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We study self-affine tilings of Rn with special emphasis on the

two-digit case. We prove that in this case the tile is connected

and, if n � 3, is a lattice-tile.

INTRODUCTIONWe study certain tilings of Rn de�ned by \gener-alized decimal expansions" in which the base tenand the digits 0; : : : ; 9 are replaced by an integern � n matrix A and a �nite subset D of Zn. Theexpansions in question are of the formX�1<i�N Aivi;where N 2 Z and all the vi belong to D. Toguarantee convergence, A is assumed to be expand-ing, that is, all its eigenvalues have absolute valuegreater than 1. Since A is an integer matrix, itsdeterminant is �q, where q is a positive integer.D is required to consist of exactly q elements, onefor each coset of AZn in Zn; in the terminology of[Lagarias and Wang a], D is a standard digit set.We assume for simplicity that 0 belongs to D.Corresponding to the integer and fractional partsin the usual decimal expansion, de�ne I to consistof all sums of the form v0+ � � �+Akvk, where k � 0and vi 2 D, and Q to be the set of all in�nitesums A�1v�1 + A�2v�2 + � � �, for vi 2 D. In theusual decimal expansion, Q is the unit interval andI = f0; 1; 2; : : :g. The translates of Q by elementsof I tile some subset of Rn . By enlarging I we canobtain a set G0 such that the translates of Q byelements of G0 tile all of Rn (see Proposition 1.5).In fact, G0 � G = I � I, the set of di�erences ofelements of I. c A K Peters, Ltd.1058-6458/95 $0.50 per page
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FIGURE 1. Lattice-tile for A = � 0�3 12� andD = f(0; 0); (1; 0); (�1; 5)g.The following simple example illustrates severalfeatures of the general case: if n = 1, A = 3 andD = f0; 4; 11g, then I = f0; 4; 11; 12; 16; : : :g andR is tiled by the translates of Q by Z (see the endof Section 1).It turns out that G0 is a lattice if G = I�I is onealso, and in this case G0 = G. If G is a lattice, wecall Q a lattice-tile. It is shown in [Gr�ochenig 1994;Gr�ochenig and Haas] that G is always a lattice forn = 1. On the other hand, [Lagarias and Wang a,Example 2.3] shows that G is not always a latticefor n > 1.The tile Q itself can be intriguingly complex.Figure 1 shows Q for A = � 0�3 12� and D = f(0; 0);(1; 0); (�1; 5)g. One can show that Q has in�nitelymany connected components, each with in�nitelymany holes.By contrast, Figure 2 shows Q for A = � 20 12�and D = f(0; 0); (1; 0); (0; 1); (1; 1)g. This tile isconnected and simply connected; there are densitypoints of Q on the boundary.As a last example, Figure 3 shows a case whereQ is connected but not simply connected.

FIGURE 2. Lattice-tile for A = � 20 12� andD = f(0; 0); (1; 0); (0; 1); (1; 1)g.

FIGURE 3. Lattice-tile for A = � 30 03� and D =f(�1;�1); (0;�1); (1;�1); (�2; 0); (0; 0); (2; 0);(�1; 1); (0; 1); (1; 1)g.The rest of this article is structured as follows.Section 1 consists mostly of a review of basic resultson self-a�ne tilings of Rn . This section overlapssubstantially with results of other authors [Bandt1991, Gr�ochenig and Haas, Gr�ochenig and Madych1992, Kenyon 1992, Lagarias and Wang a{c, Vince1993]. In Section 2 we investigate certain aspectsof the case q = 2: we prove that Q is always con-nected, and that G is a lattice for n � 3. Finally,in Section 3, we derive an algorithm for checking ifG is a lattice given A and D (see [Vince 1993] foranother algorithm).
1. BASIC RESULTSIn this section we establish some basic results ontilings of Rn which are self-a�ne in the terminologyof [Lagarias andWang a]. Many of these results are
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Hacon, Saldanha and Veerman: Remarks on Self-Affine Tilings 319due independently to other authors; we refer thereader to the references given in the introduction.Let A be an expanding integer n � n matrix,that is, one whose eigenvalues have absolute valuegreater than 1. We write detA = �q, where q is apositive integer. Reducing A to Jordan canonicalform, we see that, for any bounded set B � Rn ,the diameter of A�kB tends to 0 as k !1.We also suppose given (or choose) a set D ofq elements of Zn such that 0 2 D and D � D \AZn = 0; in other words, the elements of D aredistinct modulo AZn. It follows that Zn is thedisjoint union of the q cosets r +AZn, for r 2 D.(Throughout this paper X + Y will denote theset of all sums x + y with x 2 X, y 2 Y , andlikewise X�Y . In�nite sums are de�ned if all setscontain 0: if 0 2 Xk for all k, X1 +X2 + � � � is theincreasing union of the X1 + � � �+Xk for all k.)Since Zn = D+ AZn, we have Zn = D+ AD +A2Zn and so on. We writeI = D+AD+A2D+ � � � :This gives a unique representation for each elementof I, because if r1 + � � � + Akrk = s1 + � � � + Akskwe get r1 = s1 modulo AZn, so r1 = s1 and ri = sifor all i by induction. As already remarked, forn = 1, A = 3 and D = f0; 4; 11g we have I =f0; 4; 11; 12; 16; : : :g.Now set �Z = A�1(D + Z), for any Z � Rn .Then �kZ = Qk +A�kZ;where Qk = �k(f0g) = A�1D+� � �+A�kD. ClearlyQ1 � Q2 � � � � and AQ1 � A2Q2 � � � � � I. Thecompact set [k Qkis invariant under � . Following [Hutchinson 1981](compare [Falconer 1985] and [Lagarias and Wanga]), we examine how � acts on the compact subsetsof Rn in order to characterize this invariant set.

