Foundations / A (Brief) History of Al




What 1s Al?

“Numberless are the world’s wonders — but none more wonderful
than mankind” — Sophocles, Antigone

(*) “AI” encompasses two general domains:
(1) Behavior (acting “humanly”)
(2) Rationality (acting and thinking “rationally”)
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What is Al?

Rational Agent Model for Al:

(*) A rational agent “behaves as well as possible.”

“Strong AI” vs. “Weak AI”
Strong AI: Machines are actually “thinking”
Weak AI: Machines acz as if they were intelligent

a elligence ong A a olliae

Machine cannot complete tasks on Machine can actually think &

Definition its own but is made to look perform tasks on its own just like a
intelligent. human.
. Acts upon and is bound by the rules Can think and function
Key Differences P ] 4 Y l v.ery
imposed on it comparable to human beings.
| Current Status Advanced Stage Initial Stage

Examples Self-drive cars, Siri No proper examples for Strong Al

(*) Most (but not all) practitioners believe weak Al 1s (sometimes trivially) achievable
— but disagree about the feasibility of strong Al

(*) Few mainstream researchers believe that anything significant hinges on the
outcome of this debate.




What is Al?

<*) TUfiﬁg TCSt / “TOtal” TU.fiﬂg T@St (1950) https://www.csee.umbc.edu/courses/471/papers/turing.pdf
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(*) Again, few researchers believe the Turing test is crucial to the future development

of Al —however, many fascinating & canonical issues are raised by Turing in this
paper on the nature of Al

Is intelligence a well-defined concept?

(*) A 1955 study found that in 19/20 “expert disciplines”, an elementary

mathematical model (e.g, regression, naive Bayes) outperformed human
practitioner.



Aspects ot Al & Al Systems

(*) NLP: Natural Language Processing

(*) Knowledge Representation: Store/retrieve what is known

(*) Automated Reasoning: Use stored information for inference/deduction
(*) Machine Learning: Detect/extrapolate patterns

(*) Agent’s Representation of the World: Environment-knowledge representation
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(Computer Vision + Robotics (sensors, actuators) + embodiment = “Total Turing
Test”



Aspects ot Al & Al Systems

(*) Sophia the robot (Hanson Robotics)

https:/ /www.youtube.com/watch?v=T4q0WS0gxRY &t=1s B cn GO ertz el

8 Singularity Net

https://sinqularitynet.io/ http://goertzel.org/



https://singularitynet.io/

Related Disciplines

Neuroscience: Direct study of nervous system (brain functions, etc.)

Psychology: Emphasis on Behaviorism (Skinner) — difficult to
directly test.

Cognitive Science: “Al + Psychology” (use testable theories)

(*) Most researchers today accept the basic distinction between:
Phenomenal / observable VS Phenomenal / observable
works 1n Al works in physical brains

(*) Nevertheless, many important biological models have fruitfully inspired
models in Al (e.g. computer vision)



(*) Still though, rarely (to date) do researchers begin with the premise: “let’s
build a biological brain”

Why? Because we still don’t know how a biological brain works!
Consciousness, for example, 1s still largely a mystery.

The Mystery of
Consciousness

David Chalmers on conscioushess:
https://www.youtube.com/watch?v=uhRhtF

FhNzQ

JohnR. §earle




Computation Comparison

(*) Current computation benchmarks for computers are near that of the

brain.

Q: But is computation enough? Probably not.

Brain Computer
Number of Processing Units ~ 10" ~ 107
Type of Processing Units Neurons Transistors

Form of Calculation

Data Storage

Response Time

Processing Speed

Potential Processing Speed
Real Processing Speed

Resilience

Power Consumption per Day

Massively Parallel
Associative
~ 107%
Very Variable
~ 10" FLOPS "
~ 10" FLOPS
Very High
20W

Generally Serial
Address-based
~ 107s
Fixed
~ 10" FLOPS
~ 10" FLOPS
Almost None

300W 19



Accelerated Growth

(*) A few hundred thousand years ago, in early human prehistory, growth was so slow that it
took on the order of one million years for human productive capacity to increase sufficiently to

sustain an additional one million individuals live at subsistence level.

(*) By 5000 BC, following the Agricultural Revolution, the rate of growth had increase to the

point where the same amount of growth took just two centuries.

(*) Today, following the Industrial Revolution, the world economy grows on average by

that amount of ninety minutes.

