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• We previously studied abstract models for general-purpose computing, 

including the Turing Machine (TM). The Church-Turing Thesis encapsulates the 

equivalence of  intuitive, procedural processes (i.e. algorithms) and algorithms run 

on TMs.

• Despite their inherent computational power and potential for generalizability, 

there exist problems (note the use of  plural) that TMs – and moreover any

procedural algorithms – cannot solve. This means, somewhat surprisingly, that 

some problems cannot be solved algorithmically.

•  In fact, as we shall see, there are uncountably many undecidable problems 

(and only countably many decidable problems). 

Decidability



Why study undecidability and unsolvable problems? 

(1) Knowing/recognizing that a problem is undecidable/unsolvable is 

useful, as it informs us that a simplification or approximation is necessary. 

(2) Understanding unsolvable problems gives us an important, “high-level”        

perspective about computation and algorithms more generally; oftentimes   

this broader understanding informs our ability to solve practical    

computational and algorithmic problems. 

Decidability



• We define the acceptance problem for DFA (deterministic finite automata) as 

testing whether a particular DFA accepts a  given string. 

•  The acceptance problem for DFA gives rise to a language; this language 

contains the encodings of  all DFAs together with strings that the DFA accepts. 

Define: 
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• We define the acceptance problem for DFA (deterministic finite automata) as 

testing whether a particular DFA accepts a  given string. 

•  The acceptance problem for DFA gives rise to a language; this language 

contains the encodings of  all DFAs together with strings that the DFA accepts. 

Define: 

𝐴𝐷𝐹𝐴 = 𝐵,𝑤 |𝐵 𝑖𝑠 𝑎 𝐷𝐹𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤

• Notice that the problem of  testing whether a DFA 𝐵 accepts an input w is the 

same as the problem of  testing whether 𝐵,𝑤 is a member of  the language. 
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• We define the acceptance problem for DFA (deterministic finite automata) as 

testing whether a particular DFA accepts a  given string. 

•  The acceptance problem for DFA gives rise to a language; this language 

contains the encodings of  all DFAs together with strings that the DFA accepts. 

Define: 

𝐴𝐷𝐹𝐴 = 𝐵,𝑤 |𝐵 𝑖𝑠 𝑎 𝐷𝐹𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤

• Notice that the problem of  testing whether a DFA 𝐵 accepts an input w is the 

same as the problem of  testing whether 𝐵,𝑤 is a member of  the language. 

(*) In general, showing that a language is decidable is the same as 

showing the computational problem is decidable. 

Decidable Languages



Theorem. 𝐴𝐷𝐹𝐴 is a decidable language. 
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Theorem. 𝐴𝐷𝐹𝐴 is a decidable language. 

Proof. We simply construct a TM M that decides 𝐴𝐷𝐹𝐴.

Define M: On input 𝐵,𝑤 , where 𝐵 is a DFA and 𝑤 is a string:

(1) Simulate 𝐵 on input 𝑤

(2) If  the simulation ends in an accept state, accept. If  it ends in a non-accepting 

state, reject.
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Theorem. 𝐴𝐷𝐹𝐴 is a decidable language. 

Proof. We simply construct a TM M that decides 𝐴𝐷𝐹𝐴.

Define M: On input 𝐵,𝑤 , where 𝐵 is a DFA and 𝑤 is a string:

(1) Simulate 𝐵 on input 𝑤

(2) If  the simulation ends in an accept state, accept. If  it ends in a non-accepting 

state, reject.

• A few comments: The input 𝐵,𝑤 is a representation of  a DFA 𝐵 together with a 

string 𝑤. One reasonable representation of  𝐵 is through the formalization with 

respect to components: Q, Σ, δ, 𝑞0, and 𝐹. When M receives its input, M first 

determines whether it properly represents a DFA B and a string w; if  not, M rejects. 

M carries out the simulation directly; when it finishes processing the last symbol of  

𝑤, M accepts the input if  𝐵 is in an accepting state.
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Define: 

𝐴𝑁𝐹𝐴 = 𝐵,𝑤 |𝐵 𝑖𝑠 𝑎𝑛 𝑁𝐹𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤

Theorem. 𝐴𝑁𝐹𝐴 is a decidable language. 

Decidable Languages



Define: 

𝐴𝑁𝐹𝐴 = 𝐵,𝑤 |𝐵 𝑖𝑠 𝑎𝑛 𝑁𝐹𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤

Theorem. 𝐴𝑁𝐹𝐴 is a decidable language. 