Recall that, for any metric space X, the Haus-dor� metric on the space of compact nonemptysubsets of X is de�ned byd(K;L) = inf f" j K � N"(L) and L � N"(K)g;where N"(K) is the open "-neighborhood ofK. LetH(X) be this space of subsets with the Hausdor�metric. It is well known that, if X is complete, sois H(X).Clearly, � maps H(Rn ) into itself. We knowthat some power �N of � is a contraction; let Qbe its unique �xed point. Since �N�Q = �Q, onehas �Q = Q, by uniqueness. If K 2 H(Rn) and�K = K then �NK = K so that K = Q, againby uniqueness. Furthermore, if we apply � repeat-edly to any K 2 H(Rn ), the iterates tend to Q inthe Hausdor� metric (consider the subsequences ofthe form k = jN + k0, for k0 �xed and j ! 1).Therefore:
Lemma 1.1. The map � : H(Rn) ! H(Rn) has aunique �xed point Q, and Q = limk!1 �kK forany K 2 H(Rn). �In particular, taking K = f0g, we get �kK = Qk,so Q = SkQk and the �nite sets Qk are approxi-mations to Q in the Hausdor� metric.We next ask how Rn may be represented in termsof I and Q. We �rst show that Rn = Zn + Q; inother words, that �Q = Tn, where � : Rn ! Tnis the quotient map onto the n-torus Tn = Rn=Zn.Since multiplication by A takes Zn to itself, it in-duces a map of Tn to itself, also denoted A. NowA�1 acts on subsets of Tn taking B to A�1B, soit induces a map A�1 : H(Tn) ! H(Tn). Also �induces a map � : H(Rn) ! H(Tn), which is con-tinuous; indeed, � decreases distances. Since thedigits form a complete set of representatives mod-ulo AZn, we see that �� = A�1�. If we take a com-pact set K � Rn that projects surjectively to Tnand apply � repeatedly, we get �Q = � limk �kK =limk ��kK = limk A�k�K = Tn, showing that Zn+Q = Rn as claimed.
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320 Experimental Mathematics, Vol. 3 (1994), No. 4By Baire's theorem, this also implies the follow-ing result (compare [Lagarias and Wang a, Theo-rem 1.1]):
Proposition 1.2. Q has nonempty interior . �We next look at the self-similarity properties of Q(compare [Falconer 1985]). Let jXj be Lebesguemeasure of X; all sets considered will be measur-able. We say that two sets K and L overlap if theirintersection has positive measure.
Lemma 1.3. The translates of A�kQ by elements ofQk do not overlap. The translates of Q by elementsof I do not overlap.
Proof. Qk contains at most qk points and jA�kZj =q�kjZj for any Z. Since Q = �kQ, the �rst asser-tion follows. For the second, note that if u; v 2 I,there is some k such that u; v 2 AkQk. If u and vare distinct, A�ku+A�kQ and A�kv+A�kQ don'toverlap, and therefore neither do u+Q and v+Q.�
Definition 1.4. Let X;H; Y � Rn be measurablesets, where X is bounded with nonempty interior.We say that H+X is a tiling of Y if Y = H+Xand the translates of X by elements of H don'toverlap.We now de�ne G as the set I � I of di�erences ofI. From Proposition 1.2 and the self-similarity ofQ (Lemma 1.3), we can recover the following tilingproperty [Gr�ochenig and Haas].
Proposition 1.5. There exists a subset G0 of G suchthat the translates of Q by elements of G0 tile Rn .Furthermore, G0 �G0 � G.
Proof. We know that Q has nonempty interior.Given r > 0, we use the expansiveness of A to �ndk such that a ball of radius r + diamQ �ts insideAkQ. But AkQ = AkQk + Q, and the translatesof Q by elements of AkQk are nonoverlapping, byLemma 1.3. Thus, for some element vr of AkQk,the translates of Q under Gr = AkQk�vr � G tile(a superset of) a ball of radius r around the origin.We now have tilings of arbitrarily large regionsaround the origin; we will use them to assemble a

