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Abstract

We perform a detailed analysis of the dynamics of the descent of a particle bouncing down a staircase profile under
the action of gravity. In order to get interesting dynamics we make a detail analysis of the case which the particle loses
momentum in the direction orthogonal to the collision plane but preserves the tangential component of the momentum.
We prove that in this case all orbits are bounded and show the existence and stability of periodic solutions. The inter-
play between loss and gain of energy due to impacts and free falling respectively generates a rich dynamics.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In general, models with impacts lead to non-smooth dynamical systems and include a wide range of applications like
particle accelerators [2,12], dynamics of structures under the action of earthquakes [4] or percussion machines and print
hammers [8]. A large number of references can be found in the book [1]. But the main context of this paper concerns
granular flow.

The properties of granular flow poses substantial theoretical challenges while at the same time it is of considerable
practical interest (see for example [3,6]). One of its most peculiar properties is that when one pours the material on a
pile, the slope of the resulting mound varies between two angles, the so-called angle of repose and the maximal angle of
stability, that are typically only a few degrees apart [5]. The usual view is that this characteristic behavior is in fact a
collective phenomenon: a consequence of the interaction between many particles. However, in [9] (summarized in [11]) a
model consisting of a single particle falling down an inclined staircase was conjectured to have a very similar charac-
teristic behavior and partial results in that direction were obtained.

In essence, this conjecture reduces to the statement that if the inclination of the staircase is below a certain angle /0 a
falling particle eventually stops, and if it is more than /1 > /0 the particle accelerates indefinitely (its velocity is
unbounded). We refer to [11] for a more detailed discussion of the status of this conjecture and a precise statement
of the partial results.

The proof of the full conjecture (or its falsification) is elusive because we lack the mathematical tools necessary to fully
understand the dynamics of the model. A simpler model that allows a much more complete analysis of the dynamics was
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formulated in [10] (and elaborated in [11]). In this model the particle does not bounce up when it hits the staircase but
rather slides forward to the end of the ramp. However this model does not exhibit the required trichotomy.

The present model was formulated in order to gain a better understanding of the dynamics of a particle that bounces
up when it hits the staircase. The simplification here is that the staircase is not inclined (its ramps are horizontal). As a
result the horizontal component of the velocity of the falling particle is a constant of the motion for those parameter
values where the interesting dynamics occurs. Thus we study the motion of a particle of unitary mass falling down a
staircase under the action of gravity (see Fig. 1). If the height and length of the steps are a and b respectively, then
the motion is governed by
x00ðtÞ ¼ 0

y00ðtÞ ¼ �g

�
; if

yðtÞ
a

> �E
xðtÞ

b

� �
ð1:1Þ

x0ðtþÞ ¼ etx0ðt�Þ
y0ðtþÞ ¼ �eny0ðt�Þ

�
; if

yðtÞ
a
¼ �E

xðtÞ
b

� �
ð1:2Þ
where E[x] is the integer part of x and g is the gravity constant. System (1.1) models the simple parabolic flight between
impacts and (1.2) rules the change of velocity in each impact. The numbers et,en 2 [0,1] are usually known as the

coefficients of restitution. As a whole, we have an impact system that is piecewise integrable.

A change of variables (~y ¼ y
a, ~x ¼ x

b, ~t ¼
ffiffiffiffi
2g
a

q
t, then drop the tilde) yields a simplification:
x00ðtÞ ¼ 0

y00ðtÞ ¼ �1=2

�
; if yðtÞ > �E½xðtÞ� ð1:3Þ

x0ðtþÞ ¼ etx0ðt�Þ
y0ðtþÞ ¼ �eny0ðt�Þ

�
; if yðtÞ ¼ �E½xðtÞ� ð1:4Þ
Denote the initial position and velocity of the particle at take-off by (u,v,z), see Fig. 1. During its flight to the next
impact, the orbit of the particle is given by
xðtÞ ¼ ut þ 1� z;

yðtÞ ¼ � t2

4
þ vt:

