On a Conjecture of Furstenberg

Grzegorz Świątek *
Dept. of Math.
Penn State University, 209 Mc Allister
University Park, PA 16802
USA
J. J.P. Veerman
Department of Math.
Portland State University
PO Box 751, Portland, OR 97207
USA

June 28, 2001

1 Estimation of the Hausdorff Dimension

1.1 Statement of the problem

Consider and iterated function system Ψ_{t} given by three generators:

$$
\begin{aligned}
& \psi_{0}(x)=\frac{x}{3} \\
& \psi_{1}(x)=\frac{x+1}{3},
\end{aligned}
$$

[^0]$$
\psi_{t}(x)=\frac{x+t}{3}
$$
where $t \in \mathbf{R}$ is a fixed parameter.
By [1], for every t there is a unique compact set Z_{t} which is invariant under Ψ_{t} and such that the orbit of any compact set under Ψ_{t} converges to Z_{t} in the Hausdorff metric. An elementary intepretation of Z_{t} is as the set of number which can be represented by generally infinite expressions in base 3 which use digits $0,1, t$.

In this paper we are proving the following:
Theorem 1 For every t irrational, $H D\left(Z_{t}\right) \geq 1-\frac{\log (5 / 3)}{2 \log 3}>0.767$.
Since the Hausdorff dimension in an affine invariant, from now we will assume without loss of generality that $|t| \leq 1$. Theorem 1 will be derived from a technical Theorem 2 which is stated later.

Conjectures of Furstenberg. Let's quote three related conjectures of Furstenberg.

Conjecture 1 For every t irratonal, $H D\left(Z_{t}\right)=1$.
Let W be the limit set of the iterated function systems in \mathbf{R}^{2} which is generated by $x \rightarrow x / 3, x \rightarrow[x+(1,0)] / 3$ and $x \rightarrow[x+$ $(0,1)] / 3$.

Conjecture 2 For every t irrational almost every $\beta \in \mathbf{R}$ the line $v=t u+\beta$ intersects W along a set with Hausdorff dimension 0 .

Let T denote the operator

$$
T f(x)=\frac{1}{3}[f(x)+f(x-1)+f(x-t)]
$$

acting on the space of continuous functions with compact support.
Conjecture 3 For every t irrational the spectral radius of the adjoint T^{*} is equal to 1 .

Historical remarks. Theorem 1 is a step towards proving Conjecture 1. Conjecture 1 was the subject of work by several authors. One should mention [3] where it was established that for almost every t, both in the topological and category sense, $H D\left(Z_{t}\right)=1$, and that $\left|Z_{t}\right|=0$ (Lebesgue measure) for every t irrational, see also [4]. In [2] a study of the continuity properties of the function $t \rightarrow H D\left(Z_{t}\right)$ was undertaken, while [6] contains numerical data mostly in support of Conjecture 1.

1.2 Energy estimate

Given a postive probablistic measure μ on \mathbf{R} and $\alpha \geq 0$, we define its energy integral

$$
I_{\alpha}(\mu):=\int \frac{d \mu(x) d \mu(y)}{|x-y|^{\alpha}}
$$

For a Borel set $Z \subset \mathbf{R}$ consider the set $A(Z)$ which consists of those $\alpha \geq 0$ for which there exists a Radon measure μ_{α} supported on Z and $I_{\alpha}\left(\mu_{\alpha}\right)<\infty$. It is known that $H D(Z)=\sup A(Z)$, see [5]. Hence, each time we get a measure μ supported on Z and $I_{\alpha}(\mu)<\infty$, we have bounded the Hausdorff dimension of Z by α from below.

Natural measures. We will work with a concrete measure μ^{t} supported on Z_{t}. Consider a sequence of measures

$$
\mu_{0}^{t}=\delta_{0}, \mu_{1}^{t}=\frac{1}{3}\left(\delta_{0}+\delta_{1}+\delta_{t}\right)
$$

and

$$
\mu_{n}^{t}=\mu_{1}^{t} *\left(\psi_{0 *} \mu_{1}^{t}\right) * \cdots *\left(\psi_{0 *}^{n-1} \mu_{1}^{t}\right)
$$

for $n>0$. The choice of equal weighting of the measures transfered by all generators was of course arbitrary. One easily verifies that

$$
\mu_{n}^{t}=\mu_{k}^{t} * \phi_{0 *}^{k} \mu_{n-k}^{t}
$$

for $0 \leq k \leq n$. Hence, measures μ_{n}^{t} converge weakly to μ^{t} which is supported on the interval [$0,1 / 2$].

