Commensurability in Symmetric Nearest Neighbor Systems

J. J. P. Veerman* and J. Petrovic ${ }^{\dagger}$

Abstract

These notes contain the calculations and proofs of some of the results of the accompanying paper [1].

1 Introduction

Given a differential equation on \mathbb{R}^{n} of the form:

$$
\begin{equation*}
i \dot{x}=-M x \tag{1.1}
\end{equation*}
$$

where i the unit imaginary number and \dot{x} denotes the time derivative of x. The variable x is understood to be in \mathbb{R}^{n} and M is a real square symmetric matrix (in general Hermitian works). The symmetry derives from the physics problems that this applies to. The query now is: How can we be sure that the the solutions of this system are always periodic?

The answer of course is as follows. Since M is Hermitian, it is normal, ie has an orthogonal basis of eigenvectors, and its eigenvalues are real. Let us denote (for $j \in\{1, \cdots n\}$ the orthogonal eigenvectors by v_{j} and the associated eigenvalues by ω_{j}. Then solutions of Equation 1.1 can be written as:

$$
\begin{equation*}
x(t)=\sum_{j=n}^{n} c_{j} e^{i \omega_{j} t} v_{j} \tag{1.2}
\end{equation*}
$$

Here the c_{j} are complex coefficients determined by the initial condition $x(0)$.
Lemma 1.1 Let $T>0$. Every solution of Equation 1.1 has a period T if and only T satisfies

$$
T\left(\omega_{1}, \cdots \omega_{n}\right) \in 2 \pi \mathbb{Z}^{n}
$$

Definition 1.2 In this case we say that the eigenvalues $\left\{\omega_{j}\right\}_{1}^{n}$ are commensurate or, for short, that the matrix M is commensurate. The smallest positive T for which the above holds is called the period.

[^0]Proof of Lemma: Every solution of Equation 1.1 has a period T if and only for all c_{j}

$$
\sum_{j=n}^{n} c_{j} e^{i \omega_{j}(t+T)} v_{j}=\sum_{j=n}^{n} c_{j} e^{i \omega_{j} t} v_{j}
$$

This equation holds if and only if it holds for each eigenvector:

$$
\forall j: e^{i \omega_{j}(t+T)} v_{j}=e^{i \omega_{j} t} v_{j}
$$

or

$$
\forall j: e^{i \omega_{j} T}=1
$$

This is equivalent to saying that there are integers r_{j} such that

$$
\forall j: \omega_{j} T=2 \pi n_{j} \quad \text { or } \quad \frac{T}{2 \pi} \omega_{j}=n_{j}
$$

This proves the Lemma.

Acknowledgments: J.J.P. Veerman's research was partially supported by the European Union's Seventh Framework Program (FP7-REGPOT-2012-2013-1) under grant agreement n316165.

2 Elementary Examples

We start with a real, symmetric, nearest neighbor interaction acting on \mathbb{R}^{3} :

$$
A_{3}\left(a_{1}, a_{2}, a_{3}\right) \equiv\left[\begin{array}{ccc}
0 & a_{1} & 0 \\
a_{1} & 0 & a_{2} \\
0 & a_{2} & 0
\end{array}\right]
$$

Its eigenvalues are easily calculated and are: $\left\{0,0, \pm \sqrt{a_{1}^{2}+a_{2}^{2}}\right\}$.
Lemma 2.1 The matrix $A_{3}\left(a_{1}, a_{2}\right)$ is always commensurate. The period T is given by $\frac{2 \pi}{\sqrt{a_{1}^{2}+a_{2}^{2}}}$.
Proof: According to Lemma 1.1, the period T must be the smallest positive number that satisfies:

$$
T \sqrt{a_{1}^{2}+a_{2}^{2}}=2 \pi n
$$

Clearly $n=1$ works and this immediately gives the period.

Now we include a left-right symmetry (or invariance under $x_{m} \leftrightarrow x_{N-m}$). Here is the general matrix acting on \mathbb{R}^{5} :

$$
M_{5}\left(a_{1}, a_{2}\right) \equiv\left[\begin{array}{ccccc}
0 & a_{1} & 0 & 0 & 0 \\
a_{1} & 0 & a_{2} & 0 & 0 \\
0 & a_{2} & 0 & a_{2} & 0 \\
0 & 0 & a_{2} & 0 & a_{1} \\
0 & 0 & 0 & a_{1} & 0
\end{array}\right]
$$

Its eigenvalues are easily calculated and are: $\left\{0, \pm a_{1}, \pm \sqrt{2 a_{2}^{2}+a_{1}^{2}}\right\}$.