Proof. We present a TM N that decides 𝐴𝑁𝐹𝐴.

N: On input 𝐵,𝑤 , where 𝐵 is an NFA and 𝑤 a string, 

(1) Convert NFA 𝐵 to an equivalent DFA 𝐶

(2) Run TM M from the previous Theorem on input 𝐶,𝑤

(3) If  M accepts, accept; otherwise reject. 
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Define: 

𝐴𝑁𝐹𝐴 = 𝐵,𝑤 |𝐵 𝑖𝑠 𝑎𝑛 𝑁𝐹𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤

Theorem. 𝐴𝑁𝐹𝐴 is a decidable language. 

Proof. We present a TM N that decides 𝐴𝑁𝐹𝐴.

N: On input 𝐵,𝑤 , where 𝐵 is an NFA and 𝑤 a string, 

(1) Convert NFA 𝐵 to an equivalent DFA 𝐶

(2) Run TM M from the previous Theorem on input 𝐶,𝑤

(3) If  M accepts, accept; otherwise reject. 

*Note that one can similarly show that the following language is decidable. 

𝐴𝑅𝐸𝑋 = 𝑅,𝑤 | 𝑅 𝑖𝑠 𝑎𝑛 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤
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Define: 

𝐸𝐷𝐹𝐴 = 𝐴 | 𝐴 𝑖𝑠 𝑎 𝐷𝐹𝐴 𝑎𝑛𝑑 𝐿 𝐴 = ∅

Theorem. 𝐸𝐷𝐹𝐴 is a decidable language. 

Decidable Languages



Define: 

𝐸𝐷𝐹𝐴 = 𝐴 | 𝐴 𝑖𝑠 𝑎 𝐷𝐹𝐴 𝑎𝑛𝑑 𝐿 𝐴 = ∅

Theorem. 𝐸𝐷𝐹𝐴 is a decidable language. 

Proof. A DFA accepts some string iff reaching an accept state from the start state 

by traveling along the arrows of  the DFA is possible. 

We simply design a TM T using a “marking algorithm” (just see if  any directed 

paths lead from the start state to an accept states), as follows: 

T: On input 𝐴 , where A is a DFA: 

(1) Mark the start state of  A. 

(2) Repeat until no new states get marked…mark any state that has a transition 

coming into it from any state that is already marked.

(3) If  no accept state is marked, accept; otherwise reject. 
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Define: 

𝐸𝑄𝐷𝐹𝐴 = 𝐴, 𝐵 | 𝐴 𝑎𝑛𝑑 𝐵 𝑎𝑟𝑒 𝐷𝐹𝐴 𝑎𝑛𝑑 𝐿 𝐴 = 𝐿(𝐵)

Theorem. 𝐸𝑄𝐷𝐹𝐴 is a decidable language. 

Decidable Languages



Define: 

𝐸𝑄𝐷𝐹𝐴 = 𝐴, 𝐵 | 𝐴 𝑎𝑛𝑑 𝐵 𝑎𝑟𝑒 𝐷𝐹𝐴 𝑎𝑛𝑑 𝐿 𝐴 = 𝐿(𝐵)

Theorem. 𝐸𝑄𝐷𝐹𝐴 is a decidable language. 

• We will prove this result next. First, however, a quick aside:

• The symmetric difference of  two sets A and B is defined as the set of  

elements that are in A or B but not both (think of  the analogue with the XOR 

operation):

𝐴 ∆ 𝐵 = 𝐴\B ∪ 𝐵\A

Notice that: 𝐴 ∆ 𝐵 = 𝐴 ∩ ത𝐵 ∪ ҧ𝐴 ∩ 𝐵

*Note that the symmetric difference of  two languages is defined equivalently. 
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Define: 

𝐸𝑄𝐷𝐹𝐴 = 𝐴, 𝐵 | 𝐴 𝑎𝑛𝑑 𝐵 𝑎𝑟𝑒 𝐷𝐹𝐴 𝑎𝑛𝑑 𝐿 𝐴 = 𝐿(𝐵)

Theorem. 𝐸𝑄𝐷𝐹𝐴 is a decidable language. 

Proof. We construct a new DFA C, where L C = 𝐿 𝐴 ∆ 𝐿(𝐵), which is to say 

C accepts the symmetric difference of  the languages of  A and B. Notice, 

importantly that L C = ∅ iff L 𝐴 = 𝐿 𝐵 .