Estimates. Let us begin to estimate the energy integral. Let $0<$ $\alpha<1$. For $n \geq 0$ denote $L_{n}:=\left\{(x, y): 2 \cdot 3^{-n}<|x-y| \leq 2 \cdot 3^{1-n}\right.$.

$$
I_{\alpha}\left(\mu^{t}\right)=\int \frac{d \mu^{t}(x) d \mu^{t}(y)}{|x-y|^{\alpha}}=\sum_{n=1}^{\infty} \int_{L_{n}} \frac{d \mu^{t}(x) d \mu^{t}(y)}{|x-y|^{\alpha}} .
$$

Since $\mu^{t}=\mu_{n}^{t} * \psi_{0 *}^{n} \mu^{t}$ and the support of $\psi_{0 *}^{n} \mu^{t}$ is contained in $\left[-3^{-n} / 2,3^{-n} / 2\right]$, we can write

$$
\int_{L_{n}} \frac{d \mu^{t}(x) d \mu^{t}(y)}{|x-y|^{\alpha}}=\int_{L_{n}}|x-y|^{-\alpha} * h(x) * h(y) d \mu_{n}^{t}(x) d \mu_{n}^{t}(y)
$$

where h is a non-negative function with total mass 1 and support contained in $\left[-3^{-2} / 2,3^{-n} / 2\right]$. Because of that, for $(x, y) \in L_{n}$ we get

$$
|x-y|^{-\alpha} * h(x) * h(y) \leq 3^{n a}
$$

and

$$
\begin{equation*}
I_{\alpha}\left(\mu^{t}\right) \leq \sum_{n=1}^{\infty} 3^{n \alpha} \int_{L_{n}} d \mu_{n}^{t}(x) d \mu_{n}^{t}(y) . \tag{1}
\end{equation*}
$$

Denote

$$
\begin{align*}
s(n, \beta) & =3^{n} \int \chi_{\left(-3^{-n} / 2,3^{-n} / 2\right]}(x-y-\beta) d \mu_{n}^{t}(x) d \mu_{n}^{t}(y)= \tag{2}\\
& 3^{n} \int \chi_{\left(-3^{-n} / 2,3^{-n} / 2\right]}(z-a) d\left(\mu_{n}^{t} *\left(\mu_{n}^{t}\right)^{\prime}\right)(z)
\end{align*}
$$

where the apostrophe means the measure transported by the map $x \rightarrow-x$. Then

$$
\begin{gathered}
3^{n \alpha} \int_{L_{n}} d \mu_{n}^{t}(x) d \mu_{n}^{t}(y) \leq \\
\frac{s\left(n, \frac{5}{2} 3^{-n}\right)+\cdots+s\left(n, \frac{11}{2} 3^{-n}\right)+s\left(n,-\frac{5}{2} 3^{-n}\right)+\cdots+s\left(n,-\frac{11}{2} 3^{-n}\right)}{3^{n(1-\alpha)}}
\end{gathered}
$$

If we write $S_{n}=\sup _{\beta \in \mathbf{R}} s(n, \beta)$, then we get from estimate (1) that

$$
\begin{equation*}
I_{\alpha}\left(\mu^{t}\right) \leq 8 \sum_{n=1}^{\infty} 3^{n(\alpha-1)} S_{n} . \tag{3}
\end{equation*}
$$

So the task is reduced to estimating the exponential rate of increase for S_{n}.

1.3 Projection measure

Consider a measure ν_{1} is \mathbf{R}^{2} defined by

$$
\nu_{1}=\frac{1}{3}\left(\delta_{(0,0)}+\delta_{(0,1 / 3)}+\delta_{(1 / 3,0)}\right) .
$$

If ψ denotes the homothety with scale $1 / 3$, then we define

$$
\nu_{n}=\nu_{1} *\left(\psi_{*} \nu_{1}\right) \cdots *\left(\psi_{*}^{n-1} \nu_{1}\right) .
$$

