
Computational Complexity



• Measuring Complexity

• The Class P

• The Class NP

• NP-Completeness

Contents



• To date, we have only considered the question as to whether a problem is 

decidable, i.e. computationally solvable in principle.

• We now investigate the computationally complexity of a problem – that is,

the time, memory, or other resources required to solve it. 

Measuring Complexity



• We will analyze the time complexity of  an algorithm by considering the number 

of  steps the algorithm uses as a function of  its input. 

• In worst-case analysis, we consider the longest running time of  all inputs of  a 

given length; in average-case analysis, we consider the average of  all the 

running times of  inputs of  a particular length. 

Measuring Complexity



• We will analyze the time complexity of  an algorithm by considering the number 

of  steps the algorithm uses as a function of  its input. 

• In worst-case analysis, we consider the longest running time of  all inputs of  a 

given length; in average-case analysis, we consider the average of  all the 

running times of  inputs of  a particular length. 

Definition. Let 𝑀 be a deterministic Turing machine that halts on all inputs. The 

running time or time complexity of  𝑀 is the function 𝑓:ℕ ⟶ ℕ where 

𝑓 𝑛 is the maximum number of  steps that 𝑀 uses on any input of  length 𝑛. 

• If  𝑓 𝑛 is the running time of  𝑀, we say that 𝑀 runs in time 𝑓 𝑛 and that 𝑀
is an 𝑓 𝑛 time TM. Customarily we use 𝑛 to represent the length of  the input. 

Time Complexity



Definition. Let f  and g be functions 𝑓, 𝑔:ℕ ⟶ ℝ+. Say that 𝒇 𝒏 =

𝑶 𝒈 𝒏 if  positive integers 𝑐 and 𝑛0 exist such that for every 𝑛 >
𝑛0 :

𝑓 𝑛 ≤ 𝑐𝑔 𝑛

Big-O Notation



Definition. Let f  and g be functions 𝑓, 𝑔:ℕ ⟶ ℝ+. Say that 𝒇 𝒏 =

𝑶 𝒈 𝒏 if  positive integers 𝑐 and 𝑛0 exist such that for every 𝑛 >
𝑛0 :

𝑓 𝑛 ≤ 𝑐𝑔 𝑛

Big-O Notation



Definition. Let f  and g be functions 𝑓, 𝑔:ℕ ⟶ ℝ+. Say that 𝒇 𝒏 =

𝑶 𝒈 𝒏 if  positive integers 𝑐 and 𝑛0exist such that for every 𝑛 >
𝑛0 :

𝑓 𝑛 ≤ 𝑐𝑔 𝑛

• When 𝑓 𝑛 = 𝑂 𝑔 𝑛 , we say that 𝑔 𝑛 is an upper bound 

(more precisely: an asymptotic upper bound) for 𝑓 𝑛 . 

• Intuitively, 𝑓 𝑛 = 𝑂 𝑔 𝑛 means that 𝑓 is less than or equal to 

𝑔 if  we disregard differences up to constant factors. 

Big-O Notation



Definition. Let f  and g be functions 𝑓, 𝑔:ℕ ⟶ ℝ+. Say that 𝒇 𝒏 =

𝑶 𝒈 𝒏 if  positive integers 𝑐 and 𝑛0exist such that for every 𝑛 >
𝑛0 :

𝑓 𝑛 ≤ 𝑐𝑔 𝑛

• Example: 5𝑛3 + 2𝑛2 + 22𝑛 = 𝑂 𝑛3 ,  since 5𝑛3 + 2𝑛2 + 22𝑛 ≤
6𝑛3 ∀ 𝑛 ≥ 10.

Notice that upper bounds are non-unique, for instance: 5𝑛3 + 2𝑛2 + 22𝑛 =
𝑂 𝑛4 , 5𝑛3 + 2𝑛2 + 22𝑛 = 𝑂 𝑛5 , etc. 

Big-O Notation



• Example: Log bases are irrelevant with Big-O notation.

Recall the log-base conversion formula from elementary mathematics: 

𝑙𝑜𝑔𝑏𝑛 =
ln 𝑛

ln 𝑏

Since changing the base only changes the value of the expression

factor, it follows, for instance, that: 𝑂 𝑙𝑜𝑔10𝑛 = 𝑂 𝑙𝑜𝑔2𝑛 , etc.

Big-O Notation



• Example: Log bases are irrelevant with Big-O notation.

Recall the log-base conversion formula from elementary mathematics: 

𝑙𝑜𝑔𝑏𝑛 =
ln 𝑛

ln 𝑏

Since changing the base only changes the value of the expression

factor, it follows, for instance, that: 𝑂 𝑙𝑜𝑔10𝑛 = 𝑂 𝑙𝑜𝑔2𝑛 , etc.

• Example: 3𝑛𝑙𝑜𝑔2𝑛 + 5𝑛𝑙𝑜𝑔2𝑙𝑜𝑔2𝑛 + 2 = 𝑂 𝑛 log 𝑛 .

• Example:𝑓 𝑛 = 2𝑂(log 𝑛) represents an upper bound for 𝑛𝑐 for 

some c, since 𝑛 = 2𝑙𝑜𝑔2𝑛 and so 𝑛𝑐 = 2𝑐𝑙𝑜𝑔2𝑛.

