.g.

a continuous function on a closed and bounded subset of Rn) function

from one finite-dimensional space to another with any desired non-zero

amount of error, provided the network is given enough hidden units.

• The UAT states that regardless of what function we are trying to learn,

we know that a sufficiently large MLP will be able to represent this

function. We are not guaranteed, however, that the training algorithm will

be able to learn the function.

Universal Approximation Properties
• Even if the MLP is able to represent the function. Learning can fail for (2) different

reasons:

(1) The optimization algorithm used for training may not be able to find the value of the

parameters that corresponds to the desired function.

(2) The training algorithm might choose the wrong function as a result of overfitting.

• Feedforward networks provide a universal system for representing functions in the

sense that, given a function, there exists a feedforward network that approximations

the function; there is no universal procedure for examining a training set of specific

examples and choosing a function that will generalize to points not in the training set.

*Note also that the theorem does not prescribe the size of the network (some bounds can

be approximated); unfortunately, in the worst case, an exponential number of hidden units

may be required.

*Recall that any time we choose a specific ML algorithm, we are implicitly state some set

of prior beliefs we have about what kind of function the algorithm should learn; choosing

a deep model generally indicates that we want to learn a composition of several simpler

functions.

Historical Notes
•The “rediscovery” of the backpropagation algorithm (Hinton & Rumelhardt) initialed a very active

period of research for MLPs. In particular, “connectionism” took root in the ML community, which

placed emphasis on connections between neurons as the locus of learning and memory (cf.

distributed representation: each concept is represented by many neurons, each neuron participates

in the representation of many concepts.

http://www.cs.toronto.edu/~bonner/courses/2014s/csc321/lecture

s/lec5.pdf

http://www.jneurosci.org/content/35/13/5180

Historical Notes
• Following the success of backprop, NN research gained popularity and reached a peak in the early

1990s.Afterwards, other ML techniques became more popular until the modern deep learning

renaissance that began in 2006.

• The core ideas behind modern feedforward nets have not changed substantially since the 1980s. The

same backprop algorithm and the same approaches to gradient descent are still in use. Most of the

improvement in NN performance from 1986-2018 can be attributed to two factors:

(1) Larger datasets have reduced the degree to which statistical generalization is a challenge for NNs.

(2) NNs have come much larger because of more powerful computer (including the use of GPUs)

and better software infrastructure.

Historical Notes
•A small number of algorithmic changes have also improved the performance of NNs.

One of these algorithmic changes was the replacement of mean squared error (MSE) with the cross-

entropy family of loss functions. MSE was popular in the 1980s and 1990s but was gradually

replaced by cross-entropy losses and the principles of MLE as ideas spread between the statistics

community and ML community.

• The use of cross-entropy losses greatly improved the performance of models with sigmoid and

softmax outputs, which had previously suffered from saturation and slow learning when using MSE.

• The other major algorithmic change that has greatly improved the performance of feedforward

networks was the replacement of sigmoid hidden units with piecewise linear hidden units, such as

rectified linear units (RELUs). Rectification using the max{0,z} function was introduced in early NN

models.

As of the early 2000s, rectified linear units were avoided due to the belief that activation functions with

non-differentiable points must be avoided.

For small datasets, Jarrett et al. (2009) observed that using rectifying non-linearities is even more

important than learning the weights of the hidden layers. Random weights are sufficient to propagate

useful information through a rectified linear network, enabling the classifier layer at the top to learn

how to map different feature vectors to class identities.

Historical Notes
• When more data are available, learning begins to extract enough useful knowledge to exceed the

performance of randomly chosen parameters.

RELUs are also of historical interest because they show that neuroscience has continued to have an

influence on the development of deep learning algorithms. Glorot et al. (2011) motivated RELUs from

biological considerations. The half-rectifying non-linearity was intended to captured these properties of

biological neurons:

(1) For some inputs, biological neurons are completely inactive

(2) For some inputs, a biological neuron’s output is proportional to its inputs

(3) Most of the time, biological neurson operate in the regime where they are inactive (i.e. they should

have sparse activations).

Historical Notes

Historical Notes

A “two”-layer neural network

(activation represents

classification)

(internal representation)

(activations represent

feature vector for one training

example)

inputs

hidden layer

output layer

•Input layer—It contains those units (artificial neurons) which receive input from the outside

world on which network will learn, recognize about or otherwise process.

•Output layer—It contains units that respond to the information about how it’s learned any task.

•Hidden layer—These units are in between input and output layers. The job of hidden layer is to

transform the input into something that output unit can use in some way.

Most neural networks are fully connected that means to say each hidden neuron is fully connected to

the every neuron in its previous layer(input) and to the next layer (output) layer.

A Neural Network “Zoo”

Neural network notation

(activation

represents

classification)

(internal

representation)

(activations represent

feature vector for one

training example)

xi : activation of input node i.

hj : activation of hidden node j.

ok : activation of output node k.

wji : weight from node i to node j.

σ : “sigmoid function”.