ð1:5Þ
Here z is the distance from the point of impact to the border of the ramp and u,v are the horizontal and vertical veloc-
ities, respectively.
Fig. 1. The discrete model.
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The number of steps between two successive impacts is called the jump number and will be denoted by n. The number
n is the first natural number such that z 0 is positive. If z P 4uv it is easy to see that the particle bounces again in
the same step, so n = 0. In other case, let us denote t* as the time at which the solution crosses the line y = 1 � x.
By calculation,
�ðt
�Þ2

4
þ vt� ¼ �ut� þ z
so its largest root is� �

t� ¼ 2 vþ uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvþ uÞ2 � z

q
:

If z 6 4uv this is a real number and, C[x] being the ceiling function (i.e., the smallest integer greater than x), the number
of steps is
n ¼ C½xðt�Þ� � 1 ¼ C 2u vþ uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvþ uÞ2 � z

q� �
� z

� �

and the time of impact is
timp ¼ 2 vþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ n

p� 	
: ð1:6Þ
Now, a simple substitution gives
u0 ¼ etu;

v0 ¼ en

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ n
p

;

z0 ¼ zþ n� 2u
�

vþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ n
p 	

;

n ¼ 0; if z P 4uv;

n ¼ C 2u vþ uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvþ uÞ2 � z

q� �
� z

� �
; otherwise:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð1:7Þ
Note that the dynamical system of Eq. (11) in [9] is obtained by coordinate transform which is singular if the
inclination (or j) of the staircase is zero. To undo the singularity substitute ~u ¼ ju in Eq. (11) of [9]. If subsequently
one sets j = 0, Eq. (1.7) above is recovered.
2. Some global aspects of the discrete model

In this section we will analyze the global structure of solutions of Eq. (1.7) when (et,en) 2 [0,1]2. Let us observe that
this equation is of the type
u0

v0

z0

0
B@

1
CA ¼ F

u

v

z

0
B@

1
CA;
where F: [0,1)2 · [0,1]! [0,1)2 · [0,1] is a discontinuous map. Let us observe that we have skipped the cases u < 0
since the particle would go up the staircase. Furthermore v < 0 is physically impossible for an initial condition. The case
v = 0 does not have clear meaning in the continuous time model but we include it for completeness.

2.1. Boundedness of the solutions

When one tries to understand the global behavior of a dynamical system, it is helpful to know whether the solutions
are bounded. The main theorem of the actual section deals about this property and a exhaustive analysis for all
(reasonable) values of the parameters will be done. Let us start proving this useful result.

Proposition 2.1. Assume that eten < 1. If ðuk0 ; vk0 ; zk0Þ is an initial condition satisfying
zk0
P

4uk0
vk0

1� eten
: ð2:8Þ
Then nk = 0 for all k P k0.
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Proof. Working with (1.7) and assuming (2.8) is easy to see that nk0
¼ 0, so uk0þ1 ¼ etuk0

, vk0þ1 ¼ envk0 and
zk0þ1 ¼ zk0
� 4uk0

vk0
P

4uk0þ1vk0þ1

1� eten
:

The proof follows by induction. h

Remark 2.1. If et = en = 1 then the previous proposition does not hold. On the contrary, if there exists some k0 such
that nk = 0 for every k P k0 then we would have that
zk ¼ zk0
� 4ðk � k0Þuk0

vk0
;

and then zk cannot always be positive, a contradiction. Therefore, nk must be non-zero infinitely often.

Before we state the main result of the section, let us note that to study boundedness we only need to know the
behavior of vk, since uk follows a geometrical law with ratio et.

