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Rare Events in Complex Systems

Eric Van Den Eijnden, Courant Institute,

email: eve2@cims.nyu.edu.

March 20, 2pm

The dynamics of a long molecule in a solvent — say water — may be modeled by

ẋ = −∇V (x) +
√

2ε η(t) ,

where η(t) is white noise, ε = kT (T is temperature, k the Boltzmann constant) if the environment is in thermal
equilibrium. V is an empirically determined potential which depends in practice not only on the configuration of the
long molecule but also on the surrounding water molecules. The number os relevant degrees of freedom may easily
number in the thousands, and the energy landscape is known to be very rugged. Denote this space by Ω.

When ε is very large the motion is Brownian. When ε = 0 the motion is a gradient flow to the local minimum.
When ε is small enough, the transition probabilities from one minimum to the next can be computed by using the
“large deviation limit” which allows us to model this process as a (computable) Markov process (assuming you know
V ). There are two problems with this. For biologically interesting molecules the landscape V is far too complex to
efficiently compute. Second, for given ε > 0 the deviations from equilibrium might not be computable from the limit
for small ε. This occurs in the present context, where the size of ε at room temperature overwhelms all but very few
of the largest energy differences.

Define a probability density function

m(x) ≡
(∫

e−V (x)/ε dx

)−1

e−V (x)/ε ,

and consider an ‘ergodic’ trajectory X(t), that is: a continuous path [0,∞) → Ω such that for all continuous functions
φ ∫

φ(X(t)) dt −→
∫

φ(x)m(x) dx .

Assume for simplicity that V has only two “deep” minima a and b and let A and B be disjoint open sets containing
a respectively b. Given the ergodic path X, define R as as the set of intervals [a, b] such that X : [a, b] → Ω is a path
from A to B without intersecting A or B. If χ is the usual characteristic function, one can show that there exist a
probability density mR such that ∫

φ(X(t))χR dt −→
∫

φ(x)mR(x) dx .

Furthermore, this density decomposes as:

mR(x) = q+(x)q−(x)m(x)

where q+(x) (or q−(x)) is the probability that a path starting at x leads first to B (or started last in A). The
probability current JR associated to mR is used to compute the probability flux through any surface. In this case it
turns out to be given by

JR(x) = εm(x)∇q+(x) .

In what amounted to a full talk after the ‘official’ talk had ended, Van Den Eijnden showed how this current may
explicitly be computed for (at least) moderately complex molecules. He employed similar path integral methods as
Onsager and Machlup introduced. It turns out that the most likely paths thus constructed can indeed be different
from the ones constructed from the “large deviation limit”.
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Flocks and Formations: ODE’s coupled along graphs

J. J. P. Veerman, Portland State Univ. and Rockefeller Univ.,

email: veerman@pdx.edu.

March 27, 2pm

We aim to understand the guidance and control laws for ’flocking behavior’, using local steering laws. Every agent
controls its motion, acceleration, by observing and weighing the (relative) motion of its neighbors, in a sense to made
precise. The orbit of some of these, the leaders, is determined entirely by outside influences.

The communication graph is a (directed weighted) graph whose nodes represent the agents in the flock and such
that there is a directed edge from agent j to agent i when agent i uses agent j for its steering law. For any edge from
i to j there is a positive weight w(i, j). When i is a leader, all w(i, j) are zero “leaders see no-one”), for all other i we
have

∑
j w(i, j) = 1. The selection of communication graph and weights might depend on the agent’s field of view,

range to other agent’s etc. These factors effect flock dynamics.
Given a communication graph, let k denote a function that to each node of the graph assigns a position or

velocity in IRm. The ‘Laplacian’ operating on this function k is defined as: L(k)(i) =
∑

j w(i, j)(k(i)− k(j)). Now let
h be the fixed function defining the positions of the configuration, and x the position of each of the agents (depends
on time). The model is given by

ẍ(i) = f · ((Lx)(i)− Lh(i)) + g · (Lẋ)(i) + u(i)

Here u models extraneous forces (threat response and noise), or in the case of a convoy the response of the ’leader’ to
a change in traffic light, and f and g are real constants to be chosen so that the performance is optimized.

An ‘in formation’ motion is is a motion whereby all agents have the same velocity and their relative positions
are constant and given by an a priori selected configuration. The central question is: under what conditions do all
initial conditions converge to an in formation solutions, and how fast is that convergence? How is that convergence
influenced by the communication graph (for example the size of the flock)?

Theorem 1: Given L. The parameters f and g can be chosen so that for all desired configurations h, all
solutions are asymptotic to an in formation motion iff a certain graph theoretical condition holds. In that case f and
g are negative.

Next consider the effect of perturbation on the motion of the leader in a stable flock. The question is how much
does this perturbation get amplified during its propagation through the flock and before it dies out. Assume that
there is one leader who has index 0 and that all conditions of Theorem 1 are satisfied. Consider a time dependent
perturbation of its motion by prescribing u0(t). Analyze its effect via the Fourier transform û0(ω). Let a(ω) = x̂(ω)
be the frequency response function, i.e. the solution of the Fourier transform of the above equation:

−ω2a(ω) = fLa(ω) + iωgLa(ω) + û(ω) or
(

L +
ω2

f + iωg
I

)
a = û(ω) where û(ω) = (û0(ω), 0, ..., 0) .

One can show that, except at 0, all eigenvalues of L have positive real part and so this equation has a unique solution
a(ω) when (ω 6= 0).

We look at convoys on a one lane road (x0 > x1 > .....xN ). Every agent looks only at the car directly in front
of it and the one directly behind it, except for the first and last car. The last car only sees the car in front of it, and
the first car is a leader reacts to traffic lights, so that his orbit is given. The two parameters in the problem are the
weight ρ ≡ w(i, i + 1) of the car behind and the size N of the graph.

Theorem 2: For the convoy problem the response function satisfies:
i) Looking forward or ρ ∈ (0, 1/2): aN is exponentially increasing in N for small ω.
ii): Looking backward or ρ ∈ (1/2, 1): aN decreases exponentially in N for small ω, except at one peak for very small
ω, where aN is exponentially increasing in N .
iii): ρ = 1/2: aN grows at worst linearly in N .
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Relative Mapping Class Group Techniques in Surface Dynamics

Michael Handel, CUNY Grad. Center and Lehman College,

email: Michael.Handel@lehman.cuny.edu.

April 4, 2pm

Two homeomorphisms h0 and h1 of a surface S to itself are isotopic if there is a continuous F : S × [0, 1] → S such
that F0 = h0 and F1 = h1 and all Ft : S → S are homeomorphisms. this is an equivalence relation. The mapping
class group MCG∗(S) of an orientable surface S of finite type is the group of isotopy classes of orientation preserving
homeomorphisms of S. A homeomorhphism h is a representative of its equivalence class τh ∈ MCG∗(S).

A well-known result states that τh is entirely determined by the action of h on closed curves. As an example,
consider the torus T 2, represented as the unit square with the standard identifications. A linear (and orientation
preserving) homeomorphism A : T 2 → T 2 can be represented by a matrix with determinant 1. A closed curve goes
around p times in the x direction and q in the y direction, where p and q are integers. Naturally A maps closed curves
to closed curves, and so the matrix representing A has integer entries. We have derived that MCG∗(T 2) = SL(2, ZZ)
the Special Linear Group.