Lemma 2.2 The matrix $M_{5}\left(a_{1}, a_{2}\right)$ is commensurate if and only if:

1. If $a_{1} \neq 0$: there are integers n_{1} and n_{2} with $G C D$ equal to 1 and such that

$$
\begin{gathered}
a_{1}^{2}=q^{2} n_{1}^{2} \\
a_{2}^{2}=q^{2}\left(n_{2}^{2}-n_{1}^{2}\right)
\end{gathered}
$$

where q is an arbitrary (strictly) positive real. In this case the the eigenvalues relate to another as $\left(0, \pm n_{1}, \pm n_{2}\right)$ and the period T is given by $2 \pi / q$.
2. If $a_{1}=0$ and $a_{2} \neq 0$: In this case the system is periodic with period $T=\frac{2 \pi}{\sqrt{2 a_{2}^{2}}}$.

Proof: According to Lemma 1.1, the period T must be the smallest positive number that satisfies:

$$
T a_{1}=2 \pi n_{1} \quad \text { and } \quad T \sqrt{2 a_{2}^{2}+a_{1}^{2}}=2 \pi n_{2}
$$

In both cases of the lemma T cannot be zero. In case $1, n_{1}$ is also not equal to zero. In this case, divide the second expression by the first. Clearly if $a_{1} a_{2} \neq 0$ then neither n_{1} nor n_{2} is zero, and T is minimal iff $\operatorname{GCD}\left(n_{1}, n_{2}\right)=1$.

3 Commensurability of A_{4} and A_{5}

We look at the real, symmetric, nearest neighbor interaction with left-right symmetry acting on \mathbb{R}^{4} and \mathbb{R}^{5}. Here are their general forms:

$$
A_{4}\left(a_{1}, a_{2}, a_{3}\right) \equiv\left[\begin{array}{cccc}
0 & a_{1} & 0 & 0 \\
a_{1} & 0 & a_{2} & 0 \\
0 & a_{2} & 0 & a_{3} \\
0 & 0 & a_{3} & 0
\end{array}\right] \quad \text { and } \quad A_{5}\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \equiv\left[\begin{array}{ccccc}
0 & a_{1} & 0 & 0 & 0 \\
a_{1} & 0 & a_{2} & 0 & 0 \\
0 & a_{2} & 0 & a_{3} & 0 \\
0 & 0 & a_{3} & 0 & a_{4} \\
0 & 0 & 0 & a_{4} & 0
\end{array}\right]
$$

We start with the commensurability of $A_{4}\left(a_{1}, a_{2}, a_{3}\right)$. It is easy to verify that its eigenvalues are given by:

We can simplify this by writing

$$
\begin{array}{ccc}
x^{2} & \equiv a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \tag{3.1}\\
u^{2} & \equiv & a_{1} a_{3}
\end{array}
$$

And this gives for the eigenvalues:

$$
\begin{equation*}
\left[\pm \frac{1}{2} \sqrt{2 x^{2} \pm 2 \sqrt{x^{4}-4 u^{4}}}\right] \tag{3.2}
\end{equation*}
$$

Lemma 3.1 The a_{1} and a_{3} can be calculated from a_{2}, x and u as follows:

$$
\begin{aligned}
& a_{1}=\frac{1}{2}\left(\epsilon_{1} \sqrt{x^{2}+2 u^{2}-a_{2}^{2}}+\epsilon_{2} \sqrt{x^{2}-2 u^{2}-a_{2}^{2}}\right) \\
& a_{3}=\frac{1}{2}\left(\epsilon_{1} \sqrt{x^{2}-2 u^{2}-a_{2}^{2}}-\epsilon_{2} \sqrt{x^{2}-2 u^{2}-a_{2}^{2}}\right)
\end{aligned}
$$

where ϵ_{1} and ϵ_{2} in $\{-1,+1\}$

Proof: Equation 3.1 is equivalent with:

$$
\left(a_{1}+a_{3}\right)^{2}=x^{2}+2 u^{2}-a_{2}^{2} \quad \text { and } \quad\left(a_{1}-a_{3}\right)^{2}=x^{2}-2 u^{2}-a_{2}^{2}
$$