If $\pi_{t}: \mathbf{R}^{2} \rightarrow \mathbf{R}$ denotes the linear projection given by $\pi_{t}(u, v)=$ $t u+v$, then we have $\mu_{n}^{t}=\pi_{t *} \nu_{n}$. Hence

$$
\mu_{n}^{t} *\left(\mu_{n}^{t}\right)^{\prime}=\pi_{t *}\left[\nu_{1} * \nu_{1}^{\prime} * \psi_{*}\left(\nu_{1} * \nu_{1}^{\prime}\right) * \cdots * \psi_{*}^{n-1}\left(\nu_{1} * \nu_{1}^{\prime}\right)\right] .
$$

Measure $\nu_{1} *\left(\nu_{1}\right)^{\prime}$ is obtained explicitly and equals

$$
\begin{equation*}
\frac{1}{9} \sum_{k, \ell=-1,0,1} b(k, \ell) \delta_{(k / 3, \ell / 3)} \tag{4}
\end{equation*}
$$

where $b(k, \ell)=1$ if $k \neq \ell, 3$ if $k=\ell=0$ and 0 otherwise. Function b extends to $\mathbf{Z} \times \mathbf{Z}$ by $b\left(k_{1}, \ell_{1}\right)=b(k, \ell)$ where $k, \ell=-1,0,1$ and $k-k_{1}, \ell-\ell_{1} \in 3 \mathbf{Z}$.

From the defining formula (2),

$$
\begin{gathered}
s(n, \beta)=3^{n} \int \chi_{\left(-3^{-n} / 2,3^{-n} / 2\right]}(z-\beta) d\left(\mu_{n}^{t} *\left(\mu_{n}^{t}\right)^{\prime}\right)(z)= \\
=3^{n} \sum_{k, \ell \in \mathbf{Z}}\left(\nu_{n} * \nu_{n}^{\prime}\right)\left(k 3^{-n}, \ell 3^{-n}\right) \chi_{\left(-3^{-n} / 2,3^{-n} / 2\right]}\left(t k 3^{-n}+\ell 3^{-n}-\beta\right) .
\end{gathered}
$$

For every $k \in \mathbf{Z}$ and β, a non-zero contribution is obtained only when $\ell=\ell_{n, \beta}(k):=\left\langle 3^{n}\left(\beta-k t 3^{-n}\right)\right\rangle$ where $\langle x\rangle$ is the integer characterized by the condition $-1 / 2<x-\langle x\rangle \leq 1 / 2$. If we also introduce the notation $k_{n}(x)=\left\langle 3^{n} x\right\rangle$, then we can write

$$
\begin{gathered}
s(n, \beta)=3^{n} \sum_{k \in \mathbf{Z}}\left(\nu_{n} * \nu_{n}^{\prime}\right)\left(k 3^{-n}, \ell_{n, \beta}(k) 3^{-n}\right)= \\
=9^{n} \int_{-\infty}^{+\infty}\left(\nu_{n} * \nu_{n}^{\prime}\right)\left(k_{n}(x) 3^{-n}, k_{n}\left(\beta-t k_{n}(x)\right) 3^{-n}\right) d x .
\end{gathered}
$$

Define $b_{i}(u, v)=b\left(<3^{i} u>,<3^{i} v>\right)$. Then we can write for $-\frac{3^{n}-1}{2} \leq k, \ell \leq \frac{3^{n}-1}{2}$ that

$$
\left(\nu_{n} * \nu_{n}^{\prime}\right)\left(k 3^{-n}, \ell 3^{-n}\right)=9^{-n} \prod_{i=1}^{n} b_{i}\left(k 3^{-n}, \ell 3^{-n}\right) .
$$

If k, ℓ are outside that range, then $\left(\nu_{n} * \nu_{n}^{\prime}\right)\left(k 3^{-n}, \ell 3^{-n}\right)=0$. Hence we can write

$$
s(n, \beta)=\int_{-1 / 2}^{1 / 2} \prod_{i=1}^{n} B_{i}\left(x, \beta-t k_{n}(x)\right) d x
$$

where functions $B_{i}: T^{2} \rightarrow \mathbf{R}$ are defined below.
Definition 1 If $(x, y) \in T^{2}$ and $i>0$, then

$$
B_{i}(x, y):=b\left(k_{i}(x), k_{i}(y)\right) .
$$

2 Averaging Estimates

We will denote $T^{1}:=(-1 / 2,1 / 2]$ and $T^{2}:=T^{1} \times T^{1}$ and think of identifying pieces of the boundary so that tori are obtained. Let $\pi(x):=x^{\prime}$ where $x^{\prime} \in T^{1}$ and $x-x^{\prime} \in \mathbf{Z}$. Recall that $k_{n}(x)=\left\langle 3^{n} x\right\rangle$.