For each node j in hidden layer,

For each node k in output layer,

hj =s w jixi +w j0
iÎ input layer

å
æ

è

ç
ç

ö

ø

÷
÷

ok =s wkjhj +wk0

jÎhidden layer

å
æ

è

ç
ç

ö

ø

÷
÷

Sigmoid function:

(*) Backpropagation is one particular instance of a larger paradigm of optimization algorithms know as

Gradient Descent (also called “hill climbing”).

(*) There exists a large array of nuanced methodologies for efficiently training NNs (particularly DNNs),

including the use of regularization, momentum, dropout, batch normalization, pre-training regimes,

initialization processes, etc.

(*) Traditionally, the backpropagation algorithm has been used to efficiently train a NN; more recently the

Adam stochastic optimization method (2014) has eclipsed backpropagation in practice:

https://arxiv.org/abs/1412.6980

Gradient Descent

DNNs Learn Hierarchical Feature Representations

DNNs: AlexNet (2012)

AlexNet was developed by Alex Krizhevsky, Geoffrey Hinton, and Ilya Sutskever; it uses CNNs with GPU

support. The network achieved a top-5 error of 15.3%, more than 10.8 percentage points ahead of the

runner up.

Among other innovations: AlexNet used GPUs, utilized RELU (rectified linear units) for activations, and

“dropout” for training.

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-

convolutional-neural-networks.pdf

DNNs: AlexNet (2012)

DNNs: VGG (2014)

• Team at Oxford produced influential DNN architecture (VGG).Using very small

convolutional filters (3x3), they achieved a significant improvement on the prior-art

configurations by pushing the depth to 16–19 weight layers.

• Team achieved first and second place on the ImageNet Challenge 2015 for both

localization and classification tasks, respectively.

• Using pre-trained VGG is very common practice in research.
https://arxiv.org/pdf/1409.1556.pdf

DNNs: Inception (2015, Google)

• Team at Google (Szegedy et al.) produced an even deeper DNN (22 layers). No

need to pick filter sizes explicitly, as network learns combinations of filter

sizes/pooling steps; upside: newfound flexibility for architecture design

(architecture parameters themselves can be learned); downside: ostensibly requires

a large amount of computation – this can be reduced by using 1x1 convolutions

for dimensionality reduction (prior to expensive convolutional operations).

• Team achieved new state of the art for classification and detection in the

ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14; 6% top-5

error rate for classification.

https://arxiv.org/pdf/1409.1556.pdf

Cross-Entropy Loss
• As mentioned, cross-entropy loss is generally preferred to MSE, particularly for classification

problems with DNNs (it can also be used in non-classification settings).

Cross-entropy loss is defined:

Where c refers to one hot encoded classes (or labels), whereas p refers to softmax applied probabilities

(2) Properties make cross-entropy a natural loss function:

(1) E ≥ 0; all individual terms are negative and there is a minus outside.

(2) If the neuron's actual output is close to the desired output for all training inputs, x, then the cross-

entropy will be close to zero. To demonstrate this, we assume (WLOG) that the desired outputs c are

all either 0 or 1. Suppose for example that c = 0 and p ≈ 0, for some input x (so the neuron has done

well on this input). The first term in E vanishes, while the second term is close to zero; a similar

analysis holds when c = 1 and p ≈ 1.

     log 1 log 1i i i iE c p c p    

Cross-Entropy Loss
• Cross-entropy loss is defined:

One can show that, for example, that the partial derivative of the cross-entropy loss function is:

*(σ denotes the sigmoid function) Which indicates that the gradient is larger (i.e. learning is faster) the

larger the error; in addition, the cross-entropy loss function does not in general “bottom out” like the

MSE loss.

     log 1 log 1i i i iE c p c p    

  j

xj

E
x z y

w



 




RELU & Their Generalizations
• Rectified linear units use the activation function g(z) = max{0, z}.

• These units are easy to optimize because they are so similar to linear units; the only difference being

the RELU is zero across half of its domain. This makes the derivatives through a RELU remain large

whenever the unit is active.

• The gradients are therefore not only large but consistent.

RELUs are typically used on top of an affine transformation:

(in practice one can set all elements of b to a small positive value such as 0.1; doing so makes it very

likely that the RELUs will be initially active for most of the inputs in the training set and allow

derivatives to pass through).

•One drawback of RELU: is that they cannot learn via gradient-based methods on examples for which

their activation is zero; various generalizations of RELUs guarantee they receive gradient everywhere.

*affine transformations preserve points, straight lines, planes, and parallelism.

 Tg h W x b

RELU & Their Generalizations
(3) Generalizations of RELUs are based on using a non-zero slope αi when zi < 0:

(1) Absolute value rectification fixes αi = -1, to obtain g(z)=|z|; this method has been used for

object recognition from images, where it makes sense to seek features that are invariant under poliartiy

reversal of the input illumination.

(2) Leaky RELU fixes αi to a small value like 0.01.

(3) Maxout units (Goodfellow, 2013); instead of applying an element-wise function g(z), maxout units

divide z into groups of k values. Each maxout unit then outputs the maximum element of one of

those groups.

