
Context-Free Languages

• Context-Free Grammars

• Pushdown Automata

• Non-Context-Free Languages

Contents

• To date we have seen two different, though equivalent, methods of describing

languages: finite automata and regular expressions. In addition, we have seen several

examples of non-regular languages, indicating the existence of more powerful

abstract computational models.

• In this section we consider context-free grammars, a more powerful method

of describing languages using a recursive structure.

• The collection of languages associated with context-free grammars are called

context-free languages. They include all regular languages and many more.

Context-Free Grammars

• Importantly, context-free grammar applications occur in the specification and

compilation of programming languages. Designers of compilers and

interpreters for programming languages often start by obtaining a grammar

for the language.

• A number of methodologies facilitate the construction of a parser using a

context-free grammar; parser are commonly use in NLP (natural language

processing) and related AI/ML domains.

Context-Free Grammars

• Context-free grammars are typically defined as a set of substitution rules

(also called productions).

• Each rule appears as a line in the grammar, comprising a symbol and a

string separated by an arrow. The symbol is called a variable; the string consist

of variables and terminals; terminals are analogous to the input alphabet and

may consist of letters, numbers or special symbols.

• One variable is designed as the start variable.

Here is a basic example of a context-free grammar G:

𝐴 → 0𝐴1
𝐴 → 𝐵
𝐵 → #

G contains the variables 𝐴 (start) and 𝐵; its terminals are 0,1 and #.

Context-Free Grammars

• Grammars generate strings in a language: we start with the substitution rule

pertaining to the start variable; next, we recursively and sequentially iterate the

rules of the grammar until no variables remain.

• For example, G given previously can generate the string 000#111 via the

following sequence of substitutions:

𝐴 → 0𝐴1

𝐴 → 𝐵

𝐵 → #

𝐴 → 0𝐴1 → 00𝐴11 → 000𝐴111 → 000𝐵111 → 000#111

• We call this procedure a derivation. This derivation gives rise to a

corresponding visualization called a parse tree, as shown.

Context-Free Grammars

• All strings generated in this way constitute the language of the grammar,

denoted L(G). Any language that can be generated by some context-free

grammar is called a context-free language (CFL).

We can generate the language of balanced parentheses as follows:

S → 𝑆 |𝑆𝑆|ε

where the symbol ′|′ denotes “or” when we combine several grammar

derivation rules in one line.

Context-Free Grammars

• Recall that we previously established that the language defined by: 𝐵 =
0𝑛1𝑛|𝑛 ≥ 0 is not regular. However, it is easy to see that 𝐵 is a CFL, as

the following grammar generates it:

S → 0𝑆1|ε

Context-Free Grammars

• Here is another example of a context-free grammar, called 𝐺2 which

describes a fragment of the English language:

Context-Free Grammars

• We now give the formal definition of a CFG:

If u, v, and w are string of variables and terminals, and 𝐴 → 𝑤 is a rule of the

grammar, we say that uAv yields uwv, written uAv → uwv; the language of

the grammar is 𝑤 ∊ Σ∗|𝑆 → 𝑤 .

Context-Free Languages

Context-Free Languages

• We now consider some general techniques for constructing CFLs.

• First, note that many CFLs can be defined as the union of simpler CFLs.

When possible, consider breaking a complex CFL into discrete “parts”, and

then take the union of these parts.

As a straightforward example, consider the CFL: 0𝑛1𝑛|𝑛 ≥ 0 ∪ ሼ
ሽ

1𝑛0𝑛|𝑛 ≥
0 ; an obvious construction is given by:

Context-Free Languages

• Second, constructing a CFG for a regular language is generally easy, as one

can first construct a DFA, and then convert the DFA into a CFL.

• To do this, make a variable 𝑅𝑖 for each state 𝑞𝑖 in the DFA; next, add the rules

𝑅𝑖 → 𝑎𝑅𝑗 if δ 𝑞𝑖 , 𝑎 = 𝑞𝑗 is a transition in the DFA. Add the rule 𝑅𝑖 → ε if

𝑞𝑖 is an accept state; make 𝑅0 the start variable where 𝑞0 is the start state of the

machine.