How to proceed? 
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Define: 

𝐸𝑄𝐷𝐹𝐴 = 𝐴, 𝐵 | 𝐴 𝑎𝑛𝑑 𝐵 𝑎𝑟𝑒 𝐷𝐹𝐴 𝑎𝑛𝑑 𝐿 𝐴 = 𝐿(𝐵)

Theorem. 𝐸𝑄𝐷𝐹𝐴 is a decidable language. 

Proof. We construct a new DFA C, where L C = 𝐿 𝐴 ∆ 𝐿(𝐵), which is to say 

C accepts the symmetric difference of  the languages of  A and B. Notice, 

importantly that L C = ∅ iff L 𝐴 = 𝐿 𝐵 .

Because the symmetric difference involves complement, union and intersection 

operations (see previous slides) – and in addition, regular languages are closed 

under these operations – we can simply construct at TM M that runs C as 

input. 

From the previous Theorem (EDFA is decidable), if  M accepts, accept; otherwise 

reject. 
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Define: 

𝐴𝐶𝐹𝐺 = 𝐺,𝑤 | 𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑡ℎ𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 𝑤

Theorem. 𝐴𝐶𝐹𝐺 is a decidable language. 

Decidable Languages



Define: 

𝐴𝐶𝐹𝐺 = 𝐺,𝑤 | 𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑡ℎ𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 𝑤

Theorem. 𝐴𝐶𝐹𝐺 is a decidable language. 

•  One idea (though incorrect) is to try to work through all derivations in G to see 

whether any produce w. This won’t work, naturally, because infinitely-many 

derivations may need to be attempted (and thus the algorithm won’t halt). 
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Define: 

𝐴𝐶𝐹𝐺 = 𝐺,𝑤 | 𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑡ℎ𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 𝑤

Theorem. 𝐴𝐶𝐹𝐺 is a decidable language. 

• (Proof  sketch) To make this TM a decider, we need to ensure that the 

algorithm tries only a finite number of  derivations. It can be shown (we omit 

proof  for brevity) that when G is in Chomsky Normal Form (CNF), any derivations 

of  𝑤 = 𝑛 has 2𝑛 − 1 steps. 

So the TM S to decide 𝐴𝐶𝐹𝐺 , when given input 𝐺,𝑤 , converts 𝐺 to CNF, lists 

all derivations using 2𝑛 − 1 steps and checks to see if  any generate 𝑤. 

Decidable Languages



Define: 

𝐸𝐶𝐹𝐺 = 𝐺 | 𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑎𝑛𝑑 𝐿 𝐺 = ∅

Theorem. 𝐸𝐶𝐹𝐺 is a decidable language. 

Decidable Languages



Define: 

𝐸𝐶𝐹𝐺 = 𝐺 | 𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑎𝑛𝑑 𝐿 𝐺 = ∅

Theorem. 𝐸𝐶𝐹𝐺 is a decidable language. 

•  A tempting – but again, ultimately incorrect – approach is to enumerate all 

strings w and rely on the decidability of:

𝐴𝐶𝐹𝐺 = 𝐺,𝑤 | 𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑡ℎ𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 𝑤

to determine whether 𝐿 𝐺 = ∅. Of  course, this is an unsound approach, 

why? 
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Define: 

𝐸𝐶𝐹𝐺 = 𝐺 | 𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑎𝑛𝑑 𝐿 𝐺 = ∅

Theorem. 𝐸𝐶𝐹𝐺 is a decidable language. 

• Instead, we approach the problem is a fashion similar to the technique 

employed for the proof  the decidability of  𝐸𝐷𝐹𝐴.

Proof  idea: First, we “mark” all terminal symbols in 𝐺; next we 

recursively mark any variable A where 𝐺 has a rule A →
𝑈1𝑈2…𝑈𝑘 and each symbol 𝑈1𝑈2…𝑈𝑘 has already been marked. 

If  the start variable is not marked, accept; otherwise reject. 
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Define: 

𝐸𝑄𝐶𝐹𝐺 = 𝐺,𝐻 | 𝐺 𝑎𝑛𝑑 𝐻 𝑎𝑟𝑒 𝐶𝐹𝐺𝑠 𝑎𝑛𝑑 𝐿 𝐺 = 𝐿(𝐻)

Theorem. 𝐸𝑄𝐶𝐹𝐺 is a NOT a decidable language. 

