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• To date we have seen two different, though equivalent, methods of describing 

languages: finite automata and regular expressions. In addition, we have seen several 

examples of non-regular languages, indicating the existence of more powerful 

abstract computational models. 

• In this section we consider context-free grammars, a more powerful method 

of describing languages using a recursive structure. 

•  The collection of languages associated with context-free grammars are called 

context-free languages. They include all regular languages and many more. 
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• Importantly, context-free grammar applications occur in the specification and 

compilation of  programming languages. Designers of  compilers and 

interpreters for programming languages often start by obtaining a grammar 

for the language. 

•  A number of  methodologies facilitate the construction of  a parser using a 

context-free grammar; parser are commonly use in NLP (natural language 

processing) and related AI/ML domains. 

Context-Free Grammars



• Context-free grammars are typically defined as a set of  substitution rules 

(also called productions). 

• Each rule appears as a line in the grammar, comprising a symbol and a 

string separated by an arrow. The symbol is called a variable; the string consist 

of  variables and terminals; terminals are analogous to the input alphabet and 

may consist of  letters, numbers or special symbols. 

• One variable is designed as the start variable. 

Here is a basic example of  a context-free grammar G: 

𝐴 → 0𝐴1
𝐴 → 𝐵
𝐵 → #

G contains the variables 𝐴 (start) and 𝐵; its terminals are 0,1 and #.
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• Grammars generate strings in a language: we start with the substitution rule 

pertaining to the start variable; next, we recursively and sequentially iterate the 

rules of  the grammar until no variables remain. 

• For example, G given previously can generate the string 000#111 via the 

following sequence of  substitutions: 

𝐴 → 0𝐴1

𝐴 → 𝐵

𝐵 → #

𝐴 → 0𝐴1 → 00𝐴11 → 000𝐴111 → 000𝐵111 → 000#111

• We call this procedure a derivation. This derivation gives rise to a 

corresponding visualization called a parse tree, as shown.
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• All strings generated in this way constitute the language of the grammar, 

denoted L(G). Any language that can be generated by some context-free 

grammar is called a context-free language (CFL). 

We can generate the language of balanced parentheses as follows: 

S → 𝑆 |𝑆𝑆|ε

where the symbol ′|′ denotes “or” when we combine several grammar 

derivation rules in one line. 
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• Recall that we previously established that the language defined by: 𝐵 =
0𝑛1𝑛|𝑛 ≥ 0 is not regular. However, it is easy to see that 𝐵 is a CFL, as 

the following grammar generates it: 

S → 0𝑆1|ε
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• Here is another example of  a context-free grammar, called 𝐺2 which 

describes a fragment of  the English language: 
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• We now give the formal definition of  a CFG: 

If  u, v, and w are string of  variables and terminals, and 𝐴 → 𝑤 is a rule of  the 

grammar, we say that uAv yields uwv, written uAv → uwv; the language of  

the grammar is 𝑤 ∊ Σ∗|𝑆 → 𝑤 .
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• We now consider some general techniques for constructing CFLs. 

• First, note that many CFLs can be defined as the union of  simpler CFLs. 

When possible, consider breaking a complex CFL into discrete “parts”, and 

then take the union of  these parts. 

As a straightforward example, consider the CFL: 0𝑛1𝑛|𝑛 ≥ 0 ∪ ሼ
ሽ

1𝑛0𝑛|𝑛 ≥
0 ; an obvious construction is given by: 
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• Second, constructing a CFG for a regular language is generally easy, as one 

can first construct a DFA, and then convert the DFA into a CFL. 

• To do this, make a variable 𝑅𝑖 for each state 𝑞𝑖 in the DFA; next, add the rules 

𝑅𝑖 → 𝑎𝑅𝑗 if  δ 𝑞𝑖 , 𝑎 = 𝑞𝑗 is a transition in the DFA. Add the rule 𝑅𝑖 → ε if  

𝑞𝑖 is an accept state; make 𝑅0 the start variable where 𝑞0 is the start state of  the 

machine. 

• Third, oftentimes CFLs contain certain recursive structures (e.g. requiring the 

same number of  0s and 1s); in this case, place the variable symbol generating 

the structure in the location of  the rules corresponding to where the recursion 

occurs, e.g. R → 𝑎𝑅𝑏.
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Ambiguity

• Sometimes a grammar can generate the same string in several different ways. Such a 

string will have several different parse trees (and thus potentially different meanings)

If  a grammar generates some string in several different ways, we say (informally) the 

grammar is ambiguous. For example: 

• Notice that the previous example doesn’t capture the usual operation precedence 

rules. 
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Ambiguity

• We say that a derivation of a string w in a grammar G is a leftmost derivation if at 

every step the leftmost remaining variable is the one replaced.  For example, consider 

the grammar: X → 𝑋 + 𝑋 𝑋 ∗ 𝑋 𝑋|𝑎; then the leftmost derivation of the string a + a ∗
a is given by: 