Theorem 2.1. All solutions of (1.7) are bounded if and only if eten < 1. Moreover for any initial condition u0 > 0, v0 > 0,

z0 2 [0,1] we have the following table
et < 1
 et = 1
en < 1
 limvk = 0
 vk is bounded
en = 1
 $k0 "k P k0 : vk+1 = vk
 limvk =1
Proof. One easily sees from Eq. (1.7) that when et = 1 and en = 1 there is a constant of the motion:
Ik ¼ u2
k þ v2

k �
Xk

i¼0

ni ¼ const:
Recall that uk = u0 > 0 is also a constant of the motion. Now Remark 2.1 proves that
Pk

i¼0ni is divergent and thus vk

must be divergent as well.
In the remainder of the proof eten < 1. Since C(x) 6 x + 1, one gets that
nk 6 4u2
k þ 4ukvk þ 1 ð2:9Þ
and defining wk :¼ ukvk, we obtain
wkþ1 6 eten

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

k þ 4u4
k þ 4u2

kwk þ u2
k

q
:

As uk is decreasing we can choose a positive constant d such that uk 6 d. So wk is a subsolution of the scalar dynamical
system
wkþ1 ¼ eten

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

k þ 4d4 þ 4d2wk þ d2
q

;

which has a fixed point w* > 0. Using now that the right hand side of the last equation is increasing in w is standard to
prove that subsolutions are bounded by solutions and in consequence limsupk!1wk 6 w*(d). Now the affirmation
made for the case et = 1, en < 1 follows easily since uk is constant and wk bounded.

It only remains to check the properties for et < 1, taking into account that limuk = 0 in those cases. To do that, we
will use that the constant d can be chosen arbitrary small for k large. One then sees that w*(d) defined in the previous
paragraph can be taken arbitrary small. This implies that limwk = 0.

The next step is to show that nk is zero for k P k0. Arguing by contradiction, let us suppose that nk is not eventually
zero. Then one uses Proposition 2.1 to get that zk <

4uk vk
1�eten

¼ 4wk
1�eten

. Now since limwk = 0, it follows that limzk = 0, so
using the equation for z of (1.7), limnk = 0, because nk is bounded from (2.9). This is a contradiction. The proof finishes
since k P k0, vk ¼ ek�k0

n vk0
. h

Remark 2.2. As consequence of the proof we can also give the behavior of the jump number. If et < 1 or else if et = 1
and en = 0, then nk must be zero for k large. Whereas if both restitution coefficients are equal to one then uk is constant,
vk diverges and from (1.7) also nk tend to infinity. The case et = 1 and en 2 (0,1) will be dealt with below.
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2.2. Periodic bouncing solutions

This section is devoted to the study of the periodic solutions of (1.7). We will concentrate on the case that et = 1 and
en 2 (0,1). In the other cases a relatively straightforward analysis shows that the unique periodic solutions are fixed
points. These fixed points can be easily computed and are shown in the following table:
et 2 [0,1)
Fig. 2. Periodic bouncing solutions.
et = 1
en = 0
 (0,0,z*)
 (u*,0,z*)

en 2 (0,1)
 (0,0,z*)
 To be considered later

en = 1
 (0,v*,z*)
 (u*,0,z*) and (0,v*,z*)
where u* P 0, v* P 0, z* 2 [0,1] are constants. This can be seen as a consequence of Theorem 2.1, since in those cases we
know the asymptotic behavior of the solution.

From now on we will consider et = 1 and denote en :¼ e 2 (0,1). Note that uk becomes now a constant that will be
called u, so the solutions can be described only with two components {vk,zk}.

We will from here on use the bouncing to describe a solution that touches the staircase in a discrete sequence of
points. On the contrary a sliding solution may touch the staircase in intervals. We will say that an orbit is periodic
if it corresponds to periodic solutions of (1.7). There is no problem in referring to such orbits as corresponding to peri-
odic solutions of (1.3) and (1.4), since we can rewrite those in terms of moving reference frame. This moving reference
frame is centered on the staircase but moves with velocity whose horizontal component equals u with respect to the old
‘‘laboratory frame’’. The aforementioned solutions are truly periodic in the new coordinates.

We begin by studying the simplest case which occurs when the sequence {vk,zk} is constant. These periodic solutions
are said of type (n), if n the number of steps jumped by the particle between two consecutive impacts.

