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Non-Separating Embeddings of Graphs in Closed Surfaces

Aaron Keel, Mathematics, Portland State

email: ackeel@pdx.edu.

January 15, 2pm

Assume all surfaces to be 2-dimensional manifolds which are closed and orientable. A graph is assumed to be a
connected, with multiple edges and loops allowed. When a graph G is embedded in a given surface S we consider the
thickened ribbon graph i(G) to be a closed, oriented subsection of the surface S. An embedding is considered cellular
if each component of S \ i(G) is homeomorphic to a disk. These disks will be referred to as the faces of the graph
embedding.

The Euler Characteristic, χ(S), of a surface S is given by:

χ(S) = v − e + f = 2− 2g(S)

This equation is equivalent to:
2g(S) = (e− v + 1)− (f − 1)

where v is the number of vertices of the surface, e is the number of edges, f is the number of faces, and g(S) denotes
the genus of the surface S. Note that (e−v+1) is the first Betti number of S, and (f−1) is called the Betti deficiency.

Clearly, f must be at least one when considering an embedded graph. Let f− denote the smallest possible value
of f for a given graph embedding. Substituting f− into equation (0.2) makes g(S) become g+(G), which represents
the maximal genus of a surface in which the graph G may be embedded:

2g+(G) = (e− v + 1)− (f− − 1)

From Theorem 1 of the reference, a graph G has a non-separating (not necessarily cellular) embedding in an
orientable surface T if and only if:

2g(T ) ≥ (e− v + 1) + (f− − 1)

This theorem can be demonstrated through example, and a rigorous proof is given in the reference below. Notice that,
since the embedding i(G) in T need not be cellular, one can add a handle to T in such a way that the the handle does
not intersect i(G) and thus increases g(T ) by one. This can be repeated any number of times, which causes the left
hand side of last inequality to increase, yet has no impact on the right hand side.

Reference: M. Skoviera, On Non-Separating Embeddings of Graphs in Closed Surfaces, Acta Math. Univ. Comeni-
anae, Vol. LXI, No.1, 65-68, 1992.

Rotation Systems and Graphs

Nicole Kraft, Mathematics, Portland State

email: kraft@pdx.edu.

January 22, 2pm

We look at some examples of rotation systems. Suppose we have a graph consisting of two vertices and four
edges, each of which connects the two vertices. Consider its “ribbon graph” in a surface (its ε neighborhood in the
surface) and focus on a neighborhood around each vertex. Call the vertices a and b and label the edges in a clock-wise
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(a) Labeling of vertices and edges. (b) Graph in torus with ribbon
neighborhood.

(c) Another rotation system in
the torus.

manner listing a : (1234) and b : (1432). This is called a “rotation system” and is invariant under cyclic permutations.
For example Figure (1a): a : (1234), b : (1432) is the same rotation system as a : (3412), b : (4321). Since the edges
emanating from a can be labeled 1, 2, 3, and 4, without loss of generality, and we may start the list (in clock-wise
direction) of edges arriving at b beginning with 1, it is easy to see we get at most 3! = 6 rotation systems. In each
case, the edges at a are (1234) (in clock-wise order with respect to the orientation of the surface), while the edges
incident at b are:

b1 : (1432) and b2 : (1243) and b3 : (1234) and b4 : (1324) and b5 : (1342) and b6 : (1423) .

There is a unique correspondence (see the reference) between rotation systems and oriented ribbon graphs — up to
homeomorphisms of the ribbon graph. Therefore we can use a rotation system to encode its “cellular embedding” (glue
one disk to every boundary component of the ribbon graph). For example Figure (1b) shows the cellular embedding
of the rotation system a : (1234), b : (1243). Figure (1c) gives the cellular embedding of a different rotation system
associated to the same graph: a : (1234), b : (1234).

Define the set B of half edges at each vertex: B = {1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b}, the involution θ which swaps the
half edges of each edge (so that θ2 = Id ). and σ, the clock-wise, cyclic permutation of half-edges at each vertex. Thus
for the rotation system given by a : (1234), b : (1243), see Figure (1b):

θ(1a) = 1b θ(1b) = 1a σ(1a) = 2a σ(1b) = 2b

θ(2a) = 2b θ(2b) = 2a σ(2a) = 3a σ(2b) = 4b

θ(3a) = 3b θ(3b) = 3a σ(3a) = 4a σ(3b) = 1b

θ(4a) = 4b θ(4b) = 4a σ(4a) = 1a σ(4b) = 3b

(a) Ribbon graph of a: (1234), b: (1243) (b) Disks corre-
sponding to orbits.