tiling of Rn . Given any positive integer s, the inter-sections of Gr with Bs, the ball of radius s aroundthe origin, can only produce �nitely many di�er-ent sets. Thus, there is an in�nite subsequenceof values of r for which these intersections are allequal. Starting with s = 1, we take a subsequenceG11; G12; : : : of G1; G2; : : :, all meeting B1 in the sameset. For s = 2, we take a subsequence G21; G22; : : :of G11; G12; : : :, all meeting B2 in the same set. Werepeat the process for increasing s. De�ne G0 to bethe set of elements of G belonging to all but �nitelymany of the sets G11; G21; G31; : : :: by construction,G0 +Q is a tiling of Rn .To prove that G0 � G0 � G, we observe thatGr � Gr = Qkr � Qkr � I � I = G. The resultfollows since any �nite subset of G0 is contained ina translate of some Gr. �Next we consider how � acts on the measurablesubsets of Q. If K and L are measurable sets, wewrite K � L if the symmetric di�erence (K [L) n(K \ L) has measure zero. We say that K is � -invariant if K � �K.We �rst observe that, Z � Q implies j�Zj = jZj.For, setting Y = Q n Z, we have j�Zj � jZj andj�Y j � jY j by the de�nition of � . But �Z [ �Y =�Q = Q = Z [ Y , so Z and �Z have the samemeasure. Thus, if Z � �Z or if �Z � Z, the set Zis � -invariant.At the same time, we have the following ergod-icity result (see the end of this section):
Proposition 1.6. Any � -invariant subset of Q hasmeasure 0 or jQj.
Proof. Suppose that Z is � -invariant and jZj > 0. Itfollows directly from the Lebesgue density theoremthat we may choose a point x such thatlim"&0 jZ \N"(x)jjN"(x)j = 1:Thus, given � > 0, we havejZ \N"(x)jjQ \N"(x)j � 1� 12�
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Hacon, Saldanha and Veerman: Remarks on Self-Affine Tilings 321for " > 0 su�ciently small. For k large enough, thediameter of A�kQ will be small enough, in compar-ison with ", to ensure the existence of v 2 Qk suchthat jZ \ (v +A�kQ)jjQ \ (v +A�kQ)j � 1� �:Indeed, by Lemma 1.3, the tiny sets v+A�kQ, forv in some subset of Qk, cover N"(x), except for anarrow margin around the boundary of N"(x) (ofnegligible size), without overlapping; if the aboveratio were smaller than 1 � � for all such v theratio in the previous inequality would be smallerthan 1� 12�, a contradiction.By hypothesis, Z � �kZ. Hence Z � Qk+A�kZ.Again by Lemma 1.3, we have(Qk +A�kZ) \ (v +A�kQ) � v +A�kZ:Hence jZjjQj = jv +A�kZjjv +A�kQj � 1� �:Since � > 0 is arbitrary, we are done. �
Corollary 1.7. Except on a set of measure zero, � :Q! Tn is f -to-one for some �xed integer f .
Proof. Let Q(k) be the set of x 2 Q such that x+Znmeets Q in at least k points (including x). Clearly,Q = Q(1) � Q(2) � � � �, and Q(k) is empty forlarge k (since Q is bounded) and the Q(k) are allmeasurable.To verify that Q(k) � �Q(k) for all k, take x; y 2Q such that x�y 2 Zn. SinceQ = �Q, we have x =A�1(x0+r) and y = A�1(y0+s) for some x0; y0 2 Qand r; s 2 D. Clearly, x0 � y0 2 Zn, and if x0 = y0then r � s 2 AZn so that r = s and, therefore,x = y. This proves that Q(k) � �Q(k) and thatQ(k) is � -invariant for all k. By Proposition 1.6,jQ(k)j is 0 or jQj. Now take f to be the largestvalue of k for which jQ(k)j = jQj. �Notice that in this proof we only use the fact that(D�D) \ AZn = f0g; see [Lagarias and Wang a]for more general digit sets.Two other consequences are worth noticing: theLebesgue measure of Q is always an integer, and