This provides a way of learning a piecewise linear function that responds to multiple directions in the

input x space. Each maxout unit can learn a piecewise linear, convex function with up to k pieces;

maxout units can thus be seen as learning the activation function itself rather than just the relationship

between units; with enough k, a maxout unit can learn to approximate any convex function with

arbitrary fidelity.

     , max 0, min 0,i i i ii
h g z z  z α

Regularization
• Regularization can be defined as “any modification we make to a learning algorithm that is intended

to reduce its generalization error but not its training error.”

• There are many different regularization strategies; some put extra constraints on an ML model; some

add extra terms to the objective function that can be though of as soft constraints applied to the

parameter values. If chosen correctly, these extra constraints and penalties can lead to improve

performance.

• Sometimes these constraints and penalties encode prior beliefs. Conversely, they are designed to

express a generic preference for a simpler model class in order to promote generalization; sometimes

these penalties are necessary to make an underdetermined problem determined or soluble; ensemble

methods can also be considered a general form of regularization.

Regularization
• Regularization has been used for decades prior to the advent of deep learning. Linear models such as

linear regression and logistic regression allow simple and effective regularization strategies.

• Many regularization approaches are based on limiting the capacity of models, such as NNs, linear

regression, or logistic regression, by adding a parameter norm penalty: Ω(θ) to the objective function J.

Denote the regularized objective function:

Where α ∈ [0, ∞) is a hyperparameter that weights the relative contribution of the norm penalty term,

Ω, relative to the standard object function J. Setting α = 0 results in no regularization. Larger values of

α correspond to more regularization.

* In practice it is common to choose a parameter norm penalty Ω that penalizes only the weights of

the affine transformation at each layer and leaves the biases unregularized (regularizing the bias

parameters can introduce a significant amount of underfitting).

     ; , ; ,J J   θ X y θ X y θ

L2 Regularization
• L2 regularization (also called: weight decay, ridge regression) rives the weights closer to the original by

adding a regularization term: Ω(θ) =
1

2
𝑤 2

2 to the objective function.

We can gain insight into the behavior of weight decay regularization by studying the gradient of the

regularization objective function. To simplify the presentation, we assume no bias parameter, so θ is

just w. Such a model has the following total objective function:

With the corresponding parameter gradient:

To take a single gradient step to update the weights, we perform this update:

Written another way, this update is:

   ; , ; ,
2

TJ J


 w X y w w w X y

   ; , ; ,w wJ J  w X y w w X y

  ; ,wJ   w w w w X y

   1 ; ,wJ    w w w X y

L2 Regularization

• We can see that the addition of the weight decay term has modified the learning rule to

multiplicatively shrink the weight vector by a constant factor on each step, just before performing the

usual gradient update.

• It is also useful to study the effect of L2 regularization on linear regression to ascertain a sense of

how L2 regularization operates in the ML framework more generally.

• For linear regression, the cost function is the sum of squared errors (SSE):

• When we add L2 regularization, the objective function changes to:

• This changes the normal equations for the solution from:

   1 ; ,wJ    w w w X y

   
T

 Xw y Xw y

   
1

2

T T  Xw y Xw y w w

   
1 1

T T T T
 

   w X X X y w X X I X y

L2 Regularization

• Using L2 regularization replaces the matrix XTX with the matrix (XTX+αI)-1; the new matrix is the

same as the original, but with the addition of α to the diagonal.

• The diagonal entries of this matrix correspond to the variance of each input features. We see that L2

regularization causes the learning algorithm to “perceive” the input X as having higher variance, which

makes it shrink the weights on features whose covariance with the output target is low compared to

this added noise.

   
1 1

T T T T
 

   w X X X y w X X I X y

L1 Regularization

• L1 regularization on the model parameter w is defined as:

Thus, the regularized objective function is given by:

with the corresponding gradient:

Where sign(w) is simply the sign of w applied element-wise.

* By inspection, we can see immediately that the effect of L1 regularization is quite different from L2

regularization. Specifically, the regularization contribution to the gradient no longer scales linearly with

each wi; instead, it is a constant factor with a sign equation to sign(wi).

   
1 1

T T T T
 

   w X X X y w X X I X y

 
1 i

i

w  θ w

   
1

; , ; ,J J w X y w w X y

     ; , ; ,w wJ sign J  w X y w w X y

L1 Regularization
• In comparison to L2 regularization, L1 regularization results in a solution is more sparse. Sparsity in

this context refers to the fact that some parameters have an optimal value of zero. The sparsity of L1

regularization is a qualitatively different behavior than arises with L2 regularization.

• The sparsity property induced by L1 regularization has been used extensively as a feature selection

mechanism; feature selection simplifies an ML problem by choosing which subset of the available

features should be used. The L1 penalty causes a subset of the weights to become zero, suggesting that

the corresponding features may safely be discarded.

Regularization and Under-Constrained Problems
• In some cases, regularization is necessary for ML problems to be properly defined.

• Many linear models, including regression and PCA, depend on inverting the matrix XTX; this is not

possible when XTX is singular. This matrix can be singular whenever the data-generating distribution

truly has no variance in one direction, or when no variance is observed because they are fewer

examples (i.e. rows of X) than input features (columns of X).