Theorem 2.2. Assume et = 1 and en = e 2 (0,1). There exists a periodic solution of (1.7) of type (n) if and only if
u ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� eÞ

1þ e

r
: ð2:10Þ
Remark. The parameters values for which these orbits exist (for n 2 {1,2,3} only) are shown as solid curves in Fig. 2.

Proof. Given initial conditions (v0,z0), the first iteration is
v1 ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

0 þ n
q

;

z1 ¼ z0 þ n� 2u v0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

0 þ n
q� �

:

By imposing v1 = v0 in the first equation, v0 is uniquely determined by
v0 ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n

1� e2

r
:
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Analogously, taking z1 = z0 in the second equation we get
u ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� eÞ

1þ e

r

after some computations. To finish the proof, it remains to verify the compatibility condition, namely that the number
of steps in the jump is in fact n. Note that n is defined as the first positive integer such that z1 P 0 and it is not restrictive
to assume z1 = 0, since the solution is invariant by horizontal translation. Taking into account the definition of z1, the
question is reduced to verify that
n� 1� 2u v0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

0 þ n� 1
q� �

< 0:
By substituting the values of v0 and u, the left-hand side of this inequality defines the following function of e
f ðeÞ ¼ n� 1� n
1þ e

eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� e2

n

r !
:

If n = 1, it is trivial to see that f(e) < 0 for all e 2 (0,1). If n P 2 then f ð0Þ ¼ n� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p
< 0 and f 0(e) < 0 for

every e 2 (0,1). In consequence, f(e) < 0 for all e 2 (0,1). h

We are going to analyze in the following solutions of (0,n) type. These are periodic solutions that have two impacts
on the same step and then jump n steps down, and so on periodically. The presence of these solutions (for n 2 {1,2,3,4})
is indicated in Fig. 2 in long dashed curves.

Theorem 2.3. Assume et = 1, en � e 2 (0,1). There exists a solution of (1.7) of type (0,n) if and only if
u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� e4Þ

p
2ð1þ eÞ2

ð2:11Þ
for e 2 ð0; e�nÞ, where e�1 ¼ 1 and fe�ng is a sequence converging to zero as n tends to infinity.

Proof. Suppose that (v0,z0) is the initial condition and that the first impact is in the same step, so
v1 ¼ ev0; z1 ¼ z0 � 4uv0:
Now, the solution jumps n steps after the following impact, so
v2 ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ n
p

¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2v2

0 þ n
p

;

z2z1 þ n� 2uðv1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ n
p

Þ ¼ z0 � 4uv0 þ n� 2uðev0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2v2

0 þ n
p

Þ:
By imposing that v2 = v0, z2 = z0 we get
v0 ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n

1� e4

r
;

u ¼ n

2 ð2þ eÞv0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2v2

0 þ n
p� 	 :
Then a simple substitution of the obtained value of v0 in the second equation provides condition (2.11) after some
algebra.

As in the previous proof, it remains to verify compatibility condition. In this case, it reduces to verify that if the jump
number equals n � 1, then z2 < 0 because we can assume that z1 = 0 without loss of generality. This means that
z0 ¼ 4uv0 ¼
2ne

ð1þ eÞ2
:

Considering z2 as a function of the jump number n, we have
z2ðn� 1Þ ¼ n� 1� 2u ev0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2v2

0 þ n� 1
q� �

n� 1� ne2

ð1þ eÞ2
�

ffiffiffi
n
p

ð1þ eÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4 þ n� 1

p
:

For n = 1, it is evident that z2(0) < 0 for all e 2 (0,1). Thus, there exists a periodic solution of type (0,1) for all e 2 (0,1).
For a general n P 2, by defining the function
F ðe; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðe4 þ n� 1Þ

p
þ e2 � 2eðn� 1Þ � ðn� 1Þ;
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it is easy to verify that z2(n � 1) < 0 if and only if F(e,n) > 0. Note that
oF
oe
¼ 2e3

ffiffiffi
n
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e4 þ n� 1
p þ 2e� 2ðn� 1Þ < 2ð3� nÞ ffiffiffinpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e4 þ n� 1
p 6 0 if n P 3:
We will study first the case n P 3, leaving n = 2 for a separate study. Now F is strictly decreasing in e. Besides,
F(0,n) < 0 and F(1,n) > 0, so in consequence for every n P 3 there exists e�n 2 ð0; 1Þ such that z2(n � 1) < 0 if
e 2 ð0; e�nÞ and z2(n � 1) > 0 if e 2 ðe�n; 1Þ. By definition, F ðe�n; nÞ ¼ 0.