• Previously we proved that the comparable problem for DFA, 𝐸𝑄𝐷𝐹𝐴 is decidable. What was 

the key insight for this proof? 
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Define: 

𝐸𝑄𝐶𝐹𝐺 = 𝐺,𝐻 | 𝐺 𝑎𝑛𝑑 𝐻 𝑎𝑟𝑒 𝐶𝐹𝐺𝑠 𝑎𝑛𝑑 𝐿 𝐺 = 𝐿(𝐻)

Theorem. 𝐸𝑄𝐶𝐹𝐺 is NOT a decidable language. 

• Previously we proved that the comparable problem for DFA, 𝐸𝑄𝐷𝐹𝐴 is decidable. What was 

the key insight for this proof? 

• We relied on the fact that 𝐸𝐷𝐹𝐴 is decidable and that when L C = 𝐿 𝐴 ∆ 𝐿(𝐵) (i.e. the 

symmetric difference of  the languages of  A and B) L C = ∅ iff L 𝐴 = 𝐿 𝐵 . The proof  

follows immediately by construction. 

• Notice, though, that we cannot use this approach for CFGs! 
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Define: 

𝐸𝑄𝐶𝐹𝐺 = 𝐺,𝐻 | 𝐺 𝑎𝑛𝑑 𝐻 𝑎𝑟𝑒 𝐶𝐹𝐺𝑠 𝑎𝑛𝑑 𝐿 𝐺 = 𝐿(𝐻)

Theorem. 𝐸𝑄𝐶𝐹𝐺 is NOT a decidable language. 

• Previously we proved that the comparable problem for DFA, 𝐸𝑄𝐷𝐹𝐴 is decidable. What was 

the key insight for this proof? 

• We relied on the fact that 𝐸𝐷𝐹𝐴 is decidable and that when L C = 𝐿 𝐴 ∆ 𝐿(𝐵) (i.e. the 

symmetric difference of  the languages of  A and B) L C = ∅ iff L 𝐴 = 𝐿 𝐵 . The proof  

follows immediately by construction. 

• Notice, though, that we cannot use this approach for CFGs! 

• The problem is that we relied on the fact that DFA are closed under regular operations (in 

addition to complement) – and CFGs do not obey these closure properties. In particular, 

CFGs are not closed under intersection or complement. We show the full method of  

proof  in the next chapter. 
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Let’s summarize the aforementioned results regarding decidability:

𝐴𝐷𝐹𝐴 = 𝐵,𝑤 |𝐵 𝑖𝑠 𝑎 𝐷𝐹𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤

𝐴𝑁𝐹𝐴 = 𝐵,𝑤 |𝐵 𝑖𝑠 𝑎𝑛 𝑁𝐹𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤

𝐸𝐷𝐹𝐴 = 𝐴 | 𝐴 𝑖𝑠 𝑎 𝐷𝐹𝐴 𝑎𝑛𝑑 𝐿 𝐴 = ∅

𝐸𝑄𝐷𝐹𝐴 = 𝐴, 𝐵 | 𝐴 𝑎𝑛𝑑 𝐵 𝑎𝑟𝑒 𝐷𝐹𝐴 𝑎𝑛𝑑 𝐿 𝐴 = 𝐿(𝐵)

𝐴𝐶𝐹𝐺 = 𝐺,𝑤 | 𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑡ℎ𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠 𝑤

𝐸𝐶𝐹𝐺 = 𝐺 | 𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑎𝑛𝑑 𝐿 𝐺 = ∅

𝐸𝑄𝐶𝐹𝐺 = 𝐺,𝐻 | 𝐺 𝑎𝑛𝑑 𝐻 𝑎𝑟𝑒 𝐶𝐹𝐺𝑠 𝑎𝑛𝑑 𝐿 𝐺 = 𝐿(𝐻)

Decidable Languages

All 

Decidable 

Undecidable



• We now explore one of  the most philosophically important ideas in the theory 

of  computation, undecidability. 

• On the surface, computers often appear to be so powerful that we may believe 

that all problems eventually yield to them. This is however far from the truth. 

• We now show that even computers have a fundamental limitation insofar as 

there exist problems that are algorithmically unsolvable (i.e. undecidable). 

Undecidability



Define: 

𝐴𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤

Theorem. 𝐴𝑇𝑀 is Turing-Recognizable

Undecidability



Define: 

𝐴𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤

Theorem. 𝐴𝑇𝑀 is Turing-Recognizable

Proof. Define U (a universal Turing Machine, i.e. it can simulate any 

other TM) that recognizes 𝐴𝑇𝑀.