the boundary of Q has measure zero (since �Q haspositive measure and maps inside itself under � .)We now show that G0 = G if G is a lattice.
Proposition 1.8. G is a lattice if and only if thetranslates of Q by elements of G tile Rn .
Proof. Assume G is a lattice, and take v; w in G.By hypothesis, v � w = x� y where x; y 2 I. If vand w are distinct, x+Q and y+Q do not overlap,by Lemma 1.3, so neither do v +Q and w +Q.Conversely, if the G-translates of Q don't over-lap, G = G0 since G0 + Q is a tiling. Thus, byProposition 1.5, G�G � G and G is a lattice. �From Propositions 1.5 and 1.8 we get:
Theorem 1.9. If G is a lattice, G+Q is a tiling andthe Lebesgue measure of Q is equal to the index ofG in Zn. �We may deduce a criterion for G to be a lattice.
Lemma 1.10. G \Q = Zn \Q implies G = Zn.
Proof. De�ne C : Zn ! Zn by C(v) = A�1(v + r),where r is the unique element ofD such that v+r 2AZn. Clearly, C�1G � G. For any v 2 Zn and anyk � 1 we have, by de�nition, Ck(v) 2 �k(fvg). ButQ = limk �k(fvg) and Zn is discrete, so eventuallyCk(v) 2 Q. By hypothesis, Ck(v) 2 G, i.e., v 2C�kG. Hence v 2 G, as required. �Returning to our earlier example, we show thatG = Z for n = 1, A = 3 and D = f0; 4; 11g. It iseasy to see from the de�nition that Q is containedin [0; 112 ]. We generate all integers in this interval:0 4�! 4 �11�! 1 0�! 3 �7�! 2and 0 4�! 4 �7�! 5:Here a b�! c means c = 3a + b. For example,2 = 4 �33�11 �32+0 �31�7 �30. We thus have G\Q = f0; 1; 2; 3; 4; 5g = Z\Q and, by Lemma 1.10,G = Z. From Theorem 1.9, Z+ Q is a tiling andjQj = 1.
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322 Experimental Mathematics, Vol. 3 (1994), No. 4Let G be the lattice generated by G; in particu-lar, G is a lattice if and only if G = G. As we shallsee in Section 3, G is easily computable.
Proposition 1.11. G is a lattice if and only if G\Q =G \Q.
Proof. G a lattice implies G \Q = G \Q trivially.Conversely, assume G \ Q = G \ Q: since Q isbounded and G0 + Q = Rn , the set G0 is not con-tained in a proper vector subspace of Rn . By def-inition, AG � G, so AG � G. Now G is containedin Zn and spans Rn since G0 does; thus G is iso-morphic to Zn. Also D � G (since D � G) and theelements of D are distinct modulo AZn and hencemodulo AG (since G � Zn). Therefore, D containsprecisely one element in each coset of AG in G, andC : G ! G as in the proof of Lemma 1.10 is well-de�ned. Now follow the proof of Lemma 1.10 withG instead of Zn. �The question whether or not G is a lattice has beensettled in certain cases.
Theorem 1.12 [Gr�ochenig 1994]. G is always a lat-tice if n = 1.
Example 1.13 [Lagarias and Wang a]. G is not alattice forA = � 2 10 2� and D = f(0; 0); (3; 0); (0; 1); (3; 1)g :For the reader's convenience, we include a proof ofTheorem 1.12, based on arguments in [Gr�ochenig1994; Gr�ochenig and Haas]. We �rst present a se-ries of auxiliary de�nitions and results. Considerthe n-dimensional case for a moment. We denoteby �k(g) the coe�cient of zk = zk11 � � � zknn , for k 2Zn, in a Laurent series g 2 R[z1 ; z�11 ; : : : ; zn; z�1n ].The key to the proof is the introduction of thetiling polynomial T , de�ned by �k(T ) = jQ \ (k +Q)j. Clearly, T is constant if and only if the trans-lates of Q under elements of Zn do not overlap.We set D =Pd2D zd, and �D =Pd2D z�d. (Thenotation comes from the fact that �D(z) = D(z)when jzj = 1.)