• In this case, many forms of regularization correspond to inverting XTX+αI instead; this regularized

matrix is guaranteed to be invertible (diagonally dominant matrices are non-singular).

One can solve underdetermined linear equations using the Moore-Penrose pseudoinverse; it is

defined as X+ of the matrix X:

* This equation can be seen as performing linear regression with weight decay; specifically, the equation

is the limit as the regularization coefficient shrinks to zero. Thus we can interpret the pseudoinverse as

stabilizing underdetermined problems using regularization.

 
1

0
lim T T










 X X X I X

Data Augmentation
• The best way to make an ML model generalize better is to train it on more data. Of course, data are

limited/expensive.

• One way to get around this problem is to generate synthetic data and add it to the training set.

• This approach is easiest for classification. A classifier needs to take a complicated, high-dimensional

input x and summarize it with a single category identity y. This means that the main task facing a

classifier is to be invariant to a wide variety of transformations; we can generate new (x, y) pairs easily

by transforming the x inputs in our training set.

• Dataset augmentation has been particularly effective for object recognition; operations like

translating the training images a few pixels in each direction can often greatly improve generalization;

many operations such as rotating the image or scaling the image are also quite effective (one needs to

be careful that the transformation does not alter the correct image class).

• Injecting noise in the input to a NN can also be seen as a form of data augmentation; one way to

improve the robustness of a NN is to simply train them with random noise applied to their inputs.

Early Stopping
• When training large models with sufficient representation capacity to overfit the task, we often

observe that training error decreases steadily over time, but validation set error begins to rise again.

• This means we can obtain a model with better validation set error (and hopefully better test error) by

returning to the parameter setting at the point in time with the lowest validation set error. Every time

the error on the validation set improves, we store a copy of the model parameters; when the training

terminates, we return these parameters, rather than the latest parameters.

* This strategy is known as early stopping; it is one of the most common forms of regularization

used in deep learning.

Early Stopping
• The only significant cost to choosing the training time “hyperparameter” is running the validation set

evaluation periodically during training.

• An additional cost to early stopping is the need to maintain a copy of the best parameters; this cost is

usually negligible, because it is acceptable to store these parameters in a slower and larger form of

memory.

• Early stopping is an “unobtrusive” form of regularization – it requires almost no change in the

underlying training procedure, the objective function, or the set of allowable parameter values (this is in

contrast to weight decay).

There are (2) conventional schema for early stopping:

(1) Initialize the model again and retrain on all the data; however, there is not a good way of knowing

whether to retrain for the same number of parameter updates or the same number of passes

through the dataset.

(2) Another strategy is to keep the parameters obtained from the first round of training and then

continue training, but now using all the data; this strategy avoids the high cost of training the

model from scratch.

Sparse Representations
• Weight decay acts by placing a penalty directly on the model parameters; another strategy is to place a

penalty on the activations of the units in a NN, encouraging their activations to be sparse. This

indirectly imposes a complexity penalty on the model parameters.

• Recall that L1 regularization induces a sparse parameterization – meaning that many of the parameters

become zero (or close to zero). Representational sparsity on the other hand, describes a

representation where many of the elements of the representation are zero (or close to zero).

• One can achieve representational sparsity with a norm penalty by setting: Ω(h) = 𝒉 1; yet another

method is to directly formulate a constrained optimization problem:

18 7 0 0 2 2

5 0 0 1 0 3

15 0 5 0 0 2

9 1 0 0 0 1

     
     


     
     
     
     

18 3 1 2 5 0

5 4 2 3 1 2

15 3 1 2 3 0

9 5 4 2 2 0

      
     


     
     
     

      

Sparsely parameterized linear

regression model (y=Ax)

Linear regression with a sparse

representation h of the data x;

(y=Bh)

0

2

,

arg min
k


h h

x Wh

Dropout

• Dropout (Srivastava et al., 2014) provides a computationally inexpensive but powerful method of regularizing a

broad family of models (it is akin to bagging).

• Dropout trains the ensemble consisting of all subnetworks that can be formed by removing nonoutput units from

an underlying base network. Recall that to learn with bagging, we define k different models, construct k different

datasets by sampling from the training set with replacement, and then train model i on dataset i. Dropout aims to

approximate this process, but with an exponentially large number of NNs.

• In practice, each time we load an example into a minibatch for training, we randomly sample a different binary

mask to apply to all input and hidden units in the network; the mask is sampled independently for each unit (e.g. 0.8

probability for including an input unit and 0.5 for hidden units).

• In the case of bagging, the models are all independent; for dropout, the models share parameters.

Adversarial Training

• Szegedy et al. (2014) found that even NNs that perform at human level accuracy have a nearly 100 percent error rate on

examples that are intentionally construction by using an optimization procedure to search for an input x’ near a data point x

such that the model output is very different from x’ (oftentimes such adversarial examples are indiscernible to humans).

• In the context of regularization, one can reduce the error rate on the original i.i.d. test set via adversarial training –

training on adversarially perturbed examples from the training set.