(c) Graph embedded in a torus

From a rotation system we get a unique cellular embedding as follows. The ribbon graph has the same Euler
characteristic as the graph, see Figure (2a). The number of boundary components of the ribbon graph equals the
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number of orbits of 〈θ ◦ σ〉. Thus the closed (oriented) surface in which the graph is cellularly embedded has Euler
characteristic χ = v−e+f , where v and e are the number of vertices and edges of the graph, respectively, and f is the
number of orbits of θσ in the rotation system. In the last example there are two orbits (1a → 2b → 3a → 1b → 2a → 4b)
and (4a → 3b), see Figure (2b).

Reference: J.L. Gross and T.W. Tucker, Topological graph theory, Wiley Interscience, 1987

Stability of Nearest Neighbor Traffic

Peter Veerman, MTH, Portland State

email: veerman@pdx.edu

Jan 29, 2pm

We model agents and their interaction as a infinite string of linear oscillators in IR of mass 1 and with a preferred
velocity u0: ∀k ∈ ZZ

ẍk = f {(xk − hk)− ρ−(xk−1 − hk−1)− ρ+(xk+1 − hk+1)}
+g{(ẋk − u0)− r−(ẋk−1 − u0)− r+(ẋk+1 − u0)}

In a “truly decentralized” model, agents cannot measure our absolute position without reference to an external
computer (ie: GPS); they can only perceive relative distances and speeds. Thus in this case the sum of the coefficients
of the positions (ρ−+ρ+) must be one in the LHS of the equation, as well as the sum of the coefficients of the velocities
(r− + r+ = 1). However, on earth we tend to travel in or on a more or less static medium. This allows us to locally
measure (from frictional forces) our own speed with respect to that medium. Thus for practical applications r− + r+

need not be 1. The equation given here is the general linear model (in IR) where cars try to achieve relative positions
hi − hk with respect to one another and there is a preferred velocity u0. After a coordinate change (and rescaling
time) we obtain: ∀k ∈ ZZ

z̈k = −{zk − ρ−zk−1 − ρ+zk+1}+ g{żk − r−żk−1 − r+żk+1} . (∗)
Stability of large, but finite flocks is a complicated notion. This is due to the fact that even though the system

may have a stable equilibrium, perturbations can grow while propagating through the flock. If this is case then
obviously very large flocks are impossible. By and large what is at issue is the following. Denote the finite system
(add boundary conditions to the previous equation) with N agents (or cars) by a subscript N . Thus for each N we
have a linear system, that we write as follows:

żN = MNzN .

The translation invariance of the system can used to show that each MN must have an eigenvalue 0. Now it is perfectly
possible for the matrices MN to have eigenvalues with non-positive real part, while still the response of the system of
size N to a perturbation in the initial condition of a given car grows polynomially in N .

The infinite problem offers some simple insights. In Equation (*), set r± = ρ± = 1/2 and write Z(t) ≡∑∞
−∞ zk(t)e−ikθ. Barring summability assumptions, the set of equations can be rewritten as:

d

dt

(
Z

Ż

)
=

(
0 1

−(1− cos θ) g(1− cos θ)

) (
Z

Ż

)

The eigenvalues an be calculated as functions of θ. They have 0 real part when cos θ = 1.
Now set ρ± = ρ and multiply Equation (*) by żk. Again, assume summability and sum over k. Denote by (., .)

the `2 inner product, by z the vector whose k-th component equals zk and by Tz the vector whose k-th component
equals zk−1. Summing the equation over k yields:

d

dt

[
1
2
(ż, ż) +

1
2
(z, z)− ρ(z, Tz)

]
= g[(ż, ż)− (r− + r+)(ż, T ż)] .

4



Now if ρ ≤ 1
2 the LHS is the derivative of a non-negative quantity, while the RHS has the same sign as g if r−+r+ < 1.

