On a Conjecture of Furstenberg

Grzegorz Świątek *

Dept. of Math.

Penn State University, 209 Mc Allister

University Park, PA 16802

USA

J. J.P. Veerman

Department of Math.

Portland State University

PO Box 751, Portland, OR 97207

USA

June 28, 2001

1 Estimation of the Hausdorff Dimension

1.1 Statement of the problem

Consider and iterated function system Ψ_t given by three generators:

$$\psi_0(x) = \frac{x}{3},$$

$$\psi_1(x) = \frac{x+1}{3},$$

^{*}Support from NSF grant DMS-0072312 and Penn State in the form of a sabbatical leave is acknowledged. This work was partly done when the author was visiting the Mathematical Institute of the Polish Academy of Sciences in Warsaw.

$$\psi_t(x) = \frac{x+t}{3}$$

where $t \in \mathbf{R}$ is a fixed parameter.

By [1], for every t there is a unique compact set Z_t which is invariant under Ψ_t and such that the orbit of any compact set under Ψ_t converges to Z_t in the Hausdorff metric. An elementary interpretation of Z_t is as the set of number which can be represented by generally infinite expressions in base 3 which use digits 0, 1, t.

In this paper we are proving the following:

Theorem 1 For every t irrational, $HD(Z_t) \ge 1 - \frac{\log(5/3)}{2\log 3} > 0.767$.

Since the Hausdorff dimension in an affine invariant, from now we will assume without loss of generality that $|t| \leq 1$. Theorem 1 will be derived from a technical Theorem 2 which is stated later.

Conjectures of Furstenberg. Let's quote three related conjectures of Furstenberg.

Conjecture 1 For every t irratonal, $HD(Z_t) = 1$.

Let W be the limit set of the iterated function systems in \mathbb{R}^2 which is generated by $x \to x/3$, $x \to [x+(1,0)]/3$ and $x \to [x+(0,1)]/3$.

Conjecture 2 For every t irrational almost every $\beta \in \mathbf{R}$ the line $v = tu + \beta$ intersects W along a set with Hausdorff dimension 0.

Let T denote the operator

$$Tf(x) = \frac{1}{3} [f(x) + f(x-1) + f(x-t)]$$

acting on the space of continuous functions with compact support.

Conjecture 3 For every t irrational the spectral radius of the adjoint T^* is equal to 1.

Historical remarks. Theorem 1 is a step towards proving Conjecture 1. Conjecture 1 was the subject of work by several authors. One should mention [3] where it was established that for almost every t, both in the topological and category sense, $HD(Z_t) = 1$, and that $|Z_t| = 0$ (Lebesgue measure) for every t irrational, see also [4]. In [2] a study of the continuity properties of the function $t \to HD(Z_t)$ was undertaken, while [6] contains numerical data mostly in support of Conjecture 1.

1.2 Energy estimate

Given a postive probablistic measure μ on \mathbf{R} and $\alpha \geq 0$, we define its energy integral

$$I_{\alpha}(\mu) := \int \frac{d\mu(x) \, d\mu(y)}{|x - y|^{\alpha}} \; .$$

For a Borel set $Z \subset \mathbf{R}$ consider the set A(Z) which consists of those $\alpha \geq 0$ for which there exists a Radon measure μ_{α} supported on Z and $I_{\alpha}(\mu_{\alpha}) < \infty$. It is known that $HD(Z) = \sup A(Z)$, see [5]. Hence, each time we get a measure μ supported on Z and $I_{\alpha}(\mu) < \infty$, we have bounded the Hausdorff dimension of Z by α from below.

Natural measures. We will work with a concrete measure μ^t supported on Z_t . Consider a sequence of measures

$$\mu_0^t = \delta_0 , \mu_1^t = \frac{1}{3} (\delta_0 + \delta_1 + \delta_t)$$

and

$$\mu_n^t = \mu_1^t * (\psi_{0*}\mu_1^t) * \dots * (\psi_{0*}^{n-1}\mu_1^t)$$

for n > 0. The choice of equal weighting of the measures transfered by all generators was of course arbitrary. One easily verifies that

$$\mu_n^t = \mu_k^t * \phi_{0*}^k \mu_{n-k}^t$$

for $0 \le k \le n$. Hence, measures μ_n^t converge weakly to μ^t which is supported on the interval [0, 1/2].