For the particular case n = 2, it is possible to compute explicitly: z2 ¼
1�e2þ2e�

ffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þe4Þ
p

ð1þeÞ2 < 0 if and only if e 2 ð0; e�2Þ
with e�2 ¼ 1=ð2þ

ffiffiffi
5
p
Þ.

Finally, let us show that the sequence fe�ng is strictly decreasing. Note that e�n is the unique root of F(e,n) = 0 in the
interval (0,1). By dividing F(e,n) = 0 by (n � 1)(e + 1), we get the equation
e3 þ 3e2 þ ð3� 4nÞeþ 1 ¼ 0:
In other words, e�n is the unique root belonging to (0,1) of
n ¼ ðeþ 1Þ3

4e
:

These values are easily computable numerically. An elementary analysis of the monotonicity intervals of the right-hand
side as a function of e shows that the sequence fe�ng is strictly decreasing. h

The last kind of solutions considered here are those of type (n + 1,n). They are the solutions such that the particle
jumps n + 1 steps before the first impact, then jumps n steps. Their presence is indicated in Fig. 2 by short dashed curves
for n 2 {1,2,3}.

Theorem 2.4. Assume that et = 1 and en = e 2 (0,1). Eq. (1.7) admits a solution of type (n + 1,n) (where n 2 {1,2,3, . . .})

if and only if
u ¼ ð2nþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e4
p

2ðeþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðe2 þ 1Þ þ 1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðe2 þ 1Þ þ e2

p
 � : ð2:12Þ
Proof. The first iteration of the dynamical system is
v1 ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

0 þ nþ 1
q

;

z1 ¼ z0 þ nþ 1� 2u v0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

0 þ nþ 1
q� �

:

The next iteration is
v2 ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ n
q

¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2v2

0 þ nðe2 þ 1Þ þ e2

q
;

z2 ¼ z1 þ n� 2u v1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ n
q� �

:

As in the previous proof, it can assume without loss of generality that z0 = 0. Now, by imposing that v2 = v0, we get
v0 ¼
effiffiffiffiffiffiffiffiffiffiffiffiffi

1� e4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðe2 þ 1Þ þ e2

p
:

On the other hand, if z2 = 0 then
u ¼ ð2nþ 1Þe
2ðeþ 1Þ v0 þ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

0 þ nþ 1
p� 	
and by substituting the expression of v0 in the previous equation we get Eq. (2.12).
The last point is to check the compatibility conditions (again z1 is written as a function of n)
z1ðnÞ ¼ n� 2u v0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

0 þ n
q� �

< 0
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and
z1ðnþ 1Þ ¼ nþ 1� 2u v0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

0 þ nþ 1
q� �

P 0:
This can be done (after some computations) by substituting the expressions for u and v0. h

The set
B ¼ fðe; uÞ : there exists periodic solutions of ð1:7Þg
can be seen as a very complicated set composed by infinitely many branches of analytic curves.

Theorem 2.5. For most parameter values (e,u), Eq. (1.7) does not have periodic bouncing solutions.

Proof. We are going to show that for each word (m0, . . . ,mk�1) (periodically repeated), the subset of B corresponding to
solutions whose jump numbers are defined by this sequence is contained in the graph of an analytic function u:
(0,1)! IR and therefore has (2-dimensional Lebesgue) zero measure. Since B consists of a countable collection of such
curves, it has zero measure.