Big-O Notation



• Bounds of  the form 𝑛𝑐 are called polynomial bounds; bounds of  the 

form 2𝑛 are called exponential bounds. 

• The companion to Big-O notation is known as little-O notation. 

• Whereas Big-O notation captures the notion of  an upper bound, 𝑓 𝑛 =

𝑂 𝑔 𝑛 meaning that 𝑓 𝑛 is asymptotically no more than g 𝑛 , 𝑓 𝑛 =

𝑜 𝑔 𝑛 connotes the fact that 𝑓 𝑛 is asymptotically strictly less than 

g 𝑛 . 

Little-O Notation



Definition. Let f  and g be functions 𝑓, 𝑔: ℕ ⟶ ℝ+. Say that 𝒇 𝒏 =

𝒐 𝒈 𝒏 if:

𝑙𝑖𝑚𝑛→∞

𝑓 𝑛

𝑔 𝑛
= 0

Little-O Notation



Definition. Let f  and g be functions 𝑓, 𝑔: ℕ ⟶ ℝ+. Say that 𝒇 𝒏 =

𝒐 𝒈 𝒏 if:

𝑙𝑖𝑚𝑛→∞

𝑓 𝑛

𝑔 𝑛
= 0

In other words, 𝑓 𝑛 = 𝑜 𝑔 𝑛 means that for any real number 𝑐 > 0, a 

number 𝑛0 exists, where 𝑓 𝑛 < 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0.

Little-O Notation



Definition. Let f  and g be functions 𝑓, 𝑔: ℕ ⟶ ℝ+. Say that 𝒇 𝒏 =

𝒐 𝒈 𝒏 if:

𝑙𝑖𝑚𝑛→∞

𝑓 𝑛

𝑔 𝑛
= 0

In other words, 𝑓 𝑛 = 𝑜 𝑔 𝑛 means that for any real number 𝑐 > 0, a 

number 𝑛0 exists, where 𝑓 𝑛 < 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0.

Example: 𝑛 = 𝑜 𝑛 , since 𝑙𝑖𝑚𝑛→∞
𝑛

𝑛
= 𝑙𝑖𝑚𝑛→∞

1

𝑛
= 0.

Little-O Notation



Definition. Let f  and g be functions 𝑓, 𝑔: ℕ ⟶ ℝ+. Say that 𝒇 𝒏 =

𝒐 𝒈 𝒏 if:

𝑙𝑖𝑚𝑛→∞

𝑓 𝑛

𝑔 𝑛
= 0

In other words, 𝑓 𝑛 = 𝑜 𝑔 𝑛 means that for any real number 𝑐 > 0, a 

number 𝑛0 exists, where 𝑓 𝑛 < 𝑐𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0.

Example: 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 = 𝑜 𝑛 log 𝑛 ,

since 𝑙𝑖𝑚𝑛→∞
𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛

𝑛 log 𝑛
= 𝑙𝑖𝑚𝑛→∞

𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛

𝑙𝑜𝑔 𝑛
=∗

𝑙𝑖𝑚𝑛→∞

1

𝑛𝑙𝑜𝑔 𝑛
1

𝑛

= 0.     (*indicates use of  L'Hôpital’s rule) 

Little-O Notation



We now analyze a TM algorithm for recognizing the language 𝐴 =
0𝑘1𝑘|𝑘 ≥ 0 .

Analyzing Algorithms



We now analyze a TM algorithm for recognizing the language 𝐴 =
0𝑘1𝑘|𝑘 ≥ 0 .

(1) In stage (1), we scan the input tape in its entirety and then return the 

tape head to the left-most position, this takes 2𝑛 = 𝑂 𝑛 steps.

(2) & (3) The machine scans the input; for each scan crosses off  two 

symbols, so at most n/2 scans can occur. So the total time for steps (2) 

and (3) is: 𝑂 𝑛 𝑂 𝑛/2 = 𝑂 𝑛2 .

(4) One final scan: 𝑂 𝑛 .

Total complexity: 𝑂 𝑛 + 𝑂 𝑛2 +𝑂 𝑛 = 𝑂 𝑛2 .

Analyzing Algorithms



Here is an asymptotically faster TM algorithm for recognizing the language 

𝐴 = 0𝑘1𝑘|𝑘 ≥ 0 .

Analyzing Algorithms



Here is an asymptotically faster TM algorithm for recognizing the language 

𝐴 = 0𝑘1𝑘|𝑘 ≥ 0 .

• Let’s first confirm that the algorithm above decides language 𝐴.

• After the scan performed in (4), the total number of  0s remaining is cut in half  

and the remainder is discarded. So if  we started with 13 0s, we would get 6 0s 

after step 4, then 3 0s, then 1 0 and then none. This stage has the same effect on 

the number of  1s. 

• The sequence of  parities found (e.g. odd, even, odd, odd) gives the (reverse) 

binary representation of  the number of  zeros (and ones). If  all parities agree, the 

numbers are equal. 

Analyzing Algorithms



Here is an asymptotically faster TM algorithm for recognizing the language 

𝐴 = 0𝑘1𝑘|𝑘 ≥ 0 .

• Now we analyze the run-time of  𝑀2. 