2.1 Partitions related to base 3 expansions

It will be useful to think of the circle T^{1} with the Lebesgue measure as a probabilistic space.

Definition 2 Say that an interval $I \subset T^{1}$ is a basic interval of order $n, n \geq 0$, if the transformation $x \rightarrow \pi\left(3^{n} x\right)$ maps I onto T^{1} with degree 1 .

For example, interval $\left(-\frac{1}{6}, \frac{1}{6}\right]$ is basic of order 1 . Let \mathcal{P}_{n} denote the partition of T^{1} into basic intervals of order n.

Now let $\phi: \mathbf{R} \rightarrow \mathbf{R}$. For a positive integer n, define $\phi_{n}: T^{1} \rightarrow T^{1}$ by

$$
\begin{equation*}
\phi_{n}(x):=\phi\left(3^{-n} k_{n}(x)\right) . \tag{5}
\end{equation*}
$$

So, ϕ_{n} is a \mathcal{P}_{n}-measurable approximation of ϕ.

Lemma 1 Let $q \geq 0$ and $n>0$ and $\phi(x)=t x+t_{0}$. Then for every $x \in T^{1}$

$$
\phi_{n}\left(\pi\left(3^{q} x\right)\right)+T(x)-3^{q} \phi_{n+q}(x)
$$

is an integer, where $T(x)=k_{q}(x) t+\left(3^{q}-1\right) t_{0}$.

Proof:

The expression which is to be shown to yield an integer is measurable with respect to \mathcal{P}_{n+q}. It suffices to prove the claim for $x=\left(3^{n} J+j\right) 3^{-n-q}$ with integers J and j ranging over $\left[-\frac{3^{q}-1}{2}, \frac{3^{q}-1}{2}\right]$ and $\left[-\frac{3^{n}-1}{2}, \frac{3^{n}-1}{2}\right]$, respectively. For x in such a form

$$
3^{q} \phi_{n+q}(x)=3^{q}\left(x t+t_{0}\right)=J t+j t 3^{-n}+3^{q} t_{0} .
$$

On the other hand,

$$
\phi_{n}\left(\pi\left(3^{q} x\right)\right)=\phi_{n}\left(\pi\left(J+j 3^{-n}\right)\right)=\phi_{n}\left(j 3^{-n}\right)=\pi\left(j t 3^{-n}+t_{0}\right) .
$$

Finally, $k_{q}(x)=J$ and

$$
T(x)=J t+\left(3^{q}-1\right) t_{0}
$$

which implies the claim.

QED

Lemmas about circle rotations. Let $R_{t}: T^{1} \rightarrow T^{1}$ be defined by $R_{t}(x)=\pi(x+t)$.

Definition 3 Define the set $U(t, K) \subset \mathbf{N}$ by the following requirement: $m \in U(t, K)$ if and only if for every $x \in T^{1}$ and every J which is a sub-arc of T^{1} with length 3^{-m}, the set

$$
\left\{R_{t}^{p}(x): p=0,1, \cdots, 3^{m}-1\right\} \cap J
$$

has no more than K elements.
Thus, for $m \in U(t, K)$ the first 3^{m} points of any orbit are uniformly spread out, in the sense that no "lumps" are formed.

Lemma 2 For every t irrational the set $U(t, 6)$ is infinite.

Proof:

Let q be a closest return time for the rotation $x \rightarrow x+t \bmod 1$. Then the orbit $x, \cdots, R_{t}^{q-1}(x)$ cuts the circle into pieces of two sizes and the shorter ones are never adjacent. Hence, any arc of length not exceeding $1 / q$ may contain at most two points of the orbit. If m is chosen so that $3^{m-1}<q \leq 3^{m}$, the the orbit $x, \cdots, R_{t}^{3^{m}-1}(x)$ can be covered by three orbits of length q. Thus, no arc of length 3^{-m} contains more than 6 points.

