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Dynamis of partiles in a vertial rough hannelRog�erio L. Costa1, J. J. P. Veerman2 and G. L. Vasonelos1(�)1 Laborat�orio de F��sia Te�oria e Computaional, Departamento de F��sia, Universi-dade Federal de Pernambuo, 50670-901, Reife, Brazil.2 Mathematial Sienes, Portland State University, Portland, OR 97207, USA.PACS. 45.70.-n { Granular systems.PACS. 83.80.Fg { Granular solids.PACS. 05.45.-a { Nonlinear dynamis and nonlinear dynamial systems.Abstrat. { A simple model is presented for the gravity-driven motion of a partile in atwo-dimensional vertial hannel with rough walls, where the dynamis is desribed by a 2Dnonlinear mapping. It is shown that if the ollisions with the hannel walls are inelasti then thepartile reahes a steady state where it falls with a onstant average veloity. If the ollisionsare elasti, then the dynamis is governed by a 2D area-preserving mapping that exhibits aomplex behavior in phase spae. The model is then extended to inlude the ase of severalvertial plates falling under gravity inside a hannel, where a steady state is reahed with aparaboli veloity pro�le aross the hannel.The gravity-driven motion of grains in a on�ned geometry, suh as granular ows in ahopper, is not only of pratial importane to many tehnologial proess but also of greatsienti� interest. In fat, a haraterization of the full range of grain dynamis during suhows remains a hallenge, both experimentally [1,2℄ and theoretially [3℄. From a theoretiian'sviewpoint, perhaps the simplest approah to takle suh diÆult problem is to treat the grainsas non-interating partiles and study the orresponding partile dynamis in the geometry ofinterest. Single-partile models have, indeed, be used with some suess to desribe the graindynamis during gravity-driven granular ows on an inlined rough surfae [4{8℄.In this Letter we present a simple model for the gravity-driven motion of a single graininside a two-dimensional vertial hannel. In our model, the grain is treated as a point partileand moves downward through a sequene of ballisti ights and inelasti ollisions with thehannel walls, whih may be either smooth or `rough' (in a sense to be made more preisebelow). It is shown that when the walls are rough the partile will in general reah a steadystate where it falls with a onstant average veloity, whih an be omputed analytially interms of the model parameters (the oeÆients of restitution and the roughness parameter).When the walls are smooth a steady state is still possible in the partiular ase that theollisions are elasti with respet to the normal veloity omponent but inelasti regardingthe tangential veloity, otherwise the partile aelerates. We also briey disuss the situationwhen the ollisions are elasti (and the walls rough), in whih ase the system is desribed by a(�) E-mail: giovani�lft.ufpe.br EDP Sienes



2 EUROPHYSICS LETTERS2D area-preserving mapping that exhibits a omplex dynamis with islands of near-integrableurves surrounded by a sea of haoti orbits. The ase where the wall roughness parameter isallowed to vary randomly is also onsidered and it is seen that the mean downward veloityinreases as the degree of irregularity inreases.We shall also briey present an extension of our single-partile where we onsider themotion of N vertial plates falling under gravity inside a hannel with smooth walls. As theplates move downward they ollide inelastially with their neighbors (or with the hannelwalls in the ase of the leftmost and rightmost plates). Eventually a steady state is reahedwhere the veloity distribution aross the hannel assumes a paraboli pro�le. The veloityutuation, on the other hand, is minimum at the entral region and displays a peak near thewalls|a behavior also seen in 2D simulations of gravity-driven granular ow in a tube [3℄.The model we onsider �rst is illustrated in Fig. 1. We imagine a grain partile movingunder gravity inside a two-dimensional vertial hannel formed by two parallel rough wallsplaed a distane L apart of one another. The partile is launhed at the top of the hannelwith a given initial