• Every stage requires 𝑂 𝑛 time. Next we consider how many times each 

stage is executed: 

(1) and (5): once each. 

(4) At most 1 + 𝑙𝑜𝑔2 𝑛 (crosses off  at least half  the 0s and 1s)

Total: 1 + 𝑙𝑜𝑔2 𝑛 𝑂 𝑛 = 𝑂 𝑛 log 𝑛

Analyzing Algorithms



Definition. Let 𝑡: ℕ ⟶ ℝ+ be a function. Define the time complexity 

class 𝑇𝐼𝑀𝐸 𝑡 𝑛 , to be the collection of  all languages that are decidable 

by an 𝑂 𝑡 𝑛 time Turing machine.

Analyzing Algorithms



Definition. Let 𝑡: ℕ ⟶ ℝ+ be a function. Define the time complexity 

class 𝑇𝐼𝑀𝐸 𝑡 𝑛 , to be the collection of  all languages that are decidable 

by an 𝑂 𝑡 𝑛 time Turing machine.

𝐴 = 0𝑘1𝑘|𝑘 ≥ 0

• By the second-to-last example, 𝑀, we showed 𝐴 ∈ 𝑇𝐼𝑀𝐸 𝑛2 .

• Using the previous example, 𝑀2, we rendered a tighter bound, 

showing 𝐴 ∈ 𝑇𝐼𝑀𝐸 𝑛 log 𝑛 .

• In fact, one can show* that 𝐴 ∈ 𝑇𝐼𝑀𝐸 𝑛 . This is the best 

possible bound for 𝐴. 

*See Sipser text for proof. 

Analyzing Algorithms



• Next we explore how the choice of  computational model can affect 

the time complexity of  languages. 

• We consider (3) models: single-tape TMs, multi-tape TMs, and non-

deterministic TMs. 

Theorem. Let 𝑡 𝑛 be a function, where 𝑡 𝑛 ≥ 𝑛. Then every 𝑡 𝑛

time multiple-tape TM has an equivalent 𝑂 𝑡2 𝑛 time single-tape 

TM. 

Analyzing Algorithms



Theorem. Let 𝑡 𝑛 be a function, where 𝑡 𝑛 ≥ 𝑛. Then every 𝑡 𝑛

time multiple-tape TM has an equivalent 𝑂 𝑡2 𝑛 time single-tape 

TM. 

Proof  Idea: Use the multi-tape to single-tape TM conversion 

algorithm we previously discussed in lecture. 

The total time used by the simulation is given as follows: The initial 

stage, where the TM puts its tape in the proper format requires 𝑂 𝑛
steps. Afterward, the simulation of  the initial t 𝑛 steps requires 

𝑂 t 𝑛 , so this gives t 𝑛 ∙ 𝑂 t 𝑛 = 𝑂 𝑡2 𝑛 steps.

Analyzing Algorithms



Definition. Let 𝑁 be a non-deterministic TM that is a decider. The 

running time of  𝑁 is the function f: ℕ ⟶ ℕ, where 𝑓 𝑛 is the 

maximum number of  steps that 𝑁uses on any branch of  its 

computation on any input of  length 𝑛, as shown in the figure.

Analyzing Algorithms



Theorem. Let 𝑡 𝑛 be a function, where 𝑡 𝑛 ≥ 𝑛.Then every 𝑡 𝑛

non-deterministic TM has an equivalent 2𝑂 𝑡 𝑛 time deterministic 

TM. 

Analyzing Algorithms



Theorem. Let 𝑡 𝑛 be a function, where 𝑡 𝑛 ≥ 𝑛.Then every 𝑡 𝑛

non-deterministic TM has an equivalent 2𝑂 𝑡 𝑛 time deterministic 

TM. 

Proof  Idea: Use the non-deterministic to deterministic three-tape TM conversion 

algorithm we previously discussed in lecture. 

Using the non-determinism computation tree of  original TM, perform BFS. The 

total number of  nodes searched is bounded by 2𝑂 𝑡 𝑛 . 

Finally, converting the three-tape TM to a single-tape, deterministic TM at most 

squares the running time (by the previous theorem). 

Thus, the running time of  the final TM is: 2𝑂 𝑡 𝑛
2
= 2𝑂 𝑡 𝑛 steps.

Analyzing Algorithms



Notice that the previous results confirm (2) important facts: 

(1) There is at most a polynomial difference between the time complexity of

problems measured on deterministic single-tape and multi-tape TMs.

(2) There is at most an exponential difference between the time complexity of

problems on deterministic and non-deterministic TMs. 

The Class P



• Generally speaking, we consider polynomial-time algorithms to be efficient

(although certainly there exist practical exceptions to this standard). 

• Conversely, exponential-time algorithms are considered inefficient – and are 

largely associated with brute-force (i.e. exhaustive) search algorithms. 

All “reasonable”* computation models are polynomially equivalent – meaning 

that any one of  them can simulate another with only a polynomial increase in run 

time. 

* By reasonable, we loosely mean any physically-realizable computation device. 