QED

2.2 Averages along graphs

Definition 4 Suppose that $F: T^{2} \rightarrow \mathbf{R}$ and $g: T^{1} \rightarrow \mathbf{R}$ are given. Then we can form a function $F_{g}: T^{1} \rightarrow \mathbf{R}$ by the following formula: $F_{g}(x)=F(x, g(x))$.

The general type of the problem we will consider is as follows. We wish to average F_{g} along basic intervals, which corresponds to taking conditional expectations with respect to partitions \mathcal{P}_{n}. The problem is under what assumptions these averages can be estimated in terms of the average of F over T^{2}.

Proposition 1 Consider $\phi(x)=t x+t_{0}$ and choose $N>0$ and K so that $N \in U(t, K)$.

For every $n \geq 0$ and every set $A \subset T^{2}$ which is measurable with respect to $\mathcal{P}_{N} \times \mathcal{P}_{N}$ we consider the function $F: T^{2} \rightarrow \mathbf{R}$ given by $F^{(n)}(x, y)=\chi_{A}\left(\pi\left(3^{n+N} x\right), \pi\left(3^{n+N} y\right)\right)$.

Then,

$$
E\left(F_{\phi_{n+2 N}}^{(n)} \mid \mathcal{P}_{n}\right)(x) \leq K \int_{T^{2}} \chi_{A} d \lambda_{2}
$$

for every $x \in T^{1}$, using the notation of Definition 4.

Proof:

Choose an interval $I \in \mathcal{P}_{n}$. Observe first that without loss of generality $n=0$. Indeed, for $n \geq 0$ the interval I can be parameterized by a variable $x^{\prime}=\pi\left(3^{n} x\right)$ which runs over T^{1}. We get $\pi\left(3^{N} 3^{n} x\right)=\pi\left(3^{N} x^{\prime}\right)$ and, by Lemma 1 ,

$$
\pi\left(3^{n+N} \phi_{n+2 N}(x)\right)=\pi\left(3^{N}(\phi+T(x))_{2 N}\left(x^{\prime}\right)\right)
$$

with $T(x)$ constant and equal to $T(I)$ on I. Thus for every $x \in I$

$$
E\left(F_{\phi_{n+2 N}}^{(n)} \mid \mathcal{P}_{n}\right)(x)=E\left(F_{\phi_{2 N}+T(I)}^{(0)}\right)
$$

which leads to the initial problem with $n=0$ and t_{0} increased by $T(I)$. Since the claim is supposed to be valid for every t_{0}, the reduction is complete.

We will write F for $F^{(0)}$ and ϕ for $\phi+T(I)$.

$$
\begin{aligned}
& F_{\phi_{2 N}}(x)=\chi_{A}\left(\pi\left(3^{N} x\right), \pi\left(3^{N} \phi_{2 N}(x)\right)\right)= \\
& =\chi_{A}\left[\pi\left(3^{N} x\right), \pi\left(\phi_{N}\left(\pi\left(3^{N} x\right)\right)+T(x)\right)\right]
\end{aligned}
$$

by Lemma 1 used with $n=q=N$. If we write $x=J 3^{-N}+j 3^{-2 N}$ with J, j both integers from the range $\left[-\frac{3^{N}-1}{2}, \frac{3^{N}-1}{2}\right]$, we get $\pi\left(3^{N} x\right)=$ $j 3^{-N}$ and $T(x)=J t+T_{0}$ where T_{0} is a constant. We can then write

$$
\begin{aligned}
& E\left(F_{\phi_{2 N}}\right)=E\left[\chi_{A}\left(\pi\left(3^{N} x\right), \pi\left(\phi_{N}\left(\pi\left(3^{N} x\right)\right)+T(x)\right)\right]=\right. \\
= & 3^{-2 N} \sum_{j=-\frac{3^{N}-1}{2}}^{\sum_{J=-\frac{3^{N}-1}{2}}^{2}} \chi_{A}\left(j 3^{-N}, \pi\left(J t+\phi\left(j 3^{-n}\right)+T_{0}\right)\right) .
\end{aligned}
$$