• Goodfellow et al. (2014), showed that one of the primary cause of these adversarial examples is excessive linearity. NNs are

primarily built out of linear parts, and so the overall function that they implement proves to be highly linear as a result.

• These linear functions are easily optimized; unfortunately, the value of a linear function can change very rapidly if it has

numerous inputs. Adversarial training discourages this highly sensitive locally linear behavior by encouraging the network to

be locally constant in the neighborhood of the training data.

• Adversarial training help to illustrate the power of using a large function family in combination with aggressive

regularization – a major theme in contemporary deep learning.

Challenges for DNN Optimization

• Traditionally, ML implementations avoid the difficulty of general optimization by carefully designing the

objective function and constraints to ensure that the optimization problem is convex.

• When training NNs, however, we must confront the general non-convex case.

Convex Function Non-Convex Function

Challenges for DNN Optimization: Ill-Conditioning

• A mathematical problem is ill-conditioned if a small change in the independent variable (input) leads to a

large change in the dependent variable (output). This can lead to numerical and related computational

problems. If a system of equations is ill-conditioned, the solution exists, but it if very difficult to find.

• More specifically, as it related to ML, if the Hessian matrix

(wrt the model inputs and loss function) is ill-conditioned*, it means

that the basins of the loss functions form elongated ellipsoids, rather

than being close to “spherical.”

* Optimization methods such as gradient descent will be slow to converge in this case, as they will render a

protracted, zig-zagging path.

• The condition number of a matrix quantifies

the degree to which a system is ill-conditioned:

 
 

 
max

min

A
A

A







Challenges for DNN Optimization: Local Minima

• For a convex function, any local minimum is guaranteed to be a global minimum.

• With non-convex functions, such as NNs, it is possible to have many local minima. Moreover, nearly any

DNN is essentially guaranteed to have a very large number of local minimal (even uncountably many).

• One of the chief reasons for the presence of many local minima for NNs, is due to the problem of model

identifiability. A model is said to be identifiable if a sufficiently large training set can rule out all but one

setting of the mode’s parameters.

• Models with latent variables (e.g. hidden neurons) are not in general identifiable because we can obtain

equivalent models by exchanging latent variables with one another. In addition, in maxout and RELU

networks, for instance, one can arbitrarily scale the incoming/outgoing weights and biases to achieve non-

identifiability.

• Local minima are problematic if they correspond with high

cost (vis-à-vis the global minimum).

Challenges for DNN Optimization: Plateaus, Saddle Points

• For many high-dimensional, non-convex functions, local minima (and maxima) are in fact rare compared to

saddle points.

• Some points around a saddle point have greater cost than the saddle point, while others have lowers cost. At

a saddle point, the Hessian matrix has both positive and negative eigenvalues.

• Why are saddle points more common than local extrema in high dimensions? The basic intuition is this: in

order to render a local extreme value, all of the eigenvalues must be of the same sign (naturally, this is very

unlikely – all things being equal – in high dimensions).

• In fact, eigenvalues of the Hessian are more likely to be positive as we reach regions of lower cost; this

means that local minima are much more likely to have low cost than high cost. For first-order optimization,

saddle points are not necessarily a significant problem (Goodfellow); however, for second-order methods, they

clearly constitute a problem.

• Degenerate locations such as plateaus can pose major problems for all

numerical algorithms.

Challenges for DNN Optimization: Cliffs, Exploding and

Vanishing Gradients
• NNs with many layers often have extremely steep regions resembling cliffs. This is due to the multiplication

of several large weights together. On the face of an extremely steep cliff structure, the gradient update step

can alter the parameters drastically.

• Gradient clipping, a heuristic technique, can help avoid this issue. When the traditional gradient descent

algorithm proposes making a large step, the gradient clipping heuristic intervenes to reduce the step size,

thereby making it less likely to go outside the region where the gradient indicates the direction of

approximately steepest descent.

• When the computational graph for a NN becomes very large (e.g. RNNs), the issue of exploding/vanishing

gradients can arise. Vanishing gradients make it difficult to known which direction the parameters should

move to improve the cost function, while exploding gradients can make learning unstable.

*LSTMs, RELU, and ResNet (Microsoft) have been applied to solve the vanishing gradient problem.

Basic Algorithms: SGD

Basic Algorithms: SGD

• Stochastic Gradient Descent (SGD) and its variants are some of the most frequently used optimization

algorithms in ML. Using a minibatch of i.i.d. samples, one can obtain an unbiased estimate of the gradient

(where examples are drawn from the data-generating distribution).

•A crucial parameter for the SGD algorithm is the learning rate, ε. In practice, it is necessary to gradually

decrease the learning rate over time. This is because the SGD gradient estimator introduces a source of noise

(the random sampling of m training examples) that does not vanish even when we arrive at a minimum.

A sufficient condition to guarantee convergence of SGD is that:

In practice, it is common to decay the learning rate linearly until iteration τ:

* Note that for SGD, the computation time per update does not grow with the number of training examples.

This allows convergence even when the number of training examples becomes very large.