Upon taking the roots this is equivalent to (ϵ_{1} and ϵ_{2} in $\left.\{-1,+1\}\right)$:

$$
a_{1}+a_{3}=\epsilon_{1} \sqrt{x^{2}+2 u^{2}-a_{2}^{2}} \quad \text { and } \quad a_{1}-a_{3}=\epsilon_{2} \sqrt{x^{2}-2 u^{2}-a_{2}^{2}}
$$

Now taking the sum and difference of the equations gives the result.

Theorem 3.2 The system given by $A_{4}\left(a_{1}, a_{2}, a_{3}\right)$ (a_{i} real) is commensurate if and only if: there are integers n_{1}, n_{2} with $G C D$ equal to 1 such that the a_{i} satisfy:

$$
\begin{aligned}
& a_{1}=\frac{q}{2}\left(\epsilon_{1} \sqrt{\left(n_{1}+n_{2}\right)^{2}-s^{2}}+\epsilon_{2} \sqrt{\left(n_{1}-n_{2}\right)^{2}-s^{2}}\right) \\
& a_{2}=q s \\
& a_{3}=\frac{q}{2}\left(\epsilon_{1} \sqrt{\left(n_{1}+n_{2}\right)^{2}-s^{2}}-\epsilon_{2} \sqrt{\left(n_{1}-n_{2}\right)^{2}-s^{2}}\right)
\end{aligned}
$$

where ϵ_{1} and ϵ_{2} in $\{-1,+1\}$, s is an arbitrary real, and q is an arbitrary non-zero real. In this case the the eigenvalues relate to another as $\left(\pm n_{1}, \pm n_{2}\right)$ and the period T is given by $\frac{2 \pi}{q}$.

Proof: From Equation 3.2 we see that the system is commensurate if and only if there are 2 nonnegative integers n_{i} with GCD equal to 1 such that there is a positive T with

$$
\begin{aligned}
& \frac{T}{2} \sqrt{2 x^{2}+2 \sqrt{x^{4}-4 u^{4}}}=2 \pi n_{1} \\
& \frac{T}{2} \sqrt{2 x^{2}-2 \sqrt{x^{4}-4 u^{4}}}=2 \pi n_{2}
\end{aligned}
$$

We now solve for x^{2} and u^{2}. The first is easy. The solution for x^{2} is obtained by first squaring the last two equations and then adding them. The solution for u^{2} is obtained by first squaring the last
two equations and then subtracting them, and then squaring the result again. After that we need to use the solution for x^{2} to find the solution for u^{2} :

$$
\begin{aligned}
& x^{2}=q^{2}\left(n_{1}^{2}+n_{2}^{2}\right) \\
& u^{2}=q^{2} n_{1} n_{2}
\end{aligned}
$$

where $q \equiv 2 \pi / T$. Now we just apply Lemma 3.1 to obtain the result.

Examples: If $n_{1}=3$ and $n_{2}=2$, we get (among other solutions) that $a_{1}=0.5 q\left(\sqrt{25-s^{2}}-\sqrt{1-s^{2}}\right)$ and $a_{3}=0.5 q\left(\sqrt{25-s^{2}}+\sqrt{1-s^{2}}\right)$. Not all values of s will give real values for the a_{i}. However all will result in giving eigenvalues with the ratios $\{ \pm 2, \pm 3\}$. Notice that the period $T=2 \pi / q$. All this can be verified using MAPLE.

Another interesting example occurs when we choose $n_{1}=n_{2}=1$. We are forced to choose $s=0$. We obtain from the Theorem that $a_{1}=a_{3}=a$. Substituting this into the matrix indeed gives eigenvalues $\pm a$ (each with multiplicity 2).