Modeling of Material Aging

Serge Preston, MTH, Portland State

email: serge@pdx.edu

Feb 5, 2pm

Material aging is a dissipative process where an increase in entropy leads to the degradation of the material.
This can lead to dangerous situations unless a material is fixed or replaced. In one instance, a pilot was flying over
Colorado when he noticed a fly in the cockpit. He smashed it against the plexiglass with a newspaper, and shattered
the glass completely. After further review, it was found that the glass cleaner used was seeping down to where the
glass and the rest of the plane connected. The cleaner caused a mechano-chemical reaction and caused a premature
aging of the material.

One can think about material aging in terms of two different types of time: physical time, t, and the internal
time of the material, τ . As an example of the effect that the use of material time can have, consider the standard
equation of the harmonic oscillator in the material time τ

∂2
τU + ω2U = 0

Now rewrite this in terms of the physical time t where
dτ

dt
= S(t), assuming that S(t) 6= 0:

∂2
t U − ∂t ln(S(t)) ∂tU + S(t)2ω2U2 = 0

An oscillator with constant frequency in material time becomes a damped (or forced depending on the sign of S′(t))
oscillator in physical time.

We introduce a new function, s, which represents entropy density, and σ is the entropy production. The entropy
balance written in terms of the material time leads to the relation

S(t) = exp
(
−

∫ t

t0

σ

s
dt′

)
.

When the process is reversible, σ = 0 and S(t) = 1 and thus in this case physical and material time are the same. For
irreversible processes, S(t) decreases and so one hour in physical time actually goes by much faster in material time,
hence the aging. When entropy flux is negligible, s′ = σ. In an experiment with Groningen sandstone S(t) has the
form S(t) = C

(√
t + 1

)−1
which can be derived from that hypothesis and the above equation. Reference: See also

Preston’s lecture in the 2006 NOSYGS seminars.

Trafficking Stationary Phase Integrals

Mike Jeffrey, Appl. Math, Univ. of Bristol, UK

email: mike.jeffrey@bristol.ac.uk

Feb 12, 2pm
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We consider a finite number of vehicles on a one-lane highway. The position of the k-th vehicle is given by zk,
k = 0, . . . , N and all vehicles are assumed to be unit mass. Vehicle zk is assumed to only receive information from
vehicle xk−1, k = 1, . . . , N . The trajectory z(t) of the lead vehicle is a priori given. With some simplification the
relevant system of equations is:

z̈k = f {zk − zk−1}+ g{żk − żk−1} and z0(t) given .

where f and g are negative real constants.
Substituting zk(t) = eiωtak(ω) into the equation, gives:

ak(ω) =
(

f + iωg

f + iωg + ω2

)N

.

In this lecture we will simplify and set f = 0, thereby neglecting the contribution of the relative positions of the cars.
It now turns that if the flock is in rest at t = 0 at which point the leader starts moving with unit velocity, then for for
the N -th car:

z̈N (t) =
1
2π

∫ ∞

−∞
aN (iω) eiωt dω =

1
2πi

∫ i∞

−i∞

(
g

g − ν

)N

eνt dν ≡ 1
2πi

∫ i∞

−i∞
eN(a(ν)+ib(ν)) dν .

where a and b are the real and imaginary parts of the exponent Φ(ν).
Let ÎC the complex plane minus the singularities of the integrand. The stationary phase method consists of

replacing the original path of integration γ(t) = it, for t ∈ IR by another path γ̂ along which the integral is easier to
evaluate, and such that or γ − γ̂ is contractible in ÎC and so:

∮

γ−γ̂

eNΦ(ν) dν = 0 or
∮

γ

eNΦ(ν) dν =
∮

γ̂

eNΦ(ν) dν .

This is achieved by choosing the path γ̂ in such a way that in addition either

a(γ̂(t)) < 0 or b(γ̂(t)) = const .