World GDP over the last two millennia OurWorld
Total output of the world economy; adjusted for inflation and expressed in 2011 international dollars.
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Accelerated Growth & Computation
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Accelerated Growth & Computation
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Rational Thinking

(*) Early codification of “right thinking — Aristotle (syllogisms)
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Logic: Is there a set of (finite, discoverable) laws that govern the operation of the mind?

Issues with Logicist-Al methodology: Difficult to translate all real-world problems into
symbolic form; tractability; some argue incompleteness (Godel) renders logicist approac
to mathematics/Al futile.

Fundamental Fact: The

Hllbert -> Russeﬂ/Whitehead -> GOdel attempt to establish an
kel B indubitable foundation for all
of mathematics/science
through logic directly
inspired the gedanken
experiments that led to the
invention of the computer
% and the inception of Al as a
‘ . - formal discipline.
Hilbert’s “Principia” Incompleteness

“Millennium Problems”



Rational Thinking

A more complete rational agent?

Acts to achieve

Rational Agent “best” outcome
Reflexive Actions Environment Reasoning
Inference
Knowledge
Representation
NLP

“Perfect rationality” — a good starting point for Al



A Briet History ot Al

Themes of Al & “Dangerous knowledge™ in culture.




A Briet History ot Al

What is the nature of knowledge, where does it come from?
(Epistemology) Plato — Meno dialogue & a priori knowledge.

Induction vs. Deduction (Reasoning)

Q’s: (*)Can we simply learn a huge list of inference rules?
(*) Does a look-up table constitute intelligence?

(*) How to proceed from knowledge to action?

Hobbes: “Reasoning is like numerical computation” (1651, Leviathan)
Leonardo: Designs for mechanical calculator (15C);

IBM built a replica in 1968 =
Leibniz: “Step Reckoner” — could perform all 4 arithmetic operations (1694)

Also conceived of a computational machine operating on concepts!



A Briet History of Al

Hobbes: “Reasoning is like numerical computation” (1651, Leviathan)

e eyl

IBM built a replica in 1968 - ,
Leibniz: “Step Reckoner” — could perform all 4 arithmetic operations (1694)

Leonardo: Designs for mechanical calculator (15C); B

Also concetved of a computational machine operating on concepts!

Pascal: “Pascaline” (1652): Arithmetic / Mechanical Calculator

Descartes: Cogito (Meditations, 1641)

Rationalists — Dualism: Part of Mind/Spirit outside body & external world

Materialism: Brain constitutes mind



Sources and Nature of Knowledge

Empiricism: Bacon (16C), Locke, Hume

Inductive Reasoning: General rules acquired by repeated
exposute/association. (can we prove induction?)

Paradoxes of Induction: Black Swan

Utilitarianism: Mill (19C) — Ethics: maximize/quantify utility
Phenomenology: Husserl -> Heidegger: attempts to square subjective
experiences with rationalism.

Logical Positivism (20C): Russell -> Wittgenstein -> Carnap —
(Verificationism) only meaningful problems are those solvable by logical
analysis (against metaphysics).




A Briet History ot Al

C. Babbage: Difference Engine (1820s) — computes polynomial
coetficients from Newton’s Difference (classical interpolation).

Analytical Engine (AE, 1837): Proposed general-purpose
computer; integrating loops, memory, logic unit (Turing-complete

machine).

Ada Lovelace: (first “programmer’’?) Wrote programs for AE;
speculated about creative ability of Al (chess/music).

Leonardo: Designs for mechanical calculator (15C);

“[The Analytical Engine] might act upon other things besides number, were objects found whose mutual fundamental
relations could be expressed by those of the abstract science of operations, and which should be also susceptible of
adaptations to the action of the operating notation and mechanism of the engine...Supposing, for instance, that the
fundamental relations of pitched sounds in the science of harmony and of musical composition were susceptible of such
expression and adaptations, the engine might compose elaborate and scientific pieces of music of any degree of
complexity or extent.” — Ada Lovelace




Gestation 1943-1955
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Hebb’s Postulate

“When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.”

* In other words: if two neurons fire “close in time”

then strength of synaptic connection between
them increases.

Aw; (1) =nvyv,8(t, 2, )

=R 5 “close” |
A —— time

. L, I“’
T v,

« Weights reflect correlation between firing events.