Estimates. Let us begin to estimate the energy integral. Let $0 < \alpha < 1$. For $n \ge 0$ denote $L_n := \{(x,y): 2 \cdot 3^{-n} < |x-y| \le 2 \cdot 3^{1-n}$.

$$I_{\alpha}(\mu^{t}) = \int \frac{d\mu^{t}(x) d\mu^{t}(y)}{|x - y|^{\alpha}} = \sum_{n=1}^{\infty} \int_{L_{n}} \frac{d\mu^{t}(x) d\mu^{t}(y)}{|x - y|^{\alpha}}.$$

Since $\mu^t = \mu_n^t * \psi_{0*}^n \mu^t$ and the support of $\psi_{0*}^n \mu^t$ is contained in $[-3^{-n}/2, 3^{-n}/2]$, we can write

$$\int_{L_n} \frac{d\mu^t(x) \, d\mu^t(y)}{|x - y|^{\alpha}} = \int_{L_n} |x - y|^{-\alpha} * h(x) * h(y) \, d\mu_n^t(x) \, d\mu_n^t(y)$$

where h is a non-negative function with total mass 1 and support contained in $[-3^{-2}/2, 3^{-n}/2]$. Because of that, for $(x, y) \in L_n$ we get

$$|x - y|^{-\alpha} * h(x) * h(y) \le 3^{na}$$

and

$$I_{\alpha}(\mu^t) \le \sum_{n=1}^{\infty} 3^{n\alpha} \int_{L_n} d\mu_n^t(x) d\mu_n^t(y) .$$
 (1)

Denote

$$s(n,\beta) = 3^n \int \chi_{(-3^{-n}/2,3^{-n}/2]}(x-y-\beta) \, d\mu_n^t(x) \, d\mu_n^t(y) =$$
(2)
$$3^n \int \chi_{(-3^{-n}/2,3^{-n}/2]}(z-a) \, d(\mu_n^t * (\mu_n^t)')(z)$$

where the apostrophe means the measure transported by the map $x \to -x$. Then

$$3^{n\alpha} \int_{L_n} d\mu_n^t(x) d\mu_n^t(y) \le \frac{s(n, \frac{5}{2}3^{-n}) + \dots + s(n, \frac{11}{2}3^{-n}) + s(n, -\frac{5}{2}3^{-n}) + \dots + s(n, -\frac{11}{2}3^{-n})}{3^{n(1-\alpha)}}.$$

If we write $S_n = \sup_{\beta \in \mathbf{R}} s(n, \beta)$, then we get from estimate (1) that

$$I_{\alpha}(\mu^t) \le 8 \sum_{n=1}^{\infty} 3^{n(\alpha-1)} S_n . \tag{3}$$

So the task is reduced to estimating the exponential rate of increase for S_n .

1.3 Projection measure

Consider a measure ν_1 is ${\bf R}^2$ defined by

$$\nu_1 = \frac{1}{3} (\delta_{(0,0)} + \delta_{(0,1/3)} + \delta_{(1/3,0)}) .$$

If ψ denotes the homothety with scale 1/3, then we define

$$\nu_n = \nu_1 * (\psi_* \nu_1) \cdots * (\psi_*^{n-1} \nu_1)$$
.

If $\pi_t: \mathbf{R}^2 \to \mathbf{R}$ denotes the linear projection given by $\pi_t(u, v) = tu + v$, then we have $\mu_n^t = \pi_{t*}\nu_n$. Hence

$$\mu_n^t * (\mu_n^t)' = \pi_{t*} \left[\nu_1 * \nu_1' * \psi_* (\nu_1 * \nu_1') * \dots * \psi_*^{n-1} (\nu_1 * \nu_1') \right] .$$

Measure $\nu_1 * (\nu_1)'$ is obtained explicitly and equals

$$\frac{1}{9} \sum_{k,\ell=-1,0,1} b(k,\ell) \delta_{(k/3,\ell/3)} \tag{4}$$

where $b(k,\ell) = 1$ if $k \neq \ell$, 3 if $k = \ell = 0$ and 0 otherwise. Function b extends to $\mathbf{Z} \times \mathbf{Z}$ by $b(k_1,\ell_1) = b(k,\ell)$ where $k,\ell = -1,0,1$ and $k - k_1, \ell - \ell_1 \in 3\mathbf{Z}$.