The first condition says that the asymptotic (for N large) contribution will exponentially small. If the first fails,
the second says that b (the phase) is constant, so that cancelations in the integrand do not occur. In this case the
asymptotic contribution is calculated by expanding Φ(γ̂(t)) around the(positive) local maxima of a(γ̂(t)). We expand
Φ(γ̂(t)) to first order if a positive local maximum is located at and endpoint of the path γ̂(t), to second order if the
positive local maximum is located in the interior of the path. The only other thing one needs to know is that a local
maximum of a(γ̂(t)) along a stationary phase curve must be a saddle point νs of a(ν) and of b(ν). Therefore νs is a
root of the second derivative of the exponent Φ(ν) = νt

N − ln
(
1− ν

g

)
. The integrals resulting from such (lowest order)

expansion are standard.
In the case at hand the integrand has only one pole (located at ν = g) and one saddle located at ν0 = g + N

t .
We choose the following path γ̂ (see Figure 0.1). Branches I and III of γ̂ are tangent to the imaginary at ±i∞ and
connect the imaginary axis to a stationary phase curve given by II. We let γ̂ ≡ III ◦ II ◦ I. Now it is easily seen that
the curves I and III give no contribution. Around the saddle ν0 we expand:

∫

III

≈
∫ ν0+i∞

ν0−i∞
eN [Φ(ν0)+

1
2Φ′′(ν0)(ν−ν0)

2] dν .

Finally use the fact that
∫∞
−∞ e−

1
2 x2

dx =
√

2π to establish that if f = 0 and z0(t) = δ(t), then

z̈n(t) =
1
t

√
N

π

(−gt

N

)N

egt+N

is exponentially well approximated (in N) as N tends to ∞.
Reference: See also Veerman’s lecture earlier in this episode and the one in the Rockefeller Math Seminars in 2008.
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Figure 0.1: The path γ along the imaginary axis is replaced by γ̂ which follows first I (where a is negative), then
II, a stationary phase curve, and finally III where a is negative again. P and S indicate the pole and the saddle
respectively.

Traffic Dynamics

Prabir Barooah, Eng., Univ Florida, Gainesville

email: pbarooah@ufl.edu
Feb 19, 2pm

If we have a set of sensor platforms scattered in an area, it is often useful to know their exact locations, but
with large numbers of sensors, it may be problematic to accurately locate all of them manually. If the sensors are also
equipped with the ability to measure the range and azimuth to neighboring sensors however, we could gather that
information to then calculate their locations.

Along with any measurement is an error in that measurement, so let xi be the ith sensor and the measured
distance between adjacent sensors u and v be given by: ξuv = xu − xu + εuv

If we are then measuring the distance between non-adjacent sensors, or verifying the distance already measured
by comparing data from a path of measurements linking the two sensors, we might get a different value. In this case,
we may want to test all possible paths in an attempt to get the best possible measurement (that is, to reduce the error
as much as possible), so given a collection of such distances, we would want to calculate the average estimate as well
as the covariance of the estimate.

In the one-dimensional problem, we would look at a group of sensors all at varying positions along a line. If
every sensor has an error of s, then the errors simply add, so the calculated distance from x1 to x3 would have error
2s. In two or three dimensions, the errors combine in more complex ways.

One way to calculate the positions (and errors thereof) would be to recreate the position graph as a weighted
resistance network. (This is inspired by the work of Peter Doyle and Doylen Snell (P. G. Doyle and J. L. Snell, Random
Walks and Electric Networks. New York: Math. Assoc. of Amer., 1984.) See also http://humdoi.mae.ufl.edu/ pra-
birbarooah/PBresearch.html for three papers related to this problem from Barooah et al..

The basic method is to set up a weighted graph as an electrical network where the weights correspond to the
resistance between any two nodes. Then, inject a unit current at one node and connect any other node to ground and
use Kirchoff’s and Ohm’s Laws to create a system of linear equations that can then be solved for the voltage drop
across each resistance. This corresponds to the desired distance [N.B. - I am not *sure* of that! ER] To estimate
the covariance, we instead replace real-valued resistances with matrix-valued resistances and inject an identity-valued
current at one node.

The analysis of the network can be simplified with the k-Fuzz operation on a graph. For every nonadjacent pair
of vertices u and v, add an edge if there is a path of length k from u to v. This makes the network look more like a
lattice, simplifying the analysis by patching ’holes’ in the network. We then use that adding a resistor (edge) can only
decrease the total resistance between any two nodes. (Similarly, removing a resistance, only increases the resistance
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between any two points.)
References: P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, New York: Math. Assoc. of Amer.,
1984.
P. Barooah and J. P. Hespanha, Estimation from Relative Measurements: Electrical Analogy and Large Graphs, IEEE
Transactions on Signal Processing, vol. 56(6), pp. 2181-2193, June 2008.