For j fixed, points $\pi\left(J t+\phi\left(j 3^{-n}\right)+T_{0}\right)$ form an orbit of the rotation R_{t} of length 3^{N}. By the hypothesis of the Lemma, each square of the partition $\mathcal{P}_{N} \times \mathcal{P}_{N}$ contains no more than K points in the form $\left.\left(j 3^{-N}, \pi\left(J t+\phi\left(j 3^{-n}\right)+T_{0}\right)\right)\right)$. Hence,
$3^{-2 N} \sum_{J=-\frac{3^{N}-1}{2}}^{\frac{3^{N}-1}{2}} \sum_{j=-\frac{3^{N}-1}{2}}^{\frac{3^{N}-1}{2}} \chi_{A}\left(j 3^{-N}, \pi\left(J t+\phi\left(j 3^{-n}\right)+T_{0}\right)\right) \leq K \int_{T^{2}} \chi_{A} d \lambda_{2}$.
QED
Lemma 3 For every $t \in \mathbf{R}, m \geq n \geq 0$, if $\phi(x)=t x, t_{0} \in \mathbf{R}$, and $F: T^{2} \rightarrow[0, \infty)$ is measurable with respect to $\mathcal{P}_{n} \times \mathcal{P}_{n}$, then

$$
F\left(\pi(x), \pi\left(\phi_{m}(x)+t_{0}\right)\right) \leq \sum_{2|i|<|t|+2} F\left(\pi(x), \pi\left(\phi_{n}(x)+t_{0}+i 3^{-n}\right)\right)
$$

where i runs through integer values only.

Proof:

Estimate $\left|\phi_{m}(x)-\phi_{n}(x)\right| \leq|t| \frac{3^{-n}}{2}$. Thus, for every x we can choose $\tau(x)$ in the form $i 3^{-n}$, where i is an integer and $-|t| / 2-1<i<$ $|t| / 2+1$ so that $\pi\left(\phi_{n}(x)+t_{0}+\tau(x)\right)$ and $\pi\left(\phi_{m}(x)+t_{0}\right)$ belong to the same element of \mathcal{P}_{n}, and so

$$
F\left(\pi(x), \pi\left(\phi_{m}(x)+t_{0}\right)\right)=F\left(\pi(x), \pi\left(\phi_{n}(x)+t_{0}+\tau(x)\right)\right) .
$$

Now $\tau(x)$ only takes values in the set $i 3^{-n}$ with $|i|<|t| / 2+1$ and so the lemma follows.

QED

Proposition 2 Let $t \in \mathbf{R}, K>0, n \geq 0$ and $N \in U(t, K)$, see Definition 3. Denote $\phi(x)=t x$. Let $F: T^{2} \rightarrow[0, \infty)$ be measurable with respect to $\mathcal{P}_{n} \times \mathcal{P}_{n}$. Suppose that for a fixed I and every $t_{1} \in \mathbf{R}$,

$$
\int_{T^{1}} F_{\phi_{n}+t_{1}}(x) d x \leq I
$$

se Definition 4 for the explanation of the notation.
Now $G: T^{2} \rightarrow[0, \infty)$ is measurable with respect to $\mathcal{P}_{N} \times \mathcal{P}_{N}$, $N>0$. Define $\tilde{G}(x, y)=G\left(\pi\left(3^{n+N} x\right), \pi\left(3^{n+N} y\right)\right)$.

Then, for every choice of t and K and every $t_{0} \in \mathbf{R}$

$$
\begin{gathered}
\int_{T^{1}} F_{\phi_{n+2 N}+t_{0}}(x) \tilde{G}_{\phi_{n+2 N}+t_{0}}(x) d x \leq \\
K(|t|+3) I \int_{T^{2}} G d \lambda_{2} .
\end{gathered}
$$

Proof:

Fix some $t_{1} \in \mathbf{R}$. Function $F_{\phi_{n}+t_{1}}$ is measurable with respect to \mathcal{P}_{n}. By Proposition 1,

$$
E\left(\tilde{G}_{\phi_{n+2 N}+t_{0}} \mid \mathcal{P}_{n}\right)(x) \leq K I_{G}
$$

for every x where $I_{G}:=\int_{T^{2}} G d \lambda_{2}$. Now,

$$
\begin{equation*}
\int_{T^{1}} F_{\phi_{n}+t_{1}}(x) \tilde{G}_{\phi_{n+2 N}+t_{0}}(x) d x=\int_{T^{1}} E\left(F_{\phi_{n}+t_{1}} \tilde{G}_{\phi_{n+2 N}+t_{0}} \mid \mathcal{P}_{n}\right)(x) d x \leq \tag{6}
\end{equation*}
$$

$$
\leq K I_{G} \int_{T^{1}} F_{\phi_{n}+t_{1}}(x) d x \leq K I_{G} I
$$

by the hypothesis of Proposition 2.
By Lemma 3

$$
\begin{gathered}
F_{\phi_{n+2 N}+t_{0}}(x)=F\left(x, \pi\left(\phi_{n+2 N}(x)+t_{0}\right)\right) \leq \\
\leq \sum_{j \in(-1-|t| / 2,|t| / 2+1)} F_{\phi_{n}+t_{0}+j 3^{-n}}(x) .
\end{gathered}
$$

