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A Very Brief  Introduction to Neural Networks 
and Deep Learning 



A Bit of History

(*) End of “AI Winter” comes about with the rediscovery of the “backpropagation” algorithm; LeCun
et al., (1998) error rate < 1% on MNIST (handwritten digit recognition task).

(*) Inception of “Deep Learning” era begins with landmark “Alexnet” architecture: Krizehevsky et 
al., (one of the first use of GPUs, among other innovations). 



Neurons & the Brain



Hebb’s Postulate 



Neurons & the Brain 
• Human brain contains ~1011 neurons

• Each individual neuron connects to ~104 neuron

• ~1014 total synapses!



McCulloch & Pitts Neuron Model (1943)

(3) Components:

(1) Set of weighted inputs {wi} that correspond to synapses

(2) An “adder” that sums the input signals (equivalent to membrane of the cell that collects 
the electrical charge)

(3) An activation function (initially a threshold function) that decides whether the neuron 
fires (“spikes”) for the current inputs. 



(*) A Neural Network (NN) consists of  a network of  McCulloch/Pitts computational neurons (a single 
layer was known historically as a “perceptron.”)

(*) NNs are universal function approximators – meaning that they can learn any arbitrarily complex mapping 
between inputs and outputs. While this fact speaks to the broad utility of  these models, NNs are 
nevertheless prone to overfitting. The core issue in most ML/AI models can be reduced to the question 
of generalizability. 

(*) Each neuron receives some inputs, performs a dot product and optionally follow it with a  non-
linearity (e.g. sigmoid/tanh). NNs are typically trained using backpropagation. This method calculates the 
gradient of  a loss function (e.g. squared-loss) with respect to all the weights (W) in the network. More 
specifically, we use the chain rule to compute the ‘delta’ for the weight updates (one can think of  this 
delta as assigning a degree of  ‘blame’ for misclassifications). 

Neural Networks 



(*) Training a NN amounts to “tuning” the network weights. This process encompasses two 
distinct phases: (1) “Forward phase” in which case a datum is passed “forward” through the 
network (operationally this consists of  a sequence of  dot products and activations); (2) 
“Backward phase” during which the weights in the network are updated according to the 
desired output (i.e. label) for the datum; this process is highly parallelizable. 

(*) Conventionally, NNs are best-suited for problems for which there exists a large amount of  (diverse and) labelled 
data; training for deep learning (NNs with many layers/neurons) can be lengthy (recently training algorithms have 
become even more efficient); inference is however generally quick.



A Neural Network “Zoo”



(*) Backpropagation is one particular instance of  a larger paradigm of  optimization algorithms know as Gradient 
Descent (also called “hill climbing”). 

(*) There exists a large array of  nuanced methodologies for efficiently training NNs (particularly DNNs), including 
the use of  regularization, momentum, dropout, batch normalization, pre-training regimes, initialization 
processes, etc. 

(*) Traditionally, the backpropagation algorithm has been used to efficiently train a NN; more recently the Adam 
stochastic optimization method (2014) has eclipsed backpropagation in practice: 
https://arxiv.org/abs/1412.6980

Gradient Descent 



A Typical Workflow for Machine Learning  



Some Deep Learning Techniques 
• Momentum

• L2 and L1 regularization

• Batch normalization



Some Deep Learning Techniques 
• “Dropout” and sparse representations

• Ensemble Modeling

• Parameter Initialization Strategies 

• Adversarial Training

• Adam and Adaptive learning rate Deep Learning



Convolutional Neural Networks (CNNs) are very similar to ordinary NNs: they are made up of  
neurons that have learnable weights and biases. Each neuron receives some inputs, performs a dot 
product and optionally follows it with a non-linearity. The whole network still expresses a single 
differentiable score function: from the raw image pixels on one end to class scores at the other. 