2

1 1

 and
kk

k k

 
 

 

    

  01 with k

k
    


   

Momentum
• The method of momentum is designed to accelerate learning, especially in the face of high curvature, small

but consistent gradients, or noisy gradients.

• The momentum algorithm accumulates an exponentially decaying moving average of past gradients and

continues to move in their direction.

• Formally, the momentum algorithm introduces a variable v that plays the role of velocity – it is the direction

and speed at which the parameters move through parameter space. The velocity is set to an exponentially

decaying average of the negative gradient.

• The name momentum derives from a physical analogy, in which the negative gradient is a force moving a

particle through parameter space, according to Newton’s laws of motion. If the only force is the gradient of

the cost function, then the particle might never come to rest. To resolve this problem, we add one other force,

proportional to v(t); in physics terminology this force corresponds to viscous drag, as the if the particle must

push through a resistant medium such as syrup.

• The velocity v accumulates the gradient elements; the larger alpha is relative to epsilon, the more previous

gradients affect the current direction.

Momentum

Weight Initialization
• Training algorithms for DNN models are usually iterative and thus require the user to specify some initial

point from which to begin the iterations. Moreover, training deep models is a sufficiently difficult task that

most algorithms are strongly affected by the choice of initialization.

• The initial point can determine whether the algorithm converges at all, with some initial points being so

unstable that the algorithm encounters numerical difficultiess and fails altogether. When learning does

converge, the initial point can determine how quickly learning converges and whether it converges to a point

with high or low cost.

• Modern initialization strategies are usually simple and heuristic; designing improves initialization strategies is

a difficult task because NN optimization is not yet well understood.

• The most general guideline agreed upon by most practitioners is known as “symmetry-breaking.” If two

hidden units with the same activation function are connected to the same inputs, then these units have

different initial parameters. If the training is deterministic, “symmetric” units will update identically (and

hence be useless); even if the training is stochastic, it is usually best to initialize each unit to compute a

different function from all the other units.

Weight Initialization
• The goal of having each unit compute a different function motivates random initialization of the

parameters. Moreover, random initialization from a high-entropy distribution over a high-dimensional space is

computationally cheaper than explicitly searching for, say a large set of basis functions that are all mutually

different from one another.

• Typically, the biases for each unit are set to heuristically chosen constants, and we only initialize the weights

randomly. It is common practice to initialize all the weights in the model to values drawn randomly from a

Gaussian or uniform distribution.

• Note that the scale of the initial distribution does have a large effect on both the outcome of the

optimization procedure and the ability of the network to generalize.

• Larger initial weights will yield a strong symmetry-breaking effect, helping to avoid redundant units; in

addition, they will also potentially help avoid the problem of vanishing gradients. Nevertheless, they may

conversely exacerbate the exploding gradient problem; in RNNs, large initial weights can manifest chaotic

behavior.

* Sparse initialization (Martens, 2010) fixes the number of non-zero weights for initialization; Xavier

initialization draws random initial values from a distribution with zero mean and variance inversely

proportional to the size of the previous layer in the network.

• It is well known that the learning rate is reliably one of the most difficult to set hyperparameters because it

significantly affects model performance. The cost function is often highly sensive to some directions in

parameters space and insensitive to others.

• While the momentum algorithm mitigates these issues somewhat, it does so at the expense of introducing

another hyperparameters.

• Recently, a number of incremental methods have been introduced that adapt the learning rates of model

parameters.

Algorithms with Adaptive Learning Rates

• The AdaGrad algorithm (Duchi et al, 2011) individually adapts the learning rates of all model parameters by

scaling them inversely proportional to the square root of the sum of all the historical squared values of the

gradient.

• The parameters with the largest partial derivative of the loss have a correspondingly rapid decrease in their

learning rate, while parameters with small partial derivates have a relatively small decrease in their learning

rate. The net effect is greater progress in the more gently sloped directions of parameter space.

*Note: empirically, for training DNNs, the accumulation of squared gradients from the beginning of training can

result in premature and excessive decrease in the effective learning rate.

AdaGrad

• The RMSProp algorithm (Hinton, 2012) modifies AdaGrad to perform better in the non-convex setting by

changing the gradient accumulation into an exponentially-weighted moving average. Where AdaGRad shrinks

the learning rate according to the entire history of the squared gradient, RMSProp uses an exponentially

decaying average to discard history from the extreme past so that it can converge rapidly after finding a

convex bowl.

• Empirically, RMSProp has been to shown to be an effective and practical optimization algorithm for DNNs.

RMSProp

• Adam (Kingman and Ba, 2014) is another adaptive learning rate optimization algorithm (“adaptive

moments”). It can be seen as a variant on the combination of RMSProp and momentum with several

distinctions.

• First, in Adam, momentum is incorporated directly as an estimate of the first-order moment (with

exponential weighting) of the gradient. Second, Adam includes bias corrections to the estimates of both the

first-order moments (the momentum term) and the (uncentered) second-order moments to account for their

initialization at the origin.

• RMSProp also incorporates an estimate of the (uncentered) second-order moment; however, it lacks the

correction factor. Thus, unlike in Adam, the RMSProp second-order moment estimate may have high bias

early in training. *Adam is generally regarded as being fairly robust to the choice of hyperparameters.