Let (m0, . . . ,mk�1) be a given word. Then, by (1.7) we obtain
v2
iþ1 ¼ e2ðv2

i þ miÞ:

So
v2
k ¼ e2kv2

0 þ e2mk�1 þ e4mk�2 þ � � � þ e2ðk�1Þm2 þ e2km0:
Now if we impose that vk must be equal to v0, we can solve for v0, and therefore obtain v1, . . . ,vk�1 as functions of the
parameter e. Using (1.7) again for z,
zkþ1 ¼ zk þ mk � 2u vkðeÞ þ
1

e
vkþ1ðeÞ

� �
:

So
zk ¼ z0 þ m0 þ � � � þ mk�1 � 2u v0 þ � � � þ vk�1 þ
1

e
ðv1 þ � � � þ vkÞ

� �
:

By imposing zk = z0 and solving for u one obtains
uðeÞ ¼
e
Pk�1

j¼0 mj

2ðeþ 1Þ
Pk�1

j¼0 vj

;

which is the announced function. h

We finish this section by studying the stability of periodic solutions. We need the following definition:
We say that a discrete solution {vk,zk} is strict if for all k we have that zk > 0. In other words, a solution is strict if the

particle never lands on a point where z = 0.

Theorem 2.6. Every strict bouncing periodic solution of (1.7) is Lyapunov stable (but not asymptotically stable).

Proof. Let ðv�0; z�0; Þ; ðv�1; z�1Þ; . . . ; ðv�k�1; z
�
k�1Þ be the successive iterations for a strict bouncing periodic solution with asso-

ciated (periodic) word (m0, . . . ,mk�1).
We are going to prove that if a solution of (1.7) is near enough to the above periodic solution, then it jumps exactly

the same number of steps and they are close in the future. Since C(x) is continuous whenever x is not an integer, we have
the following. There exists d > 0 such that if jv0 � v�0j < d and jz0 � z�0j < d, then the solution with initial conditions
(v0,z0) jumps exactly m0, . . . ,mk�1 steps on the first k impacts.

To continue the proof we need first a lemma:

Lemma 2.1. If two solutions have the same associated word until the kth impact, then they stay close in the next impact.

More precisely, if {vk,zk} and fv�k ; z�kg are such solutions, then the following inequalities are true for all k
ðaÞ jvk � v�k j 6 ek jv0 � v�0j;

ðbÞ jzk � z�k j 6 jz0 � z�0j þ 4ue
1� ek

1� e
jv0 � v�0j:
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Proof. Part (a) holds since the function v! e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ n
p

is Lipschitz continuous with constant e.

On the other hand, part (b) follows from an easy calculation based on the estimate
jzk � z�k j 6 jzk�1 � z�k�1j þ 2u jvk � v�k j þ
1

e
jvkþ1 � v�kþ1j

� �
: �
To continue the proof of the theorem, let d > 0 be given by Lemma 2.1 and take e > 0 such that
4u
e

1� e
þ 1

� 	
e < d: ð2:13Þ
Let us suppose in addition that the we are near the periodic solution in the initial condition, that is
jv0 � v�0j < e; jz0 � z�0j < e:
Note that, in particular, e < d. Taking into account Lemma 2.1, we get that {vn,zn} and fv�n; z�ng have the same con-
figuration until the kth impact. Moreover, using (2.13) and applying the same lemma, the solutions are close at the kth
impact. The lemma follows by iteration. h

Remark. For non-strict periodic bouncing solutions one observes that small perturbations of the initial values may
change the jump number by an integer and after it, the corresponding solution looks totally different. Such a solution
is (Lyapunov) unstable.
3. The continuous time model

In this section we will consider the original model (1.3) and (1.4) because it presents some interesting particularities
that cannot be obtained directly from the discrete model (1.7).

Let us start noting that x 0 is always non-negative. We are interested in the case where x 0 is strictly positive. (In the
case x 0 < 0 the particle will temporarily go up the stair, but it is easy to see that eventually it must go down. Once it goes
down, it will continue to do so.) The case x 0 = 0 is a trivial case that is included for completeness since it appears after
the first impact when et = 0.