We distinguish 3 types of linear maps on tori: periodic — for example
(

0 −1
1 0

)
, pseudo-Anosov — the

standard example is
(

2 1
1 1

)
, and a Dehn Twist or a reducible map — as in

(
1 1
0 1

)
. Pseudo-Anosov means that

the manifold has a 1 dimensional stable and a 1 dimensional unstable foliation (determined by the stable and unstable
eigenvectors in the torus example, along which the map contracts or expands). The ‘reducible’ case can by further
analysis be reduced to the other two (no details given). The linear map A is in some sense a canonical representative
of its class. For example, A minimizes the number of periodic orbits and the topological entropy in its class.

Thurston’s Classification Theorem states that this decomposition holds for any surface S and its leads to the
construction of a canonical representative φτ (a Thurston normal form) of an equivalence class τ . In fact φτ has an
invariant set R in S such that S\R is the disjoint union of surfaces of lower genus Si. Furthermore on each Si: φτ |Si

is either periodic or pseudo-Anosov.
Given a surface S and a set K in it, the Relative Mapping Class Group MCG∗(S\K)is defined as follows. Two

orientation preserving homeomorphisms h0 and h1 correspond to the same equivalence class if there is a continuous
F : S × [0, 1] → S such that F0 = h0 and F1 = h1 and all Ft : S → S are homeomorphisms and fix each point in K.
We look at two examples where this notion is useful.

Let K = {a, b, c,∞} be 4 points on the 2-sphere S2. Given any homeomorphism h of the sphere fixing K. We
know that h is isotopic to identity by an isotopy F : S2 × [0, 1] → S2. Consider the “track” the image for t ∈ [0, 1] of
F (a, t) in SS2\K (a punctured surface). This curve tells us what the relative mapping class of h is. One proves that
this curve is non-contractible on SS2\K, then h has a horseshoe, and thus positive topological entropy.

Brouwer’s Plane translation Theorem states that if a homeomorphism h : IR2 → IR2 has no fixed points, then
an orbit {hn(x)}n∈ZZ has no accumulation points. Here is a very coarse outline of its proof. If the Theorem false,
then there is an orbit that has an accumulation point. By modifying h slightly one can then arrange for h to have a
periodic orbit. But the Thurston normal form of a periodic map of the plane (and which fixes infinity) is a rotation
which has a fixed point. Therefore h has a fixed point, which is a contradiction.

Optimization of Information Flow in Gene Regulation

William Bialek, Princeton Univ. and Rockefeller Univ.,

email: wbialek@princeton.edu
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April 10, 2pm

Gene expression is the process by which inheritable information from a gene, such as the DNA sequence, is made
into a functional gene product, such as protein or RNA. A central process of life is the regulation of gene expression. At
least in some cases one can think of this process as a transformation from inputs (transcription factor concentrations
which control the transfer of genetic information) to outputs (expression levels).

Let X denote the input (transcription factor in units of concentrations or molecule counts) and Y the output
(expression levels). The activation graph Y (X) is often sigmoidal: flat at low and high X concentrations and steep
in the middle. We replace a simple input-output relation (a graph Y (X)), by a stochastic representation: a model
for the probability distribution P (Y |X) of Y , at a given X concentration. We will assume that P (Y |X) is Gaussian,
described by a mean Y (X), and a variance σ2

Y (X).
A reasonable class of variance models has this form:

σ2
Y (X) = αY (X) + β(

∂Y

∂X
)2X

The first term on the right captures the effects of “low concentration” noise, and the second captures process noise
where the activation curve is steep. This relation will be used as a constraint in what follows.

We thus represent the process by an input-output channel with these data: P1(X) the distribution of X (in-
dependent of Y ), the conditional probability P (Y |X) and the output distribution P2(Y ) (independent of X). The
mutual information I(X, Y ) between the distributions for X and Y is defined as

I(X, Y ) ≡
∫ ∫

P (X, Y ) ln
P (X,Y )

P1(X)P2(Y )
dX dY

Note that when X and Y are independent then I(X, Y ) = 0 and recall that P (X, Y ) = P (Y |X)P1(X).
This sets the stage for the application of Shannon’s communication theory principles. Examples are:

- Fix P (Y |X) and P2. Choose P1(x) to maximize I(X,Y ).
- Fix P1 and I(X, Y ). Adjust P (Y |X) to control the output P2 (“distortion theory”).
- Fix P1 and P (X,Y ). Choose P (Y |X) to minimize I and analyze the limiting behavior when σ2

Y tends to zero.
The limits for the first case (maximize I(X,Y )) are analyzed in the low noise limit. These are some of the

results:

• If the first term in the standard deviation dominates in the noise model, then the limit has P2 decreasing in Y .

• If the second term dominates in the noise model then the limiting distribution is bi-modal, with two extrema:
one at a low Y concentration and at a high Y concentration. This case provides an information theoretic basis
for for the prevalence of ‘on-off’ chemical activation laws.

Next generalize to the case of a single input X and multiple outputs Y1, ..., YN . It is often the case that:

• There are correlations between the outputs Y1, ..., YN . In particular some outputs may inhibit others.

• The on-off relations between X and Yi, found earlier, also suggest on-off relations between Y1, ..., YN .

Consider the curve (Y 1(X), ....Y N (X)) as the noise variance tends to zero. Maximizing mutual information
provides a ‘length’ for this curve in (Y1, ...YN ) space. Thus maximization mutual information maximization would
favor curves that pass close to as many edges and corners as possible in the (Y1, ..., YN ) cube.

References for this talk are:
G Tkacik, CG Callan Jr, W Bialek, Information flow and optimization in transcriptional regulation, arXiv:0705.0313
[qbio.MN] (2007).
G Tkacik, CG Callan Jr, W Bialek, Information capacity of genetic regulatory elements, arXiv:0709.4209 [qbio.MN]
(2007).
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Random Matrices are Universal.

Percy Deift, Courant Inst.

email: deift@courant.nyu.edu

April 17, 2pm

In the last decennia Random Matrices (in particular the expectation of the spacings in their spectra) have been found
to describe many phenomena in physics and mathematics. In each of these one finds that after a substantial amount
of mathematics or experimentation there is quantitative agreement with Random Matrix Theory. But the relation is
strictly a posteriori : the phenomena discussed below bear no (as yet) apparent mathematical relation to one another.
Is there a mathematical theory underlying all these phenomena ?

The Gaussian Unitary Ensemble of degree N (or GUEN ) is the set of N by N unitary (M†M = I) ma-
trices together with a probability measure (or probability density). Typically the measure is given by a Gaussian
Ce−

∑ |mij |2 dM , where mij are the entries of the matrix M and dM denotes Lebesgue measure on the algebraically
independent entries of M. The constant C normalizes the total measure to 1. The Gaussian Orthogonal Ensemble
(GOEN ) is the restriction of this to matrices with real coefficients together with the induced measure. The statement
that property X holds for a ‘random matrix’ means (roughly speaking) that the property is true for a set of matrices
of full measure in GUEN or GOEN .