Separating Sufaces By Graphs

Aaron Keel, Mathematics, Portland State

email: ackeel@pdx.edu.

February 26, 2pm

Let G be a graph which is a subcomplex of a surface M . The questions we wish to answer are: When will G separate
M? When will G divide M into r regions where r ≥ 2?

Let N be a regular neighborhood of G in M . We say G separates M if M \N is not connected. The connected
components of M \N will be called regions and the number of connected components will be given by r. Using the
Exact Homology Sequence of a Pair given by

· · · → H2(G; 2) i∗→ H2(M ; 2)
j∗→ H2(M,G; 2) δ∗→ H1(G; 2) i∗→ H1(M ; 2)

j∗→ H1(M, G; 2)
→ H0(G; 2) → H0(M ; 2) → H0(M,G; 2) → 0

where i∗ is the map induced by the inclusion map i : G ↪→ M . Hp(M,G; 2) is the relative homology group in
dimension p, of M modulo G with coefficients in ZZ/2ZZ. (See Munkres for definition.) There is a “version” of the
Lefschetz duality that states:

If M is a closed orientable surface, G is a subcomplex of M and V is the collection of regions into which G di-
vides M , then

H0(V ; 2) ∼= H2(M,G; 2).

This means rank[H2(M,G; 2)] = rank[H0(V ; 2)] = r (the number of regions into which G divides M).
Let G be a simple closed loop and M be an orientable closed surface. This gives the exact sequence

· · · → 0 → ZZ/2ZZ
j∗→ H2(M,G; 2) δ∗→ ZZ/2ZZ i∗→ H1(M) → · · ·

where the map i∗ determines the homology group H2(M, G; 2). For if i∗ = 0 then H2(M,G; 2) ∼= ZZ/2ZZ⊕ ZZ/2ZZ. If
i∗ 6= 0 then H2(M,G; 2) ∼= ZZ/2ZZ. That is, i∗ = 0 gives r = 2 and i∗ 6= 0 gives r = 1. This leads to a proposition by
P.J. Giblin.

Proposition: A simple closed loop separates an orientable surface if and only if the 1-cycle (mod 2) given by
the loop is homologous to zero on the closed surface.

Now suppose M is a genus 1 torus and we want to divide M into two regions with some graph G. Then
H2(M,G; 2) ∼= ZZ/2ZZ⊕ ZZ/2ZZ and H1(M ; 2) ∼= ZZ/2ZZ. This gives an exact sequence

· · · → 0 → ZZ/2ZZ
j∗→ ZZ/2ZZ⊕ ZZ/2ZZ δ∗→ H1(G; 2) i∗→ ZZ/2ZZ⊕ ZZ/2ZZ → · · ·

and from this sequence we can find an upper bound for how “big” G can be by limiting how many cycles are in G. In
this case if G separates M into two regions then rank[H1(G; 2)] ≤ 3.
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References:
J. R. Munkres, Elements of Algebraic Topology, Perseus Publishing, 1984.
P. J. Giblin, Graphs, Surfaces and Homology, Chapman and Hall Ltd., 1977.

Stable Feedback Models for Electrosensory Filtering

Gerardo Lafferriere, MTH, Portland State

email: gerardoL@pdx.edu

Mar 5, 2pm

The behavior of neurons is measured by their membrane voltage, and the biologically relevant behavior is when
that voltage undergoes a ’spike’ in the positive direction. These spikes are complex to model directly, so rather than
attempt to do so, this model of neural adaptation views every spike as functionally identical with the only important
aspect being what the time of occurrence is. By heavily abstracting the system and discretizing the time, we can find
stable points of the system and show that the system is feedback controllable.

The primary idea is to look at the changes of the weights of connections between cells in the system over time
as governed by a function of how soon after an input spike, the output spike occurs. By treating the time of the
output spike as a random variable depending on a threshold θ and the voltage change caused by the input spike, we
can condense the entire complicated description to the vector equation:

V(t + 1) = Vn(t) + α1−M f(V(t).

