

The Church-Turing Thesis

### Contents

- Turing Machines
- Variants of Turing Machines

Recalling the computational models we have encountered thus far:
(\*) FA (very limited amount of memory)
(\*) PDA (unlimited memory but limited to LIFO processing)

• In both cases these models were too restrictive to serve as models for general computation.

• Turing's 1936 paper "On Computable Numbers, With an Application to the Entscheidungsproblem" introduced (concurrent to Church) a general-purpose computational model – the **Turing Machine** (TM) – equivalent in power to modern day (even quantum) cor By A. M. TURING.

[Received 28 May, 1936.-Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real

numbers whose expressions as a decim Although the subject of this paper is os it is almost equally easy to define and of an integral variable or a real or o predicates, and so forth. The fund however, the same in each case, and I ha for explicit treatment as involving the I shortly to give an account of the relat functions, and so forth to one another. of the theory of functions of a real va putable numbers. According to my de if its decimal can be written down by a



equivalent in power to modern day (even quantum) computational models.

• Importantly, Turing showed that even these general-purpose devices cannot solve certain problems – that is, these problems are beyond the theoretical limits of computation.

• TMs use an **infinite tape** for memory; a TM has a **tape head** that can *read/write* symbols and move *left/right* along the tape.

• Initially, the tape contains only the input string and is blank everywhere else; the machine continues computing until it produces an output.

• The outputs **accept** and **reject** are obtained by entering designated *accepting/rejecting* state. If the TM doesn't enter an accepting/rejecting state it will go on forever, without halting.



- Here is a summary of the differences between FA and TMs:
  - (1) A TM can both read/write with respect to its tape
  - (2) The tape head can move both left/right
  - (3) The tape is infinite
  - (4) The special states for rejecting and accepting take effect immediately
- Let's consider TM  $M_1$  for testing membership in the language:  $B = \{w \# w | w \in \{0,1\}^*\}$ .

Basic Idea for M<sub>1</sub>:

(1) Zig-zag across the tape to corresponding positions on either side of #; if same symbol is found, cross them off; otherwise if not or no # is found **reject**.

(2) When all symbols left of the # have been crossed off, check to see if there are any remaining symbols to right of #; if symbols remain **reject**; otherwise, **accept**.

• Let's consider TM M<sub>1</sub> for testing membership in the language:  $B = \{w \# w | w \in \{0,1\}^*\}.$ 

Basic Idea for M<sub>1</sub>:

(1) Zig-zag across the tape to corresponding positions on either side of #; if same symbol is found, cross them off; otherwise if not or no # is found **reject**.

(2) When all symbols left of the # have been crossed off, check to see if there are any remaining symbols to right of #; if symbols remain **reject**; otherwise, **accept**.

Here is an example run for the input 011000#011000 on  $M_1$ .

A *Turing machine* is a 7-tuple,  $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ , where  $Q, \Sigma, \Gamma$  are all finite sets and

- **1.** Q is the set of states,
- **2.**  $\Sigma$  is the input alphabet not containing the *blank symbol*  $\sqcup$ ,
- **3.**  $\Gamma$  is the tape alphabet, where  $\sqcup \in \Gamma$  and  $\Sigma \subseteq \Gamma$ ,
- **4.**  $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$  is the transition function,
- **5.**  $q_0 \in Q$  is the start state,
- **6.**  $q_{\text{accept}} \in Q$  is the accept state, and
- 7.  $q_{\text{reject}} \in Q$  is the reject state, where  $q_{\text{reject}} \neq q_{\text{accept}}$ .

#### <u>A few notes:</u>

• M receives its input  $w = w_1 \dots w_n \in \Sigma^*$  on the leftmost n squares of the tape, and the rest of the tape is blank. Note that  $\Sigma$  does not contain the blank symbol.

• If M every tries to move its head to the left of the left-hand end of the tape, the head stays in the same place.

• As a TM computes, changes occur in the current state, the current tape contents and the current head location. A setting of these three items is called a configuration of the TM.