Among the most salient properties of random matrices is the fact that their spectrum is not at all random. In
particular the tendency to bunch up is much less than in an sequence of random points (with the Poisson distribution.)
In fact, in the space of symmetric N ×N matrices, the subspace of matrices with double eigenvalues has codimension
2 (Wigner, Von Neumann, 1929). On the other hand, the set of points in IRN such that two components are equal
form

(
N
2

)
codimension 1 hyperplanes. Thus the chances of two eigenvalues being very close to each other is much

smaller than the chance of two random points in IR being very close (this is called level-repulsion).

1: Neutron scattering. Neutrons shot at a heavy nucleus are strongly repelled from the nucleus only at certain energies,
called scattering resonances. The statistical properties of these resonances are exactly those of spectra of GOEN as
was noted by Wigner in 1957 from physical observations.

2: Riemann’s Zeta Function. Rescale the imaginary part of the zeroes 1
2 + iγj of the Riemann zeta function so their

mean distance is 1. Given an interval (a, b) denote by R(a, b) the fraction of distances among {γi−γj} that is in (a, b).
Then (roughly speaking) R(a, b) is the same as for the spectrum of GUE. (Proved by Montgomery in 1973.)

3: Longest Increasing Subsequence. Let π : {1, · · ·N} → {1, · · ·N} be a permutation and, given π, denote by qN (π)
the length of the longest increasing subsequence for a permutation π of N numbers. Then for random permutations
π, the quantity Prob (qN (π) < t) (after suitable scaling) statistically behaves exactly like the leading eigenvalue of
matrices in GUEN . (Proved by Baik, Deift, and Johansson, 1999).

4: Deregulated Mexican Buses. In Cuernavaca (close to Mexico DF) Krbálek and Ŝkeba in 2000 observed that bus
drivers in Cuernavaca optimizes their bus’ income by making use of observers along their route. These would signal
them to slow down or hurry up according the time lapsed since the last bus had passed. The distribution of time
lapses between consecutive buses was that of the GUEN spectrum.

5: Vicious Walkers. N walkers are positioned at positions {0, 1, 2, · · · } in ZZ. At every time step a single walker chosen
at random among those walkers who do not have a neighbor at their immediate left, takes one step to the left. The
distance dN of the leftmost walker after N time steps behaves (as N →∞) like the leading eigenvalue of matrices in
GOEN . (olved by Forrester in 1999).

6: The Aztec Diamond. Cut up the unit square in a grid of N + 1 by N + 1 little squares. The diamond is the inside
of the line-figure connecting the midpoints of each of the four sides of the unit square. Now tile the squares contained
within the diamond by dominoes that measure 2 by 1 little squares. Very close to each of the four extremities almost
all tilings are ‘frozen’ into a standard configuration. The boundary between these frozen regions and the variable
insides is called the “arctic circle”. Fluctuations in the positions of these arctic circles were proved to be related to
the the distribution of the leading eigenvalue of GUEN by Johansson in 2002.
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Large Deviations and Statistical Mechanics

Hugo Touchette, Queen Mary College, London.

email: ht@maths.qmul.ac.uk

April 24, 2pm

Consider a combination Sn of a sequence of random variables {Xi}n
i=1, such as coin tosses. The most obvious example

is the sample average: Sn = 1
n

∑n
i=1 Xi. Each Xi has the same probability density p(x) (the ‘probability’ that X

equals x) and the Xi may or may not be independent of one another. The object of Large Deviations Theory is the
probability density Pn(a) ≡ P (Sn = a).

The probability density P (Sn = a) is said to satisfy the Large Deviations Principle or LDP if I(a) exists where

I(a) ≡ lim
n→∞

1
n

ln P (a) ≥ 0 .

One writes P (Sn = a) ≈ e−nI(a), and I is called the rate function. The goal of the theory is i) to show that an LDP
exists and ii) to calculate the rate function.

Two important tools are the Gärtner-Ellis Theorem and the Contraction Principle. The function λ(k) ≡
limn→∞ 1

n ln
∫

enkSn dx for k ∈ IR are called Scaled Cumulant Generating Functions or SCGF.
Gärtner-Ellis Theorem: If λ(k) exists and is differentiable, then Pn(a) ≈ e−nI(a) and I is the Legendre transform
of λ:

I(a) = max
k
{ka− λ(k)} .

Let f : XA → XB a continuous function. Suppose we have ‘cumulant’ random variables An on XA and Bn on XB ,
such that P (Bn = b) =

∫
f−1 P (An = a) da (or (Pn(b) is the push-forward of Pn(a).

Contraction Principle: If the {An} satisfy the LDP, then {Bn} satisfy the LDP and

P (Bn = b) ≈ e−nI(b) where IB(b) = min
a:f(a)=b

IA(a) .

The Legendre transform in Gärtner-Ellis Theorem always yields a convex rate function. This is unrealistic for ex-
ample in the presence of a phase transition where rate functions typically have two local minima. In these cases the
Contraction Principle often helps.

Suppose the Xi are iid (independent and identically distributed). it is clear that
∫

enkSn =
∫

ΠnekXi =
(∫

ekX
)n.

Thus for individuals with Gaussian distributions e−
(x−µ)2

2σ2 , one easily calculates that λ(k) = 1
2k2σ2 +µk and thus that

I(s) = (x−µ)2

2σ2 . If the distributions are Poisson with average µ one derives in a similar way that I(s) = s
µ − ln s

µ − 1.
The fact that the rate function I possesses a minimum whose value equals zero is equivalent with the Law of Large
Numbers. The fact that the rate function is quadratic around its minimum is equivalent with the Central Limit
Theorem.

Here lies the crux of the matter. The central limit theorem states that the probability density of 1√
n

∑n
i=1 Xi

converges to the normal distribution. The sample average given above is scaled by 1
n (as opposed to 1√

n
) and is thus a

different random variable. Essentially, the central limit theorem looks at the small fluctuations of the sum of random
variables — the large deviation theory looks at the large fluctuations. In the two examples given in the previous
paragraph, the large deviations are indeed very distinct.

The microcanonical ensemble is the probability space describing possible configurations of a system with a fixed
number of particles (n), energy (E), and volume (V ). The microstate ω = ω1ω2 · · ·ωn consists of the positions and
velocities of each particle. The macrostate Mn(ω) is some observable such as the velocity distribution. consider the
probability density PE(Mn = m). The microcanonical LDP states that PE(m) ≈ e−nIE(m). Usually this is written in
terms of the entropy S(m) ≡ −IE(m). the most probable state m is of course the one that minimizes I (or maximizes
S). In physics this is called the maximum entropy principle.

Similarly, the canonical ensemble is the probability space describing the states of the system of n particles held
at constant volume and constant temperature. Now the canonical LDP states that Pβ(m) ≈ e−nIβ(m), where this rate
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function is called the ‘free energy’ and denoted by F . A large number of quantities for equilibrium statistical physics
can be interpreted in terms large deviations and this reformulation shows promise also for non-equilibrium statistical
physics.

Note: A standard reference is: A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Springer,
New York, 2nd edition, 1998.