veloity that we assume has a nonzero horizontal omponent, otherwisethe motion would be trivial. The partile then moves inside the hannel through a suessionof ballisti ights and inelasti ollisions with the rough walls. For simpliity, the roughnessof the hannel walls is represented by extensionless faets, the so-alled `mirofaets' [4, 6℄,whih are attahed to the walls forming an angle � with the vertial; see Fig. 1. We assumethat after a ollision with a mirofaet the partile veloity hanges aording to the followingsimple rule: v0t = etvt; (1)v0n = �envn; (2)where vt and vn are the veloity omponents tangential and normal to the mirofaet, respe-tively, with prime denoting post-ollisional veloities, and et and en are the orrespondingtangential and normal oeÆients of restitution, taking values in the interval (0; 1℄.Let us introdue a system of oordinates where the y axis is along the left wall and theorigin is plaed at an arbitrary position; see Fig. 1. Thus, at ollisions with a mirofaeton the left wall, the transformation from the x{y veloity omponents, v = (vx; vy), to theveloity omponents tangential and normal to the mirofaet, v = (vt; vn), is enated by alokwise rotation of �=2� �, whih in matrix notation reads� vtvn � = � sin� � os�os� sin� �� vxvy � : (3)For ollisions with the mirofaets on the right wall, however, it is more onvenient to workwith a system of axes x0 and y0 that are mirror images of the axes x and y; see Fig. 1. (Similarde�nition applies to the normal and tangential diretions n0 and t0.) The advantage of thishoie is that the transformation from the veloity omponents (vx0 ; vy0) to (vt0 ; vn0) is givenby exatly the same relation shown in (3) and hene we need to make no distintion betweenright and left walls. Aordingly, we will drop the prime notation for the oordinates at theright wall, with the understanding that the veloity omponents before and after any givenollision will be written in the loal system of oordinates attahed to that partiular wall.Let us now denote by v = (u; v) the partile x-y veloity omponents after the last ollisionwith a given wall. The partile then undergoes a ballisti ight during the time t = L=u, untilolliding with the opposite wall. The partile veloity omponents v = (u; v) just beforethis new ollision thus read u = �u; (4)
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Fig. 2Fig. 1 { Model for a single grain moving in a 2D vertial rough hannel.Fig. 2 { Trajetories in the (u; v) plane for en = et = 1 and � = 18Æ.v = v � 1u: (5)Here we have applied a oordinate transformation u ! u=pgL and v ! v=pgL, so that thequantities in (4) and (5) are all dimensionless. If we now express the veloity v in the rotatedframe via (3), apply the ollision rule (1){(2), and then rotate bak to the x-y system ofoordinates, we an readily obtain the new post-ollisional veloity v0 = (u0; v0). Performingthis alulation we obtain the following two-dimensional mapping� u0v0 � = F � uv � = 0� au� bv + bubu+ v � u 1A ; (6)where the oeÆients a, b, and  are given bya = en os2 �� et sin2 �; b = (en + et) sin� os�;  = et os2 �� en sin2 �: (7)We note, for later use, that during a ballisti ight the veloity omponent vy hanges linearlyin time, so that the average vertial veloity V �< vy > between two onseutive ollisionsequals the arithmeti mean of the veloities at the beginning and end of the ight, that is,V = 12 (v + v), whih yields V = v � 12u: (8)There is a �nal aveat about the map above. In obtaining the mapping F given in (6),we have impliitly assumed that upon ollision the partile bounes bak toward the oppositewall, and so we must have u0 > 0 at all times. Of ourse, this ondition an be violatedfor an ill-suited initial ondition. For example, when en = et = e (in whih ase we have