Gestation 1943-1955
McCulloch & Pitts Neuron Model (1943)
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(Gestation

(1956) Dartmouth Workshop on Al

John McCarthy: Founded Stanford Al Lab, invented Lisp, Advice Taker program
Alan Newell: RAND/CMU, received Turing award

Claude Shannon: Founder of information theory

Herbert Simon: CMU] received Nobel prize in Economics, Turing award

Marvin Minsky: initiated MIT Al Lab, built SNARC (early NN machine)

John MacCarthy Marvin Minsky Alan Newell

/v
I‘ [ 5.7

Oliver Selfridge Nathaniel Rochester Trenchard More

Herbert Simon Arthur Samuel



Gestation
(*) The Dartmouth Workshop charter:

“We propose a 2 month, 10 man study of artificial intelligence be carried out ... The study is to
proceed on the basis of the conjecture that every aspect of learning or any other feature of
intelligence can in principle be so precisely described that a machine can be made to simulate it. An
attempt will be made to find out how to make machines that use language, form abstractions and
concepts, solve kinds of problems now reserved for humans, and improve themselves. We think that a
significant advanced can be made in one or more of these problems if a carefully selected group of

4 & A 2
scientists work on it together for a summer.

(*) A more tempered perspective: L.]. Good in 1965

(British mathematician who worked with Turing at Bletchley Park):

(44 . q 4 £ Y
Let an ultra-intelligent machine be defined as a machine that can far surpass all the intellectual §

activities of any man however clever. Since the design of machines is one of these

intellectual activities, an ultra- intelligent machine could design even better machines; there would
unquestionably be an “intelligence explosion,” and the intelligence of man would be left far
behind. Thus the first ultra-intelligent machine is the last invention that man need ever make,

5 o . . . 2
provided that the machine is docile enough to tell us how to keep it under control.



1952-1969

Early Enthusiasm/Great Expectations

(*) For the two decades following the Dartmouth workshop, Al research was largely
dominated by the workshop participants and their immediate colleagues.

(*) John McCarthy referred to this era as the “Look, Ma, no hands!” era of Al research.;
during these days researchers built systems designed to refute claims of the form “No

P)

machine could ever do X

(*) Such skeptical claims were common at the time. To counter them, the Al researchers
created small systems that achieved X in a “microworld” (a well-defined, limited domain
that enabled a pared-down version of the performance to be demonstrated), thus
providing a proof of concept and showing that X could, in principle, be done by a
machine.




1952-1969

Early Enthusiasm/Great Expectations

(*) LT: Logic Theorist (1956) designed by Allen Newell and Herbert Simon, dubbed the
“first Al program”, it was deliberately engineered to mimic the problem solving skills of

humans. In total it successfully proved 38 of the first 52 theorems from
Russell/Whitehead’s Principia.

(*) GPS: General Problem Solver (1959), also developed by Newell

Logic Theorist

In about 12 minutes LT produced, for theorem 2.

And Simon; used a separate knowledge representation module — intended as a universal
solver machine (any problems expressed as WEFFs could be solved, in principle) — limited

due to combinatorial explosion.

(*) Geometry Theorem Prover (IBM, 1959)




1952-1969

Harly

Anthusiasm/Great |

Hxpectations

(*) Arthur Samuel (IBM, Stanford) was an early pioneer in AT (first to coin term
“machine learning”); began seminal work on AI checkers program in 1959,

invents alpha-beta pruning and minimax algorithms (among others).
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1952-1969

Early Enthusiasm/Great Expectations

(*) Shakey the Robot, developed at Stanford, (so named because of its tendency to tremble during
operation) demonstrated how logical reasoning could be integrated with perception an used to plan
and control physical activity. It was the first general-purpose mobile robot to be able to reason about
its actions; project combined research in robotics, computer vision and NLP. As notable for one of

the first applications of the A* algorithm.

https:/ /www.youtube.com/watch?v=7bsEN8mwUB8

(*) The ELIZA (MIT, 1964-1966) program showed how a computer could impersonate a Rogerian

psychotherapist. ELIZA simulated conversation by using a pattern maching and substitution
methodology that gives the illusion of understanding (note that ELIZA is incapable of learning new

patterns of speech/words through interaction alone).

Demo: http://www.manifestation.com/neurotoys/ eliza.php3



1952-1969

Early Enthusiasm/Great Expectations

(*) Following a number of early successes of applied Al in these microworld domains, enthusiasm
was high for Al to solve the “big problems” (e.g. computer vision, NLP, etc.); H. Simon declared
(1957): “There are now in the world machines that think, that learn and that create.”

(*) However, the methods that produces these early successes often proved difficult to extend to a
wider variety of problems or to harder problem instances.