• Third, oftentimes CFLs contain certain recursive structures (e.g. requiring the

same number of 0s and 1s); in this case, place the variable symbol generating

the structure in the location of the rules corresponding to where the recursion

occurs, e.g. R → 𝑎𝑅𝑏.

Context-Free Languages

Ambiguity

• Sometimes a grammar can generate the same string in several different ways. Such a

string will have several different parse trees (and thus potentially different meanings)

If a grammar generates some string in several different ways, we say (informally) the

grammar is ambiguous. For example:

• Notice that the previous example doesn’t capture the usual operation precedence

rules.

Context-Free Languages

Ambiguity

• We say that a derivation of a string w in a grammar G is a leftmost derivation if at

every step the leftmost remaining variable is the one replaced. For example, consider

the grammar: X → 𝑋 + 𝑋 𝑋 ∗ 𝑋 𝑋|𝑎; then the leftmost derivation of the string a + a ∗
a is given by:

X → 𝑋 + 𝑋 → 𝑎 + 𝑋 → 𝑎 + 𝑋 ∗ 𝑋 → 𝑎 + 𝑎 ∗ 𝑋 → 𝑎 + 𝑎 ∗ 𝑎

Context-Free Languages

Ambiguity

• We say that a derivation of a string w in a grammar G is a leftmost derivation if at

every step the leftmost remaining variable is the one replaced. For example, consider

the grammar: X → 𝑋 + 𝑋 𝑋 ∗ 𝑋 𝑋|𝑎; then the leftmost derivation of the string a + a ∗
a is given by:

X → 𝑋 + 𝑋 → 𝑎 + 𝑋 → 𝑎 + 𝑋 ∗ 𝑋 → 𝑎 + 𝑎 ∗ 𝑋 → 𝑎 + 𝑎 ∗ 𝑎

With this in mind, the formal definition of an ambiguous grammar is given by:

• Some languages can be generated by both ambiguous and unambiguous grammars;

however, some languages can only be generated by ambiguous grammars; we call these

inherently ambiguous languages.

Context-Free Languages

• It is commonly useful to express a CFG in “simplified form”; a common, simple

form for CFGs is Chomsky normal form. Note that all CFGs admit of a Chomsky

normal form (we show this shortly):

Context-Free Languages

Theorem. Any CFL is generated by a CFG in Chomsky normal form.

• Proof idea: We show how to convert any grammar G into Chomsky normal form. (1)

We add a new start variable; (2) we eliminate all epsilon rules of the form A → 𝜀; (3) we

eliminate all “unit rules” of the form A →B; finally, we convert the remaining rules into

the proper form.

Context-Free Languages

Theorem. Any CFL is generated by a CFG in Chomsky normal form.

• Proof idea: We show how to convert any grammar G into Chomsky normal form. (1)

We add a new start variable; (2) we eliminate all epsilon rules of the form A → 𝜀; (3) we

eliminate all “unit rules” of the form A →B; finally, we convert the remaining rules into

the proper form.

(1) We add a new start variable 𝑆0 and corresponding rule 𝑆0 → 𝑆.

(2) Next, we handle all of the 𝜀 rules. To do this we first delete a rule of the form A →
𝜀 for the variable A; next, for each occurrence of this variable on the right-hand

side of a rule, we add a new rule with that occurrence deleted, for instance, the rule

R → 𝑢𝐴𝑣𝐴 would be replaced by R → 𝑢𝐴𝑣𝐴, R → 𝑢𝑣𝐴, R → 𝑢𝐴𝑣, R → 𝑢𝑣.

Context-Free Languages

Theorem. Any CFL is generated by a CFG in Chomsky normal form.

(1) We add a new start variable 𝑆0 and corresponding rule 𝑆0 → 𝑆.

(2) Next, we handle all of the 𝜀 rules. To do this we first delete a rule of the form

A → 𝜀 for the variable A; next, for each occurrence of this variable on the right-

hand side of a rule, we add a new rule with that occurrence deleted, for instance,

the rule R → 𝑢𝐴𝑣𝐴 would be replaced by R → 𝑢𝐴𝑣𝐴, R → 𝑢𝑣𝐴, R → 𝑢𝐴𝑣, R →
𝑢𝑣.