Simulation of Biomolecules on Supercomputers

Yuefan Deng, SUNY Stony Brook and Brookhaven Nat’l Lab.

email: Yuefan.Deng@StonyBrook.edu

May 1, 2pm

The physics underlying molecular biology is essentially understood at small length- and time-scales. The size of an
atom is of the order of one ångström or 10−10 m. The time it takes light to cross a few thousand atomic diameters is
a femtosecond or 10−15 seconds (the smallest time scale at which interactions in molecular dynamics are immediate).
(It is also the timescale for atomic vibration within a typical molecule). However processes important to molecular
biology (such as folding of large molecules) take place within time scales of nanoseconds — 10−9 s — to microseconds
— 10−6 s — and involve on the order of 106 atoms or more. These processes moreover critically involve the dynamics
of many layers of the surrounding solvent (typically water). Even for, biologically speaking, small molecules, this
presents a huge computational challenge due to the amount of the interactions among the atoms and that need to be
computed and the relatively large time scale over which these computations need to be accurate. Molecular Dynamics
(MD) for biological molecules involves the stages of modeling, algorithms, software, and hardware.

Modeling: The starting point is to use an accurate potential U(x1, ..., xN ) (N is of the order of a million)
modeling interactions on the atomic scale. MD is then given by

mi(̈xi) = −∇xiU(x1, ......, xN ) ,

where the potential includes: atomic vibrations, Van Der Waals forces, ionization levels (to model PH), Lennart-Jones
forces, and Coulomb forces. Temperature is an energy level E =

∑
i

1
2miẋ

2
i + U

Algorithms: to solve the evolution equation there are two issues: the computation of the potential at any
time, and a limiting maximal timestep that can be taken, on the order of femto-seconds. The potential among N
atoms involves N2 terms. One decomposes the potential in two terms, a local (short-range interaction), and the long
range interaction: the Coulomb potential (slowly decaying as 1/N and thus acting over long distances). The Ewald
summation to the Coulomb force is employed here. This approximation has two terms, a rapidly time varying, but
local term, and a slowly time varying global term. The second problem is to time-step carefully while preserving
integrals of motion.

To obtain useful results in the life-time of a researcher the approach chosen is to harness many processors
( 10,000 minimum), and to carefully task them. This approach cuts the computational volume (where the N atoms
live) in a large number of small cubes (typically many more cubes than there are processors), so that the short range
interactions for atoms near the center of the cube can be computed within a cube, (atoms on the boundary of the cube
require data from adjacent cubes as well). The authors develop a ’Task Mapping’ approach, a complex optimization
problem to ensure that every processor remains equally busy. Next, time integration, over a femtosecond, again a
task that requires ’task mapping’. Atoms will move across cube boundaries, and must be kept track of as well. This
involves communication between processors. Network latency (time per request) can be a a particular killer. To
solve this requires appropriate network architecture, (3D-6D torus architecture, and the futuristic Tensor Expansion
architecture), replacement of generic network software (TCP/IP) by carefully hardware-programmed switches, and a
suitable quality CPU per processor. Relevant architectures are IBM’s Blue Gene ( 200,000 processors, 500,000 Gflops)
and the Red Neurons Network developed by the authors.
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The research presents a preliminary analysis of the conformational structure changes of Botulinum which has
about 30,000 atoms and involves more than 120,000 atoms of the solvent water.

Note: References: Y. Chen and Y. Deng, Task mapping on supercomputers with cellular networks, Comp. Phys.
Comm., Accepted (March 28, 2008).
X. Chen and Y. Deng, Simulations of a specific inhibitor of the disheveled PDZ domain, J. Mol. Modeling, Submitted
(Dec 13, 2007).
P. Zhang and Y. Deng, Design and analysis of new interconnection networks for ultra-scalable supercomputers, IEEE
Transactions on Computers. (submitted May 17, 2007).
K. Oh and Y. Deng, An efficient parallel implementation of the smooth particle mesh Ewald method for molecular
dynamics simulations, Comp. Phys. Comm. 177 (2007) 426-431.

Blow-up of Complex Solutions in Fluid Dynamics

Yakov Sinai, Princeton Univ. and Landau Inst.

email: sinai@math.princeton.edu

May 8, 2 pm

The 3-dimensional incompressible Navier Stokes equation (NS3D) is:

∂tu + u.∇u = ∆u−∇p , (0.1)

where u is the velocity and p the pressure. The point of this presentation is to demonstrate that there exist complex-
valued solutions of NS3D that blow up in finite time. This is the first time that such solutions have been constructed.
The authors suggest that solutions with singularities should not be considered as turbulent. Rather they may manifest
the onset of turbulence. To understand whether blowup is possible for real-valued solutions of NS3D is the major
unsolved problem in fluid dynamics. In two dimensions blowup does not happen when initial conditions are small.

In this analysis the Fourier transform of the solution happens to be purely imaginary, the boundary conditions
are absent (the fluid domain is R3), and there is no driving force. Blow up means that both

∫ |u|2 per unit volume (the
energy) and

∫ |curl u|2 per unit volume (called the ‘enstrophy’) become infinite at finite time. Particulary noteworthy
is the form of the solution at the blow up time, at the blowup location (taken at 0 for simplicity): u = i 1

|x|γ φ( x
|x| ),with

γ = 6 and φ a real vectorfield with complicated spherical angle dependance. The singularities of these solutions occur
at points, rather than along curves.

The program to produce such solutions has these summary stages:
1): Consider the equations in the Fourier domain. Let v(k, t) be the Fourier Transform of u(x, t) (and do not

assume that u is real).

v(k, t) = e−t|k|2v(k, 0) + i

∫ t

0

e−(t−s)|k|2
∫

R3
< k, v(k − k′, s) > Pkv(k′, s) dk′ ds ,

where the standard inner product on IC3 is written as < · > and Pk is the orthogonal projection (in IC3) to the orthogonal
complement of k. The incompressibility condition takes the form < v(k, t), k >= 0. This evolution equation is infinite
dimensional: v(k, t) is determined by all other degrees of freedom k integrated over all previous times.

2): Renormalization Group approach: Solutions that blow up in the spatial domain have Fourier transforms that
diverge at infinity. Determine conditions under which solutions exist and blow up at infinity (in Fourier space) at a
prescribed time, along a specific spatial direction, say e, in a specific manner, both along this direction and transverse
to this direction. The (essential) domains of support (i.e. of blowup) of the solutions is bounded by a parabola of
revolution and importantly, the dependence of v(k, t) at one magnitude of k · e depends only on data closer to 0 and
this is key to have a convergent (i.e not just formal) computation.
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3): Rigorously execute this, to prove existence and convergence.
The result of this program so far are the following. There exists, in the infinite dimensional space referred to, a

10-dimensional manifold M, of purely imaginary flow fields with prescribed singularities. A certain set of ‘small’ initial
conditions converges to this stable manifold (see the references for details). The geometric analysis of the flowfields
in this manifold has begun and yields point source singularities of the above form. The understanding of the time
evolution for an initial condition starting on this manifold has been completed: 4 temporally unstable dimensions, and
6 neutral dimensions.

Note: References: Dong Li, Yakov Sinai, Blow Ups of Complex Solutions of the 3D Navier-Stokes System (Submitted
to Xarchive 13 Oct 2006) http://arxiv.org/abs/physics/0610101.
Dong Li, Yakov Sinai, Complex Singularities of the Burgers System and Renormalization Group Methods, in: Current
Developments in Mathematics (International Press), 181-210, 2006.