X → 𝑋 + 𝑋 → 𝑎 + 𝑋 → 𝑎 + 𝑋 ∗ 𝑋 → 𝑎 + 𝑎 ∗ 𝑋 → 𝑎 + 𝑎 ∗ 𝑎
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Ambiguity

• We say that a derivation of  a string w in a grammar G is a leftmost derivation if  at 

every step the leftmost remaining variable is the one replaced.  For example, consider 

the grammar: X → 𝑋 + 𝑋 𝑋 ∗ 𝑋 𝑋|𝑎; then the leftmost derivation of  the string a + a ∗
a is given by: 

X → 𝑋 + 𝑋 → 𝑎 + 𝑋 → 𝑎 + 𝑋 ∗ 𝑋 → 𝑎 + 𝑎 ∗ 𝑋 → 𝑎 + 𝑎 ∗ 𝑎

With this in mind, the formal definition of  an ambiguous grammar is given by: 

• Some languages can be generated by both ambiguous and unambiguous grammars; 

however, some languages can only be generated by ambiguous grammars; we call these 

inherently ambiguous languages. 
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• It is commonly useful to express a CFG in “simplified form”; a common, simple 

form for CFGs is Chomsky normal form. Note that all CFGs admit of  a Chomsky 

normal form (we show this shortly): 
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Theorem. Any CFL is generated by a CFG in Chomsky normal form.  

• Proof  idea: We show how to convert any grammar G into Chomsky normal form. (1) 

We add a new start variable; (2) we eliminate all epsilon rules of  the form A → 𝜀; (3) we 

eliminate all “unit rules” of  the form A →B; finally, we convert the remaining rules into 

the proper form. 
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Theorem. Any CFL is generated by a CFG in Chomsky normal form.  

• Proof idea: We show how to convert any grammar G into Chomsky normal form. (1) 

We add a new start variable; (2) we eliminate all epsilon rules of the form A → 𝜀; (3) we 

eliminate all “unit rules” of the form A →B; finally, we convert the remaining rules into 

the proper form. 

(1) We add a new start variable 𝑆0 and corresponding rule 𝑆0 → 𝑆. 

(2) Next, we handle all of the 𝜀 rules. To do this we first delete a rule of the form A →
𝜀 for the variable A; next, for each occurrence of this variable on the right-hand 

side of a rule, we add a new rule with that occurrence deleted, for instance, the rule 

R → 𝑢𝐴𝑣𝐴 would be replaced by R → 𝑢𝐴𝑣𝐴, R → 𝑢𝑣𝐴, R → 𝑢𝐴𝑣, R → 𝑢𝑣.
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Theorem. Any CFL is generated by a CFG in Chomsky normal form.  

(1) We add a new start variable 𝑆0 and corresponding rule 𝑆0 → 𝑆. 

(2) Next, we handle all of  the 𝜀 rules. To do this we first delete a rule of  the form 

A → 𝜀 for the variable A; next, for each occurrence of  this variable on the right-

hand side of  a rule, we add a new rule with that occurrence deleted, for instance, 

the rule R → 𝑢𝐴𝑣𝐴 would be replaced by R → 𝑢𝐴𝑣𝐴, R → 𝑢𝑣𝐴, R → 𝑢𝐴𝑣, R →
𝑢𝑣.

(3) Eliminate all unit rules of  the form A → 𝐵, then, whenever a rule B → 𝑢 appears, 

we add the rule A → 𝑢 , for example. 

(4) Lastly, we convert all remaining rules into the proper form. For example, the rule 

A → 𝑢1𝑢2𝑢3 would be replaced with A → 𝑢1𝐴1, 𝐴1 → 𝑢2𝐴2, 𝐴2 → 𝑢3.
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Theorem. Any CFL is generated by a CFG in Chomsky normal form.  
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Context-Free Languages
•Give CFGs generating the following languages: 

(i) the set of strings over the alphabet 𝑎, 𝑏 with more a’s than b’s. 

S → 𝑇𝑎𝑇

𝑇 → 𝑇𝑇 𝑎𝑇𝑏 𝑏𝑇𝑎|𝑎|ε

(ii) 𝑤#𝑥|𝑤𝑅 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑓 𝑥 𝑓𝑜𝑟 𝑤, 𝑥 ∈ 0,1 ∗

S → 𝑇𝑋
𝑇 → 0𝑇0 1𝑇1 #𝑋
𝑋 → 0𝑋 1𝑋 ε
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Context-Free Languages
• Give CFGs generating the following languages: 

(iii) The complement of  0𝑖 , 1𝑗|𝑖, 𝑗 > 0

S → 𝐴|𝐵|𝐶
𝐴 → 𝐷10𝐷
D → 0𝐷 1𝐷 ε

𝐵 → 0𝐵|0, 𝐶 → 1𝐶|1

• Notice that A will produce all strings with a 0 and 1 out of  order, variable B will 

produce strings of  zeros, variable C will produce strings of  ones, and variable D will 

produce all strings. 