From the defining formula (2),

$$s(n,\beta) = 3^n \int \chi_{(-3^{-n}/2,3^{-n}/2]}(z-\beta) d(\mu_n^t * (\mu_n^t)')(z) =$$

$$=3^{n}\sum_{k,\ell\in\mathbf{Z}}(\nu_{n}*\nu_{n}')(k3^{-n},\ell3^{-n})\chi_{(-3^{-n}/2,3^{-n}/2]}(tk3^{-n}+\ell3^{-n}-\beta).$$

For every $k \in \mathbf{Z}$ and β , a non-zero contribution is obtained only when $\ell = \ell_{n,\beta}(k) := \langle 3^n(\beta - kt3^{-n}) \rangle$ where $\langle x \rangle$ is the integer characterized by the condition $-1/2 < x - \langle x \rangle \le 1/2$. If we also introduce the notation $k_n(x) = \langle 3^n x \rangle$, then we can write

$$s(n,\beta) = 3^n \sum_{k \in \mathbf{Z}} (\nu_n * \nu'_n)(k3^{-n}, \ell_{n,\beta}(k)3^{-n}) =$$

$$=9^n \int_{-\infty}^{+\infty} (\nu_n * \nu'_n) \left(k_n(x) 3^{-n}, k_n(\beta - t k_n(x)) 3^{-n} \right) dx.$$

Define $b_i(u,v)=b(<3^iu>,<3^iv>)$. Then we can write for $-\frac{3^n-1}{2}\leq k,\ell\leq\frac{3^n-1}{2}$ that

$$(\nu_n * \nu'_n)(k3^{-n}, \ell3^{-n}) = 9^{-n} \prod_{i=1}^n b_i(k3^{-n}, \ell3^{-n}).$$

If k, ℓ are outside that range, then $(\nu_n * \nu'_n)(k3^{-n}, \ell3^{-n}) = 0$. Hence we can write

$$s(n,\beta) = \int_{-1/2}^{1/2} \prod_{i=1}^{n} B_i(x,\beta - tk_n(x)) dx$$

where functions $B_i: T^2 \to \mathbf{R}$ are defined below.

Definition 1 If $(x,y) \in T^2$ and i > 0, then

$$B_i(x, y) := b(k_i(x), k_i(y))$$
.

2 Averaging Estimates

We will denote $T^1 := (-1/2, 1/2]$ and $T^2 := T^1 \times T^1$ and think of identifying pieces of the boundary so that tori are obtained. Let $\pi(x) := x'$ where $x' \in T^1$ and $x - x' \in \mathbf{Z}$. Recall that $k_n(x) = \langle 3^n x \rangle$.

2.1 Partitions related to base 3 expansions

It will be useful to think of the circle T^1 with the Lebesgue measure as a probabilistic space.

Definition 2 Say that an interval $I \subset T^1$ is a basic interval of order $n, n \geq 0$, if the transformation $x \to \pi(3^n x)$ maps I onto T^1 with degree 1.

For example, interval $\left(-\frac{1}{6}, \frac{1}{6}\right]$ is basic of order 1. Let \mathcal{P}_n denote the partition of T^1 into basic intervals of order n.

Now let $\phi : \mathbf{R} \to \mathbf{R}$. For a positive integer n, define $\phi_n : T^1 \to T^1$ by

$$\phi_n(x) := \phi(3^{-n}k_n(x)) . {5}$$

So, ϕ_n is a \mathcal{P}_n -measurable approximation of ϕ .

Lemma 1 Let $q \ge 0$ and n > 0 and $\phi(x) = tx + t_0$. Then for every $x \in T^1$

$$\phi_n(\pi(3^q x)) + T(x) - 3^q \phi_{n+q}(x)$$

is an integer, where $T(x) = k_q(x)t + (3^q - 1)t_0$.