Stability Analysis in Control Theory

Murat Arcak, Rensselaer Polytechnic.

email: arcakm@rpi.edu

May 15, 2 pm

Consider the system u → H → y by which is meant an input u and an Ordinary Differential Equation with output y.
For example,

ẏ = −αy + βu .

If we require the numbers α and β to be positive, this system is passive. This means that there is a smooth positive
function S : IR → IR such that there is a positive γ for which Ṡ ≤ γuy. In this case S = 1

2y2 works. The system is
called Output Strictly Passive if there is r > 0 such that Ṡ ≤ −ry2 + γuy (one of r or γ may be scaled away).

a feedback cycle of order n consists of n copies of the above system in series together with the negative feedback
yn = −u1. For example, the order 2 feedback cycle of passive systems is given by:

ẏ1 = −α1y1 − β1y2

ẏ2 = −α2y2 + β2y1

the passivity theorem states that this system is stable (if ||y(0)|| is small then ||y(t)|| is small for t > 0). the proof
consists in choosing a Lyapunov function V = β2S1 + β1S2 where, as before, Si = 1

2y2
i . The cancelation that occurs

here does not happen in dimension 3 or higher, so the result does not generalize.
For a general feedback cycle C (of order n) the socalled secant criterion states that the derivative matrix of the

system is Hurwitz (or: all its eigenvalues have negative real part) if
∏n

i=1
βi

αi
< (sec(π

n )n. This of course implies that
the system is asymptotically stable (all orbits tend to zero as t →∞).

Arcak and Sontag have proved the following extension of this result. Let C ′ be a nonlinear feedback cycle of
order n. Suppose that the subsystems ui → Hi → yi are OSP and that the linearization of C ′ satisfies the secant
criterion. Then their results states that there is a sequence {di}n

1 of positive reals so that V =
∑

diSi is a Lyapunov
function (with Si as before). Thus such a system is stable.

Certain biochemical reactions form such a feedback cycle. Many examples come in the form:

ẋi = fi(xi) + gi(xi)hi−1(xi−1) ,

where i ∈ {1, · · ·n} and in the indices we identify 0 = n. Suppose there is a fixed point x∗. We further assume that
hi is increasing except for i = n: hn is decreasing. The subsystems given by the above equations are OSP with

Si =
∫ xi

x∗i

hi(s)− hi(x∗i )
gi(x∗i )

ds .
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The secant criterion becomes
∏

γi < (sec(π
n ))n, where

γi ≡ sup
x

|∂xhi|
|∂x(fi/gi)| .

This last result can in turn be generalized to similar equations but now coupled along a directed graph with
nodes {1, · · ·n} and a directed edge set E consisting of arrows ij from i to j.

ẋi = fi(xi) + gi(xi)
∑

ij∈E
hij(xj) .

The functions hij must be either increasing or decreasing. Consider the dissipativity matrix E whose elements E`k,
` = ij and k = jm in E , are non-zero only if ijm is a path in the directed graph. Set E`` equal to −1/γ` and non-zero
off-diagonal elements E`k equal to sgn(h`) (` and k in E). If there is a diagonal matrix D such that ET D + DE is
definite negative, then the diagonal entries {di}n

1 of D again define a Lyapunov function V =
∑

diSi where Si as
before. There is no simple analytical criterion available to ascertain whether such a matrix D exists, but its numerical
determination is a convex problem and can thus be done fairly conveniently.

Geometry and Rigidity

Yair Minsky, Yale University.

email: yair.minsky@yale.edu

May 22, 2 pm

Geometry and group theory meet when the geometry of a space S is studied through the group G of its isometries.
Examples are: Sn whose isometries form the orthogonal group O(n); IRN whose isometries form the Euclidean group
E(n), a semi-direct product of the translations IR(n) and O(n); and hyperbolic space IHn with the group O(n, 1).

A lattice Λ is discrete subgroup of G such that G/Λ has finite volume. For example in IR2 consider the lattices

Λ1 = ZZ2, Λ2 =
(

ZZ
2

)2

, and Λ3 = AZZ2 where A =
(

1 1/2
0 1

)
. The fundamental domain of Λ2 has a different area

than that of Λ1 and Λ3 so they cannot be isometric. IR2/Λ1 has two loops of minimal length (corresponding to [1, 0]
and [0, 1]) whereas IR2/Λ3 has only one (namely: [0, 1], the next shortest loop has length

√
5/4). In IH2 the family of

geometrically different lattices isomorphic to a given one is studied by Teichmüller theory.
The orientation preserving isometry group of IH2 is PSL(2, IR), and so the ‘modular group’ PSL(2,ZZ) is a lattice

in there. They are the fractional linear transformations z → az+b
cz+d where a, b, c, and d are integers, and ad− bc = 1.

The group operation is given by the composition of functions. This group of transformations is isomorphic to the

projective special linear group of all matrices
(

a b
c d

)
where a, b, c, and d are integers, and ad− bc = 1, and pairs

of matrices A and −A are considered to be identical. The group operation is the usual multiplication of matrices.
The fundamental domain IH2/PSL(2,ZZ) is a geodesic triangle (a triangle whose sides are geodesic segments) with one
corner at infinity. This domain is not compact, but it nonetheless has finite volume.

The hyperbolic case of the Mostow-Prasad Rigidity Theorem states that if Λ1 and Λ2 are 2 isomorphic (as
groups) lattices in O(n, 1) and n ≥ 3, then IHn/Λ1 is isometric to IHn/Λ1. This is false for lattices in IRn (see above
examples) or lattices in O(2, 1).

The presentation of a group gives its generators and all relations on them that are necessary to describe the
group. So ZZ2 =< x, y |xyx−1y−1 = 1 >. The modular group is generated by the transformations T : z → z + 1 and
S : z → −1/z. The generators S and T obey the relations S2 = 1 and (ST )3 = 1. It can be shown that these are a
complete set of relations, so the modular group has the presentation: < x, y |S2 = 1, (ST )3 = 1 >.
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A finitely generated group (that is: which has finitely many generators) can always be made to act on a geometric
space by the following construction. Pick a set A of generators of Γ. Construct the Cayley graph X(Γ, A) by assigning
a vertex to each element of G. There is a directed edge from the vertex i to the vertex j if there is an a in A so that
j = ia. We give the graph a metric by letting each edge have length one. Γ acts isometrically on X(Γ, A) by left
multiplication. This construction depends on the generators one starts with. For instance ZZ2 can be generated using
(1, 0) and (0, 1), but also using (1, 0) and (2, 1).

A quasi-isometry f : X → Y between metric spaces is a map for which there are constants K and δ such that
1
K d(x, y)− δ ≤ d(f(x), f(y)) ≤ Kd(x, y) + δ and Y is contained in the ε neighborhood of f(X). (f is not required to
be continuous, so if X and Y are compact every map between them is a quasi-isometry). If we take two sets A and A′

of generators of a group Γ we get two graph that are quasi-isometrically related, that is: f : X(Γ, A) → X(Γ, A′) and
f ′ : X(Γ, A) → X(Γ, A), and f and f ′ are quasi-isometries. Thus we can look at finitely generated groups as metric
spaces defined up to quasi-isometry.