• Finite state automata were severely limited in their computational capacity due to their 

lack of  memory. We now introduce a new type of  computational model called a 

pushdown automaton (PDA) which includes an extra memory component called a 

stack. 

• PDA can write symbols on the stack and read them back later. Writing a symbol 

“pushes down” all the other symbols on the stack (think LIFO queue); at any time, the 

symbol on the top of  the stack can be read and removed (i.e. we can “pop” the stack)
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•The stack is important structurally as it can hold an unlimited amount of  information; 

this unlimited structure allows the PDA to store numbers of  an unbounded size, e.g., 

0𝑛1𝑛|𝑛 ≥ 0 . 

• Additionally, PDA may be non-deterministic; unlike FA, non-deterministic PDA 

can recognize certain languages that no deterministic PDA can recognize. We assume 

a referenced PDA is non-deterministic unless explicitly stated otherwise. 

• (non-deterministic) PDA are equivalent in power to context-free grammars. 
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A few notes regarding the formal definition of  a PDA: 

• The alphabet for the stack Γ may use different (but not necessarily) symbols than 

those from the input alphabet Σ. 

• The domain of  the transition function is 𝑄 × Σε × Γε; the non-determinism of  the 

PDA entails that the transition function maps to a set, namely P(𝑄 × Γε), so the 

machine transitions to a new state while writing (possible the empty string) to the top 

of  the stack. 

Pushdown Automata



Pushdown Automata



Pushdown Automata
• Here is a formal descript of  the PDA that recognizes 0𝑛1𝑛|𝑛 ≥ 0 . Let 𝑀1 be 

𝑄,Σ,Γ, 𝛿, 𝑞1, 𝐹 , where: 

Notice that transitions are written in the form: 𝑎, 𝑏 → 𝑐 to signify when a PDA is treading an 𝑎
from the input, it may replace the symbol 𝑏 on the stop of  the stack with a 𝑐. The special 

symbol $ is typically used to signal when the stack is empty. 
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• We now consider the construction of  a PDA recognizing the language: 

𝑎𝑖𝑏𝑗𝑐𝑘|𝑖, 𝑗, 𝑘 ≥ 0 𝑎𝑛𝑑 𝑖 = 𝑗 𝑜𝑟 𝑖 = 𝑘

Our general strategy is as follows: read and “push” all of  the a’s; next match them with 

either the b’s or c’s. Because we don’t know in advance whether to match the a’s with the 

b’s or the c’s, we appeal to non-determinism. 
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Our general strategy is as follows: begin by pushing the symbols that are read onto the 

stack; at each point non-deterministically guess that the middle of the string has been 

reached and then revert to popping off the stack for each symbol read, check to see if 

they are the same. Note that this PDA requires non-determinism. 



Pushdown Automata
• Consider another example, where we construct a PDA for the given language:

𝑤𝑤𝑅|𝑤 ∊ 0,1 ∗

Our general strategy is as follows: begin by pushing the symbols that are read onto the 

stack; at each point non-deterministically guess that the middle of the string has been 

reached and then revert to popping off the stack for each symbol read, check to see if 

they are the same. 



Pushdown Automata
• As mentioned, PDA and context-free grammars are equivalent in power (recall we 

assume the PDA is non-deterministic unless stated otherwise). 

The major theorem of  this section relates to proving this equivalence:

Theorem. A language is context-free if  and only if  some PDA recognizes it. 

• As usual with any iff statement, it is necessary to prove both conditional implications; 

for brevity, we prove one direction (→)in class (the remaining proof  can be found in 

Sipser). 

• A basic consequence of  this theorem is that every regular language is context-free. 
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Lemma. If  a language is context-free, then some PDA recognizes it.

Proof  Idea: Let A be a CFL, so A has a corresponding CFG, G, generating it. We show 

how to convert G into an equivalent PDA, which we call P. 

• The PDA P will work by accepting its input w if  G generate that input, by determining 

whether there is a derivation for w. 



Pushdown Automata
Lemma. If  a language is context-free, then some PDA recognizes it.

Proof  Idea: Let A be a CFL, so A has a corresponding CFG, G, generating it. We show 

how to convert G into an equivalent PDA, which we call P. 

• The PDA P will work by accepting its input w if  G generate that input, by determining 

whether there is a derivation for w. 