Secondly let us observe that if vk = 0 for some k in a solution of the discrete equation (1.7) then there is no jump after
it. So it is not clear what the meaning is of the discrete solution after that. In fact, if en = 0 and et 2 (0,1] there is no
consistent way to continue a non-constant solution (x(t),y(t)) after the first impact. This forces us to not consider
en = 0 since vk = 0 for any k > 0. Moreover any attempt to extend this possible cases en = 0 gives a trivial solution.

In the following we consider en 2 (0,1]. In this case a solution of the continuous time model can be described by a
discrete sequence of impact positions, velocities and impact times. If the impact times accumulate, the task is how to
continue the solution. Recall that if no such accumulation occurs, the solution is a bouncing solution.

When et 2 [0,1), then from Remark 2.2 the jump number nk is zero for k large, so that the particle eventually remains
at the some step. Depending on en there are several possibilities. If en = 1 then the times between consecutive impacts do
not tend to zero as we see in (1.6) so all non-constant solutions are bouncing. However, if the restitution coefficient
en 2 (0,1), the times between two consecutive impacts decrease geometrically and the sequence of impact tk converges
to some time ts. Since
lim uk ¼ 0;

lim vk ¼ 0;
the solution of the system (1.3) and (1.4) has to be continued as a constant function and the particle stops. We will refer
to it as a halting solution.

When et = 1 and en 2 (0,1) it is also possible that for some initial conditions, nk = 0 for k large (see Proposition 2.1).
We have again that the sequence of impact times tends to ts but we only have limvk = 0. The x component remains
unchanged and y is continued as a constant until the next step, when the particle takes off. We will refer to this kind
of solutions as a sliding solution.

Sliding solutions always exist, because of Proposition 2.1. From Section 2.2 there are bouncing solutions for certain
parameter values, so we see that sliding and bouncing solutions can co-exist.

Of course, this is not true for et = en = 1 where again the times between consecutive impacts do not tend to zero, so
all non-constant solutions are of bouncing type.

Let us clarify the meaning of Theorem 2.1 in relation with this model. It is clear that if the particle eventually stops
or remains bouncing on some step, then the corresponding solution of the continuous time model is bounded. Other-
wise, the solution will be unbounded because the vertical component decreases each time it goes down one step.
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However, Theorem 2.1 ensures the boundedness of the solutions in this case, unless et = en = 1. In order to interpret
this boundedness for the corresponding continuous time solutions, we choose a reference system that moves together
with the stair axis. The boundedness given by the discrete solutions corresponds with the boundedness of the solutions
referred to this system.

3.1. Periodic sliding solutions

We say that a solution of (1.3) and (1.4) is periodic if it is periodic in a reference system that moves together with the
stair axis, or more simply if y(t) + E[x(t)] is periodic. From the above discussion it is easy to conclude that et = 1 and
en 2 (0,1) is the unique case which needs to be analyzed. For the other values, there are no periodic solutions because
either the solutions die on a step or the relative height diverges. Therefore, we assume that et = 1 and en 2 (0,1) in the
following. We denote the constant horizontal velocity by a constant u, which must be strictly positive.

As we said before, there exists two types of periodic solutions: bouncing and sliding. The first ones can be described
completely by the discrete model and that has already been done. However, to study sliding periodic solutions we also
need to use the discrete model but it must be done delicately. Let us explain how to describe a sliding periodic solution.
Suppose first that there are k0 impacts before an accumulation of impacts. Then, it is possible to follow the solution for
the discrete system which gives a sequence {vk,zk} for k = 0, . . . ,k0 and a word ðn0; . . . ; nk0�1Þ.

Assume now that vk, zk verify Eq. (2.8), so nk = 0 for every k P k0. We collapse this as 01 and refer to it as an
accumulation tail. This is the most delicate moment because this assertion implies that v becomes zero, so the discrete
model becomes insufficient. Moreover, to be in concordance with the continuous solutions also z becomes zero because
the particle slides until the border of the step. If we would only look now the discrete model to calculate the next jump
number, as z P 4uv, this must be zero forever and the particle would not never fall down again. But this is not the
hoped behavior, so it is necessary to use the other formula to calculate this jump number and then it is possible to
continue by using the discrete model.