• We say that configuration  $C_1$  yields configuration  $C_2$  if the TM can legally go from  $C_1$  to  $C_2$  in a single step.

• Concretely, suppose we have a, b, and c in  $\Sigma$ , as well as u and v in  $\Gamma$  and states  $q_i$  and  $q_j$ . In that case,  $ua q_i bv$  and  $u q_j acv$  are two configurations. Say that:

 $ua q_i bv$  yields  $u q_j acv$ 

if in the transition function  $\delta(q_i, b) = (q_j, c, L)$ . That handles the case where the TM moves leftward. For rightward move, we say that:

 $ua q_i bv$  yields  $uac q_j v$ 

if  $\delta(q_i, b) = (q_j, c, R)$ .



**FIGURE 3.4** A Turing machine with configuration  $1011q_701111$ 

• The start configuration of M on input w is the configuration  $q_0 W$ ; in an accepting configuration, the state of the configuration is  $q_{accept}$ ; in a rejecting configuration, the state configuration is  $q_{reject}$ .

• Accepting and rejecting configurations are called **halting configurations** and do not yield further configurations.

- A TM accepts input w if a sequence of configurations  $C_1, C_2, ..., C_k$ , where:
- (1)  $C_1$  is the start configuration of M on input W
- (2) Each  $C_i$  yields  $C_{i+1}$
- (3)  $C_k$  is an accepting configuration

• The collection of strings that M accepts is the language of M, denoted L(M).

A language is called **Turing-recognizable** if some TM recognizes it.

• Note that when a TM is run on an input, *three outcomes are possible*: accept, reject or loop (indefinitely).

A TM can fail to accept an input by entering the  $q_{reject}$  state or by looping. A *decider* is a TM that halts on all inputs (i.e. it always makes a "decision").

A language is **Turing-decidable** or simply **decidable** if some TM decides it.

• The collection of strings that M accepts it the language of M, denoted L(M).

A language is called **Turing-recognizable** if some TM recognizes it.

• Note that when a TM is run on an input, *three outcomes are possible*: accept, reject or loop (indefinitely).

A TM can fail to accept an input by entering the  $q_{reject}$  state or by looping. A *decider* is a TM that halts on all inputs (i.e. it always makes a "decision").

A language is **Turing-decidable** or simply **decidable** if some TM decides it.

(\*) Observe that every decidable language is Turing-recognizable; however, there exist <u>Turing-recognizable languages that are undecidable</u>.

• For simplicity, we typically avoid formal (and thus often tedious) definitions of TMs; instead, we <u>often prefer a high-level description</u>.

Here we describe a Turing machine (TM)  $M_2$  that decides  $A = \{0^{2^n} | n \ge 0\}$ , the language consisting of all strings of 0s whose length is a power of 2.

 $M_2 =$  "On input string w:

- 1. Sweep left to right across the tape, crossing off every other 0.
- 2. If in stage 1 the tape contained a single 0, *accept*.
- **3.** If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, *reject*.
- 4. Return the head to the left-hand end of the tape.
- 5. Go to stage 1."



Here we describe a Turing machine (TM)  $M_2$  that decides  $A = \{0^{2^n} | n \ge 0\}$ , the language consisting of all strings of 0s whose length is a power of 2.

 $M_2 =$  "On input string w:

- 1. Sweep left to right across the tape, crossing off every other 0.
- 2. If in stage 1 the tape contained a single 0, *accept*.
- 3. If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, *reject*.

 $0 \rightarrow x, R$ 

 $\mathtt{x}{\rightarrow}R$ 

- 4. Return the head to the left-hand end of the tape.
- 5. Go to stage 1."



- We describe o with a state diagram (see Figure 3.8).
- The start, accept, and reject states are  $q_1$ ,  $q_{\text{accept}}$ , and  $q_{\text{reject}}$ , respectively.