The Class P



Definition. P is the class of  languages that are decidable in polynomial time on a 

deterministic, single-tape TM. In other words, 

𝑃 =ራ

𝑘

𝑇𝐼𝑀𝐸 𝑛𝑘

The Class P



Definition. P is the class of  languages that are decidable in polynomial time on a 

deterministic, single-tape TM. In other words, 

𝑃 =ራ

𝑘

𝑇𝐼𝑀𝐸 𝑛𝑘

• The class P plays a crucial role in theory of  computation: 

(1) P is invariant for all models of  computation that are polynomially equivalent to 

the deterministic, single-tape TM. 

(2) P roughly corresponds to the class of problems that are realistically solvable on

a real-world computer.

The Class P



• To show that an algorithm is in the class P, we generally demonstrate (2) 

things: 

(1) We give a polynomial upper bound (typically in big-O notation) on the 

number of  steps required for execution as a function of  the input length 𝑛. 

(2) We show each step in the algorithm can be implemented in polynomial 

time on a reasonable deterministic model.

The Class P



• Sometimes it is necessary to specifically describe the encoding method used in a

particular problem in order to guarantee polynomial time execution of an

algorithm.

• Notice, for instance, that unary encoding grows exponentially larger than 

other, “reasonable” encodings (e.g. 12 -> 111111111111). 

• Conventionally, for a graph G, a reasonable encoding is given by a binary matrix 

called the adjacency matrix of  G.

The Class P



• Consider the problem: 

𝑃𝐴𝑇𝐻 = 𝐺, 𝑠, 𝑡 |𝐺 𝑖𝑠 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ 𝑡ℎ𝑎𝑡 ℎ𝑎𝑠 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑠 𝑡𝑜 𝑡.

Next, we show that 𝑃𝐴𝑇𝐻 ∈ 𝑃 by produced a polynomial time algorithm solving 𝑃𝐴𝑇𝐻.

The Class P



𝑃𝐴𝑇𝐻 = 𝐺, 𝑠, 𝑡 |𝐺 𝑖𝑠 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ 𝑡ℎ𝑎𝑡 ℎ𝑎𝑠 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑠 𝑡𝑜 𝑡.

Theorem. 𝑃𝐴𝑇𝐻 ∈ 𝑃

Proof. Note that a brute-force algorithm, where one proceeds by examining all potential 

paths in G and determining whether any is a directed path from 𝑠 to 𝑡 requires checking 

roughly 𝑚𝑚 such paths (where 𝑚 is the number of  nodes in the graph). Naturally, this 

won’t work. 

The Class P



𝑃𝐴𝑇𝐻 = 𝐺, 𝑠, 𝑡 |𝐺 𝑖𝑠 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ 𝑡ℎ𝑎𝑡 ℎ𝑎𝑠 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑠 𝑡𝑜 𝑡.

Theorem. 𝑃𝐴𝑇𝐻 ∈ 𝑃

Proof. To get a polynomial time algorithm, we need to avoid brute-force. One alternative is 

to employ BFS (breadth first search). Here, we successively mark all nodes in G that are 

reachable from s by directed paths of  length 1, length 2, length 3, etc. 

The Class P



𝑃𝐴𝑇𝐻 = 𝐺, 𝑠, 𝑡 |𝐺 𝑖𝑠 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ 𝑡ℎ𝑎𝑡 ℎ𝑎𝑠 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑠 𝑡𝑜 𝑡.

Theorem. 𝑃𝐴𝑇𝐻 ∈ 𝑃

Proof. To get a polynomial time algorithm, we need to avoid brute-force. One alternatively 

is to employ BFS (breadth first search). Here, we successively mark all nodes in G that are 

reachable from s by directed paths of  length 1, length 2, length 3, etc. 

Lastly, we show that the algorithm runs in polynomial time. Stages 1 and 4 are run only 

once; Stage 3 runs at most m times. So the total number of  stages is: 1 + 1 +𝑚.

Stages 1 and 4 are implemented in polynomial time; Stage 3 requires a scan of the input

and test whether nodes are marked, which is easily executed in polynomial time.

Consequently, 𝑃𝐴𝑇𝐻 ∈ 𝑃.

The Class P



𝑅𝐸𝐿𝑃𝑅𝐼𝑀𝐸 = 𝑥, 𝑦 |𝑥 𝑎𝑛𝑑 𝑦 𝑎𝑟𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑝𝑟𝑖𝑚𝑒.

Theorem. 𝑅𝐸𝐿𝑃𝑅𝐼𝑀𝐸 ∈ 𝑃

The Class P



𝑅𝐸𝐿𝑃𝑅𝐼𝑀𝐸 = 𝑥, 𝑦 |𝑥 𝑎𝑛𝑑 𝑦 𝑎𝑟𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑝𝑟𝑖𝑚𝑒.

Theorem. 𝑅𝐸𝐿𝑃𝑅𝐼𝑀𝐸 ∈ 𝑃

Proof. The problem is easily solved with the Euclidean algorithm (one of  the first known 

algorithms in history). Recall that the Euclidean algorithm generates the GCD of  two 

numbers by repeatedly computing 𝑥 𝑚𝑜𝑑 𝑦 and then exchanging 𝑥 and 𝑦. We denote the 

Euclidean algorithm as E. 