Let us now pay attention to periodic sliding solutions of type (n, 01). These solutions jump n steps and then there is
an accumulation of impacts, after which the solution slides until the border and the motion is repeated.

Theorem 3.1. Assume et = 1 and en 2 (0,1). Eq. (1.7) admits sliding solutions of type (n,01) if and only if the following

inequality holds
Cð4u2Þ
4u2

6
1þ e
1� e

� �2

:

Proof. Since the solution is periodic and sliding, we can start with the initial condition v0 = 0, z0 = 0, upon which the
particle free falls n steps until the next impact.
v1 ¼ e
ffiffiffi
n
p

;

z1 ¼ n� 2u
ffiffiffi
n
p

;

n ¼ Cð4u2Þ:
Now, the accumulation of impacts takes place in the same step. Using a recursive procedure one gets that
v2 ¼ ev1; . . . ; vk ¼ ek�1v1
and
z2 ¼ z1 � 4uv1ð1þ eÞ; . . . ; zk ¼ z1 � 4uv1

1� ek�1

1� e
:

Then, the impacts accumulate at
z1 ¼ lim
k!1

zk ¼ z1 � 4
uv1

1� e
¼ n� 2u

ffiffiffi
n
p 1þ e

1� e
:

It remains to prove that z1 2 [0,1). The condition z1 < 1 is evident since z1 < z1 < 1. On the other hand, z1P 0 is
equivalent after some algebra to
n P 4u2 1þ e
1� e

� �2

:

As n = C(4u2), we get the proposed condition. h
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We observe that the theorem immediately implies that the set of parameter values for which there are sliding solu-
tions of type (n, 01) is given by the following union (see Fig. 3)
Fig. 4.
is done
[n2N ðe; uÞ 2 ð0; 1Þ � Rþ
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

2
< u 6

ffiffiffi
n
p

2

1� e
1þ e

� ������
( )

:

With similar arguments one can show that there are other sliding regions. For example, regions (2,1,01), (1,1,01)
are plotted in Fig. 3. However, not all configuration are possible, being (1,2,01) an example. The problem of describing
completely the possible configurations seems to be difficult.

Nevertheless, as one can see in the next theorem, there exists a region without periodic sliding solutions. On the other
hand, numerical simulations show that the region where there exists at least one periodic sliding solution presents a
complex fractal-like structure. It can be observed in Fig. 4, where the solutions of type (n, 01) are excluded.

Theorem 3.2. Assume et = 1 and en � e 2 (0,1). A necessary condition for existence of periodic sliding solution of (1.3) and

(1.4) is
u <
1� e

4e
:

Fig. 3. Sliding periodic solutions.

Numerical computations of sliding periodic solutions. The left-hand frame corresponds to (e,u) 2 [0,0.25] · [0.4,0.8]. The zoom
in the region (e,u) 2 [0.12,0.17] · [0.5,0.6].
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Proof. Take a periodic sliding solution and let us label (v0,z0) and (v1,z1) two adjacent impacts with jump number n > 0
just before an accumulation tail. Then v1 ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

0 þ n
p

P e and
1 P z1 P
4uv1

1� e
P

4ue
1� e

) u 6
1� e

4e
:

Now we show that the equality is not possible. In such case, we would have n = 1 and v0 = 0 necessarily. Then, we are
after an accumulation tail and so z0 = 0. Now we calculate z1 = 1 � 4u < 1. Inserting this in the first equation above we
see that at least one of the inequalities must be strict. h

The exclusion region for sliding solutions given by the previous result is depicted in Fig. 3.

Remark 3.1. If we take into account the Theorem 2.5 and the non-existence of periodic sliding solutions whenever
u P 1�e

4e , we can affirm that there exist parameter values (e,u) without any type of periodic solutions.
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