This shows the membrane voltage V for every cell at time t+1 as a vector function of the previous cycle’s state. This
reduces the problem to one of looking at the matrix M . This in turn allows us to show the existence of an equilibrium
(depending on parameters α and β connected to the learning law that changes the synaptic weights), as well as show
the conditions for local stability of the equilibria. A large part of this analysis follows from using the properties of the
circulant matrix M .

By shifting the equilibrium to the origin, and scaling the nonlinearity of the system, we can show the conditions
under which the equilibrium is globally asymptotically stable.

By writing f as a function of θ and V , we can look at θ as a variable whose value is adjusted via feedback from
the other cells. Following similar techniques to the above, we find that only one eigenvalue can be changed with this
type of feedback, but that the feedback law does allow us to change (improve) the rate of convergence.

If we allow θ to change within a cycle, then it too becomes a vector Θ whose components are θi being the value
at xi. This allows us to write the system as:

z(t + 1) = (I −M)z(t) + Mu(t),

where z(t) = V − V̂ and u(t) = Θ − Θ̂ where V̂ and Θ̂ are the equilibrium points for the system. This system is
asymptotically controllable with controls in U (a bounded subset of RN containing zero in its interior) if and only if
the eigenvalues of I −M have magnitude less than or equal to 1.

Finally, if we can close the feedback loop with a second sigmoid function (the first being arising from the
probability distribution of the spike time), we can give conditions on the existence of either one globally asymptotically
stable, or three locally stable equilibria.

Reference: G. Lafferriere, P.D. Roberts, Stable Feedback Models for Electrosensory Filtering in Mormyrid Fish,
Proc. of the 46th Conf. on Decision and Control (2007) pp. 609-614.
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Quotients of Surfaces by Cyclic Groups

Robert Benim, MTH, Portland State

email: rbenim@gmail.com

Mar 12, 2pm

Let X be an orientable surface of any genus, and consider a finite group G of orientation preserving symmetries
of X. We denote the set of the orbits under G of the elements of X by X/G, and we call this the quotient space of X
by G. Suppose m = |G|. We are interested in the case where X/G satisfies two conditions:

• X/G has genus 0, and

• X/G contains exactly three orbits of size less than m.

When this happens, we say that G is a quasiplatonic group, X is a quasiplatonic surface, and that G is acting
on X quasiplatonically.

A tool used to classify such group actions is called the signature. Suppose x1, x2, x3 ∈ X are points lying
in distinct orbits of size less than m. The stabilizer of x ∈ X is the subgroup of G whose elements fix x. Let
n1 = |Stab(x1)|, n2 = | Stab(x2)|, and n3 = | Stab(x3)|, and without loss of generality assume n1 6 n2 6 n3. Then,
the signature of G acting on X is the triple (n1, n2, n3). We call the ni the periods of the signature.

Quasiplatonic groups acting on surfaces of genus 0 or 1 are well known. A complete classification of Abelian
quasiplatonic groups has been previously discovered. In this talk, we are only concerned with the classification of
cyclic quasiplatonic groups for surfaces of arbitrary genus, which follows below:

Theorem: Fix a signature (n1, n2, n3) and let M = lcm(n1, n2, n3). There is a quasiplatonic surface Xwith quasipla-
tonic cyclic group G and signature (n1, n2, n3) if and only if the following conditions are met:
- |G| = M = lcm(n1, n2) = lcm(n1, n3) = lcm(n2, n3) — where lcm means lowest common multiple;
- if M is even, then exactly 2 of the periods ni must be divisible by the maximum power of 2 that divides |G|.

To summarize this theorem, for a cyclic group of order m there are only three forms that a signature may take,
namely (m, m,m), (n, m,m) and (n1, n2, n3) where n, n1, n2, and n3 all divide m (and satisfy all the other conditions
listed above).

This takes us to the problem addressed in this talk. It is not currently known how many topologically inequivalent
ways that an Abelian quasiplatonic group can act upon a surface. There is a counting tool previously developed that
we can use to answer this question for cyclic groups acting on quasiplatonic surfaces of genera greater than or equal to
2. We used this to develop formulae where given a group G and a signature, we can count the number of topologically
inequivalent ways in which G can act with that signature.
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