Adam

Second-Order Methods: Newton’s Method

• Newton’s method is a classical second-order iterative approximation method. In contrast to first-order

methods, second-order methods make use of second derivatives (i.e. the curvature of the loss function) to

improve optimization.

• Newton’s method is an optimization scheme based on using a second-order Taylor series expansion to

approximate J(theta) near some point θ0, ignoring derivatives of higher order:

Where H is the Hessian of J wrt θ evaluated at θ0. If we then solve for the critical point of this function, we

obtain the Newton parameter update rule:

           0 0 0 0 0

1

2

T T
J J J      

θ
θ θ θ θ θ θ θ H θ θ

 1

0 0* H J  
θ

θ θ θ

Second-Order Methods: Newton’s Method

• If the objective function is convex but not quadratic, this update can be iterated, yielding a training

algorithm. For surfaces that are not quadratic, as long as the Hessian remains positive definite, Newton’s

method can be applied iteratively. This implies a two-step procedure: (1) update or compute the inverse

Hessian; (2) update the parameters according to the equation above.

* In deep learning, the surface of the objective function is usually non-convex; with many features and

potential saddle points, this is a potential problem for Newton’s Method.

• Commonly, researchers apply a regularization strategy, for which the update becomes (this regularization is

used in approximations to Newton’s Method including the Levenberg-Marquardt algorithm):

• Beyond the challenges of saddle points, the application of Newton’s method for training large NNs is

limited by its significant computational requirements; ostensibly, Newton’s method requires the inversion of a

matrix (O(n3)); as a consequence, only networks with a very small number of parameters can be practically

trained via Newton’s method.

           0 0 0 0 0

1

2

T T
J J J      

θ
θ θ θ θ θ θ θ H θ θ  1

0 0* H J  
θ

θ θ θ

    
1

0 0 0* H f f


      θ
θ θ θ I θ

Second-Order Methods: Newton’s Method

Convolutional Neural Networks
• So what is the fundamental difference between a generic NN and a CNN?

• CNNs conventionally take images as inputs. Recall that NNs (a fortiori: fully-connected NNs) do not

scale well for high dimensional data!

• CNNs take advantage of the fact that the input consists of images and the architecture is constrained

accordingly.

• In particular, unlike the layers of a conventional NN, CNNs have neurons arranged in 3 dimensions,

including depth (usually corresponding with color channels). As such, neurons in a CNN are only

connected to a small region of the layer before it, instead of in a fully-connected manner.

• Left: A regular 3-layer Neural Network. Right: A CNN arranges its neurons in three dimensions (width,

height, depth), as visualized in one of the layers. Every layer of a CNN transforms the 3D input volume

to a 3D output volume of neuron activations. In this example, the red input layer holds the image, so its

width and height would be the dimensions of the image, and the depth would be 3 (Red, Green, Blue

channels).

Convolutional Neural Networks

• CNNs consist of a sequence of (3) types of layers, in general: Convolutional Layers, Pooling Layers
and Fully-Connected Layers. These layers are stacked to form a full CNN architecture.

Example Architecture:

INPUT [32x32x3] will hold the raw pixel values of the image, in this case an image of width 32, height 32, and with three
color channels R,G,B.

CONV layer will compute the output of neurons that are connected to local regions in the input, each computing a dot
product between their weights and a small region they are connected to in the input volume. This may result in volume such
as [32x32x12] if we decided to use 12 filters.

RELU layer will apply an elementwise activation function, such as the max(0,x)max(0,x) thresholding at zero.
This leaves the size of the volume unchanged ([32x32x12]). (can help with ‘vanishing gradient’ problem)

POOL layer will perform a downsampling operation along the spatial dimensions (width, height), resulting in volume such as
[16x16x12].

FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1x10], where each of the 10
numbers correspond to a class score, such as among the 10 categories for images. As with ordinary Neural Networks and as
the name implies, each neuron in this layer will be connected to all the numbers in the previous volume.

• Note that for training, the parameters in the CONV/FC layers are trained with gradient descent so that
the class scores that the CNN computes are consistent with the labels in the training set for each image.

Convolutional Neural Networks

• Schematics of spatial arrangement.

• In the leftmost example there is only one spatial dimension (x-axis), one neuron with a receptive field size
of F = 3, the input size is W = 5, and there is zero padding of P = 1. Left (top): The neuron strided
across the input in stride of S = 1, giving output of size (5 - 3 + 2)/1+1 = 5. Right (top): The neuron
uses stride of S = 2, giving output of size (5 - 3 + 2)/2+1 = 3. Notice that stride S = 3 could not be used
since it wouldn't fit neatly across the volume. In terms of the equation, this can be determined since (5 - 3
+ 2) = 4 is not divisible by 3.

• The neuron weights are in this example [1,0,-1]
(shown on very right), and its bias is zero.
These weights are shared across all yellow neurons.

• Weight/parameter sharing is a common (and key)
feature of CNNs, and is used to control the
number of parameters.