The key difference with CNNs is that neurons/activations are represented as 3D volumes. CNNs 
additionally employ weight-sharing for computational efficiency; they are most commonly applied to 
image data, in which case image feature activations are trained to be translation-invariant (convolution + 
max pooling achieves this) 

Convolutional Neural Networks 



Convolutional Neural Networks 
Intuitively, the network will learn filters that activate when they see some type of  visual feature such as an edge of  some 

orientation or a blotch of  some color. Now, we will have an entire set of  filters in each CONV layer, and each of  them 

will produce a separate 2-dimensional activations; these features are stacked along the depth dimension in the CNN and 

thus produce the output volume. 

A simple CNN is a sequence of  layers, and every layer of  a CNN transforms one volume of  activations to another 

through a differentiable function. The three main types of  layers to build CNN architectures are: Convolutional 

Layer, Pooling Layer, and Fully-Connected Layer (exactly as seen in regular Neural Networks). These layers are 

stacked to form a full CNN architecture.

The convolution layer determines the activations of  various filters over the original image; pooling is used for 

downsampling the images for computational savings; the fully-connected layers are used to compute class scores for 

classification tasks. 



Convolutional Neural Networks 
A nice way to interpret CNNs via a brain analogy is to consider each entry in the 3D output volume as an output of  a 

neuron that looks at only a small region in the input and shares parameters with all neurons to the left and right 

spatially (since the same filter is used). 

Each neuron is accordingly connected to only a local region of  the input volume; the spatial extent of  this connectivity 

is a hyperparameter called the receptive field (i.e. the filter size, such as: 5x5). 

(Image from the LeCun MNIST paper, 1998) 



Of  note, some researchers believe that the first stage of  visual processing in the brain (called V1) 

serve as edge detectors that fire when an edge is present at a certain location and orientation in 

the visual receptive field.



DNNs Learn Hierarchical Feature Representations 



A Very Brief  History of  Object Detection for 
Computer Vision 



Viola-Jones Face Detection Algorithm
• P. Viola and M. J. Jones, Robust real-time face detection.  International 
Journal of  Computer Vision, 2004. 

• First face-detection algorithm to work well in real-time (e.g., on 
digital cameras); it has been very influential in computer vision (17k+ 
citations). 



Viola-Jones: Training Data

• Positive:  Faces scaled and 

aligned to a base resolution 

of  24 by 24 pixels.

• Negative: Much larger 

number of  non-faces.  



Features

Use rectangle features at multiple sizes and location in an image subwindow

(candidate face).   These features are known as Haar-like features. 

For each feature fj : 

f j = intensity(pixel b)
bÎblack pixels

å - intensity(pixel w)
wÎwhite pixels

å

Possible number of  features per 24 x 24 pixel subwindow > 180,000.  



Detecting Faces
Given a new image:

• Scan image using subwindows at all locations and at different scales

• For each subwindow, compute features and send them to an ensemble classifier (learned via 
boosting).  If  classifier is positive (“face”), then detect a face at this location and scale. 

• Algorithm uses a form of  AdaBoost (popular boosting algorithm) to determine detection 
parameter for each feature/hypothesis, in addition to confidence measure for “fusion 
function” used for ensemble classification. 



Histogram of  Oriented Gradients (HOG features), 2005  

(*) N. Dalal et al. 

(*) Highly influential paper for CV (~22k citations) 

(*) Main Idea: Local object appearance and shape can be 

described efficiently by the distribution of  intensity 

gradients/edge directions. 

(*) The image is divided into small connected regions called cells, and for the pixels within 

each cell, a histogram of  gradient directions is compiled. For improved accuracy, the local 

histograms can be contrast-normalized by calculating a measure of  the intensity across a 

larger region of  the image, called a block, and then using this value to normalize all cells 

within the block. This normalization results in better invariance to changes in illumination 

and shadowing.

(*) HOG features advantage: invariant to geometric and photometric transformations; HOG 

features are particularly good at detection people. 



DNNs: AlexNet (2012) 

AlexNet was developed by Alex Krizhevsky, Geoffrey Hinton, and Ilya Sutskever; it uses CNNs with GPU 

support. The network achieved a top-5 error of  15.3%, more than 10.8 percentage points ahead of  the 

runner up. 

Among other innovations: AlexNet used GPUs, utilized RELU (rectified linear units) for activations, and 

“dropout” for training. 