(*) One reason for this is the “combinatorial explosion” of possibilities that must be explored by
methods that rely on something like exhaustive search. (note that the inception of computational
complexity as a formal discipline only began in the mid 1960s)

(*) For 1nstance: to prove a theorem using 5-lines and a deductive system containing 5 axioms, one
could simply enumerate the 3,125 possible combinations; proving a 50-line proof by contrast
requires ~8.9 x 1034 possible sequences (!) — which is computationally infeasible for even the
tastest supercomputers.



1966-1973: Al Winter

(*) During the U.S.-Soviet space race, the U.S. government funded research in machine translation.
At the time, researchers believed (natvely) that NLP (in addition to computer vision) would be
solved in a matter of a few years.

(*) After nearly a decade of funding research in machine translation, researchers discovered that
they were still a long way from “solving” the problem. A famous mistranslation encapsulated this

difficulty:

“the spirit is willing, but the flesh is weak” (originally in Russian) was translated: “#he vodka is good but the
meat is rotten”’! (in 1966 all funding was halted for this project)

(*) Note that to overcome the combinatorial explosion in Al, one needs algorithms that exploit
structure in the target domain and take advantage of prior knowledge by using heuristic
search, planning, and flexible abstract representations — capabilities that were poorly developed by
early Al systems.

(*) The performance of these early systems also suffered because of the poor methods for handling
uncertainty, reliance on brittle and ungrounded symbolic representations, data scarcity, and severe
hardware limitations of memory capacity and processor speed.




1966-1973: A1l Winter

(*) Rosenblatt (1962) proved that the perceptron learning rule converges to correct weights in a finite
number of steps, provided the training examples are linearly separable.

perceptron
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(*) Minsky and Papert (1969) proved that perceptrons cannot represent non-linearly separable target
functions.

(*) Later it was shown that by using continuous activation functions (rather than thresholds), a fully
connected network with a single hidden layer can in principle represent any function (UAT (1989):
universal approximation theorem). The well-known backpropagation algorithm (essential to deep

learning) algorithm was later “rediscovered” by Hinton et al. o
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Al in the 1980s: Expert Systems

(*) The ensuing years saw a great proliferation of expert systems (rule-based
programs that made simple inferences from a knowledge based of facts, elicited from
human domain experts and painstakingly hand-coded in a formal language).

(*) Hundreds of these expert systems were built; however, the smaller systems
provided little benefit, and the larger ones proved expensive to develop, validate, and
keep updated, and were generally cumbersome to use.

(*) At this point, a critic could justifiably bemoan: “#he bistory of Al research to date,
consisting always of very limited success in particular areas, followed immediately by failure to reach
the broader goals at which these initial successes seem at first to hint”’; Al became something of
an unwanted epithet at this time.



1990s-2000s: Resurgence of Al

(*) By the early 1990s, a second Al winter began to thaw. Optimism was
rekindled by the introduction of new techniques, which seemed to offer
alternatives to the traditional logicist paradigm (often referred to as Good Old-
Fashioned Al (GOTFAL)) which had reached its apogee in the 1980s.

(*) In particular, two newly popular techniques: Neural Networks (ZNNs) and
Genetic Algorithms (GAs), promised to overcome some of the shortcomings
of the GOFAI approach.

(*) The resurgence of Al in the 1990s was also prompted especially by the
rediscovery of the backpropagation algorithm, the UAT for NNS, a
proliferation of data (due in part to the widespread use of the internet), and
new develops processing techniques.



1990s-2000s: Resurgence of Al

(*) These new techniques (NNs and GAs) boasted a more organic performance on the whole.

(*)NNs for instance exhibited a useful, “graceful degradation” property and they could learn from
experience — thereby finding natural ways to generalize from examples by discovering hidden
statistical patterns in their input.

(*) NNs were also seen as more biologically-plausible models (cf. GOEAI); the brain-like qualities of
NNs contrasted favorably with the rigid and brittle performance of traditional, rule-based GOFAI
systems.

(*) The philosophy of connectionism gained traction in cognitive science / neuroscience, which
further supported modeling with NNs. Connectionism emphasizes the importance of massively
parallel sub-symbolic processing .
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1990s-2000s: Resurgence of Al

(*) In evolution-based models (e.g. GAs), a population of candidate solutions (which can
be data structures or programs) 1s maintained, and new candidate solutions are generated

randomly by mutating or recombining variants in the existing population.

(*) Periodically, the population 1s pruned by applying a selection criterion (a fitness function)
that allows only the better candidates to survive into the next generation and thereby
combine their “genetic material” with other “fit” subjects.