(3) Eliminate all unit rules of the form A → 𝐵, then, whenever a rule B → 𝑢 appears,

we add the rule A → 𝑢 , for example.

(4) Lastly, we convert all remaining rules into the proper form. For example, the rule

A → 𝑢1𝑢2𝑢3 would be replaced with A → 𝑢1𝐴1, 𝐴1 → 𝑢2𝐴2, 𝐴2 → 𝑢3.

Context-Free Languages

Theorem. Any CFL is generated by a CFG in Chomsky normal form.

Context-Free Languages

Context-Free Languages
•Give CFGs generating the following languages:

(i) the set of strings over the alphabet 𝑎, 𝑏 with more a’s than b’s.

Context-Free Languages
•Give CFGs generating the following languages:

(i) the set of strings over the alphabet 𝑎, 𝑏 with more a’s than b’s.

S → 𝑇𝑎𝑇

𝑇 → 𝑇𝑇 𝑎𝑇𝑏 𝑏𝑇𝑎|𝑎|ε

Context-Free Languages
•Give CFGs generating the following languages:

(i) the set of strings over the alphabet 𝑎, 𝑏 with more a’s than b’s.

S → 𝑇𝑎𝑇

𝑇 → 𝑇𝑇 𝑎𝑇𝑏 𝑏𝑇𝑎|𝑎|ε

(ii) 𝑤#𝑥|𝑤𝑅 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑓 𝑥 𝑓𝑜𝑟 𝑤, 𝑥 ∈ 0,1 ∗

Context-Free Languages
•Give CFGs generating the following languages:

(i) the set of strings over the alphabet 𝑎, 𝑏 with more a’s than b’s.

S → 𝑇𝑎𝑇

𝑇 → 𝑇𝑇 𝑎𝑇𝑏 𝑏𝑇𝑎|𝑎|ε

(ii) 𝑤#𝑥|𝑤𝑅 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑓 𝑥 𝑓𝑜𝑟 𝑤, 𝑥 ∈ 0,1 ∗

S → 𝑇𝑋
𝑇 → 0𝑇0 1𝑇1 #𝑋
𝑋 → 0𝑋 1𝑋 ε

Context-Free Languages
• Give CFGs generating the following languages:

(iii) The complement of 0𝑖 , 1𝑗|𝑖, 𝑗 > 0

Context-Free Languages
• Give CFGs generating the following languages:

(iii) The complement of 0𝑖 , 1𝑗|𝑖, 𝑗 > 0

S → 𝐴|𝐵|𝐶
𝐴 → 𝐷10𝐷
D → 0𝐷 1𝐷 ε

𝐵 → 0𝐵|0, 𝐶 → 1𝐶|1

• Notice that A will produce all strings with a 0 and 1 out of order, variable B will

produce strings of zeros, variable C will produce strings of ones, and variable D will

produce all strings.

• Finite state automata were severely limited in their computational capacity due to their

lack of memory. We now introduce a new type of computational model called a

pushdown automaton (PDA) which includes an extra memory component called a

stack.

• PDA can write symbols on the stack and read them back later. Writing a symbol

“pushes down” all the other symbols on the stack (think LIFO queue); at any time, the

symbol on the top of the stack can be read and removed (i.e. we can “pop” the stack)

Pushdown Automata

•The stack is important structurally as it can hold an unlimited amount of information;

this unlimited structure allows the PDA to store numbers of an unbounded size, e.g.,

0𝑛1𝑛|𝑛 ≥ 0 .

• Additionally, PDA may be non-deterministic; unlike FA, non-deterministic PDA

can recognize certain languages that no deterministic PDA can recognize. We assume

a referenced PDA is non-deterministic unless explicitly stated otherwise.

• (non-deterministic) PDA are equivalent in power to context-free grammars.

Pushdown Automata

A few notes regarding the formal definition of a PDA:

• The alphabet for the stack Γ may use different (but not necessarily) symbols than

those from the input alphabet Σ.

• The domain of the transition function is 𝑄 × Σε × Γε; the non-determinism of the

PDA entails that the transition function maps to a set, namely P(𝑄 × Γε), so the

machine transitions to a new state while writing (possible the empty string) to the top

of the stack.