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



DNNs: AlexNet (2012) 



DNNs: VGG (2014) 

• Team at Oxford produced influential DNN architecture (VGG).Using very small 
convolutional filters (3x3), they achieved a significant improvement on the prior-art 
configurations by pushing the depth to 16–19 weight layers. 

• Team achieved first and second place on the ImageNet Challenge 2015 for both 
localization and classification tasks, respectively. 

• Using pre-trained VGG is very common practice in research. 

https://arxiv.org/pdf/1409.1556.pdf



DNNs: Inception (2015, Google) 

• Team at Google (Szegedy et al.) produced an even deeper DNN (22 layers). No need 
to pick filter sizes explicitly, as network learns combinations of  filter sizes/pooling 
steps; upside: newfound flexibility for architecture design (architecture parameters 
themselves can be learned); downside: ostensibly requires a large amount of  
computation – this can be reduced by using 1x1 convolutions for dimensionality 
reduction (prior to expensive convolutional operations).

• Team achieved new state of  the art for classification and detection in the ImageNet 
Large-Scale Visual Recognition Challenge 2014 (ILSVRC14; 6% top-5 error rate for 
classification. 

https://arxiv.org/pdf/1409.1556.pdf



Object Detection with Deep Learning: RCNN 

• Girshick et al.*achieved state-of-the-art performance on several object detection 
benchmarks using a “regions with convolutional neural networks” (R-CNN).

• R-CNN and its extensions use a region-proposal network (RPN) that simultaneously 
predicts object bounds and objectness scores for proposals. 

• To avoid an exhaustive search, R-CNN utilizes a selective search algorithm that reduces 
the overall computational overhead requirement. 

*R. Girshick, Fast R-CNN, in: Int. Conf. Comput. Vis., IEEE, 2015: pp. 1440–1448; 

*R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: Conf. Comput. Vis. 
Pattern Recognit., IEEE, 2014: pp. 580–587



Object Detection with Deep Learning: YOLO 
• YOLO only looks at the input image once (hence the name). 

• First the algorithm divides the input image into a grid of  13x13 cells.

• Each of  these cells is responsible for predicting 5 bounding boxes. A 
bounding box describes the rectangle that encloses an object.

• YOLO also outputs a confidence score that tells us how certain it is that the 
predicted bounding box actually encloses some object. This score doesn’t say 
anything about what kind of  object is in the box, just if  the shape of  the box 
is any good.



Object Detection with Deep Learning: YOLO 

• The predicted bounding boxes may look something like the following 
(the higher the confidence score, the fatter the box is drawn):

• For each bounding box, the cell also predicts a class. This works just like a 
classifier: it gives a probability distribution over all the possible classes.

https://arxiv.org/pdf/1506.02640.pdf



Object Detection with Deep Learning: YOLO 

• The confidence score for the bounding box and the class prediction are combined into one final score that 
tells us the probability that this bounding box contains a specific type of  object. For example, the big fat 
yellow box on the left is 85% sure it contains the object “dog”:

• Since there are 13×13 = 169 grid cells and each cell predicts 5 bounding boxes, we end up with 845 
bounding boxes in total. It turns out that most of  these boxes will have very low confidence scores, so we 
only keep the boxes whose final score is 30% or more (you can change this threshold depending on how 
accurate you want the detector to be).



Similarity Learning with DNNs 
• Similarity learning is the process of  training a metric to compute the similarity 

between two entities (also called: metric learning). 

• Example applications: Face recognition, customer identification, 

visual search/recognition of  products in store.

• A Siamese Network is a NN where the network is trained to distinguish between two inputs. 

• Typically a Siamese network uses two encoders (the “sister” networks – they can be identical); each 
encoder is fed with one of  the images in either a positive or negative pair. 

• The network is trained using “contrastive loss” – the Euclidean distance of  the image encodings. 
Optimization is performed using a standard algorithm, e.g., backprop, Adam. 



Similarity Learning with DNNs 
• Importantly: Siamese networks can be used as one shot classification models, on the other 

hand, which require just one training example of  each class you want to predict on.