Proof:

The expression which is to be shown to yield an integer is measurable with respect to \mathcal{P}_{n+q} . It suffices to prove the claim for $x=(3^nJ+j)3^{-n-q}$ with integers J and j ranging over $\left[-\frac{3^q-1}{2},\frac{3^q-1}{2}\right]$ and $\left[-\frac{3^n-1}{2},\frac{3^n-1}{2}\right]$, respectively. For x in such a form

$$3^{q}\phi_{n+q}(x) = 3^{q}(xt+t_0) = Jt + jt3^{-n} + 3^{q}t_0$$
.

On the other hand,

$$\phi_n(\pi(3^q x)) = \phi_n(\pi(J+j3^{-n})) = \phi_n(j3^{-n}) = \pi(jt3^{-n}+t_0)$$
.

Finally, $k_q(x) = J$ and

$$T(x) = Jt + (3^q - 1)t_0$$

which implies the claim.

QED

Lemmas about circle rotations. Let $R_t: T^1 \to T^1$ be defined by $R_t(x) = \pi(x+t)$.

Definition 3 Define the set $U(t,K) \subset \mathbb{N}$ by the following requirement: $m \in U(t,K)$ if and only if for every $x \in T^1$ and every J which is a sub-arc of T^1 with length 3^{-m} , the set

$$\{R_t^p(x): p=0,1,\cdots,3^m-1\}\cap J$$

has no more than K elements.

Thus, for $m \in U(t, K)$ the first 3^m points of any orbit are uniformly spread out, in the sense that no "lumps" are formed.

Lemma 2 For every t irrational the set U(t,6) is infinite.

Proof:

Let q be a closest return time for the rotation $x \to x+t \mod 1$. Then the orbit $x, \cdots, R_t^{q-1}(x)$ cuts the circle into pieces of two sizes and the shorter ones are never adjacent. Hence, any arc of length not exceeding 1/q may contain at most two points of the orbit. If m is chosen so that $3^{m-1} < q \leq 3^m$, the the orbit $x, \cdots, R_t^{3^m-1}(x)$ can be covered by three orbits of length q. Thus, no arc of length 3^{-m} contains more than 6 points.

QED

2.2 Averages along graphs

Definition 4 Suppose that $F: T^2 \to \mathbf{R}$ and $g: T^1 \to \mathbf{R}$ are given. Then we can form a function $F_g: T^1 \to \mathbf{R}$ by the following formula: $F_g(x) = F(x, g(x))$.

The general type of the problem we will consider is as follows. We wish to average F_g along basic intervals, which corresponds to taking conditional expectations with respect to partitions \mathcal{P}_n . The problem is under what assumptions these averages can be estimated in terms of the average of F over T^2 .

Proposition 1 Consider $\phi(x) = tx + t_0$ and choose N > 0 and K so that $N \in U(t, K)$.

For every $n \geq 0$ and every set $A \subset T^2$ which is measurable with respect to $\mathcal{P}_N \times \mathcal{P}_N$ we consider the function $F: T^2 \to \mathbf{R}$ given by $F^{(n)}(x,y) = \chi_A(\pi(3^{n+N}x), \pi(3^{n+N}y))$.

Then,

$$E(F_{\phi_{n+2N}}^{(n)}|\mathcal{P}_n)(x) \le K \int_{T^2} \chi_A \, d\lambda_2$$

for every $x \in T^1$, using the notation of Definition 4.

Proof:

Choose an interval $I \in \mathcal{P}_n$. Observe first that without loss of generality n = 0. Indeed, for $n \geq 0$ the interval I can be parameterized by a variable $x' = \pi(3^n x)$ which runs over T^1 . We get $\pi(3^N 3^n x) = \pi(3^N x')$ and, by Lemma 1,

$$\pi(3^{n+N}\phi_{n+2N}(x)) = \pi(3^N(\phi + T(x))_{2N}(x'))$$

with T(x) constant and equal to T(I) on I. Thus for every $x \in I$

$$E(F_{\phi_{n+2N}}^{(n)}|\mathcal{P}_n)(x) = E(F_{\phi_{2N}+T(I)}^{(0)})$$

which leads to the initial problem with n = 0 and t_0 increased by T(I). Since the claim is supposed to be valid for every t_0 , the reduction is complete.