 $q_10000$   $\Box q_2000$   $\Box x q_300$   $\Box x 0 q_40$   $\Box x 0 x q_3 \Box$   $\Box x 0 q_5 x \Box$  $\Box x q_50 x \Box$   $ar{q}_5$  $ar{x}$ 0 $ar{x}$  $ar{u}$   $ar{q}_5$  $ar{u}$  $ar{x}$ 0 $ar{x}$  $ar{u}$   $ar{u}q_2$  $ar{x}$ 0 $ar{x}$  $ar{u}$   $ar{u}$  $ar{x}q_2$ 0 $ar{x}$  $ar{u}$   $ar{u}$  $ar{x}xq_3$  $ar{x}$  $ar{u}$   $ar{u}$  $ar{x}$  $ar{x}q_3$  $ar{x}$  $ar{u}$  $ar{u}$  $ar{x}$  $ar{x}q_5$  $ar{x}$  $ar{u}$ 

The following is a formal description of  $M_1 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{accept}}, q_{\text{reject}})$ , the Turing machine that we informally described (page 167) for deciding the language  $B = \{w \# w | w \in \{0,1\}^*\}$ .

- $Q = \{q_1, \ldots, q_8, q_{\text{accept}}, q_{\text{reject}}\},\$
- $\Sigma = \{0,1,\#\}$ , and  $\Gamma = \{0,1,\#,x,\sqcup\}$ .
- We describe  $\delta$  with a state diagram (see the following figure).
- The start, accept, and reject states are  $q_1$ ,  $q_{\text{accept}}$ , and  $q_{\text{reject}}$ , respectively.



The following is a formal description of  $M_1 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{accept}}, q_{\text{reject}})$ , the Turing machine that we informally described (page 167) for deciding the language  $B = \{w \# w | w \in \{0,1\}^*\}$ .

- $Q = \{q_1, \ldots, q_8, q_{\text{accept}}, q_{\text{reject}}\},\$
- $\Sigma = \{0,1,\#\}$ , and  $\Gamma = \{0,1,\#,x,\sqcup\}$ .
- We describe  $\delta$  with a state diagram (see the following figure).
- The start, accept, and reject states are  $q_1$ ,  $q_{\text{accept}}$ , and  $q_{\text{reject}}$ , respectively.

 $q_1 101 # 101 \beta$   $Xq_3 01 # 101 \beta$   $X 0q_3 1 # 101 \beta$   $X 01q_3 # 101 \beta$   $X 01q_3 # 101 \beta$   $X 01 # q_5 101 \beta$   $X 01q_6 # X 01 \beta$   $\vdots$   $q_7 X 01 # X 01 \beta$  $Xq_1 01 # X 01 \beta$ 

 $\begin{array}{l} Xq_7 X1 \# XX1\beta \\ XXq_1 1 \# XX1\beta \end{array}$ 

 $XXq_7 X \# XXX \beta$  $XXXq_1 \# XXX \beta$  $XXX \# q_8 XXX \beta$ :

XXX # XXX  $\beta q_{accept}$ 



Here, a TM  $M_3$  is doing some elementary arithmetic. It decides the language  $C = \{ a^i b^j c^k | i \times j = k \text{ and } i, j, k \ge 1 \}.$ 

 $M_3 =$  "On input string w:

- Scan the input from left to right to determine whether it is a member of a\*b\*c\* and *reject* if it isn't.
- 2. Return the head to the left-hand end of the tape.
- 3. Cross off an a and scan to the right until a b occurs. Shuttle between the b's and the c's, crossing off one of each until all b's are gone. If all c's have been crossed off and some b's remain, *reject*.
- 4. Restore the crossed off b's and repeat stage 3 if there is another a to cross off. If all a's have been crossed off, determine whether all c's also have been crossed off. If yes, *accept*; otherwise, *reject*."

• Variants of TMs include TMs with multiple tapes (and tape heads) and non-deterministic machines.

• Remarkably, these variants all possess the same computational power as the original **TM** we described (meaning that they recognize the same languages); in this way we say that TMs are **robust**, in this sense that they are <u>invariant to these modifications</u>.