4 EUROPHYSICS LETTERSspeular reetion) suh a violation happens if the inoming veloity v makes an angle� > �2 � 2� above the horizontal. If were to apply (6) blindly to this ase, it would meanthat the partile would penetrate the wall and reappear on the other side. Suh an unphysialsituation omes about, of ourse, beause of the extensionless nature of the mirofaets andould be averted by imposing an extra ondition, say, applying the ollision ondition oneagain or simply reverting the sign of u0. We have deided, however, to take a simpler approah:To prevent the problem from ourring we will onsider only initial onditions for whih an`unphysial ollision' (i.e., u0 < 0) never happens. As we will see below, for angles in the range0 < � < �=4, there is always a large (and more physially relevant) region in the (u; v) phaseplane where the orbits never violate the ondition u0 > 0. We shall heneforth be onernedonly with suh physially aeptable orbits. Before disussing the general map (6), however,we shall �rst onsider the espeial situation when the hannel walls are smooth, i.e., � = 0,in whih ase the dynamis an be solved exatly.After setting � = 0 in (6) we obtainu0 = enu; (9)v0 = etv � etu : (10)The �rst equation above has a trivial solution and, after inserting this solution into (10), theseond equation an also be solved exatly. One then �ndsuk = eknu0 (11)vk = ekt v0 � enet(e�kn � ekt )(1� enet)u0 ; (12)where (u0; v0) is the partile initial veloity and (uk; vk) is the veloity after k ollisions withthe hannel walls. From (11) it also follows that the the total elapsed time tk until the k-thollision is tk = k�1Xj=0 1uj = en(e�kn � 1)(1� en)u0 : (13)It is now an easy matter to determine the partile long-time dynamis, i.e., for k !1. Herethere are three situations to onsider: i) the ase 0 < en < 1, when for k ! 1 one getsu = en(1�en)t and v = � et(1�en)1�enet t, where we have dropped the k subsripts; ii) the ase en = 1and et < 1, for whih the partile reahes a steady state where u = u0 and v = � et(1�et)u0 , sothat it falls with a onstant average veloity V = 1+et2(1�et)u0 ; and iii) the ase of elasti ollisions,en = et = 1, where we �nd u = u0 and v = v0� t, thus showing that the partile is e�etivelyin a free fall, as expeted. It is worth pointing out that the ondition en = 1 and et = � < 1for ollisions with the walls (and et = 1 and en = � for inter-grain ollisions) was used in thenumerial simulations of gravity-driven granular ows in a 2D hannel reently performed byDenniston and Li [3℄. There they found that, overall, the olumn of grains behaves like a solidsliding down the tube with an e�etive frition fore at the walls balaning o� the fore ofgravity, whih is preisely the senario predited by our model with smooth walls for en = 1and et < 1.Now we onsider the general ase � > 0. We start our analysis by looking for �xed pointsof the map (6). Solving the �xed point equations u0 = u = u� and v0 = v = v� yieldsu� = � (en + et) sin 2�2 [1 + enet � (en + et) os 2�℄�1=2 (14)



R. L. Costa et al.: Dynamis of partiles in a hannel 5v� = 2enet + en � et � (en + et) os 2�p2(en + et) sin 2�[1 + enet � (en + et) os 2�℄ : (15)The stability of the �xed point is determined by the eigenvalues �� of the Jaobian matrix�(u0;v0)�(u;v) evaluated at (u�; v�). We will spare the reader the details of this alulation andsimply quote the result for the eigenvalues�� = 12 h�� �p�2 � 4eneti ; (16)where � = 1 + enet � 2(en + et) os 2�: (17)We thus see that depending on the value of the angle � the eigenvalues an be both real oromplex onjugates. One an show, however, that the moduli of the eigenvalues (be they realor omplex) are always smaller than unity for 0 < � < �4 and enet 6= 1. In other words,for angles in the range 0 < � < �4 , the �xed point is an attrator of the dynamis so longas the ollisions have some (any) degree of inelastiity. [Numerial simulations support theonjeture that the �xed point is the only attrator in this ase.