𝑈: On input 𝑀,𝑤 , where 𝑀 is a TM and 𝑤 is a string, 

(1) Simulate 𝑀 on 𝑤

(2) If  𝑀 ever enters its accept state, accept; if  𝑀 ever enters its reject 

state, reject. 

*Notice that it is entirely possible that U loops forever – but this issue 

doesn’t directly affect the ability of   U to recognize 𝐴𝑇𝑀.
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Recall from our previous discussions regarding Cantor’s methods, 

the following fundamental definitions and concepts: 

• Two sets are equinumerous if  there exists a bijection between

them; we say that a set is countable if  it is finite or equinumerous with ℕ; we say 

that a set is uncountable if  its cardinality is strictly greater than ℵ0.

• If  A ⊊ 𝐵, 𝑎𝑛𝑑 𝐴 < ∞, then 𝐴 < 𝐵 . 

• Conversely, if  A ⊊ 𝐵 and 𝐴 = ∞ then 𝐴 ≤ 𝐵 .

• ℕ = ℤ = ℚ = ℵ0

• However, using the diagonalization technique, it follows that: 

ℚ < ℝ

• For any set A, 𝐴 < 𝑃 𝐴 .

Undecidability



Theorem. There are only countably-many TMs

Undecidability



Theorem. There are only countably-many TMs

• This astounding result is due to Turing and was proven in his seminal 

1936 paper.

How did Turing show this? Fundamentally, Turing melded two prior 

notions (Gödel encodings + diagonalization) with his own novel 

formalization of  algorithms and computational machines (TMs). 

Undecidability



Theorem. There are only countably-many TMs

• Every TM 𝑀 gives rise to a finite binary encoding (i.e. a binary string) 

which we denote 𝑀 . (Why is every 𝑀 finite in length?)
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Theorem. There are only countably-many TMs

• Every TM 𝑀 gives rise to a finite binary encoding (i.e. a binary string) 

which we denote 𝑀 . 

• The set of  all finite binary strings is countable. Why? (note that this 

different from the set of  all countably infinite binary strings which 

results in an uncountable set! You proved this result in a homework 

problem)

• Thus there are only countably-many TMs. 

Undecidability



Theorem. The set of  all language is uncountable, 

i.e. some languages are not Turing-recongizable). 

Proof. As mentioned, the set of  all infinite binary strings 𝐵 is uncountable. We now 

derive a bijection between 𝐿, the set of  all languages over alphabet Σ, and 𝐵.
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Theorem. The set of  all language is uncountable, 

i.e. some languages are not Turing-recongizable). 

Proof. As mentioned, the set of  all infinite binary strings 𝐵 is uncountable. We now 

derive a bijection between 𝐿, the set of  all languages over alphabet Σ, and 𝐵.

Let Σ∗ = 𝑠1, 𝑠2, 𝑠3, … . . We show that each language A ∈ 𝐿 has a unique sequence 

in 𝐵, yielding the necessary bijection. Define the characteristic sequence of  A (χ𝐴) as 

follows: the ith bit of  χ𝐴 is 1 if  𝑠𝑖 ∈ 𝐴 and 0 if  𝑠𝑖 ∉ 𝐴:

Σ∗ = 𝜀, 0, 1, 00, 01, 10, 11, 000, 001,…
𝐴 = 0,00, 01, 000, 001,…
χ𝐴 = 0,1, 0,1,1,0,0,1,1, …

This demonstrates 𝐿 = 𝐵 and the result follows. 

Undecidability



Define: 

𝐴𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤

Theorem. 𝐴𝑇𝑀 is undecidable.
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Define: 

𝐴𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤

Theorem. 𝐴𝑇𝑀 is undecidable.

Proof. Suppose not, and we assume on the contrary that 𝐴𝑇𝑀 is 

decidable; let 𝐻 be a decider for 𝐴𝑇𝑀.

So 𝐻 is defined: 

𝐻 𝑀,𝑤 = ቊ
𝑎𝑐𝑐𝑒𝑝𝑡 𝑖𝑓 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤

𝑟𝑒𝑗𝑒𝑐𝑡 𝑖𝑓 𝑀 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐𝑒𝑝𝑡 𝑤
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Define: 

𝐴𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤

Theorem. 𝐴𝑇𝑀 is undecidable.