• A **multitape TM** is identical to the original TM with the addition of several tapes. Conventionally, the input appears on tape 1 and the other tapes start out blank; each tape has its own head for reading and writing.

The transition function is altered to accommodate multiple tapes as follows:

 $\delta: Q \times \Gamma^k \longrightarrow Q \times \Gamma^k \times \{L, R, S\}^k,$ 

where k is the number of tapes (L: left, R: right, S: stay put); the expression:

$$\delta(q_i, a_1, \dots, a_k) = (q_j, b_1, \dots, b_k, L, R, \dots, L)$$

means that if the machine is in state  $q_i$  the heads 1 through k are reading symbols  $a_1$  through  $a_k$ , the machine goes to state  $q_j$ , writes symbols  $b_1$  through  $b_k$ , and directs each head to move left or right, or to stay put, as specified.

**Theorem**. Every multitape TM has an equivalent single-tape TM, i.e. multitape TMs are equivalent in power to single-tape TMs.

**Proof.** We describe how to convert a multitape TM M to an equivalent single-tape TM S.

Say that M has k tapes. Then S simulates the effect of k tapes by storing their information on a single tape. S uses the new symbol # as a delimiter.

In addition to the contents of these tapes, <u>S must keep track of the locations of the heads</u>. It does so by <u>writing a tape symbol with a dot</u> above it to mark the place where the head of the tape would be.



**Theorem**. Every multitape TM has an equivalent single-tape TM, i.e. multitape TMs are equivalent in power to single-tape TMs.



$$S =$$
 "On input  $w = w_1 \cdots w_n$ 

1. First S puts its tape into the format that represents all k tapes of M. The formatted tape contains

 $#w_1w_2 \cdots w_n # \square # \square # \square # \dots #.$ 

- 2. To simulate a single move, S scans its tape from the first #, which marks the left-hand end, to the (k + 1)st #, which marks the right-hand end, in order to determine the symbols under the virtual heads. Then S makes a second pass to update the tapes according to the way that M's transition function dictates.
- 3. If at any point S moves one of the virtual heads to the right onto a #, this action signifies that M has moved the corresponding head onto the previously unread blank portion of that tape. So S writes a blank symbol on this tape cell and shifts the tape contents, from this cell until the rightmost #, one unit to the right. Then it continues the simulation as before."

Corollary. A language is Turing-recognizable iff some multitape TM recognizes it.

#### Non-deterministic Turing Machines

• Recall that with **non-determinism**, the <u>transition function outputs a set</u> (of possible states, symbols, etc.). <u>The computation graph of a non-deterministic TM is a tree</u> whose branches correspond to different possibilities for the machine.

• The transition function for a non-deterministic TM has the form:

 $\delta: Q \times \Gamma^k \longrightarrow P(Q \times \Gamma \times \{L, R\})$ 

Theorem. Every non-deterministic TM has an equivalent deterministic TM.

**Proof Idea**: We can simulate any non-deterministic TM N with a deterministic TM D. The idea is to have D try all possible branches of N's non-deterministic computation.

• If *D* ever finds and accept state on one of these branches, *D* accepts. Otherwise, *D*'s simulation will not terminate.

• Consider N's computation on an input w as a tree; each branch is a non-deterministic computation, and each node is a configuration of N; the root of the tree is the start configuration.

In summary, we have D simulate N by performing a BFS (*breadth-first search*) over the computation tree of N (note that using DFS is a bad idea here – why?).

Theorem. Every non-deterministic TM has an equivalent deterministic TM.

**Proof.** The simulating deterministic TM *D* has three tapes (which is computationally equivalent to one tape by the preceding theorem).

Tape 1 contains the input string (these tape contents are never altered); Tape 2 maintains a copy of N's tape on some branch of its non-deterministic computation; Tape 3 keeps track of D's location in N's non-deterministic computation tree.



Theorem. Every non-deterministic TM has an equivalent deterministic TM.