The Class P



𝑅𝐸𝐿𝑃𝑅𝐼𝑀𝐸 = 𝑥, 𝑦 |𝑥 𝑎𝑛𝑑 𝑦 𝑎𝑟𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑝𝑟𝑖𝑚𝑒.

Theorem. 𝑅𝐸𝐿𝑃𝑅𝐼𝑀𝐸 ∈ 𝑃

Proof.

To complete our proof, we must confirm that the algorithm runs in polynomial time. 

Each execution of  step (2) reduces the value of  x by at least one half. At step (3) x and y 

are exchanged, so each of  the original values of  x and y are reduced by at least half  every 

other time through the loop.

The maximum number of  times the algorithm runs steps(2) and (3) is 

𝑚𝑎𝑥 2𝑙𝑜𝑔2𝑥, 2𝑙𝑜𝑔2𝑦 . Thus, 𝑅𝐸𝐿𝑃𝑅𝐼𝑀𝐸 ∈ 𝑃.

The Class P



• Aside: In 2002, in a landmark result, it was shown that 𝑷𝑹𝑰𝑴𝑬 ∈ 𝑷, using the AKS 

primality test. 

• The authors Agrawal–Kayal–Saxena,  were awarded the Gödel prize in 2006. 

• Other notable P problems include LP (linear programming) and maximum matching. 

The Class P



Theorem. Every CFL is in P.

Proof  Idea. Recall that we previously proved every CFL is decidable. In doing so, we relied 

on the fact that every CFG can be re-expressed in CNF (Chomsky normal form); from CNF 

we know that every derivation of  a string w (of  length n) requires 2n − 1 steps. 

The decider for the CFL worked by trying all possible derivations of  length 2n − 1. However, 

this algorithm doesn’t run in polynomial time; the number of  derivations with k steps may be 

exponential in k. 

To derive a polynomial time algorithm, we use dynamic programming.

Recall that dynamic programming is an algorithmic paradigm that (through recursion) utilizes 

the accumulation of  information about subproblems to solve a larger problem. 

The Class P



Theorem. Every CFL is in P.

Proof. Consider the subproblem of  determining whether each variable in G 

generates each substring of  w. We store this information in an 𝑛 × 𝑛 table.

For 𝑖 ≤ 𝑗, the 𝑖, 𝑗 𝑡ℎ entry of  the table contains the collection of  variables that generate 

the substring: 𝑤𝑖 𝑤𝑖+1…𝑤𝑗 (for 𝑖 > 𝑗 the table entries are unused). The algorithm fills in 

the table entries of  𝑤. First it fills in the entries for the substrings of  length 1, then length 

2, and so on. 

The Class P



Theorem. Every CFL is in P.

Proof.

For example, suppose the algorithm has already determined which variables generate all 

substrings up to length 𝑘. Now, to determine whether a variable A generates a particular 

substring of  length 𝑘 + 1, the algorithm splits that substring into two non-empty pieces in 

the 𝑘 possible ways. 

For each split, the algorithm examines each rule 𝐴 → 𝐵𝐶 to determine whether 𝐵 generates 

the first piece and 𝐶 generates the second piece, using the previously computed table 

entries. If  both 𝐵 and 𝐶 generate the respective pieces, 𝐴 generates the substring and so it 

is added to the associated table entry. 

The Class P



Theorem. Every CFL is in P.

The Class P

* It can be shown that D runs in 𝑂 𝑛3 steps.



The Class NP
• As we have seen, avoiding brute-force search often leads to a polynomial time solution 

to a problem. 

• However, the question remains: When does such a polynomial time solution exist 

for a problem?

• Unfortunately, in general we do not know the answer to this question. In fact, this 

question is one of  most important unsolved problem in the sciences.



The Class NP

• Perhaps many of these “difficult” problems (that is, ones that do not immediately admit of  

a polynomial time solution) have a polynomial time solution, but we have simply yet to 

discover them.

• Or, conversely, perhaps these problems are simply intrinsically difficult, in which case they 

cannot be solved with a polynomial time algorithm. 

• Remarkably, the complexity of  many (seemingly) difficult problems are linked – and a 

polynomial time algorithm for one such problem can be used to solve an entire class of  

problems (there problems are called NP-complete problems). 



The Class NP

• Let’s now consider a classic “hard” problem, that of  finding a Hamiltonian path in a directed 

graph. 

• A Hamiltonian path is a directed path that goes through each node in the graph exactly once. 

Define: 

𝐻𝐴𝑀𝑃𝐴𝑇𝐻 = 𝐺, 𝑠, 𝑡 |𝐺 𝑖𝑠 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ 𝑤𝑖𝑡ℎ 𝑎 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑠 𝑡𝑜 𝑡.



The Class NP
𝐻𝐴𝑀𝑃𝐴𝑇𝐻 = 𝐺, 𝑠, 𝑡 |𝐺 𝑖𝑠 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ 𝑤𝑖𝑡ℎ 𝑎 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑠 𝑡𝑜 𝑡.

• Notice that we can easily obtain an exponential time algorithm for the HAMPATH 

problem by modifying the brute-force algorithm for 𝑃𝐴𝑇𝐻 given previously. We need only 

add a check to verify that the potential path is Hamiltonian. 

• To date, no one knows whether 𝐻𝐴𝑀𝑃𝐴𝑇𝐻 ∈ 𝑃.