We turn to the commensurability of $A_{5}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$. Its eigenvalues are given by:

$$
\begin{aligned}
& \frac{1}{2} \sqrt{2 a_{4}^{2}+2 a_{3}^{2}+2{a_{2}}^{2}+2 a_{1}^{2}+2 \sqrt{a_{4}^{4}+2 a_{4}^{2} a_{3}^{2}-2 a_{4}^{2} a_{2}^{2}-2 a_{4}^{2} a_{1}^{2}+a_{3}^{4}+2 a_{3}^{2} a_{2}^{2}-2 a_{3}^{2} a_{1}^{2}+a_{2}^{4}+2 a_{2}^{2} a_{1}^{2}+a_{1}{ }^{2}}} \\
& -\frac{1}{2} \sqrt{2 a_{4}^{2}+2 a_{3}^{2}+2 a_{2}^{2}+2 a_{1}^{2}+2 \sqrt{a_{4}^{4}+2 a_{4}^{2} a_{3}^{2}-2 a_{4}^{2} a_{2}^{2}-2 a_{4}^{2} a_{1}^{2}+a_{3}^{4}+2 a_{3}^{2} a_{2}^{2}-2 a_{3}^{2} a_{1}^{2}+a_{2}^{4}+2 a_{2}^{2} a_{1}^{2}+a_{1}^{4}}} \\
& \frac{1}{2} \sqrt{2 a_{4}^{2}+2 a_{3}^{2}+2{a_{2}}^{2}+2 a_{1}^{2}-2 \sqrt{a_{4}^{4}+2 a_{4}^{2} a_{3}^{2}-2 a_{4}^{2} a_{2}^{2}-2 a_{4}^{2} a_{1}^{2}+a_{3}^{4}+2 a_{3}^{2} a_{2}^{2}-2 a_{3}^{2} a_{1}^{2}+a_{2}^{4}+2 a_{2}^{2} a_{1}^{2}+a_{1}^{4}}} \\
& -\frac{1}{2} \sqrt{2 a_{4}^{2}+2 a_{3}^{2}+2 a_{2}^{2}+2 a_{1}^{2}-2 \sqrt{a_{4}^{4}+2 a_{4}^{2} a_{3}^{2}-2 a_{4}^{2} a_{2}^{2}-2 a_{4}^{2} a_{1}^{2}+a_{3}^{4}+2 a_{3}^{2} a_{2}^{2}-2 a_{3}^{2} a_{1}^{2}+a_{2}^{4}+2 a_{2}^{2} a_{1}^{2}+a_{1}^{4}}}
\end{aligned}
$$

The reasoning here is almost identical to that in the case of $A_{4}\left(a_{1}, a_{2}, a_{3}\right)$. We start by simplifying the eigenvalues as follows

$$
\begin{align*}
x^{2} & \equiv a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2} \tag{3.3}\\
u^{2} & \equiv \sqrt{a_{1}^{2} a_{3}^{2}+a_{1}^{2} a_{4}^{2}+a_{2}^{2} a_{4}^{2}}
\end{align*}
$$

And this gives rise to the eigenvalues:

$$
\begin{equation*}
\left[0, \pm \frac{1}{2} \sqrt{2 x^{2} \pm 2 \sqrt{x^{4}-4 u^{4}}}\right] \tag{3.4}
\end{equation*}
$$

The inversion in this case is a little trickier.
Lemma 3.3 Suppose $a_{1}^{2}-a_{4}^{2} \neq 0$. The a_{2} and a_{3} can be calculated from a_{1}, a_{4}, x, and u as follows:

$$
\begin{aligned}
& a_{2}^{2}=\frac{\left(u^{4}-a_{1}^{2} a_{4}^{2}\right)-\left(x^{2}-\left(a_{1}^{2}+a_{4}^{2}\right)\right) a_{1}^{2}}{a_{4}^{2}-a_{1}^{2}} \\
& a_{3}^{2}=\frac{-\left(u^{4}-a_{1}^{2} a_{4}^{2}\right)+\left(x^{2}-\left(a_{1}^{2}+a_{4}^{2}\right)\right) a_{4}^{2}}{a_{4}^{2}-a_{1}^{2}}
\end{aligned}
$$

Proof: Suppose $a_{1}^{2}-a_{4}^{2} \neq 0$. Rewrite Equation 3.3 as follows:

$$
\begin{aligned}
a_{2}^{2}+a_{3}^{2} & =x^{2}-a_{1}^{2}-a_{4}^{2} \\
a_{2}^{2} a_{4}^{2}+a_{3}^{2} a_{1}^{2} & =u^{4}-a_{1}^{2} a_{4}^{2}
\end{aligned}
$$

By multiplying the first equation by a_{4}^{2}, subtracting the two equations, and dividing both sides by $a_{4}^{2}-a_{1}^{2}$, we obtain the equation for a_{3}^{2}. In a similar way we can get the equation for a_{2}^{2}.