One quasi-isometric invariant (or “coarse property”) is the growth rate N(r) of a group: the number of elements
in the Cayley graph that are within a distance r of the identity. Finitely generated Abelian groups are direct sums
of ZZn and finite cyclic groups and so their growth rate is that of ZZn which is polynomial. Suppose the commutator
subgroup [Γ, Γ] of Γ is called Γ1. Set Γi+1 ≡ [Γ,Γi]. Γ is called nilpotent if for some n, Γn = {0}. Nilpotent groups
also have polynomial growth. Gromov has proved a reverse: If a group Γ has polynomial growth then it is virtually
(up to finite index and quotient by finite subgroup) nilpotent.

Properties of the group are then reflected in the coarse properties of this metric space, such as growth rates
of balls, embedded Euclidean subspaces, etc. From this point of view, which has its origins with Milnor, Svarc, and
Gromov, a basic question is: what algebraic properties of the group can be detected from the coarse properties of
the geometry? A group G is called quasi-isometrically rigid if whenever X(G) and X(Γ) are quasi-isometric, then
G and Γ are virtually (up to finite index) isomorphic. These are the groups whose coarse geometry tells us about
their algebraic properties. Theorems by Schwartz, Kleiner-Leeb and Eskin-Farb, and others assert that all lattices
in semi-simple Lie groups of dimension ≥ 3 whose fundamental domain is not compact are quasi-isometrically rigid.
Hamenstadt, and independently Behrstock, Kleiner, Minsky, and Mosher have proved that the Mapping Class Group
(see Handel’s lecture of April 4th) of a surface is quasi-isometrically rigid. Even though it is not in general a lattice
it shares many features of lattices.

Slow Relaxation and Aging

Gérard Ben Arous, Courant Inst.

email: gba1@nyu.edu

May 29, 2 pm

In this talk X1, X2, · · · , XN are iid (see Touchette, april 24) variables, SN ≡ ∑N
i=1 Xi, and MN ≡ max{Xi}. The

expression Si
D−→ S denotes convergence in distribution (or “weak convergence”). This means that the probability

densities µi associated with Si converge to the probability density µ associated to S in the sense that for every positive
continuous test function f :

∫
f dµi →

∫
f dµ (as real numbers).

Around the 1940’s work by Lévy, Khinchin, and Kolmogorov had led to an essentially complete understanding of
the statistics of SN and MN . Both quantities when appropriately rescaled so that their mean is 0 and their standard
deviation 1, converge to universal distributions. These universal distributions depend on only two parameters, a shape
parameter α, and a skewness parameter β. More precisely,

SN − aN

bN

D−→ L(α, β) and
MN − a′N

b′N

D−→ W (α, β) .

Reference to β will be suppressed in the remainder (the discussion will be restricted to symmetric distributions). The
former are called the Lévy skew α stable (or SaS) distributions, and the latter can be one of three distributions that
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are known as the Weibull, Fréchet, and Gumbel distributions. Suppose f is a distribution such that linear sums of iid
variables with that distribution but different mean and variance, is a new random variable with the same distribution
(but with possibly different mean and variance). Then f must be an SaS distribution (this is the meaning of the word
‘stable’ here). The normal distribution corresponds to α = 2.

Suppose now that we have random variables Xi such that the probability P (Xi ≥ x) is proportional to K
xα where

α ∈ (0, 1). In particular, this distribution does not have a mean (the integral does not converge). Even in that case
the following holds:

SN

N1/α

D−→ L(α) and
MN

N1/α

D−→ W (α) .

Consider the function that maps i
N to Si

N1/α for i ∈ {1, · · ·N}. The limit as N tends to infinity of this function
corresponds to a random variable Yt where t ranges from 0 to 1 which is called the α stable subordinator. It has the
curious property that the range of that variable is fractal. To be precise: the probability that

{∪t∈[0,1] {Yt}} ∩ [a, b] = ∅

equals Fα(a
b ) where Fα is a smooth function. For α = 1/2 this leads to Lévy’s arcsine law.

In spin glass models a configuration σ = (σ1, · · ·σN ) represents the value of each spin σi ∈ {−1,+1}. The
phase space of these configurations form an N dimensional cube. The Hamiltonian is an energy function (‘landscape’)
defined on this cube:

H(σ) =
1√
N

ΣijJijσiσj ,

where for simplicity Jij are iid normally distributed random variables with mean 0 and variance 1. This system
evolves according to Glauber dynamics: at each clock tick a random spin is flipped if it lowers the energy, and flipped
with probability p if it doesn’t. Thus σ is a function of the number t of clock ticks. Then under some conditions,
eβ
√

NH(σ(t)) converges in distribution to the α stable subordinate. The main condition is that t is large, but still very
small compared to the time needed to approximate equilibrium. Under the same condition for t and s the probability
that σ(t) ≈ σ(t + s) is approximately Fα( t

t+s ). Thus the system decorrelates more slowly as it ages.
In this (and other) complex high dimensional systems where the time to reach equilibrium is very long (slow

relaxation), these result mean that the way in which equilibrium is reached is universal, even if the form of the
equilibrium distribution itself is not. In the above example the equilibrium distribution is given by the Gibbs measure
e−H(σ)/Z where Z is a normalizer, and so depends on the details of H.

Accuracy of One-Bit Quantization, Fair Duels, Tilings

Sinan Güntürk, Courant Inst.

email: gunturk@cims.nyu.edu

June 5, 2 pm

Consider the problem of finding a function (or “digits”) q : IN → {−1, +1} so that the bias

Bq(ε) ≡ ε

∞∑

i=0

(1− ε)nq(n)

vanishes as rapidly as possible as ε approaches 0. The bit sequence q forms a one bit quantization of the signal 0. The
theorem here is that there are q such that Bq(ε) = O(e−c/ε) (ε varies, q is fixed) and that this is optimal. (The best value
for the constant c is unknown.) This result can be used to prove that for any power series f =

∑
aiz

i with coefficients
ai ∈ [−1, 1] can be approximated by a one bit quantization Q(z) =

∑
i qiz

i so that |f(z)−Q(z)| = O(e−c/|1−z|) on a
sub-domain of the unit disk containing the real segment [0, 1] (a “Stolz angle” to be precise).
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The name ‘fair duel’ arises from the following reformulation. Suppose two random shooters face off in a duel
where each shot has probability ε of killing the opponent (and is independent of the previous shots). The sequence
q determines the shooting order: ‘+1’ stands for one shooter and ‘-1’ for the other. After shots 0 through n − 1 the
probability that both shooters are alive equals (1− ε)n. If that is the case, if q(n) = +1 one shooter has a chance ε to
kill the other, and if q(n) = −1 the other does. Thus (1 − ε)nεq(n equals the probability that the “+”-shooter kills
the other minus the probability that the “-”-shooter kills his opponent. The bias function equals the probability that
one shooter survives minus the probability that the other does.

Suppose that q(n) are coin tosses, then < Bq(ε) >³ √
ε, where ³ means that the quotient of the two function

is uniformly bounded away from both 0 and ∞. Not a good result. To look at biases for other sequences define the
generating function Fq =

∑
i q(i)zi associated to q. If for a given a closed sum for Fq can be calculated then of course

Bq(ε) = εFq(1− ε) can be computed. Here are a few cases.