If we use estimate (6) for all $t_{1}=t_{0}+j 3^{-n}$, we get

$$
\begin{gathered}
\int_{T^{1}} F_{\phi_{n+2 N}+t_{0}}(x) \tilde{G}_{\phi_{n+2 N}+t_{0}}(x) d x \leq \\
\leq K I_{G}(|t|+3) I .
\end{gathered}
$$

QED

2.3 Averages of products

Theorem 2 Fix t irrational and let $\phi(x)=t x+t_{0}$. Then for every $\lambda>\sqrt{5 / 3}$ and $t_{0} \in \mathbf{R}$ we have

$$
\lim _{m \rightarrow \infty}\left[\lambda^{-m} \int_{T^{1}} \prod_{i=1}^{m} B_{i}\left(x, \phi_{m}(x)\right) d x\right]=0
$$

Recall that functions B_{i} are given by Definition 1. Since

$$
s(m, \beta)=\int_{T^{1}} \prod_{i=1}^{m} B_{i}\left(x, \phi_{m}(x)\right)
$$

with $\phi(x)=\beta-t x$, Theorem 2 implies that $\lambda^{-m} S_{m} \rightarrow 0$. By estimate $(3), I_{\alpha}\left(\mu^{t}\right)<\infty$ provided that $3^{1-\alpha}>\sqrt{5 / 3}$ and Theorem 1 follows.

Hölder estimate. From Lemma 2, see that $U(t, 6)$ is infinite and choose $N \in U(t, 6)$. Let $J_{k, 0}$ denote the set of integers i which belong to $(2(j-1) N,(2 j-1) N]$ for some $j=1, \cdots, k$ and $J_{k, 1}$ be the complement of $J_{k, 0}$ in the set $1,2, \cdots, 2 k N$. Define $P_{k, 0}(x, y)=$ $\prod_{i \in J_{k, 0}} B_{i}(x, y)$ and $P_{k, 1}(x, y)=\prod_{i \in J_{k, 1}} B_{i}(x, y)$. Then

$$
\prod_{i=1}^{2 k N} B_{i}\left(x, \phi_{2 k N}(x)\right)=P_{k, 0}\left(x, \phi_{2 k N}(x)\right) P_{k, 1}\left(x, \phi_{2 k N}(x)\right) .
$$

Our approach is to apply the Hölder inequality to this product. It is easier to estimate the second norm of $P_{k, 1}\left(x,\left(\phi+t_{1}\right)_{2 k N}\right)$ with $t_{1} \in \mathbf{R}$. Using Proposition 2 with $n=2(k-1) N+N, F:=P_{k-1,1}^{2}$ and $G(x, y)=\prod_{i=1}^{N} B_{i}^{2}(x, y)$, we get

$$
\left\|P_{k, 1}\left(x,\left(\phi+t_{1}\right)_{2 k N}\right)\right\| \leq 6(|t|+3) I \int_{T^{2}} G d \lambda_{2}
$$

where I is an upper estimate for $\| P_{k-1,1}\left(x,\left(\phi+t_{1}\right)_{2(k-1) N} \|\right.$ for any $t_{1} \in$ R. Note that $\int_{T^{2}} G d \lambda_{2}=(5 / 3)^{N}$ and hence one gets by induction starting with $P_{0,1} \equiv 1$ that

$$
\left\|P_{k, 1}\left(x, \phi_{2 k N}(x)\right)\right\|_{2}^{2} \leq K_{1}^{k}(5 / 3)^{k N} .
$$