Say that every node in the tree has at most *b* children (so *b* is the "branching factor" of the tree); to every node in the tree we assign an address that is a string over the alphabet  $\Gamma_b = \{1, 2, ..., b\}$ . For example, we assign the address 231 to the node we arrive at by starting at the root, going to its 2<sup>nd</sup> child, going to that node's 3<sup>rd</sup> child, and finally going to the node's first child. In this fashion, Tape 3 contains a string over  $\Gamma_b$ .



- **1.** Initially, tape 1 contains the input *w*, and tapes 2 and 3 are empty.
- **2.** Copy tape 1 to tape 2 and initialize the string on tape 3 to be  $\varepsilon$ .
- 3. Use tape 2 to simulate N with input w on one branch of its nondeterministic computation. Before each step of N, consult the next symbol on tape 3 to determine which choice to make among those allowed by N's transition function. If no more symbols remain on tape 3 or if this nondeterministic choice is invalid, abort this branch by going to stage 4. Also go to stage 4 if a rejecting configuration is encountered. If an accepting configuration is encountered, *accept* the input.
- **4.** Replace the string on tape 3 with the next string in the string ordering. Simulate the next branch of *N*'s computation by going to stage 2.

**Corollary**. A language is Turing-recognizable *iff* some non-deterministic TM recognizes it.

• We can modify the previous proof so that <u>if N always halts on all branches of its</u> <u>computation, D will always halt</u>. We call a non-deterministic TM a **decider** if all branches halt on all inputs.

Corollary. A language is decidable *iff* some non-determinstic TM decides it.

#### **Enumerators**:

• Note that the term **recursively enumerable language** is used synonymously (in other sources) for a *Turing-recognizable language*.

• The term originates from a type of TM variant called an **enumerator**. Put informally, <u>an</u> <u>enumerator is a TM with an attached "printer."</u> The TM can use its printer as an output device to print strings.

• An enumerator E starts with a blank input on its work tape. The <u>language enumerated by</u> <u>E is the collection of all the strings that it eventually prints out</u>. Note that E may generate the strings of the language in any order (and possibly with repetition).



Theorem. A language is Turing-recognizable iff some enumerator enumerates it.

**Proof.** First we show that if we have an enumerator E that enumerates a language A, a TM M recognizes A.

The TM *M* works in the following way:

M: on input w

- (1) Run E. Every time that E outputs a string, compare it with w.
- (2) If *w* every appears in the output of *E*, accept.

Conversely, if a TM *M* recognizes a language *A*, we can construct the following enumerator *E* for *A*. Say that  $s_1, s_2, s_3, \ldots$  is a list of all possible strings in  $\Sigma^*$ .

E: ignore the input

- (1) Repeat the following for i = 1, 2, 3, ...
- (2) Run *M* for *i* steps on each input,  $s_1, s_2, ..., s_i$ .
- (3) If any computations accept, print out the corresponding  $s_j$ .

If M accepts a particular string s, eventually it will appear on the list generate by E. In fact, it will appear on the list infinitely many times because M runs from the beginning on each string for each repetition of step 1. This procedure gives the effect of running M in parallel on all possible input strings.

• Many other models of general-purpose computation have been proposed (e.g. Church's lambda-calculus, among others). <u>All share the essential features of TMs</u>, namely: unrestricted access to unlimited memory. Remarkably, <u>all models with that feature turn</u> **out to be equivalent in power** (under some reasonable requirements, e.g. finite compute time).

• Recall that prior to the work of Church and Turing, the scientific community was wanting of a formal definition of an algorithm.

• In particular, several of **Hilbert's 23 millennium problems** (1900) alluded to "processes" which yield a solution in a finite number of steps. Famously, Hilbert's *10th Problem* asks for the derivation of such a process <u>to determine whether a polynomial has an integral root</u> (he presumed that such a procedure exists; in 1970 this was proven impossible).

The **Church-Turing Thesis** asserts the equivalence of the intuitive notion of an algorithm (i.e. a sequence of "pencil and paper operations") with Turing machine algorithms.

Church-Turing Thesis.Intuitive notion of algorithms $\leftrightarrow$ Turing Machine algorithms.