We will write F for $F^{(0)}$ and ϕ for $\phi + T(I)$.

$$F_{\phi_{2N}}(x) = \chi_A(\pi(3^N x), \pi(3^N \phi_{2N}(x))) =$$

$$= \chi_A \left[\pi(3^N x), \pi(\phi_N(\pi(3^N x)) + T(x)) \right]$$

by Lemma 1 used with n=q=N. If we write $x=J3^{-N}+j3^{-2N}$ with J,j both integers from the range $[-\frac{3^N-1}{2},\frac{3^N-1}{2}]$, we get $\pi(3^Nx)=j3^{-N}$ and $T(x)=Jt+T_0$ where T_0 is a constant. We can then write

$$E(F_{\phi_{2N}}) = E\left[\chi_A(\pi(3^N x), \pi(\phi_N(\pi(3^N x)) + T(x)))\right] =$$

$$=3^{-2N}\sum_{j=-\frac{3^{N}-1}{2}}^{\frac{3^{N}-1}{2}}\sum_{J=-\frac{3^{N}-1}{2}}^{\frac{3^{N}-1}{2}}\chi_{A}(j3^{-N},\pi(Jt+\phi(j3^{-n})+T_{0})).$$

For j fixed, points $\pi(Jt + \phi(j3^{-n}) + T_0)$ form an orbit of the rotation R_t of length 3^N . By the hypothesis of the Lemma, each square of the partition $\mathcal{P}_N \times \mathcal{P}_N$ contains no more than K points in the form $(j3^{-N}, \pi(Jt + \phi(j3^{-n}) + T_0))$. Hence,

$$3^{-2N} \sum_{J=-\frac{3^{N}-1}{2}}^{\frac{3^{N}-1}{2}} \sum_{j=-\frac{3^{N}-1}{2}}^{\frac{3^{N}-1}{2}} \chi_{A}(j3^{-N}, \pi(Jt+\phi(j3^{-n})+T_{0})) \leq K \int_{T^{2}} \chi_{A} d\lambda_{2}.$$

QED

Lemma 3 For every $t \in \mathbf{R}$, $m \ge n \ge 0$, if $\phi(x) = tx$, $t_0 \in \mathbf{R}$, and $F: T^2 \to [0, \infty)$ is measurable with respect to $\mathcal{P}_n \times \mathcal{P}_n$, then

$$F(\pi(x), \pi(\phi_m(x) + t_0)) \le \sum_{2|i| < |t| + 2} F(\pi(x), \pi(\phi_n(x) + t_0 + i3^{-n}))$$

where i runs through integer values only.

Proof:

Estimate $|\phi_m(x) - \phi_n(x)| \le |t| \frac{3^{-n}}{2}$. Thus, for every x we can choose $\tau(x)$ in the form $i3^{-n}$, where i is an integer and -|t|/2 - 1 < i < |t|/2 + 1 so that $\pi(\phi_n(x) + t_0 + \tau(x))$ and $\pi(\phi_m(x) + t_0)$ belong to the same element of \mathcal{P}_n , and so

$$F(\pi(x), \pi(\phi_m(x) + t_0)) = F(\pi(x), \pi(\phi_n(x) + t_0 + \tau(x))).$$

Now $\tau(x)$ only takes values in the set $i3^{-n}$ with |i| < |t|/2 + 1 and so the lemma follows.

QED

Proposition 2 Let $t \in \mathbf{R}$, K > 0, $n \ge 0$ and $N \in U(t, K)$, see Definition 3. Denote $\phi(x) = tx$. Let $F : T^2 \to [0, \infty)$ be measurable with respect to $\mathcal{P}_n \times \mathcal{P}_n$. Suppose that for a fixed I and every $t_1 \in \mathbf{R}$,

$$\int_{T^1} F_{\phi_n + t_1}(x) \, dx \le I \,\,,$$

se Definition 4 for the explanation of the notation.

Now $G: T^2 \to [0, \infty)$ is measurable with respect to $\mathcal{P}_N \times \mathcal{P}_N$, N > 0. Define $\tilde{G}(x, y) = G(\pi(3^{n+N}x), \pi(3^{n+N}y))$.