• One of  the difficulties in testing whether there is a derivation for w is in figuring out 

which substitutions to make – we utilize the PDA’s non-determinism to guess the 

sequence of  correct substitutions. 

• The remaining complication stems from the issue of  the PDA storing the intermediate 

strings – in short, we store only part of  the intermediate string on the stack : the symbols 

starting with the first variable in the intermediate string. Any terminal symbols appearing 

before the first variable are matched immediately with symbols in the input string. 



Pushdown Automata
Lemma. If  a language is context-free, then some PDA recognizes it.

Proof  Idea: Let A be a CFL, so A has a corresponding CFG, G, generating it. We show 

how to convert G into an equivalent PDA, which we call P. 

• With those things in mind, here is an informal description of  P.

1. Place the marker symbol $ and the start variable on the stack.

2. Repeat the following steps:

a. If  the top of  the stack is the variable symbol A, non-deterministically  select one      

of  the rules for A and substitute A by the string on the right-hand side of  the    

rule. 

b. If  the top of  the stack is the terminal symbol a, read the next symbol from the    

input and compare it to a. If  they match, repeat. If  they do not match, reject on this 

branch of  the non-determinism. 

c. If  the top of  the stack is the symbol $, enter the accept state. 



Pushdown Automata
Lemma. If  a language is context-free, then some PDA recognizes it.

Proof. We give the construction of  the PDA, 𝑃 = 𝑄, Σ, Γ, δ, 𝑞𝑠𝑡𝑎𝑟𝑡 , 𝐹 . 

Let 𝑞 and 𝑟 be states of  the PDA and let 𝑎 be in Σ𝜀 and 𝑠 be in Γ𝜀 . Suppose that we want 

the PDA to go from 𝑞 to 𝑟 when it reads 𝑎 and pop 𝑠. Furthermore, we want it to push 

the entire string 𝑢 = 𝑞1,…., 𝑞𝑙 on the stack at the same time. 

We can implement this action by introducing new states 𝑞1,…., 𝑞𝑙−1 and setting the 

transition function as follows:

δ(𝑞, 𝑎, 𝑠) to contain (𝑞1, 𝑢𝑙),
δ(𝑞1, ε, ε) ={(𝑞2, 𝑢𝑙−1)},

δ(𝑞2, ε, ε) ={(𝑞3, 𝑢𝑙−2)},

…

δ(𝑞𝑙−1, ε, ε) ={(r, 𝑢1)}.

We use the notation (r, 𝑢1)∊ δ(𝑞, 𝑎, 𝑠) to mean that when 𝑞 is the state of  the 

automaton, 𝑎 is the next input symbol, and 𝑠 is the symbol on the top of  the stack, the 

PDA may read the 𝑎 and pop the 𝑠, then push the string 𝑠 onto the stack and go on to 

state r (see figure). 

𝑟, 𝑥𝑦𝑧 ∈ δ(𝑞, 𝑎, 𝑠)



Pushdown Automata
Lemma. If  a language is context-free, then some PDA recognizes it.

Proof. We give the construction of  the PDA, 𝑃 = 𝑄, Σ, Γ, δ, 𝑞𝑠𝑡𝑎𝑟𝑡 , 𝐹 . 



• Just as some languages are non-regular (i.e. no FA accepts them), so too 

there exist languages unrecognized by PDA; we call these non-context-free 

languages. 

• Recall that, previously, the pumping lemma provided a practical means to 

prove that a language was non-regular. 

• Now we develop an analogous pumping lemma for context-free languages. 
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• It is important to understand the strong parallel between the CFL pumping lemma 

(above) and the pumping lemma for regular languages (below). 

* The key difference between the CFL pumping lemma and the version for regular 

languages is the fact that in the former, two substrings are “pumped” (as opposed 

to one) – this structure is due to the recursive nature of  CFLs. 
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• We omit the full, formal proof of the pumping lemma for CFLs, as it is very similar 

in flavor to the pumping lemma for regular languages. The basic idea is as follows.

Proof Sketch: Let A be a CFL and let G be a CFG that generates it. 

Let s be a string in A; because s is in A, it is derivable from G and so has a parse tree. 

When s is “sufficiently” long, this parse tree will contain a path from the start variable 

to the root with some variable R repeated – by the pigeonhole principle. 
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Proof  Sketch: Let A be a CFL and let G be a CFG that generates it. 

The repetition of  R in the parse tree allow us to replace the subtree under the second 

occurrence of  R with the subtree under the first occurrence of  R, and we still render a legal 

parse tree. Thus, we can decompose s into five pieces, i.e.,  s = 𝑢𝑣𝑥𝑦𝑧, with the second and 

fourth pieces repeated and still obtain a string in the language. Hence, 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐴 ∀𝑖 ≥ 0. 
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Fin