• A nice example would be facial recognition. You would train a One Shot classification model 
on a dataset that contains various angles , lighting , etc. of  a few people. Then if  you want to 
recognize if  a person X is in an image, you take one single photo of  that person, and then 
ask the model if  that person is in the that image(note, the model was not trained using any pictures 
of  person X).



Multiple-Object Tracking (MOT) 

• The task of  Multiple Object Tracking (MOT) is generally divided between locating 
multiple objects, maintaining their identities and generating their individual 
trajectories. 

• As a mid-level task in CV, MOT can serve as an intermediate step for tasks such as 
pose estimation, action recognition and behavior analysis. 



Multiple-Object Tracking (MOT) 

• Compared to single object tracking (SOT), MOT requires two additional tasks to be 
solved: (1) determining the number of  objects, and (2) maintaining their identities. 

• Apart from the common challenges shared by SOT and MOT, further key issues 
that complicate MOT include among others:

(i) frequent occlusion

(ii) initialization and termination of  tracks

(iii) similar appearance of  objects

(iv) Interactions amongst multiple objects 



Multiple-Object Tracking (MOT) 

• Formulation of  problem: 

• MOT is a multi-variate estimation problem. 

• Given an image sequence, denote the state of  the ith object in the t-th frame as 𝑠𝑡
𝑖; 

accordingly, let 𝑆𝑡 = (𝑠𝑡
𝑖 , … , 𝑠𝑡

𝑀
𝑡) connote the states of  all Mt objects in the t-th frame: S1:t 

={S1,…,St} represents all sequential states of  all objects from the first frame to the t-th

frame. 

• Similarly, define 𝑂𝑡 = (𝑜𝑡
𝑖 , … , 𝑜𝑡

𝑀
𝑡) as the collected observations for all of  the Mt objects in 

the t-th frame; O1:t is defined analogously. 



Multiple-Object Tracking (MOT) 

• With these notational conventions, the objective of  MOT is to find the 
optimal sequential states of  all objects, which can generally be modeled by 
performing MAP estimation from the conditional distribution of  the 
sequential states give all the observations: 

• The probabilistic inference based approach usually solves the MAP 
estimation using a two-step iterative procedure: 

(1) Prediction: P(St|O1:t-1)

(2) Update: P(St|O1:t)= 𝑃 𝑂𝑡 𝑆𝑡 𝑃(𝑆𝑡|𝑂1:𝑡−1)

 
1:

1: 1: 1:
ˆ arg max |

t

t t t
S

S P S O



Multiple-Object Tracking (MOT) 

• Most MOT frameworks can be grouped into (2) sets: 

• (1) Detection-based Tracking (DBT)

• (2) Detection-free Tracking (DFT)

• DBT: Objects are first detected and then linked into trajectories. Two key issues for 
DBT framework: object detector must be trained in advance (offline); performance of  
tracking algorithm is highly dependent upon effectiveness of  detector (e.g. RCNN, 
YOLO).

• DFT: Requires manual initialization of  fixed number of  objects in first frame, then 
localizes objects in subsequent frames.

• DBT is more popular because new objects discovered and disappearing objects are 
terminated automatically. DFT can’t accommodate cases for which objects appear – but 
it is nevertheless free of  pre-trained detectors (no deep learning needed).



Multiple-Object Tracking (MOT) 

• Processing Modes for MOT: online tracking or offline tracking. 

• Online, tracking methods only rely on the past information 
available up to the current frame, while offline approaches employ 
observations from both past and future. 

• For real-time tracking we require online tracking – but this doesn’t 
rule out post-processing step (offline) if  say, system presents low 
confidence for tracking/gesture recognition, etc. (This would 
require temporarily saving some video streams which might be 
problematic).



Multiple-Object Tracking (MOT) 

• GOAL: discover multiple objects (simultaneously) in individual frames 
and recover the identity information across continuous frames (i.e. 
trajectory) 

• (2) major considerations: (1) how to measure similarity (if  at all) between 
objects in frames

• (2) how to recover identity information based on similarity measure 
across frames (inference problem) 



Components of  an MOT Algorithm 



Multiple-Object Tracking (MOT): Components of  MOT  

• (A) Appearance Model 

• Appearance is an important cue for affinity computation in MOT. However, it is usually not considered the core 

component of  a MOT algorithm. 