Pushdown Automata

Pushdown Automata

Pushdown Automata
• Here is a formal descript of the PDA that recognizes 0𝑛1𝑛|𝑛 ≥ 0 . Let 𝑀1 be

𝑄,Σ,Γ, 𝛿, 𝑞1, 𝐹 , where:

Notice that transitions are written in the form: 𝑎, 𝑏 → 𝑐 to signify when a PDA is treading an 𝑎
from the input, it may replace the symbol 𝑏 on the stop of the stack with a 𝑐. The special

symbol $ is typically used to signal when the stack is empty.

Pushdown Automata
• We now consider the construction of a PDA recognizing the language:

𝑎𝑖𝑏𝑗𝑐𝑘|𝑖, 𝑗, 𝑘 ≥ 0 𝑎𝑛𝑑 𝑖 = 𝑗 𝑜𝑟 𝑖 = 𝑘

Our general strategy is as follows: read and “push” all of the a’s; next match them with

either the b’s or c’s. Because we don’t know in advance whether to match the a’s with the

b’s or the c’s, we appeal to non-determinism.

Pushdown Automata
• We now consider the construction of a PDA recognizing the language:

𝑎𝑖𝑏𝑗𝑐𝑘|𝑖, 𝑗, 𝑘 ≥ 0 𝑎𝑛𝑑 𝑖 = 𝑗 𝑜𝑟 𝑖 = 𝑘

Our general strategy is as follows: read and “push” all of the a’s; next match them with

either the b’s or c’s. Because we don’t know in advance whether to match the a’s with the

b’s or the c’s, we appeal to non-determinism.

Pushdown Automata
• Consider another example, where we construct a PDA for the given language:

𝑤𝑤𝑅|𝑤 ∊ 0,1 ∗

Our general strategy is as follows: begin by pushing the symbols that are read onto the

stack; at each point non-deterministically guess that the middle of the string has been

reached and then revert to popping off the stack for each symbol read, check to see if

they are the same. Note that this PDA requires non-determinism.

Pushdown Automata
• Consider another example, where we construct a PDA for the given language:

𝑤𝑤𝑅|𝑤 ∊ 0,1 ∗

Our general strategy is as follows: begin by pushing the symbols that are read onto the

stack; at each point non-deterministically guess that the middle of the string has been

reached and then revert to popping off the stack for each symbol read, check to see if

they are the same.

Pushdown Automata
• As mentioned, PDA and context-free grammars are equivalent in power (recall we

assume the PDA is non-deterministic unless stated otherwise).

The major theorem of this section relates to proving this equivalence:

Theorem. A language is context-free if and only if some PDA recognizes it.

• As usual with any iff statement, it is necessary to prove both conditional implications;

for brevity, we prove one direction (→)in class (the remaining proof can be found in

Sipser).

• A basic consequence of this theorem is that every regular language is context-free.

Pushdown Automata
Lemma. If a language is context-free, then some PDA recognizes it.

Proof Idea: Let A be a CFL, so A has a corresponding CFG, G, generating it. We show

how to convert G into an equivalent PDA, which we call P.

• The PDA P will work by accepting its input w if G generate that input, by determining

whether there is a derivation for w.

Pushdown Automata
Lemma. If a language is context-free, then some PDA recognizes it.

Proof Idea: Let A be a CFL, so A has a corresponding CFG, G, generating it. We show

how to convert G into an equivalent PDA, which we call P.

• The PDA P will work by accepting its input w if G generate that input, by determining

whether there is a derivation for w.

• One of the difficulties in testing whether there is a derivation for w is in figuring out

which substitutions to make – we utilize the PDA’s non-determinism to guess the

sequence of correct substitutions.

• The remaining complication stems from the issue of the PDA storing the intermediate

strings – in short, we store only part of the intermediate string on the stack : the symbols

starting with the first variable in the intermediate string. Any terminal symbols appearing

before the first variable are matched immediately with symbols in the input string.

Pushdown Automata
Lemma. If a language is context-free, then some PDA recognizes it.

Proof Idea: Let A be a CFL, so A has a corresponding CFG, G, generating it. We show

how to convert G into an equivalent PDA, which we call P.