We �rst show that�k(qT ) = �Ak(D �DT ) (1.1)for all k 2 Zn, where, as we recall, q = jdetAj. ByLemma 1.3 and the fact that Q = �Q, we have�k(qT ) = q jQ \ k+Qj= jAQ \Ak+AQj= jA�Q \Ak+A�Qj= jD+Q \Ak+D+Qj= Xd;d02D jd+Q \Ak+d0+Qj= Xd;d02D jQ \Ak+d0 � d+Qj=�Ak(D �DT );by the de�nition of D and T .Given g, we de�ne ĝ by �k(ĝ) = �Ak(D �Dg).Thus (1.1) may be rewritten as T̂ = qT . Noticealso that 1̂ = q, sinceD is a complete set of residuesmodulo AZn.Returning to the one-dimensional case, we takeA = q.
Lemma 1.14. For n = 1 and jzj = 1 we haveqĝ(z) = Xwq=z g(w)jD(w)j2:
Proof. Write ~g = D �Dg. Then~g(z) = ĝ(zq) + zg1(zq) + � � �+ zq�1gq�1(zq)for appropriate g1; : : : ; gq�1. Setting wq = z, weget ~g(w) = ĝ(z) +wg1(z) + � � �+wq�1gq�1(z). ButPwq=z wj = 0 for 0 < j < q. It follows thatqĝ(z) =Pwq=z ~g(w). �Taking g = 1 and g = T , we obtain, for jzj = 1,Xwq=z jD(w)j2 = q2 (1.2)and Xwq=z jD(w)j2�T (w)� T (z)� = 0: (1.3)Since ��k(T ) = �k(T ), the restriction of T to theunit circle S1 = fz j jzj = 1g is real valued.
Lemma 1.15. If T is nonconstant , gcd(D) > 1.
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Hacon, Saldanha and Veerman: Remarks on Self-Affine Tilings 323

Proof. The set E of extrema of T in S1 is �niteand has at least two points. Also, if z 2 E, thedi�erence T (z) � T (y) has the same sign for ally 2 S1. Take z 2 E distinct from 1. By (1.2)and (1.3), there is some w0 with wq0 = z, for whichT (w0) = T (z) and therefore w0 2 E. For each zthere is at least one such w0 and di�erent values ofz correspond to di�erent w0; �niteness of E thenguarantees that, given z, there is exactly one suchw0 and therefore T (w) 6= T (z) if w 6= w0 and wq =z. Again from (1.3), jD(w)j = 0 for such w and,from (1.2), jD(w0)j = q and therefore wd0 = 1 for alld 2 D (since 0 2 D). It follows that wgcd(D)0 = 1,implying gcd(D) > 1 since wq0 = z 6= 1. �
Proof of Theorem 1.12. By the previous lemma, ifgcd(D) = 1 the translates of Q by Z do not overlap.Since Z+Q = R, the translates of Q by Z tile R.But G � Z and G + Q is a tiling; it follows thatG = Z and G = Z is a lattice. �We close this section by describing briey how theresults of this section are related to the study ofexpanding toral epimorphisms [Katznelson 1971;Ma~n�e 1987]. Katznelson determined which toralepimorphisms are Bernoulli in terms of the eigen-values of A, where A is the integral matrix rep-resenting the epimorphism �A. From Katznelson'stheorem and the classi�cation of Bernoulli shiftsby their entropy it follows that any expanding toralepimorphism is equivalent to the shift of type (1=q;: : : ; 1=q), where q = jdetAj. In fact, in many casesthe generalized decimal expansion (base A) pro-vides an equivalence between �A on Tn and a one-sided Bernoulli shift. Because Q = A�1D+ A�1Qand the translates are nonoverlapping, one mayde�ne (almost everywhere on Q) the shift S byS(x) = Ax � r, where r is such that x 2 A�1r +A�1Q. It is easily veri�ed that � �S = �A�� when-ever S is de�ned. By Theorem 1.9, � : Q! Rn=Gis an equivalence between (Q; S) and (Rn=G; �A),provided G is a lattice. In particular, when G isa lattice, Proposition 1.6 can be deduced from theknown fact [Ma~n�e 1987] that �A is ergodic.