The same method is used to estimate the second norm of

$$
P_{k, 0}\left(x,\left(\phi+t_{1}\right)_{(2 k-1) N}(x)\right) .
$$

This time, the induction starts with $\left\|P_{1,0}\left(x,\left(\phi+t_{1}\right)_{N}(x)\right)\right\|_{2}^{2} \leq 3^{N}$ since 3^{N} is the maximum. Thus,

$$
\left\|P_{k, 0}\left(x,\left(\phi+t_{1}\right)_{(2 k-1) N}(x)\right)\right\|_{2}^{2} \leq 3^{N} K_{1}^{k-1}(5 / 3)^{(k-1) N} .
$$

Using Lemma 3 and applying the previous estimate for

$$
t_{1}=j 3^{-2(k-1) N}, 2|j|<|t|,
$$

we get

$$
\begin{gathered}
\left\|P_{k, 0}\left(x, \phi_{2 k N}(x)\right)\right\|_{2}^{2} \leq(|t|+3)\left\|P_{k, 0}\left(x, \phi_{2(k-1) N}(x)\right)\right\|_{2}^{2} \leq \\
\leq(|t|+1) 3^{N} K_{1}^{k-1}(5 / 3)^{2(k-1) N} .
\end{gathered}
$$

By Hölder's inequality,

$$
\lambda^{-2 k N} \int_{T^{1}} \prod_{i=1}^{2 k N} B_{i}\left(x, \phi_{2 k N}(x)\right) d x \leq \sqrt{3^{N}(|t|+3)}\left[\frac{5}{3} \frac{\sqrt[N]{K_{1}}}{\lambda^{2}}\right]^{k N} .
$$

If $\lambda>\sqrt{5 / 3}$ then N can be chosen so large that

$$
\frac{5}{3} \frac{\sqrt[N]{K_{1}}}{\lambda^{2}}<1
$$

Then

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left[\lambda^{-2 k N} \int_{T^{1}} \prod_{i=1}^{2 k N} B_{i}\left(x, \phi_{2 k N}(x)\right) d x\right]=0 \tag{7}
\end{equation*}
$$

Any $j>0$ can be represented as $2 k_{j} N+j_{0}$ with $j_{0}<2 N$. Then

$$
\prod_{i=1}^{j} B_{i}\left(x, \phi_{j}(x)\right) \leq 3^{j 0} \prod_{i=1}^{2 k_{j} N} B_{i}\left(x, \phi_{j}(x)\right)
$$

Again using Lemma 3 and the fact that we estimate

$$
\int_{T^{1}} \prod_{i=1}^{2 k_{j} N} B_{i}\left(x, \phi_{j}(x)\right) d x \leq(|t|+1) \int_{T^{1}} \prod_{i=1}^{2 k_{j} N} B_{i}\left(x,\left(\phi+t_{1}\right)_{2 k_{j} N}(x)\right) d x
$$

where t_{1} was chosen to attain the supremum of the integral on the rihgt-hand side. Hence, for any $j>0$,
$\int_{T^{1}} \prod_{i=1}^{j} B_{i}\left(x, \phi_{j}(x)\right) d x \leq 9^{N}(|t|+1) \int_{T^{1}} \prod_{i=1}^{2 k_{j} N} B_{i}\left(x,\left(\phi+t_{1}\right)_{2 k_{j} N}(x)\right) d x$
and Theorem 2 follows from this together with assertion (7). Notice that (7) holds for any t_{0}, in particular one can set $t_{0}:=t_{0}+t_{1}$ in that estimate.

References

[1] Hutchinson, J.E.: Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747
[2] Jonker, L.B. \& Veerman, J.J.P.: Semicontinuity of Dimension and Measure of Locally Scaling Fractals, preprint, Stony Brook IMS Series, (1997) \#2
[3] Kenyon, R.: Projecting the one-dimensional Sierpinski gasket, Israel J. Math. 97 (1997), 221-238
[4] Lagarias, J.C. \& Wang, Y.: Tiling the line with translates of one tile, Invent. Math. 124 (1996), 341-365
[5] Mattila, P.: Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability., Cambrdge Studies in Advanced Mathematics vol. 44, Cambridge University Press (1995)
[6] Veerman, J.J.P. \& Stošić, B.D.: On the Dimensions of Certain Incommensurably Constructed Sets, Experim. Math. 9 (2000), 413-425

[^0]: *Support from NSF grant DMS-0072312 and Penn State in the form of a sabbatical leave is acknowledged. This work was partly done when the author was visiting the Mathematical Institute of the Polish Academy of Sciences in Warsaw.