Then, for every choice of t and K and every $t_0 \in \mathbf{R}$

$$\int_{T^1} F_{\phi_{n+2N}+t_0}(x) \, \tilde{G}_{\phi_{n+2N}+t_0}(x) \, dx \le$$

$$K(|t|+3)I\int_{T^2}G\,d\lambda_2$$
.

Proof:

Fix some $t_1 \in \mathbf{R}$. Function $F_{\phi_n+t_1}$ is measurable with respect to \mathcal{P}_n . By Proposition 1,

$$E(\tilde{G}_{\phi_{n+2N}+t_0}|\mathcal{P}_n)(x) \le KI_G$$

for every x where $I_G := \int_{T^2} G d\lambda_2$. Now,

$$\int_{T^1} F_{\phi_n + t_1}(x) \, \tilde{G}_{\phi_{n+2N} + t_0}(x) \, dx = \int_{T^1} E(F_{\phi_n + t_1} \, \tilde{G}_{\phi_{n+2N} + t_0} | \mathcal{P}_n)(x) \, dx \le$$
(6)

$$\leq KI_G \int_{T^1} F_{\phi_n + t_1}(x) \, dx \leq KI_G I$$

by the hypothesis of Proposition 2. By Lemma 3

$$F_{\phi_{n+2N}+t_0}(x) = F(x, \pi(\phi_{n+2N}(x) + t_0)) \le$$

$$\le \sum_{j \in (-1-|t|/2, |t|/2+1)} F_{\phi_n+t_0+j3^{-n}}(x) .$$

If we use estimate (6) for all $t_1 = t_0 + j3^{-n}$, we get

$$\int_{T^1} F_{\phi_{n+2N}+t_0}(x) \, \tilde{G}_{\phi_{n+2N}+t_0}(x) \, dx \le$$

$$\le KI_G(|t|+3)I.$$

QED

2.3 Averages of products

Theorem 2 Fix t irrational and let $\phi(x) = tx + t_0$. Then for every $\lambda > \sqrt{5/3}$ and $t_0 \in \mathbf{R}$ we have

$$\lim_{m \to \infty} \left[\lambda^{-m} \int_{T^1} \prod_{i=1}^m B_i(x, \phi_m(x)) \, dx \right] = 0 .$$

Recall that functions B_i are given by Definition 1. Since

$$s(m,\beta) = \int_{T^1} \prod_{i=1}^m B_i(x,\phi_m(x))$$

with $\phi(x) = \beta - tx$, Theorem 2 implies that $\lambda^{-m}S_m \to 0$. By estimate (3), $I_{\alpha}(\mu^t) < \infty$ provided that $3^{1-\alpha} > \sqrt{5/3}$ and Theorem 1 follows.

Hölder estimate. From Lemma 2, see that U(t,6) is infinite and choose $N \in U(t,6)$. Let $J_{k,0}$ denote the set of integers i which belong to (2(j-1)N,(2j-1)N] for some $j=1,\dots,k$ and $J_{k,1}$ be the complement of $J_{k,0}$ in the set $1,2,\dots,2kN$. Define $P_{k,0}(x,y)=\prod_{i\in J_{k,0}}B_i(x,y)$ and $P_{k,1}(x,y)=\prod_{i\in J_{k,1}}B_i(x,y)$. Then

$$\prod_{i=1}^{2kN} B_i(x, \phi_{2kN}(x)) = P_{k,0}(x, \phi_{2kN}(x)) P_{k,1}(x, \phi_{2kN}(x)) .$$

Our approach is to apply the Hölder inequality to this product. It is easier to estimate the second norm of $P_{k,1}(x, (\phi + t_1)_{2kN})$ with $t_1 \in \mathbf{R}$. Using Proposition 2 with n = 2(k-1)N + N, $F := P_{k-1,1}^2$ and $G(x,y) = \prod_{i=1}^N B_i^2(x,y)$, we get

$$||P_{k,1}(x,(\phi+t_1)_{2kN})|| \le 6(|t|+3)I\int_{T^2}G\,d\lambda_2$$

where I is an upper estimate for $||P_{k-1,1}(x,(\phi+t_1)_{2(k-1)N})||$ for any $t_1 \in \mathbf{R}$. Note that $\int_{T^2} G d\lambda_2 = (5/3)^N$ and hence one gets by induction starting with $P_{0,1} \equiv 1$ that

$$||P_{k,1}(x,\phi_{2kN}(x))||_2^2 \le K_1^k (5/3)^{kN}$$
.