• The 𝐻𝐴𝑀𝑃𝐴𝑇𝐻 problem has a feature called polynomial verifiability. Even though we 

don’t know of  a fast (i.e. polynomial time) algorithm to determine when a graph contains a 

Hamiltonian path, if  such a candidate path were discovered, we could nonetheless easily 

verify whether this path is Hamiltonian.



The Class NP
• In summary, verifying the existence of  a Hamiltonian path is much easier than 

determining its existence. 

• Consider the problem: 

𝐶𝑂𝑀𝑃𝑂𝑆𝐼𝑇𝐸𝑆 = 𝑥|𝑥 = 𝑝𝑞, 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑝, 𝑞 > 1.

• Like 𝐻𝐴𝑀𝑃𝐴𝑇𝐻, 𝐶𝑂𝑀𝑃𝑂𝑆𝐼𝑇𝐸𝑆 is easy to verify in polynomial time. In fact, as we have 

seen, PRIME ∈ 𝑃, so 𝐶𝑂𝑀𝑃𝑂𝑆𝐼𝑇𝐸𝑆 ∈ 𝑃 follows. 



The Class NP
• We have seen that many – even ostensibly hard – problems admit of  polynomial time 

verification. Even so, there exist problems that do not even admit of (known) polynomial time 

verification. 

• For example, 𝐻𝐴𝑀𝑃𝐴𝑇𝐻 would require a polynomial time verification to confirm that a graph 

does not have a Hamiltonian path; we don’t know of  a way for someone to verify the 

nonexistence of  such a path without using the previously mentioned exponential time algorithm. 



The Class NP

Definition. A verifier for a language 𝐴 is an algorithm 𝑉, where:

𝐴 = 𝑤| 𝑉 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤, 𝑐 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑠𝑡𝑟𝑖𝑛𝑔 𝑐 .

We measure the time of  a verifier only in terms of  the length of  𝑤, so a polynomial time 

verifier runs in polynomial time in the length of  𝑤. A language 𝐴 is polynomially verifiable if  it 

has a polynomial time verifier. 

*Here the symbol 𝑐 is known as a certificate, or proof, of  membership in 𝐴. The certificate 

provides extra information to verify that a string 𝑤 is a member of  𝐴. 

For 𝐻𝐴𝑀𝑃𝐴𝑇𝐻, the certificate could simply be the proposed path from 𝑠 to 𝑡; for 

𝐶𝑂𝑀𝑃𝑂𝑆𝐼𝑇𝐸𝑆 the certificate could be one of  the divisors of  𝑥. 



The Class NP

Definition. NP is the class of  languages that have polynomial time verifiers. 



The Class NP

Definition. NP is the class of  languages that have polynomial time verifiers. 

• The class NP is of  immense importance in computational complexity theory, as it contains a 

large number of problems of  practical importance, including: 𝐻𝐴𝑀𝑃𝐴𝑇𝐻, 𝐶𝑂𝑀𝑃𝑂𝑆𝐼𝑇𝐸𝑆,
𝑃𝑅𝐼𝑀𝐸, etc.

• The term NP relates to the notion of  nondeterministic polynomial time; as we show 

subsequently, the class NP can be equivalently defined as languages decided by some 

nondeterministic polynomial time TM. 



The Class NP
Definition. NP is the class of  languages that have polynomial time verifiers. 

• The term NP relates to the notion of  nondeterministic polynomial time; as we show 

subsequently, the class NP can be equivalently defined as languages decided by some 

nondeterministic polynomial time TM. 

Here is a nondeterministic polynomial time algorithm for 𝐻𝐴𝑀𝑃𝐴𝑇𝐻:



The Class NP
Theorem. A language is in NP iff it is decided by some nondeterministic polynomial 

time TM. 



The Class NP
Theorem. A language is in NP iff it is decided by some nondeterministic polynomial 

time TM. 

Proof. → For the forward direction, let 𝐴 ∈ 𝑁𝑃 and show that 𝐴 is decided by a polynomial 

time NTM 𝑁. Let 𝑉 be the polynomial time verifier for 𝐴 that exists by definition of NP. 

Assume that 𝑉 is a TM that runs in time 𝑛𝑘 and construct 𝑁 as follows:

𝑁 = “On input 𝑤 of  length 𝑛:

(1) Nondeterminstically select string 𝑐 of length at most 𝑛𝑘 .

(2)  Run 𝑉 on input 𝑤, 𝑐

(3)   If  𝑉 accepts, accept; otherwise reject.”



The Class NP
Theorem. A language is in NP iff it is decided by some nondeterministic polynomial 

time TM. 

Proof. ← To prove the other direction, assume 𝐴 is decided by a polynomial time NTM 𝑁
and construct a polynomial time verifier 𝑉 as follows:

𝑉 = “On input 𝑤, 𝑐 where 𝑤 and 𝑐 are strings:

(1) Simulate 𝑁 on input 𝑤, treating each symbol of  𝑐 as a description of  the 

nondeterministic choice to make at each step .

(2)  If  this branch of  𝑁’s computation accepts, accept; otherwise reject.”



The Class NP
Def. 