(*) When it works, this kind of algorithm can produce efficient solutions to a very wide
range of problems — solutions that may be strikingly novel and unintuitive, often looking
more like natural structures than anything that a human engineer would design.
Furthermore, this can happen without much need for direct human input (beyond the
specification of the problem/learning parameters).

Population
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1990s-2000s: Resurgence of Al

(*) Behind many of the new state-of-the-art techniques in Al lies a set of mathematically well-
specified tradeoffs. The ideal one is that of a Bayesian agent, one that makes probabilistically
optimal use of available information.

(*) This ideal is, however, unattainable because it is too computationally demanding to be implemented
in any physical computer. Accordingly, one can view Al as a quest to find shortcuts: ways of tractably
approximating the Bayesian ideal by sacrificing some optimality while preserving enough to get high performance.

(*) In 1988 Judea Pearl published a highly influential book on probabilistic graphical models (e.g.
Bayesian nets). Bayesian networks provide a concise way of representing probabilistic and conditional
independence relations that hold in some particular domain. Exploiting these independence relations
is essential to overcoming the combinatorial explosion (graphical models have led to improvements in
Monte Carlo approximation techniques, deep learning, and causal models, among other domains).

PROBABILISTIC REASONING
IN INTELLIGENT SYSTEMS:

Networks of Plausible Inference
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1990s-2000s: Resurgence of Al

(*) An important benchmark in the history of Al that helped usher in the recent, “deep learning”
phenomenon, was Yann LeCun (Facebook) et al’s seminal 1990 paper, for which researchers applied
a convolutional neural network (CNN) to perform handwritten digit recognition.

(*) Remarkably, this technique, which has been extraordinarily influential for subsequent deep learning
and computer vision approaches, achieved a 1% error rate (on par with human error). This approach
was later adopted by the US post office to automate mail sorting (using handwritten zip codes).

C3:f. maps 16@10x10
INPUT C1: feature maps S4: 1. maps 16@5x5
W6 Le Cun, Boser, Denker, Henderson, Howard, Hubbard and Jackel 32x32 6@28x28 S2:f. maps .
y . layer
6@14x14 50 ) FBI} ayer ?ETPUT

Handwritten Digit Recognition with a nz}:—._
Back-Propagation Network I&
S
e
fenderson
). Jackel
10778

Full connection Gaussian connections

Convolutions Subsampling Convalutions  Subsampling Full connection

ABSTRACT

INTRODUCTION

IL.eCun

http:/ /papets.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.pdf



1990s-2000s: Resurgence of Al

(*) In 1997 Deep Blue (IBM), a chess-playing computer defeated the world champion, Garry Kasparov by a
final score of 4-2. (Note that Kasparov accused IBM of cheating and demanded a rematch, IBM refused).

(*) Deep Blue employed custom VLSI chips to execute alpha-beta pruning search in parallel; notably Deep
Blue is an example of GOFAI rather than deep learning — which is to say it used a relatively naive (by
contemporary standards), brute force approach.

(*) These issues aside, Deep Blue’s victory had a significant impact on capturing the imaginations of both the
public (and industry) regarding Al and its future potential.

(*) Notably, it was once thought (in the early days of Al) that the invention of master-level chess Al systems
would presuppose the invention of AGI (artificial general intelligence) — clearly this is not the case, as we still
await the invention of AGI (John McCarthy once lamented: “As soon as it works, no one calls it Al

anymore.”)




2010s and Beyond

Deep Neural Network
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2010s and Beyond

(*) AlexNet (2012), Alex Krizhevsky et al.: A new benchmark for deep learning, achieved
top-5 error rate of 15% on ImageNet challenge (23k categories).

(*) Adversarial Learning and GANs (2014),
Goodfellow et al.
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2010s and Beyond

(*) IBM Watson (2011)
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https:/ /www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-

wants-to-do-next/

(*) DeepMind (2014): Playing Atari (at super-human levels) using Deep Reinforcement
Learning

Hassabis

DeepMind

https:/ /www.youtube.com/watch?v=V1eYniJORnk




2010s and Beyond

(*) DeepMind AlphaGo (201 5) https://deepmind.com/documents/119/agz_unformatted_nature.pdf

- 00:01:00

An animation of the gradient descent method
predicting a structure for CASP13 target T1008

https://deepmind.com/blog/alphafold/



20105 and Beyond: AI & Creativity
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(*) In 2018, this painting sold for $432,000 at a Christie’s auction.