Digits q Generating function Fq Bias Bq

(+1)∞ 1
1−z 1

(+1− 1)∞ 1−z
1−z2 = 1

1+z ³ ε

(+1− 1− 1 + 1)∞ (1−z)(1−z2)
1−z4 = 1−z

1+z2 ³ ε2

(+1− 1− 1 + 1− 1 + 1 + 1− 1)∞ (1−z)(1−z2)(1−z4)
1−z8 = (1−z)(1−z2)

1+z4 ³ ε3

The multiplicity of the root at z = 1 is decisive. So for the limiting sequence, the Thue-Morse sequence t, one obtains:
Ft(z) =

∏
(1− z2n

) and its bias will be better than polynomial.
Denote by Sq the sequence of partial sums of q, so that qn = (Sq)(n) − (Sq)(n − 1). The last relation implies

that Fq(z) = (1− z)FSq(z). Iterating this leads to Bq(ε) = εk+1FSkq(1− ε) and thus

|Bq(ε)| ≤ εk+1

1− |1− ε| ‖FSkq‖∞ = εk‖FSkq‖∞ ,

where ‖Fw‖∞ means maxn |wn|. A combinatorial argument yields that for the Thue-Morse sequence t: ‖Skt‖∞ =
2(k−1

2 ) ≈ 20.5k2
. Hence

|Bq(ε)| ≤ inf
k

εk‖Skt‖∞ = inf
k

εk2k2/2 = ek ln ε+k2 ln 2
2 .

Minimizing the exponent gives that the bias is O(−c(ln ε)2). This is better than polynomial, although not optimal.
The optimal estimate follows from a recursive equation that is inspired by sigma-delta modulation described next.

Consider a sampled signal {x(n)}n where x(n) ∈ [0, 1]. Define q(n) ≡ b(Sx)(n)c − b(Sx)(n − 1)c. Then
(Sq)(n) = b(Sx)(n)c. The accumulated error is u(n) ≡ (Sx)(n)− (Sq)(n). Clearly,

∆u(n) ≡ u(n)− u(n− 1) = x(n)− q(n) . (0.2)

The error estimate is of order N−1:
∣∣∣ 1
N

∑k+N
n=k+1 (x(n)− q(n))

∣∣∣ ≤ 1
N . However, as shown above, it is advantageous to

choose q(n) such that Equation (0.2) can be replaced by

∆mu(n) ≡ u(n)− u(n− 1) = x(n)− q(n) , (0.3)

for some positive integer m as long as the sequence u(n) is bounded. Thus we redefine the digits q(n) as follows.
First define û(n) ≡ (u1(n), · · ·um(n)T and reinterpret Equation (0.3) as:

u1(n) = u1(n− 1) + x(n)− q(n)
u2(n) = u1(n− 1) + u2(n− 1) + x(n)− q(n)

...

um(n) =
m∑

i=1

ui(n− 1) + x(n)− q(n)

For each digit q(n) this gives an affine transformation T : IRm → IRm, given by

T : û(n) = Lû(n− 1) + (x(n)− q(n))1 ,
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where L is the lower triangular of only ones (including the diagonal) and 1 is the vector of only ones.
Consider again the case where x(n) = x is constant. The plan is to construct digits q so that the sequence ‖û(n)‖

is bounded. One method is to partition IRm into two domains Ω− and Ω+ so that û(n − 1) ∈ Ω± then q(n) = ±1.
It is an open problem which partition lead to bounded sequences ‖û(n)‖. However, if one chooses such a partition
(and if some other conditions are satisfied), then there is an open invariant set Γ ⊂ IRm of T . On this set the map
T commutes with its projection to the standard torus and from this one concludes (using the Ergodic Theorem) that
the invariant set Γ “tiles” IRm. Another open problem in this case is to know the dimension of its boundary, since
larger dimension leads larger computational errors.

Note: This talk lasted 2 hours.

Knot Theory and the Lorenz Attractor

Ilya Kofman, College of Staten Island (CUNY).

email: kofman@math.csi.cuny.edu

June 12, 2 pm

For certain parameter values the Lorenz Equation are known to give rise to a strange attractor.

ẋ = 10(y − x) ẏ = 28x− y − xz ż = xy − 8
3
z

is the most famous case. All orbits are asymptotic to the attractor which itself has fractal dimension. On the attractor
itself the behavior is sensitive to initial conditions.

L R

z

y

R

R

L

L

Figure 0.1: In the first figure, the Lorenz template with the flow indicated by arrows; in the second, the construction
of the braid-diagram.

Guckenheimer and Williams constructed the so-called Lorenz template in 1979. This is a branched surface
embedded in IR3 together with a smooth flow and serves as a geometrical model for the flow on the attractor. All
forward orbits must intersect the branch cut ` after which they go round either the Left “ear” or the Right “ear” before
returning to ` (see Figure 0.1). Parametrizing ` by the interval [0, 1], the Poincaré map P : ` −→ ` defined by the
flow (in this geometric model) is x −→ 2x mod 1. Birman and Williams (1983) gave a topological description of the
orbits on the templates as knots (see below) satisfying certain restrictions which makes them rather rare. Out of the
approximately 1.7 million simplest knots, only 20 occur as knots on the Lorenz template. Ghrist (1995) constructed a
flow on S3 that contains all knots. Only recently (Tucker, 2002) has proved (using rigorous interval arithmetic) that
this geometric model indeed gives an accurate description of the dynamics.

A link is a 1-dimensional subspace of the 3-sphere (or S3) whose connected components are homeomorphic to
circles. A knot is a link with one component. Two links are equivalent if they are isotopic (roughly speaking, one
equals the other up to continuous deformation). Given a link L, a Seifert surface is an oriented surface S ⊂ S3 whose
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boundary equals L. A link L ⊂ S3 is called fibered if there is a one parameter set of homeomorphic Seifert surfaces Sθ

whose boundary equals L, where θ runs through the unit circle, and such that for distinct θ the corresponding Seifert
surfaces intersect precisely in their boundary L, and so that ∪Sθ = S3. Remove a very small segment from each of
two knots A and B. Then reconnect the 4 strands so that 1 new knot is obtained. Such a knot is called a composite
knot. A prime knot is one that is not composite.

The restrictions Birman and Williams proved (1983) were that every knot occurring in the template must be
fibered and prime. They observed that it follows immediately from the template that every knot in it has the property
that all crossings are positive. To explain the last statement we need to look at braids.

A link L can be deformed in such a way that it consists of of two rows of horizontally aligned strands numbered
from 1 through k. (Imagine looking at the link from ‘above’.) Connect the strands in such a way that every crossing
appears between the two rows. This is the braid diagram associated to the link. The link itself is thought of as the
‘closure’ of this diagram: connect the two loose ends of strands i for each i in 1 through k (this can be done without
introducing new crossings). Of course (see Figure 0.1) any periodic orbit on the template automatically gives rise
to such a diagram. Orient the orbits in the template so that they descend as they cross the branch-cut. A crucial
observation is the following: orbits descending from the Left never cross each other and neither do orbits descending
from the Right. Orbits descending from the Right always overcross orbits descending from the Right. This explains the
‘positivity’ of the crossings observed by Birman and Williams. (At the crossing, let e− be the tangent vector in IR2 in
the direction of the flow along the strand that undercrosses and e+ along the strand that overcrosses. The parity or
handed-ness of the basis (e−, e+) of IR2 is called the index of the crossing. The sum of these indices along a knot is
called the writhe.) Knots with the property that all crossings positive are called positive.