𝑁𝑇𝐼𝑀𝐸 𝑡 𝑛 = 𝐿|𝐿 𝑖𝑠 𝑎 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝑏𝑦 𝑎𝑛 𝑂 𝑡 𝑛 𝑡𝑖𝑚𝑒 𝑛𝑜𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑇𝑀



The Class NP
Def. 

𝑁𝑇𝐼𝑀𝐸 𝑡 𝑛 = 𝐿|𝐿 𝑖𝑠 𝑎 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝑏𝑦 𝑎𝑛 𝑂 𝑡 𝑛 𝑡𝑖𝑚𝑒 𝑛𝑜𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑇𝑀

• We define the nondeterminstic time complexity class 𝑁𝑇𝐼𝑀𝐸 𝑡 𝑛 as analogous to the 

deterministic time complexity class 𝑇𝐼𝑀𝐸 𝑡 𝑛 .

• By definition, the following corollary follows immediately: 

Corollary. 𝑁𝑃 = 𝑘𝑁𝑇𝐼𝑀𝐸ڂ 𝑛𝑘

• Observe that the class NP is insensitive to the choice of  reasonable nondeterministic 

computational model because all such models are polynomially equivalent. 



The Class NP

• A clique in an undirected graph is a set of  nodes that are all mutually adjacent. By extension, 

a k-clique is a clique that contains 𝑘 nodes. 

• Define the clique problem:

𝐶𝐿𝐼𝑄𝑈𝐸 = 𝐺, 𝑘 |𝐺 𝑖𝑠 𝑎𝑛 𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ 𝑤𝑖𝑡ℎ 𝑎 𝑘 − 𝑐𝑙𝑖𝑞𝑢𝑒



The Class NP

Theorem. 𝐶𝐿𝐼𝑄𝑈𝐸 ∈ 𝑁𝑃



The Class NP

Theorem. 𝐶𝐿𝐼𝑄𝑈𝐸 ∈ 𝑁𝑃

• The proof  simply uses the clique as certificate. 



The Class NP

• Define the SUBSET-SUM problem: givens a collection of  numbers 𝑥1, … 𝑥𝑘 and a target 𝑡, 
we want to determine whether the collection contains a subcollection that adds up to the target 

(repetition is allowed). 

• This problem is closely related to the classic combinatorial optimization problem known 

colloquially as the knapsack problem (1897). 

𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 =
𝑆, 𝑡 |𝑆 = 𝑥1, … 𝑥𝑘 , 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒

𝑦1, … 𝑦𝑙 ⊆ 𝑥1, … 𝑥𝑘 , 𝑤𝑒 ℎ𝑎𝑣𝑒 Σ𝑦𝑖 = 𝑡



The Class NP

Theorem. 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 ∈ 𝑁𝑃

• The proof  simply uses the subset as certificate. 



The Class NP
• We note that the complements of  the previous sets, namely: 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 and 𝐶𝐿𝐼𝑄𝑈𝐸
are not obviously members of  NP. 

• Verifying that something is not present seems generally more difficult than verifying it is 

present. The complexity class coNP denotes the languages that are complements of  languages 

in NP. 

• We currently don’t know if  coNP is different from NP.

• The question of  whether 𝑷 = 𝑵𝑷 is one of  the greatest unsolved problems in theoretical 

computer science and contemporary mathematics. Most researchers believe that the two 

classes are not equal.



NP-Completeness
• Previously we defined the notion of  reducing one problem to another using mapping 

reducibility. The motivation for introducing this concept was to show that if  A reduced 

to B, a solution to B can be used to solve A. 

• We now consider the specific case of  an efficient reduction from A to B. 



NP-Completeness

• Previously we defined the notion of  reducing one problem to another using mapping 

reducibility. The motivation for introducing this concept was to show that if  A reduced to 

B, a solution to B can be used to solve A. 

• We now consider the specific case of  an efficient reduction from A to B. 

Def. A function 𝑓: Σ∗ → Σ∗is a polynomial time computable function if  

some polynomial time TM 𝑀exists that halts with just 𝑓 𝑤 on its tape, 

when started on any input 𝑤. 



NP-Completeness

Def. A function 𝑓: Σ∗ → Σ∗is a polynomial time computable function if  

some polynomial time TM 𝑀 exists that halts with just 𝑓 𝑤 on its tape, 

when started on any input 𝑤. 

Def. Language A is polynomial time mapping reducible, or simply polynomial time 

reducible, to language B , written 𝐴 ≤𝑝 𝐵, if  a polynomial time computable function 

𝑓: Σ∗ → Σ∗ exists, where for every 𝑤:
𝑤 ∈ 𝐴 ↔ 𝑓 𝑤 ∈ 𝐵

The function 𝑓 is called the polynomial time reduction from A to B.



NP-Completeness

Theorem. If 𝐴 ≤𝑝 𝐵 and 𝐵 ∈ P, then 𝐴 ∈ P.



NP-Completeness

• We now define the well-known 𝟑𝑺𝑨𝑻 problem – first some terminology. 

• A literal is a Boolean variable or its negation; a clause is several literals connected with the 

OR operation. 