℄At the �xed point, the partile falls downward with a onstant average speed V � whihan be easily obtained by inserting (14) and (15) into (8). Upon doing this and performingsome simpli�ation one �ndsV � = (1� en)(1 + et)p2 sin 2�(en + et)[1 + enet � (en + et) os 2�℄ : (18)We thus see that, exept for the partiular ase en = 1, the rougher the hannel walls (i.e., thegreater �), the smaller the average veloity V �, as one would expet. Note also that if en = 1then V � = 0. In this ase the �xed point orresponds to the physial situation where theollisions with the mirofaets are always frontal, so that the partile remains `suspended' inthe hannel in the sense that it moves bak and forth between the two walls always retraingthe same parabola. If et < 1 this �xed point is an attrator of the dynamis sine j��j < 1,whereas for et = 1 the �xed point beomes ellipti and a rather omplex dynamis emerges,as shown next.From (6) one an easily verify that if en = et = 1 then the determinant of the Jaobianmatrix of F is preisely equal to 1, hene F is an area-preserving mapping in this ase.Furthermore, one �nds that �� = e�i� , where os� = 2 os 2� � 1, so that the �xed pointis elliptially stable, as already mentioned. A detailed study of the map F with en = et = 1will be left for a forthoming publiation. Here we simply wish to mention that, as illustratedin Fig. 2, this system exhibits the usual dynamial features of 2D area-preserving nonlinearmappings [9℄, among whih we ite: i) a large region around the ellipti �xed point ontainingnear-integrable urves, the so-alled `KAM urves'; ii) hains of islands of near-integrableurves at whose enters we �nd periodi orbits of higher period (learly seen in Fig. 2 areislands assoiated with a periodi orbit of period q = 13); and iii) a `sea' of haoti orbitssurrounding the islands.We now wish to disuss the ase in whih the orientation of the mirofaets is allowedto vary randomly from plae to plae. For simpliity, we will onsider the situation wherethe angle � is distributed uniformly around a given mean value �. More spei�ally, we willassume that at eah new ollision the angle � is hosen aording to the following presription� = �+ Æ (�� 0:5) ; (19)



6 EUROPHYSICS LETTERSwhere Æ is a given number, to be referred to as the `noise amplitude', and � is a randomnumber uniformly distributed in the interval [0; 1℄. We have found that the partile meanvertial veloity V inreases roughly quadratially with the noise amplitude Æ: V � V � / Æ2.(Reall that V � is the average downward veloity in homogeneous ase, i.e., for Æ = 0.) Inpartiular, we �nd that when en = 1 the partile falls downward with a small but nonzeroveloity for any Æ > 0, thus showing that any amount of noise will destroy the `suspended'stationary state existent in the homogeneous ase for en = 1.One natural way to extend the model above (whih treats the grains as non-interatingpartiles) to render it more realisti is to onsider several grains inside the hannel and takeinto aount pair ollisions. Here, however, we shall seek a multi-partile model that buildsupon our understanding of the single-grain model rather than resort to a full-edged granularow simulation [3℄. Our starting point in this diretion is the observation [1, 3℄ that granularows in a tube tend to be `olumnar' in the sense that the grains are highly onstrained bytheir neighbors so that there is little transversal motion [3℄. In order to mimi the motionof suh `olumns of grains' we onsider the problem of N parallel vertial plates of width afalling under gravity inside a vertial hannel of length L, with Na < L. (We shall againwork in dimensionless units where g = L = 1). Interplate ollisions are inelasti but onservemomentum. For simpliity, the ollisions between plates as well as between a plate and ahannel wall are desribed by the same set of restitution oeÆients en and et. (Lifting thisrestrition does not signi�antly alter the main results.) On the basis of our previous single-partile model (with smooth walls) we know that a steady state an be ahieved only if en = 1and so we will onern ourselves solely with this ase.Owing to lak of spae, we report here only the main features of the multiplate model.More details will be presented elsewhere [10℄. A typial result for the veloity distribution(in the stationary regime) aross the hannel is shown in Fig. 3, where it is plotted both themean vertial veloity Vi �< viy > and the veloity utuation �Vi �q< (viy)2 > �V 2i as afuntion of the plate label i = 1; :::; N for the ase N = 100, a = 0:0098, and et = 0:9. (Inour simulations the plates were initially plaed at equal