• Appearance models consist of  (i) visual representation (e.g. local features or region features such as optical flow, 

HOG features, region covariance) and (ii) statistical measuring (using single cues, e.g., distance between color 

histograms or multiple cues involving a fusion of  information, e.g. boosting, cascading, etc.) 



Multiple-Object Tracking (MOT): Components of  MOT  

• (B) Motion Model 

• The motion model captures the dynamic behavior of  an object. In most cases objects 
are assumed to move smoothly and thereby maintain object continuity conditions. 

• (i) Linear Motion Model: the most popular motion model for MOT, assumes constant 
velocity of  objects; one can further impose velocity/position/acceleration smoothness 
constrains. 

• (ii) Non-linear motion model: more complex model (often) can yield better results 
when linking tracklets of  objects.



Multiple-Object Tracking (MOT): Components of  MOT  

• (C) Interaction Model 

• Captures influence of  an object on other objects. Example: object experiences 
“force” from other objects, i.e. customer adjusts speed/trajectory to avoid 
others. 

• Social forces model: target behavior is modeled based on two aspects: 
individual force and group force; use continuity and fidelity constraints 
(smoothness and desired destination of  subject doesn’t change); group force: 
use attraction (individuals moving together stay together), repulsion (groups 
maintain some distance from one another), coherence (group elements move 
with commensurate velocity, etc.) 



Multiple-Object Tracking (MOT): Components of  MOT  

• (D) Exclusion Model 

• Constraint set employed to avoid physical collisions for MOT problem; intuition: two 
objects can’t occupy the same physical space. Two types: (1) detection-level exclusion 
(can’t assign detection to same space in same frame for two distinct customers), (2) 
trajectory-level exclusion (trajectories must maintain some minimal epsilon 
difference). 

• For in-store environment, exclusion model could incorporate intrinsic exclusions 
based on surrounding environment.

• To model exclusion: can use exclusion graph to capture constrain; optimize inference 
to encourage connected nodes to have different labels; further distinction between 
soft/hard modeling.



Multiple-Object Tracking (MOT): Components of  MOT  

• (E)Occlusion Handling (critical challenge):

• Occlusion is a common cause of  ID switches and fragmentation of  
trajectories.

Remedies: 

• (i) Part-based model: divide holistic object into several parts and compute 
affinity based on individual parts; in case of  occlusion, only non-occluded 
parts contribute to affinity measure; (ii) buffer strategy: buffer observations 
when occlusion occurs, when occlusion ends, object states are recovered based 
on the buffered observations and the stored states before occlusion.



Multiple-Object Tracking (MOT): Components of  MOT  

• (F) Inference

• Probabilistic inference: Usually relies on a Markov assumption: (i) current 
object state only depends on previous state; (ii) observation of  an object is 
only relation to its state corresponding to this observation (observations are 
conditionally independent). States of  objects can be estimated by iteratively 
conducting the prediction and updating steps. 

• One solution: Kalman fitter (could use Gaussian Process): makes linear system 
assumption and Gaussian-distributed object states assumption; under these 
conditions, Kalman filter is optimal estimator. 



Multiple-Object Tracking (MOT): Components of  MOT  

• (F) Inference

• Can also model MOT problem as graph bipartite matching problem; two 
sets of  nodes: observations/detections; weights between nodes are 
affinity measure; can solve greedily or use Hungarian algorithm (classic 
paradigm for matching with preference problem: “stable marriage 
problem”; can alternatively use min-cut/max flow network (use for 
trajectories); graphical models/conditional random fields. 



Multiple-Object Tracking (MOT) 

MOT evaluation: standard metrics: accuracy/precision; tracking metrics: MOTA metric (mot accuracy) combines FP 

rate and FN rate and mismatch rate; precision: uses IOU metric and/or distance; completeness: how completely the 

ground truth trajectories were tracked; robustness: recovery from occlusion measure. 