The same method is used to estimate the second norm of

$$P_{k,0}(x,(\phi+t_1)_{(2k-1)N}(x))$$
.

This time, the induction starts with $||P_{1,0}(x,(\phi+t_1)_N(x))||_2^2 \leq 3^N$ since 3^N is the maximum. Thus,

$$||P_{k,0}(x,(\phi+t_1)_{(2k-1)N}(x))||_2^2 \le 3^N K_1^{k-1} (5/3)^{(k-1)N}$$
.

Using Lemma 3 and applying the previous estimate for

$$t_1 = j3^{-2(k-1)N}, \ 2|j| < |t|,$$

we get

$$||P_{k,0}(x,\phi_{2kN}(x))||_2^2 \le (|t|+3)||P_{k,0}(x,\phi_{2(k-1)N}(x))||_2^2 \le$$

$$\le (|t|+1)3^N K_1^{k-1} (5/3)^{2(k-1)N}.$$

By Hölder's inequality,

$$\lambda^{-2kN} \int_{T^1} \prod_{i=1}^{2kN} B_i(x, \phi_{2kN}(x)) \, dx \le \sqrt{3^N(|t|+3)} \left[\frac{5}{3} \frac{\sqrt[N]{K_1}}{\lambda^2} \right]^{kN} .$$

If $\lambda > \sqrt{5/3}$ then N can be chosen so large that

$$\frac{5}{3} \frac{\sqrt[N]{K_1}}{\lambda^2} < 1 .$$

Then

$$\lim_{k \to \infty} \left[\lambda^{-2kN} \int_{T^1} \prod_{i=1}^{2kN} B_i(x, \phi_{2kN}(x)) \, dx \right] = 0 \ . \tag{7}$$

Any j > 0 can be represented as $2k_jN + j_0$ with $j_0 < 2N$. Then

$$\prod_{i=1}^{j} B_i(x, \phi_j(x)) \le 3^{j_0} \prod_{i=1}^{2k_j N} B_i(x, \phi_j(x)) .$$

Again using Lemma 3 and the fact that we estimate

$$\int_{T^1} \prod_{i=1}^{2k_j N} B_i(x, \phi_j(x)) dx \le (|t|+1) \int_{T^1} \prod_{i=1}^{2k_j N} B_i(x, (\phi+t_1)_{2k_j N}(x)) dx$$

where t_1 was chosen to attain the supremum of the integral on the rihgt-hand side. Hence, for any j > 0,

$$\int_{T^1} \prod_{i=1}^j B_i(x, \phi_j(x)) dx \le 9^N(|t|+1) \int_{T^1} \prod_{i=1}^{2k_j N} B_i(x, (\phi+t_1)_{2k_j N}(x)) dx$$

and Theorem 2 follows from this together with assertion (7). Notice that (7) holds for any t_0 , in particular one can set $t_0 := t_0 + t_1$ in that estimate.

References

[1] Hutchinson, J.E.: Fractals and self-similarity, Indiana Univ. Math. J. **30** (1981), 713-747

- [2] Jonker, L.B. & Veerman, J.J.P.: Semicontinuity of Dimension and Measure of Locally Scaling Fractals, preprint, Stony Brook IMS Series, (1997) #2
- [3] Kenyon, R.: Projecting the one-dimensional Sierpinski gasket, Israel J. Math. 97 (1997), 221-238
- [4] Lagarias, J.C. & Wang, Y.: Tiling the line with translates of one tile, Invent. Math. 124 (1996), 341-365
- [5] Mattila, P.: Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability., Cambridge Studies in Advanced Mathematics vol. 44, Cambridge University Press (1995)
- [6] Veerman, J.J.P. & Stošić, B.D.: On the Dimensions of Certain Incommensurably Constructed Sets, Experim. Math. 9 (2000), 413-425