distane from one another and givenrandom veloities, with the statistis being performed after a long transient had elapsed.)In Fig. 3a we see that the veloity pro�le is paraboli|that is, we have a Poiseuille-like owinside the hannel. This is in ontrast with experiments [1,11℄ and numerial simulations [3℄ ofgravity-driven granular ow in a tube, where the veloity pro�le is onsiderably at aross thetube, exept for a thin boundary layer. The attening of the veloity pro�le in suh granularows thus seems to be a diret onsequene of the `granularity' of the medium, whih allowsfor transfer of momentum between the vertial and horizontal diretions during intergrainollisions. (Suh possibility is nonexistent in our plate model.) This mehanism would thustend to render the veloity distribution more uniform aross the tube. We also note thatthe veloity utuation in our multiplate model is minimum in the entral region and exhibitharateristi peaks near the walls, as shown in Fig. 3b. (Similar behavior was also seenin the 2D granular ow simulations performed by Denniston add Li [3℄, although there theutuation pro�le is atter in entral region.) Notie, however, that the veloity utuationis muh smaller than the mean veloity.In onlusion, we have introdued a lass of simple models for the gravity-driven motionof a single grain (or a olletion of noninterating grains) in a two-dimensional hannel. Themodel has the advantage of being analytially treatable so that the ondition for the partileto attain a steady state and its veloity in suh regime an be worked out exatly. In spiteof its simpliity, the model might provide a theoretial framework in whih ertain aspetsof the grain dynamis during granular ows in a tube an be understood. For instane, the
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Fig. 3 { Veloity distribution in the multiplate model: (a) mean downward veloity Vi as a funtionof the position i along the hannel and (b) veloity utuation �Vi as a funtion of i. Here N = 100,a = 0:0098, en = 1, et = 0:9, and the initial veloities were randomly hosen in the interval [�1; 1℄.ase when both walls are smooth (with en = 1 and et < 1) may desribe the overall motionof the olumn of grains down the tube, whereas the ase of a partile in a rough hannelmight be seen as a simpli�ed model for the atual motion of grains in the tube entral region.Similarly, the grain dynamis in the boundary layer near the tube walls an be qualitativelyunderstood in terms of a variant of our model where one wall is smooth and the other oneis rough. We have also onsidered an extension of our model where intergrain ollisions aretake into aount in a rather simpli�ed manner. Here the idea was to model the olumns ofgrains formed in atual gravity-driven granular ows in a tube as vertial plates falling undergravity inside a hannel and subjeted to inelasti ollisions amongst themselves and with thehannel walls. In our multiplate model the veloity pro�le aross the hannel is paraboli,while the veloity utuation is minimum at midhannel and displays a peak near eah wall.� � �This work was partially supported by the Brazilian agenies CNPq and FINEP, and byBrazil's speial program PRONEX. J. J. P. V. would like to thank the Physis Departmentat UFPE for its hospitality during his stay there in the early stages of this work.REFERENCES[1℄ Menon N. and Durian D., Siene, 275 (1997) 1920.[2℄ Durian D. J., J. Phys.: Condes. Matter, 12 (2000) A507.[3℄ Denniston C. and Li H., Phys. Rev. E, 59 (1999) 3289.[4℄ Valane A. and Bideau D., Phys. Rev. E, 57 (1998) 1886.[5℄ Vasonelos G. L. and Veerman J. J. P., Phys. Rev. E, 59 (1999) 5641; Physia A, 271(1999) 251.[6℄ Maroni U. M. B., Conti M. and Vulpiani A., Europhys. Lett., 51 (2000) 685.[7℄ Vasonelos G. L., Cunha-Jr. F. V. and Veerman J. J. P., Physia A, 295 (2001) 261.[8℄ Veerman J. J. P., Cunha, Jr. F. V. and Vasonelos G. L., Physia D, 168 (2002) 220.[9℄ Lihtenberg A. J. and Liberman M. J., Regular and Stohasti Motion (Springer-Verlag, NewYork) 1983.[10℄ Costa R.L. and Vasonelos G. L., in preparation.[11℄ Pouliquen O. and Gutfraind R., Phys. Rev. E, 53 (1996) 552.