Datasets: MOTChallenge, KITTI, DukeMTMCT

Open source: (surprisingly few for MOT): more for SOT; RCNN, Fast RCNN, Faster RCNN, YOLO, MOSSE 

Tracker, SORT, DEEPSORT, INTEL SDK OPENCV.



Multiple-Object Tracking (MOT) 

• Issues: DBT methods are highly dependent on classifier (good news –
these are improving every few months); very challenging to tune with 
multiple models working in unison (optimal tuning is tough) many 
parameters; some demos/results are very misleading (not necessarily 
good with generalization), operate under assumption the objects are 
perfectly detected; trained on specific videos. 



Multiple-Object Tracking (MOT) 
• Future directions: MOT research is already decades-old; most methods require offline 

trained object detector; need to adopt a generic “person” detector. 

• Multiple cameras: major question how to fuse information from multiple cameras (can 
use traditional multi-modal data ensemble approach); for cameras with non-
overlapping viewing regions, question about to re-identify. How to use known 
geometry of  scene for inference (very much an open problem): one idea: project large 
inference problem to entire floorplan (in 2-d) and generate tracklets here; question, 
again, how to fuse data streams. (How to automate for new store geometries? )

• 3-d object tracking? Requires camera calibration, estimate poses and scene layout. 

• Can save bandwidth in real-time by ignoring some feeds.



Multiple-Object Tracking (MOT) 

• Future directions:

• MOT with scene/context understanding: first analyze image with scene understanding (could 
perform low-computation image segmentation), use results from scene understanding to 
provide contextual information and scene structure; this approach could be highly valuable 
(if  not essential) for object tracking, gesture recognition, behavior classification, etc. 

• MOT with deep learning: (still open) DL model can furnish a strong observation model that 
performs, say, image classification, object detection or SOT. Could parallelize strong SOT 
with DL for MOT (possibly).  

• MOT with other CV tasks: symbiotic relationship between MOT and other conventional CV 
tasks (inference for one helps with inference for the other and vice versa): segmentation, 
human re-identification, face detection/recognition, action recognition, etc. 



MOSSE tracker 

• This algorithm is proposed for fast tracking using correlation filter methods. 
Correlation filter-based tracking comprises the following steps: 

• (1) Assuming a template of  a target object T and an input image I, we first 
compute the FFT of  both the template T and the image I.

• (2) A convolution operation is performed between the template T and the 
image I.

• (3) The results from (2) is inverted to the spatial domain using IFFT. The 
position of  the template object in the image I is the max value of  the IFFT 
response. 



MOSSE tracker 

The aforementioned correlation filter-based technique has limitations in 
choice of  T. As a single template image match may not observe all the 
variations of  an object, such as rotation. 

Bolme et al., propose a more robust tracker-based correlation filter, called 
the Minimum Output Sum of  Square Error (MOSSE) filter. In this 
method, the template T for matching is first learned by minimizing a sum 
of  squared error as: 

*
min *i i

T
i

I T O



SORT (Simple Online and Realtime Tracking)

SORT is a recent algorithm for MOT (Bewley et al., 2016)

In the problem setting of  MOT, each frame has more than one object to 
track. A generic method to solve this problem has two steps:

(1) Detection: Detect object in frame

(2) Association: Once we have the detections, a matching is performed for 
similar detections with respect to the previous frame. The matched 
frames are followed through the sequence to get the tracking for an 
object. 



SORT 
Here are the (3) steps in SORT:

(1) In the paper they use Faster-RCNN to perform the initial detection per 
frame. 

(2) The intermediate step before data association consists of  an estimation 
model. This uses the state of  each track as a vector of  eight quantities: a box 
center (x,y), box scale (s), box aspect ratio (a), and their derivatives with time 
velocities. The Kalman filter is used to model these states as a dynamical 
system. If  there is no detection of  a tracking object for a threshold of  
consecutive frames, it is considered to be out of  the frame or lost. For a 
newly detected box, a new track is started. 