Proof. Now we construct a new TM D with 𝐻 as a subroutine: 

D 𝑀 :

(1) Run 𝐻 on input 𝑀, 𝑀

(2) Output the opposite of  what 𝐻 outputs. That is, if  𝐻 accepts, 

reject; else accept. 
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Define: 

𝐴𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤

Theorem. 𝐴𝑇𝑀 is undecidable.

Proof. Now we construct a new TM D with 𝐻 as a subroutine: 

D 𝑀 :

(1) Run 𝐻 on input 𝑀, 𝑀

(2) Output the opposite of  what 𝐻 outputs. That is, if  𝐻 accepts, 

reject; else accept. 

*Key observation: By construction, neither D nor 𝐻 can exist! 
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𝐴𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤

Theorem. 𝐴𝑇𝑀 is undecidable.

Proof. *Key observation: By construction, neither D nor 𝐻 can exist! 

Recap: We assume TM 𝐻 decides 𝐴𝑇𝑀. We then use 𝐻 to construct TM 𝐷
that takes 𝑀 as input, where 𝐷 accepts its input 𝑀 exactly when 𝑀 does 

not accept its input 𝑀 . Finally, run 𝐷 on itself: 

• 𝐻 accepts 𝑀,𝑤 exactly when 𝑀 accepts 𝑤

• 𝐷 rejects 𝑀 exactly when 𝑀 accepts 𝑀

• 𝐷 rejects 𝐷 exactly when 𝐷 accepts 𝐷

Where does diagonalization come into play in this proof?
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𝐴𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤

Theorem. 𝐴𝑇𝑀 is undecidable.

Proof. 

• 𝐻 accepts 𝑀,𝑤 exactly when 𝑀 accepts 𝑤

• 𝐷 rejects 𝑀 exactly when 𝑀 accepts 𝑀

• 𝐷 rejects 𝐷 exactly when 𝐷 accepts 𝐷
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𝐴𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤

Theorem. 𝐴𝑇𝑀 is undecidable.

Proof. 

• 𝐻 accepts 𝑀,𝑤 exactly when 𝑀 accepts 𝑤

• 𝐷 rejects 𝑀 exactly when 𝑀 accepts 𝑀

• 𝐷 rejects 𝐷 exactly when 𝐷 accepts 𝐷
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• We just exhibited a language, 𝐴𝑇𝑀, that is undecidable. Now we explore a 

language that isn’t even Turing-recognizable. 

• Recall that the complement of  a language is the language consisting of  all 

strings that are not in the language. We say that a language is co-Turing-

recognizable if  it is the complement of  a Turing-recognizable language. 
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• We say that a language is co-Turing-recognizable if  it is the complement 

of  a Turing-recognizable language. 

Theorem. A language is decidable iff it is Turing-recognizable and co-

Turing-recognizable. 

Proof. → Suppose that language 𝐴 is decidable. It follows that both 𝐴 and 
ҧ𝐴 are Turing-recognizable. 

This follows because any decidable language is automatically Turing-

recognizable; furthermore, the complement of  a decidable language is also 

decidable – why? 
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Theorem. A language is decidable iff it is Turing-recognizable and co-

Turing-recognizable. 

Proof. ← Suppose that language 𝐴 Turing-recognizable and co-Turing-

recognizable. Let 𝑀1 be the recognizer for 𝐴 and 𝑀2 the recognizer for ҧ𝐴 . 

Then the following TM 𝑀 decides 𝐴 : 

𝑀 on input w: 

(1) Run both 𝑀1 and 𝑀2 on input 𝑤 in parallel (e.g. run on two tapes)

(2) If  𝑀1 accepts, accept; if  𝑀2 accepts, reject. 

Note that 𝑀 decides 𝐴; every string 𝑤 is either in 𝐴 or ҧ𝐴 . Thus either 𝑀1 or 

𝑀2 accepts 𝑤; 𝑀 always halts and so it is a decider for 𝐴, as was to be 

shown. 
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Corollary. 𝐴𝑇𝑀 is not Turing-recognizable. 

Proof. We know that 𝐴𝑇𝑀 is Turing-recognizable. If  𝐴𝑇𝑀 also were 

Turing-recognizable, then, by the previous Theorem 𝐴𝑇𝑀 would be 

decidable. 

But we have previously demonstrated that 𝐴𝑇𝑀 is not decidable, hence,

𝐴𝑇𝑀 is not Turing-recognizable, as was to be shown.  

Undecidability



Fin