2. THE TWO-DIGIT CASEThroughout this section we assume A to be an ex-panding n�n integer matrix with q = jdetAj = 2,so that D consists of two digits 0 and v. The caseq = 2 has certain special features that we now ex-plore. We begin by showing that Q is connectedby constructing a space-�lling curve in Q. We thenprove two theorems (2.5 and 2.6), which guaranteethat in many cases G is a lattice.From Lemma 1.3, we have Q = Qk + A�kQ.Thus Q is the union of 2k k-pieces, each of theform w+A�kQ, for w 2 Qk. We start by remarkingthat the two 1-pieces A�1Q and A�1v+A�1Q havenonempty intersection. For, if they were disjoint,so would be the four 2-pieces, and, inductively, the2k k-pieces. Now Q has nonempty interior andtherefore contains a ball, which is covered by k-pieces whose diameter can be taken smaller thanthat of the ball. This would contradict the factthat the ball is connected.We now construct a surjective continuous func-tion  : [0; 1]! Q by �rst de�ning it on the 6-adicnumbers in [0; 1] and then passing to the limit. LetJk = [0; 1] \ Z=6k = f0; 1=6k ; : : : ; 1g:We say that a function  : Jk ! Q is admissible ifthere is at least one point of (Jk) in the interior ofeach k-piece, and for any two consecutive points r,s of Jk there is some k-piece containing both (r)and (s).Any admissible  : Jk ! Q extends to an ad-missible ~ : Jk+1 ! Q. To see this, let a0; a1;a2; a3; a4; a5; a6 be consecutive points of Jk+1 witha0; a6 2 Jk. By assumption, (a0) and (a6) bothlie in some k-piece. This k-piece is the union oftwo (k + 1)-pieces P0 and P1. Arbitrarily choose~(a1); ~(a3); ~(a5) 2 P0 \ P1 (which is nonemptysince the two 1-pieces of Q intersect), and furtherchoose ~(a2) 2 �P0 and ~(a4) 2 �P1. This de�nes ~,which is easily seen to be admissible.
Theorem 2.1. Q is path-connected if q = 2. More-over , there exists a continuous surjective map from [0; 1] to Q.
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324 Experimental Mathematics, Vol. 3 (1994), No. 4

Proof. Start by de�ning (0) and (1) arbitrarily.Use the preceding observation to de�ne  on theunion of all Jk. The function  is uniformly con-tinuous, because steps of size 6�k correspond toarcs contained in a k-piece and the diameter of ak-piece tends to zero. Thus  can be continuouslyextended over [0; 1]. Furthermore  is surjectivebecause its image is dense: it contains points inthe interior of each k-piece for all k. �Another interesting feature of the case q = 2 isthat it allows us to produce many examples of ex-panding matrices A such that, for all digit sets, Gis a lattice. In particular, this is true for n � 3.Let A be an expanding matrix with q = jdetAj =2. The lattice G consists of all vectors of the formg(A)v, where g 2 Z[x]. Also, since G has rank n,the conditions g(A)v = 0 and g(A) = 0 are equiv-alent. We thus identify G with Z[A] which is, byde�nition, the ring of all matrices of the form g(A),where g 2 Z[x]. The characteristic polynomial pAof A is irreducible in Z[x]: if it could be factored,one of the factors would have constant term 1 andits roots could not have absolute value greater than1. Therefore, pA is also the minimal polynomial ofA, and g(A) = 0 if and only if g is a multiple ofpA. A polynomial f of degree less than or equal ton� 1 is said to be reduced. Every element of Z[A]may be written uniquely in the form f(A), with freduced. The set G corresponds to the set of allpolynomials (reduced or not) with coe�cients 0, 1or �1. This gives the following result:
Proposition 2.2. G is a lattice if and only if everyreduced polynomial f can be written as g + pAh,where the coe�cients of g are 0, 1 or �1. In par-ticular , if G is a lattice for some choice of D, it isa lattice for all D.We call a polynomial expanding if all its roots lieoutside the unit circle. For a given degree n, thereexist only a �nite number of expanding polynomi-als with integer coe�cients and constant term �2,since the other coe�cients of the polynomial arebounded, being functions of the roots. Thus, up to