• With those things in mind, here is an informal description of P.

1. Place the marker symbol $ and the start variable on the stack.

2. Repeat the following steps:

a. If the top of the stack is the variable symbol A, non-deterministically select one

of the rules for A and substitute A by the string on the right-hand side of the

rule.

b. If the top of the stack is the terminal symbol a, read the next symbol from the

input and compare it to a. If they match, repeat. If they do not match, reject on this

branch of the non-determinism.

c. If the top of the stack is the symbol $, enter the accept state.

Pushdown Automata
Lemma. If a language is context-free, then some PDA recognizes it.

Proof. We give the construction of the PDA, 𝑃 = 𝑄, Σ, Γ, δ, 𝑞𝑠𝑡𝑎𝑟𝑡 , 𝐹 .

Let 𝑞 and 𝑟 be states of the PDA and let 𝑎 be in Σ𝜀 and 𝑠 be in Γ𝜀 . Suppose that we want

the PDA to go from 𝑞 to 𝑟 when it reads 𝑎 and pop 𝑠. Furthermore, we want it to push

the entire string 𝑢 = 𝑞1,…., 𝑞𝑙 on the stack at the same time.

We can implement this action by introducing new states 𝑞1,…., 𝑞𝑙−1 and setting the

transition function as follows:

δ(𝑞, 𝑎, 𝑠) to contain (𝑞1, 𝑢𝑙),
δ(𝑞1, ε, ε) ={(𝑞2, 𝑢𝑙−1)},

δ(𝑞2, ε, ε) ={(𝑞3, 𝑢𝑙−2)},

…

δ(𝑞𝑙−1, ε, ε) ={(r, 𝑢1)}.

We use the notation (r, 𝑢1)∊ δ(𝑞, 𝑎, 𝑠) to mean that when 𝑞 is the state of the

automaton, 𝑎 is the next input symbol, and 𝑠 is the symbol on the top of the stack, the

PDA may read the 𝑎 and pop the 𝑠, then push the string 𝑠 onto the stack and go on to

state r (see figure).

𝑟, 𝑥𝑦𝑧 ∈ δ(𝑞, 𝑎, 𝑠)

Pushdown Automata
Lemma. If a language is context-free, then some PDA recognizes it.

Proof. We give the construction of the PDA, 𝑃 = 𝑄, Σ, Γ, δ, 𝑞𝑠𝑡𝑎𝑟𝑡 , 𝐹 .

• Just as some languages are non-regular (i.e. no FA accepts them), so too

there exist languages unrecognized by PDA; we call these non-context-free

languages.

• Recall that, previously, the pumping lemma provided a practical means to

prove that a language was non-regular.

• Now we develop an analogous pumping lemma for context-free languages.

Non-Context-Free Languages

• It is important to understand the strong parallel between the CFL pumping lemma

(above) and the pumping lemma for regular languages (below).

* The key difference between the CFL pumping lemma and the version for regular

languages is the fact that in the former, two substrings are “pumped” (as opposed

to one) – this structure is due to the recursive nature of CFLs.

Non-Context-Free Languages

• We omit the full, formal proof of the pumping lemma for CFLs, as it is very similar

in flavor to the pumping lemma for regular languages. The basic idea is as follows.

Proof Sketch: Let A be a CFL and let G be a CFG that generates it.

Let s be a string in A; because s is in A, it is derivable from G and so has a parse tree.

When s is “sufficiently” long, this parse tree will contain a path from the start variable

to the root with some variable R repeated – by the pigeonhole principle.

Non-Context-Free Languages

Proof Sketch: Let A be a CFL and let G be a CFG that generates it.

The repetition of R in the parse tree allow us to replace the subtree under the second

occurrence of R with the subtree under the first occurrence of R, and we still render a legal

parse tree. Thus, we can decompose s into five pieces, i.e., s = 𝑢𝑣𝑥𝑦𝑧, with the second and

fourth pieces repeated and still obtain a string in the language. Hence, 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐴 ∀𝑖 ≥ 0.

Non-Context-Free Languages

Non-Context-Free Languages

Non-Context-Free Languages

Fin