SORT 

Here are the (3) steps in Deep SORT:

(3) In the final step, given the predicted states from Kalman filtering, as 
association is made for the new detection with old object tracks in the 
previous frame. This is computer using the Hungarian algorithm on 
bipartite graph matching. 



Deep SORT (extension of  SORT)  
Simple Online and RealTime Tracking with A Deep Association Metric

Wojke, et al. (2017) 

The authors integrate appearance information to improve the performance of  SORT. This 
extension allows objects to be tracked through longer periods of  occlusions (effectively 
reducing the number of  identity switches). 

Specifically, they integrate motion and appearance information using two metrics.

(*) For motion information they use the Mahalanabois distance between predicted Kalman 
states.

(*) To alleviate the problem of  re-identification in the case of  long-term occlusions they 
introduce a cosine metric applied to appearance descriptors of  each identified object. 



Multiple-Object Tracking (MOT) for Multiple Cameras 

One possible workflow for MOT with multiple cameras 
using attribute-based person tracking. 

*Source: IBM patent (2010) 
https://patents.google.com/
patent/US9134399B2/en

https://patents.google.com/


Multiple-Object Tracking (MOT) for Multiple Cameras 

One possible workflow for MOT with multiple cameras 
using attribute-based person tracking. 

*Source: IBM patent (2010) 
https://patents.google.com/
patent/US9134399B2/en

https://patents.google.com/


• Several research groups have attempted to solve MOT with multiple cameras by rendering the 
problem as a Hypergraph (cf. Hypergraphs for Joint Multi-View Reconstruction and Multi-
Object Tracking, Hofman et al.) 

• Each detection in each camera frame becomes a node in the hypergraph; hyperedges denote 
potential couplings across different cameras; edge orientations in the graph connote temporal 
data. 

• The MOT problem is reduced to a constrained, min-cost flow graph; the tracking problem 
can be efficiently solved using a binary linear programming algorithm. 

Multiple-Object Tracking (MOT) for Multiple Cameras 



• Other attempted solutions to the MOT problem have relied on homography-
based methods. 

Multiple-Object Tracking (MOT) for Multiple Cameras 

Main idea: When a 

homography transformation 

is applied to images of  an 

arbitrary 3D scene, the 

points that correspond to 

the plane will align, while the 

rest of  the points will not. 

Eshel et al., Homography Based Multiple Camera Detection and Tracking of People in a Dense Crowd



• Other attempted solutions to the MOT problem have relied on homography-
based methods. 

Multiple-Object Tracking (MOT) for Multiple Cameras 

Eshel et al., Homography Based Multiple Camera Detection and Tracking of People in a Dense Crowd



Multiple-Object Tracking (MOT) for Multiple Cameras 

• Intel Open CV SDK supports: rcnn, yolo, AlexNet, VGG, Inception,  
MTT (baseline single camera)  Etc. 

• Acceleration with GPUs, traditional CV task support, MTT (single 
camera?), subject facial recognition, features (gender, age inference), 
optimization for Intel hardware. 



Further Issues and Problem Considerations

• Integration of  “stitching” for tracking across multiple cameras. 

• Training robust person classifier (is a preexisting model sufficient?) 

• Computation delegation (smart camera vs. cloud & on-line vs. offline) 

• Identification of  a group of  consumers with single tag (e.g. family of  shoppers).

• Method to utilize known geometry of  store (for exclusion model).

• Fine-grained identification issues (e.g. is facial recognition, etc., a feature the model can use?)



Further Issues and Problem Considerations
• Meta-Data uses 

• Gesture recognition

• Multi-modal resources for tracking (e.g. audio, sensors)

• Camera stream “parsimony” (e.g. when no individual detected in a frame, no need to process frame). 

• Major challenge: Seamless integration of  new inventory and store geometries for ambient computing; one-

shot learning.   

• Automation or semi-automation of  system calibration in stores 

• Primary component of  “ambient computing” is MOT; with MOT alone one could potentially package meta-

data pipeline using Movidius, etc., for commercial use (e.g. anonymous “heat map” tracking of  consumer 

behavior). 