conjugation by an integer invertible matrix, thereexist only a �nite number of n� n expanding ma-trices with q = 2.De�ne the reduced polynomial qA bypA(x) = 2� xqA(x);thus, the relation pA(A) = 0 becomes qA(A) =2A�1. We give Z[A] the Manhattan normkf(A)k = jan�1j+ � � �+ ja0j;where f(x) = an�1xn�1+ � � �+a0 is reduced. Usingthe relation 2I = AqA(A), we see that, if f is re-duced, f(A) 2 AZ[A] if and only if f(0) is even. Wenow de�ne a carrying operation C : Z[A] ! Z[A](compare Lemma 1.10). If f is reduced there is aunique " 2 f0; 1;�1g such thatf = xg + 2c+ " with g 2 Z[x] and c 2 Z (2.1)and j2c + "j = j2cj + j"j. We de�ne C(f) as the(reduced) polynomial g + cqA.
Lemma 2.3. If kqAk � 2 then kC(f)k � kfk, andequality implies f(A) = Ah(A) for some h.
Proof. Clearly deg(g) � n� 2 in (2.1). Thus kfk =kxgk + j2c + "j = kgk + j2cj + j"j and kC(f)k =kg + cqAk � kgk + j2cj. Thus kC(f)k � kfk � j"j.It follows that kC(f)k = kfk implies " = 0 andf(M) = Ag(A) + cAqA(A). �
Lemma 2.4. If g(A) may be written as Akgk(A) forall k, then g(A) = 0.
Proof. We have gk(A) = A�kg(A). Since A is con-tracting, gk(A) ! 0. Since Z[A] is a lattice, even-tually gk(A) = 0. Hence g(A) = 0. �
Theorem 2.5. Let A be an expanding matrix withq = jdetAj = 2. Let qA be de�ned by pA(x) = 2 �xqA(x), where pA is the characteristic polynomialof A. If kqAk � 2 then G is a lattice for all digitsets D.
Proof. For any f , the sequence kCk(f)k is eventu-ally constant by Lemma 2.3 (since kqAk � 2). ByLemmas 2.3 and 2.4, kCk(f)k is eventually zero.But if h = C(g) belongs to G then so does g since,
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Hacon, Saldanha and Veerman: Remarks on Self-Affine Tilings 325by de�nition, g(A) = Ah(A) + "I. Since 0 2 G, weconclude that f(A) 2 G. Thus G = G and G is alattice. �Now consider polynomials of the form p(x) = �xl+"xk � 2, where l > k > 0, � = �1 and " = �1.We obtain a criterion for such a polynomial to beexpanding. (An example that is not expandingis x2 + x � 2.) If p is not expanding, let � be aroot with j�j � 1. Then j��lj � 1 and j"�kj � 1.Hence ��l = 1 and "�k = 1. Thus, if the equations�xl = 1 and "xk = 1 have no common solution overthe complex numbers, p is expanding.By the same token, the polynomialxl + xk � 2xc � 1 ;where c = gcd(l; k), is always expanding. For oneeasily sees that the numerator does not have anymultiple roots. If � is a root of the numerator withj�j � 1, then �l = �k = 1. Hence �c = 1, and � isnot a root of the quotient polynomial.
Theorem 2.6. Let A have characteristic polynomialp(x) = xl + xk � 2xc � 1 ;where c = gcd(l; k). Then G is a lattice. The sameis true if we replace A by �A.
Proof. Since xl+xk�2 has no repeated roots, xc�1and p are prime. Consider the c� c matrixZ = 0BBBB@ 0 0 � � � 11 01 0. . . . . .0 1 0

1CCCCA :The minimum polynomial of Z is xc� 1. Let M =�A0 0Z �, which we write as A�Z. For f(M) 2 Z[M ]de�ne C(f(M)) as before, namelyC(f(M)) =M�1(f(M)� "I)= A�1(f(A)� "I)� Z�1(f(Z)� "I):