• Finally, a Boolean formula is said to be in conjunctive normal form (CNF) if  it 

comprises several clauses connected with ANDs, for example: 

𝜑 = 𝑥1⋁𝑥2 ⋁𝑥3 ⋀ 𝑥3⋁𝑥5 ⋁𝑥6 ⋀ 𝑥2⋁𝑥4 ⋁𝑥6

• We say that clause 𝜑 is satisfiable if  there exist Boolean values which can be assigned to 

each variable in 𝜑 yielding a TRUE assignment. 

3𝑆𝐴𝑇 = 𝜑 |𝜑 𝑖𝑠 𝑎 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑎𝑏𝑙𝑒 3 − 𝐶𝑁𝐹 𝑓𝑜𝑟𝑚𝑢𝑙𝑎



NP-Completeness
Theorem. 3𝑆𝐴𝑇 is polynomial time reducible to C𝐿𝐼𝑄𝑈𝐸.



NP-Completeness
Theorem. 3𝑆𝐴𝑇 is polynomial time reducible to C𝐿𝐼𝑄𝑈𝐸.

Proof  Idea: Given a formula 𝜑 with 𝑘 clauses such as: 

𝑎1⋁𝑏1⋁𝑐1 ⋀ 𝑎2⋁𝑏2⋁𝑐2 ⋀… ⋀ 𝑎𝑘⋁𝑏𝑘⋁𝑐𝑘

The reduction 𝑓 generates the string 𝐺, 𝑘 where 𝐺 is an undirected graph as follows. 

The nodes in 𝐺 are organized into 𝑘 groups of  three nodes each called triples, 𝑡1, … , 𝑡𝑘 . 

Each triple corresponds to one of  the clauses in 𝜑, and each node in a triple correspond to 

a  literal in the associated clause. 



NP-Completeness
Theorem. 3𝑆𝐴𝑇 is polynomial time reducible to C𝐿𝐼𝑄𝑈𝐸.

Proof  Idea: Given a formula 𝜑 with 𝑘 clauses such as: 

𝑎1⋁𝑏1⋁𝑐1 ⋀ 𝑎2⋁𝑏2⋁𝑐2 ⋀… ⋀ 𝑎𝑘⋁𝑏𝑘⋁𝑐𝑘

The edges of  𝐺 connect all but two types of  pairs of  nodes in 𝐺 : (1) no edge is present 

between nodes in the same triple; (2) no edge is present between two nodes with 

contradictory labels (e.g. )

From this construction, it is not difficult to show that 𝜑 satisfiable iff 𝐺 has a 𝑘 -clique. 



NP-Completeness
Def. A language B is NP-complete if  it satisfies: 

(1) B is in NP

(2) Every A ∈ 𝑁𝑃 is polynomial time reducible to B. 



NP-Completeness
Def. A language B is NP-complete if  it satisfies: 

(1) B is in NP

(2) Every A ∈ 𝑁𝑃 is polynomial time reducible to B. 

Theorem. If  B is NP-complete and B ∈ 𝑃, then 𝑃 = 𝑁𝑃. 

Proof. The proof  is automatic from the definition of  polynomial time reducibility. 



NP-Completeness
Theorem. If  B is NP-complete and B ≤𝑝 𝐶 for 𝐶 ∈ 𝑁𝑃, 

then C is NP-complete. 



NP-Completeness
Theorem. If  B is NP-complete and B ≤𝑝 𝐶 for 𝐶 ∈ 𝑁𝑃, 

then C is NP-complete. 

Proof. We already know that C is in NP, so we must show that every A in NP is 

polynomial time reducible to 𝐶. 

Because B is NP-complete, every language in NP is polynomial time reducible to B, and B
in turn is polynomial time reducible to 𝐶. 

Polynomial time reductions compose; that is, if  𝐴 is polynomial time reducible to 𝐵 and 𝐵
is polynomial time reducible to 𝐶, then 𝐴 is polynomial time reducible to 𝐶. 

Hence every language in NP is polynomial time reducible to 𝐶. 



NP-Completeness
Cook-Levin Theorem. 𝑆𝐴𝑇 ∈ 𝑁𝑃-complete

• The Cook-Levin Theorem was a landmark result in computational complexity theorem; 

as it stands, it represents the culmination of several seminal papers published at the end of  

the 1960s and early 1970s. Cook later won the Turing award (1982) for his contributions to 

computational complexity theory, Levin later won the Knuth prize (2012) for this work. 

• The formal proof  is quite long; for brevity if  I have omitted it from these lecture slides 

(please see text for full treatment). 

The key challenge of the proof is to show that any language in NP is polynomial time

reducible to SAT. The reduction for 𝐴 takes a string 𝑤 and produces a Boolean formula 𝜑
that simulates the NP machine for 𝐴 on input 𝑤. 



NP-Completeness
Cook-Levin Theorem. 𝑆𝐴𝑇 ∈ 𝑁𝑃-complete

• Following the Cook-Levin Theorem, showing the NP-completeness of  other languages 

generally doesn’t require such a lengthy proof. Instead, NP-completeness can be proved 

with a polynomial time reduction from a language that is already known to be NP-

complete. 

• We can use 𝑆𝐴𝑇 for this purpose; but using 3𝑆𝐴𝑇 is usually easier. 

• To this end, one can likewise show:    Theorem. 3𝑆𝐴𝑇 ∈ 𝑁𝑃-complete.



Fin