2010s and Beyond: Al & Creativity
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(*) In 2018 this painting sold for $432 OOO at a Cliristie’s auction.
It was created by an Al program



2010s and Beyond: Al & Creativity

(*) Google DeepDream (2015)

https:/ /www.youtube.com/watch?v=dbQh1I_uvjo&t=1s

(*) AI-Generated Music: AIVA Technologies (2018)

https://soundcloud.com/user-95265362/sets/genesis

(*) Al-Generated Opera (NIPS, 2018)
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https://nips2018creativity. (Tlthul) 10 d()C lumnd of wrong mountain.pdf

(*) Improvised Robotic Design with Found Objects (NIPS, 2018)
https://nips2018creativity.github.io/doc/improvised_robotic_design.pdf



https://soundcloud.com/user-95265362/sets/genesis
https://nips2018creativity.github.io/doc/legend_of_wrong_mountain.pdf

Al: The Future

Final Considerations:

(*) Is human-level AGI (artificial general intelligence) possible?
(*) Is deep learning the answer? (or is it still a “microworld”?)

(*) Supervised vs. unsupervised learning: it turns out that more/”’better” data might trump
effectiveness of an algorithm! Need to consider the “knowledge bottleneck™ — automate
the learning process, bootstrap new patterns.

(*) “The first ultra-intelligent machine is the last invention that man need ever make”

10% chance: 2030 ——
50% chance: 2050 Combined
90% chance: 2100

Polling results for researchers in

Al when asked about artival date -
Extreme I Onb 1] ance More or less On balanc Extremely
of HMLI (human-level machine : ¢ R W‘j;ﬁf},ml
. . . . catastrophe)
intelligence) and its potentnail ‘
Figure 2 Overall long-term impact of HLMI 8

impact



Can we use evolution to re-discover intelligence?

(*) We know that blind evolutionary processes can produce human-level general
intelligence, since they have already done so at least once!

(*) Q: It stands to reason that evolutionary processes with foresight — that is,
genetic programs designed and guided by an intelligent human programmer — can
achieve a similar outcome with far greater efficiency.
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Can we use evolution to re-discover intelligencer

A back-of-the-envelope approximation for the complexity of “inventing” intelligence with
foresight:

(*) One can argue that the key insights for Al are embodied in the structure of the nervous
system, which came into existence less than a billion years ago.

(*) Evolutionary algorithms require not only variations to select among but also a fitness
function to evaluate variants, and this is typically the most computationally expensive
component. A fitness function for the evolution of Al plausibly requires simulation of
neural development, learning and cognition to evaluate fitness.

(*) We can make a crude estimate of the number of neurons in biological organisms that
we might need to simulate to mimic evolution’s fitness function.

(*) If, for instance, we consider that the honeybee brain consists of ~10° neurons, a fruit
fly, ~10°, and ants ~250k, then erring on the side of conservative, there are approximately
10! insects on Earth, there would be roughly a total of 10** insect neurons.



Can we use evolution to re-discover intelligence?

A back-of-the-envelope approximation for the complexity of “inventing” intelligence with foresight:

(*) If, for instance, we consider that the honeybee brain consists of ~10° neurons, a fruit fly, ~10°, and
ants ~250k, then erring on the side of conservative, there are approximately 10!? insects on Earth,
there would be roughly a total of 10** insect neurons.

(*) This figure can further be augmented an additional order of magnitude when we consider aquatic
life, birds, reptiles, mammals, etc., to reach 10%,

(*) The computational cost of simulating one neuron depends on the level of detail that one includes in
the simulation. Extremely simple neural models use ~1k floating-point operations per second (FLOPS)
to simulate on neuron in real-time.

(*) A more electrophysiologically realistic Hodgkin-Huxley model uses 1.2 million FLOPS.
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Can we use evolution to re-discover intelligence?

A back-of-the-envelope approximation for the complexity of “inventing” intelligence with foresight:

(*) A more electrophysiologically realistic Hodgkin-Huxley model uses 1.2 million FLOPS.

(*) A more detailed, multi-compartmental model would add another three or four orders of magnitude
(while higher-level models that abstract systems of neurons might subtract two or three orders of
magnitude).

(*) If we were to simulate 10%° neurons over a billion years of evolution (longer than the existence of
nervous systems as we know them), and we allow our computers to run for one year, these figures
would give us a requitement in the range of 103-10* FLOPS.

(*) Contemporaty super computers provide only roughly 10!8 FLOPS, which means this brute force
search would on the surface require well over a trillion years to execute!
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