(The " we get from Z[M ] need not be the " wewould get for C on Z[A].) Lemma 2.3 contin-ues to hold since no assumption concerning eigen-values was made there. As for Lemma 2.4, sup-pose g(M) = M igi(M) for all i. Since g(M) =g(A)� g(Z) we have g(A) = Aigi(A) for all i and,therefore, g(A) = 0 since A is expanding. Thusany f(A) belongs to G and G = Z[A] is a lattice.�As an application, we have:
Theorem 2.7. G is a lattice if q = 2 and n � 3.
Proof. For q = 2 and n = 2 there are six possibili-ties, with characteristic polynomialsX2�2, X2+2,X2�X+2, X2+X+2, X2�2X+2, X2+2X+2.All but the last two are covered by Theorem 2.5.The case X2 + 2X + 2 follows from Theorem 2.6(with c = 1), and X2�2X+2 follows by replacingA by �A.For n = 3 we have fourteen possibilities: X3+2,X3 � X + 2, X3 + X2 + 2, X3 � X2 � X + 2,X3+X2+X+2, X3�2X+2, X3+2X2+2X+2, andseven more obtained by reversing the signs of theterms of even degree. The only cases not coveredby Theorems 2.5 and 2.6 are X3 � X2 � X + 2,X3 +X2 �X � 2, X3 � 2X + 2 and X3 � 2X � 2,which are easily checked by the algorithm of thenext section. �
3. DETERMINING IF G IS A LATTICELet A be a �xed n � n integer expanding matrix,and D 3 0 a set of coset representatives of AZn.We describe an algorithm to determine if in thissituation G is a lattice.Let G0 be the lattice generated by D; AD; : : : ;An�1D, and let G be the smallest lattice containingD and satisfying AG � G. We claim that G = G0,Indeed, since D; AD; : : : ; An�1D � G, it followsthat G0 � G. On the other hand, u 2 G0 impliesAu 2 G0 (since the minimum polynomial of A hasdegree at most n) and therefore Au + v � v0 2 G0for any v; v0 2 D. Thus, AG0 � G0 and G � G0.
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326 Experimental Mathematics, Vol. 3 (1994), No. 4It is now easy to check whether G = Zn: startwith the vectors D; AD; : : : ; An�1D and try to getthe canonical basis by linear combinations. By alinear change of coordinates, we can assume G =Zn.We would now like to consider a bounded setX with the property that �X � X|equivalently,that Au + v � v0 2 X implies u 2 X. Such setsclearly exist (for example, X = Q) but they arenot always easy to obtain. In particular, for certainmatrices A, X may not be taken as a round ball orcube around the origin, however large. We couldwork with somewhat more complicated boundedsets but we prefer to work instead with two sets.Given A and a bound on the size of the elementsof D, we will �nd numbers 0 < N1 < N2 withthe following properties: Q � [�N1; N1]n, and ifu =2 [�N2; N2]n the forward orbit of u by w 7!Aw+ v� v0, for v; v0 2 D, never enters [�N1; N1]n.Let km and kM be two positive numbers suchthat 1 < km < kM and km < j�j < kM for anyeigenvalue � of A; since A is an expansion, it isclearly possible to choose such numbers. We cannow choose an invertible matrix M withkmjuj � jMAM�1uj � kM jujfor all u. De�ning kuk = jMuj, this becomeskmkuk�kAuk� kMkuk. Thus, if r = maxv2D kvk,we have kuk � r=(km�1) for all u 2 Q and we cantake any N1 such that the cube [�N1; N1]k con-tains all points u with kuk � r=(km� 1). Once N1is �xed, take any N2 such that all u with kuk �maxw2[�N1;N1]k kwk belong to the cube [�N2; N2]k.After N1 and N2 have been chosen, reserve onebit of memory for every integral element of thecube [�N2; N2]n to indicate whether that elementis known to be in G. Start with only the bit for thezero vector turned on. Perform then the followingprocess: for each vector u whose associated bit ison, turn on all vectors of the form Au + d1 � d2,for d1; d2 2 D. A second bit associated to eachvector indicates whether this process has alreadybeen carried out for it. The process stops when

no vector has only one of the two associated bitsturned on; let G� be the set of vectors marked atthe end. The choice of N1 and N2 guarantees thatG�\ [�N1; N1]n = G\ [�N1; N1]n; notice, however,that we usually do not have G� \ [�N2; N2]n =G \ [�N2; N2]n. Since Q � [�N1; N1]n and weassume G = Zn, G is a lattice if and only ifG� \ [�N1; N1]n = Zn \ [�N1; N1]n:This algorithm was applied to various randommatrices and digit sets and G always turned outto be a lattice. This suggests that the examplesof Lagarias and Wang (where G is not a lattice)must be relatively rare. Also, one example fromeach conjugacy class of 3 � 3 expanding integermatrices A with q = jdetAj = 2 was tested, thuscompleting the proof that, for n � 3 and q = 2, Gis a lattice (Theorem 2.7).
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