A positive knot (or link) is uniquely determined by the permutation on the two rows of strands in the braid
diagram. Thus they can be represented as compositions of σi, the exchange of strands i and i + 1. For instance the
(p, q)-torus link can be made from a closed braid with p strands. The appropriate ‘braid word’ is (σ1 · · ·σp−1)q. A “T-
link” is defined as a certain concatenation of torus links: namely (σ1 · · ·σp1−1)q1 (σ1 · · ·σp2−1)q2 · · · (σ1 · · ·σpk−1)qk ,
where pi is strictly increasing. On the other hand, above observation implies that any braid of the template is
determined by the non-decreasing sequence of positive integers < j1, j2, · · · jr > that informs that strand i jumps to
i + ji. Recently (2008) Birman and Kofman have proved that every knot on the Lorenz template is a T-link, that all
T-links occur as links on the template, and that (σ1 · · ·σp1−1)q1 (σ1 · · ·σp2−1)q2 · · · (σ1 · · ·σpk−1)qk =< pq1

1 · · · pqk

k >.
Ghys established in 2006 that there is a one-to-one correspondence between modular knots and the knots that

can occur on the Lorenz template. This fascinating story is beyond the scope of this summary but can be found in
http://www.ams.org/featurecolumn/archive/lorenz.html.

Yang-Lee Zeros for Diamond Lattices and 2D Rational Dynamics.

Misha Lyubich, University of Toronto and Suny at Stony Brook.

email: mlyubich@math.sunysb.edu

June 19, 2 pm

Consider a finite graph Γn, with a set v of n vertices. In the Ising model a spin configuration is a function σ : V →
{−1, +1}. Define the energy or Hamiltonian H(σ) as:

H(σ) = −J

2

∑

v,neigbrs w

σ(v)σ(w)− h

2

∑

v,neigbrs w

(σ(v) + σ(w)) ,

where J (the magnetic interaction) and H (the external field) are fixed parameters. Given a temperature T , define the
weight of the configuration σ, W (σ) = e−H(σ)/T , and define the partition function of the graph Γn as Zn =

∑
σ W (σ).

Define further z = e−h/T and t = e−J/T (z and t ∈ (0, 1) when T ∈ (0,∞)), so that now Z = Zn is a Laurent
polynomial Z = P (z,

√
t). Distribution of the zeros of these polynomials is physically important as they control phase

transitions in the model.
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Theorem: (Lee and Yang, 1950’s) Assume that J > 0 (ferromagnetic case), and given any value 0 < t < 1, then,
irrespective of the underlying graph, the zeros z of P (z,

√
t) lie on the unit circle.

For any fixed polynomial P , the locus of the zeros of P is contained in the cylinder with the unit circle z-direction
horizontal and the t direction vertical. These zeros can be represented as a set of curves parametrized by t ∈ [0, 1],
connecting the top to the bottom: Each of these curves is also a graph over t, and the number of these curves equals
d. These curves can also be thought of a ’pre-foliation’, with finitely many, namely d, leaves, and these leaves can
therefore be thought of as a transversal measure µ. Thus a graph Γn produces a partition function Z and a transverse
measure µ. This measure is singular for a finite graph because it is concentrated on the leaves. However in the
limit as n → ∞ one can think of this measure as having a density ρ parametrized by the angle in the z direction
θ: µ′ = ρ(θ)d θ. One can think of a sequence of graphs Γn and therefore sequences of partition functions Zn and
transversal measures µn, the latter converging to the measure µ.

The authors consider the Migdal-Kadanoff hierarchical model: Γ1 is a horizontal graph with two vertices con-
nected by an edge. Γ2, a diamond shaped graph, with 4 vertices. In general Γn is obtained by Γn−1 by replacing every

edge in Γn−1 by a copy of Γ2. The spin configurations on Γ1 are ++, −−, −+, and +−. Let U1 := W (++) =
1

z1

√
t1

,

V1 := W (−+) =
√

t1, W1 := W (−−) =
z1√
t1

. Since, by symmetry, V1 = W (+−), therefore Z1 = Z = U1 + 2V1 + W1.

For Γn, define the variables Un, Vn, Zn in the corresponding manner. Precisely, let + ∗ + denote the set of all spin
configurations that have a + at the left most point, and a + on the right most point. Define Un := Zn(+ ∗+). Define
similarly Vn := Zn(− ∗+) and Wn := Zn(− ∗ −). Then again, the partition function Zn equals Un + 2Vn + Wn.

The Migdal-Kadanoff renormalization group equation, or RGE, expresses Un+1, Vn+1, and Wn+1 in terms of Un,
Vn, and Wn. The RGE can also be formulated as a transformation from (zn, tn) to the (zn+1, tn+1) variables. Here

(zn, tn) is defined by: Un :=
1

zn

√
tn

, Vn =
√

tn. This relation has the following form:

(zn+1, tn+1) ≡ R(zn, tn) =
(

z2
n + t2n

z−2
n + t2n

,
z2
n + z−2

n + 2
z2
n + z−2

n + t2n + t−2
n

)

Since the transformation R preserves the cylinder described before, its restriction to the cylinder can be studied. Now
R(eiθ, 0) = e4iθ, which has degree 4, while R(eiθ, 1) = e2iθ has degree 2.

Consider now the locus γn in the cylinder of the zeroes of Zn and construct them as a sequence of pullbacks.
Thus γ1 are the zeroes of z2

1 + 2t1z1 + 1 = 0. Representing z1 = eiθ, this curve is given by t1 = −2cos(θ) and has two
monotone ‘branches’ connecting t = 0 with t = 1, one going ’up’ from t = to t = 1, the other down from t = 1 to
t = 0. γ2, the is the pullback γ2 = R∗(γ1), defined as the zeroes of z2

2 + 2t2z2 + 1 = 0, where z2 and t2 are functions
of z1 t1 given by RGE. γ2 consists of two groupings of 4 curves. The 4 curves in each grouping are monotone up, but
meet at two points on t = 1. One then keeps iterating: γn = R∗(γn−1).

Theorem: (Bleher-Lyubich-Roeder). The set γn consists of 2.4n−1 vertical branches. They converge to a vertical
foliation F = lim[γn]. The sequence of measures µn also has a limit µ. There exists a 0 < tcrit < 1 so that
i): The foliation F is real analytic for t < tcrit, and the measure µ in the same range of t is absolutely continuous in
the θ variable.
ii): For tcrit < t < 1 the leaves of F are only dense; the measure µ is still absolutely continuous in the θ variable but
its density vanishes on a Cantor set of positive length (and is real analytic on the complementary open dense set).
iii): When t = 1, the measure µ on this level is singular with support on the inverse images under R of (z, t) = (−1, 1),
the dyadic rationals.
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