Convolutional Neural Networks
• Learned filters

• Example filters learned by Krizhevsky et al. Each of the 96 filters shown here is of size [11x11x3], and
each one is shared by the 55*55 neurons in one depth slice. Notice that the parameter sharing assumption
is relatively reasonable: If detecting a horizontal edge is important at some location in the image, it should
intuitively be useful at some other location as well due to the translationally-invariant structure of images.
There is therefore no need to relearn to detect a horizontal edge at every one of the 55*55 distinct
locations in the Conv layer output volume.

• Schematic of pooling

• Pooling layer downsamples the volume spatially, independently in each depth slice of the input
volume. Left: In this example, the input volume of size [224x224x64] is pooled with filter size 2, stride 2
into output volume of size [112x112x64]. Notice that the volume depth is preserved. Right: The most
common downsampling operation is max, giving rise to max pooling, here shown with a stride of 2. That
is, each max is taken over 4 numbers (little 2x2 square).

Convolutional Neural Networks
• Learned filters

• Example filters learned by Krizhevsky et al. Each of the 96 filters shown here is of size [11x11x3], and
each one is shared by the 55*55 neurons in one depth slice. Notice that the parameter sharing assumption
is relatively reasonable: If detecting a horizontal edge is important at some location in the image, it should
intuitively be useful at some other location as well due to the translationally-invariant structure of images.
There is therefore no need to relearn to detect a horizontal edge at every one of the 55*55 distinct
locations in the Conv layer output volume.

• Schematic of pooling

• Pooling layer downsamples the volume spatially, independently in each depth slice of the input
volume. Left: In this example, the input volume of size [224x224x64] is pooled with filter size 2, stride 2
into output volume of size [112x112x64]. Notice that the volume depth is preserved. Right: The most
common downsampling operation is max, giving rise to max pooling, here shown with a stride of 2. That
is, each max is taken over 4 numbers (little 2x2 square).

One-Shot Learning: Siamese Networks
• Typically, with deep learning, we require a large amount of data, and the quality of our results generally

scales with the size (and quality) of our dataset.

• An alternative to this “big data” paradigm, however, is one-shot learning. In this paradigm we learn from

only a few (even just one) example. One can plausibly argue that a great deal of real-world, “biological”

learning also occurs in a “low data” regime.

• Consider the problem of facial recognition. We would like to determine whether an individual is a member

of a database, based on only a single instance/photo (e.g. security applications).

• One conventional approach to this problem is to train a CNN for the image processing task. However,

CNNs cannot be trained effectively with very small datasets; in addition, it would be highly cumbersome to

retrain the model every time we encounter a new individual.

• A Siamese network will, by contrast, allow us to solve this problem.

One-Shot Learning: Siamese Networks

• A Siamese neural network uses two identical sub-networks (e.g. pretrained CNNs) in tandem, with the

overall objective to determine how similar two comparable things are (e.g. signature verification, face

recognition.). The sub-networks have the same parameters and weights.

• Each sub-network is fed an input (e.g. an image of a face), producing the respective outputs. If the distance

between the two encodings:

is less than some threshold (i.e. a hyperparameter), we consider the images to be the same, otherwise they are

different.

   1 2W WG X G X

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

One-Shot Learning: Siamese Networks

• To train a Siamese network we can apply gradient descent on a triplet loss function which is simply a loss function using three

images: an anchor image A, a positive image P(same person as the anchor), as well as a negative image N (different person than the

anchor). So, we want the distance d(A, P) between the encoding of the anchor and the encoding of the positive example to be less

than or equal to the distance d(A, N) between the encoding of the anchor and the encoding of the negative example. In other

words, we want pictures of the same person to be close to each other, and pictures of different persons to be far from each other.

• The problem here is that the model can learn to make the same encoding for different images, which means that distances will be

zero, and unfortunately, it will satisfy the triplet loss function. For this reason, we add a margin α (a hyperparameter), to prevent this

from happening, and to always have a gap between A and P versus A and N.

One-Shot Learning: Siamese Networks
Define the triplet loss function:

The max means as long as d(A, P)—d(A, N)+ alpha is less than or equal to zero, the loss L(A, P, N) is zero, but if it is greater than

zero, the loss will be positive, and the function will try to minimize it to zero or less than zero.

The cost function is the sum of all individual losses on different triplets from all the training set:

The training set should contain multiple pictures of the same person to have the pairs A and P, then once the model is trained, we’ll

be able to recognize a person with only one picture.

If we choose the triplets for training at random, it will be easy to satisfy the constraint of the loss function because the distance is

going to be generally large; in this case gradient descent will not learn much from the training set. For this reason, we need to find

A, P, and N so that A and P are so close to N. Our objective is to make it harder to train the model to push the gradient descent to

learn more.

GANs: Generative Adversarial Networks

https://arxiv.org/abs/1406.2661

GANs: Generative Adversarial Networks

https://arxiv.org/pdf/1609.04802.pdf

https://arxiv.org/pdf/1612.00005.pdf

https://junyanz.github.io/CycleGAN/

https://arxiv.org/abs/1605.05396