Theorem 3.4 The system given by $A_{5}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\left(a_{i}\right.$ real) is commensurate if and only if: If $a_{1}^{2}-a_{4}^{2} \neq 0$: there are integers n_{1}, n_{2} with $G C D$ equal to 1 and real numbers s and t, such the a_{i} satisfy:

$$
\begin{aligned}
& a_{1}^{2}=q^{2} s^{2} \\
& a_{2}^{2}=q^{2}\left(\frac{\left(n_{1}^{2} n_{2}^{2}-s^{2} t^{2}\right)-\left(n_{1}^{2}+n_{2}^{2}-\left(s^{2}+t^{2}\right)\right) s^{2}}{t^{2}-s^{2}}\right) \\
& a_{3}^{2}=q^{2}\left(\frac{-\left(n_{1}^{2} n_{2}^{2}-s^{2} t^{2}\right)+\left(n_{1}^{2}+n_{2}^{2}-\left(s^{2}+t^{2}\right)\right) t^{2}}{t^{2}-s^{2}}\right) \\
& a_{4}^{2}=q^{2} t^{2}
\end{aligned}
$$

where s and t are arbitrary reals, and q is an arbitrary non-zero real. In this case the the eigenvalues relate to another as $\left(\pm n_{1}, \pm n_{2}\right)$ and the period T is given by $\frac{2 \pi}{q}$.
If $a_{1}^{2}-a_{4}^{2}=0: ~ t h e r e ~ a r e ~ i n t e g e r s ~ n_{1}, n_{2}$ with $G C D$ equal to 1 such that the a_{i} satisfy:

$$
\begin{aligned}
a_{1}^{2} & =q^{2} n_{1}^{2} \\
\binom{a_{2}}{a_{3}} & =\sqrt{q^{2}\left(n_{2}^{2}-n_{1}^{2}\right)} R_{\phi}\binom{1}{0}
\end{aligned}
$$

where q is an arbitrary non-zero real and R_{ϕ} is a rotation by an arbitrary angle ϕ. In this case the the eigenvalues relate to another as $\left(\pm n_{1}, \pm n_{2}\right)$ and the period T is given by $\frac{2 \pi}{q}$.

Proof: First assume that $a_{1}^{2}-a_{4}^{2} \neq 0$. The same reasoning as in Theorem 3.2 immediately leads to the observation that the system is commensurate if and only if there are 2 non-negative integers n_{i} with GCD equal to 1 such that there is a positive T with

$$
\begin{aligned}
& x^{2}=q^{2}\left(n_{1}^{2}+n_{2}^{2}\right) \\
& u^{2}=q^{2} n_{1} n_{2}
\end{aligned}
$$

where $q \equiv 2 \pi / T$. Now we apply Lemma 3.3 to get the result.
If $a_{1}^{2}=a_{4}^{2}=a^{2}$ we see that the matrix $A_{5}\left(a_{1}, a_{2}, a_{3}, a_{1}\right)$ has eigenvalues $\left\{0, \pm a_{1}, \pm \sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}\right.$. A similar reasoning to the above (but simpler), gives the second result.

Examples: Note there are other two cases reduce to simpler cases, even though they fall under the first case of the Theorem. If $a_{1}^{2}+a_{4}^{2}=0$, then of course the matrix is block diagonal (two 0's and a
copy of $\left.A_{3}\left(a_{2}, a_{3}\right)\right)$, and so Lemma 2.2 applies. If $a_{2}^{2}+a_{3}^{2}=0$, then the matrix is block diagonal with $A_{2}\left(a_{1}\right), 0$, and $A_{2}\left(a_{4}\right)$ on the diagonal. It is easy to see that the eigenvalues are $\left\{0(3 \times), a_{1}, a_{4}\right\}$.

We conclude with a numerical example: $n_{1}=13, n_{2}=5, s=12 / 10, t=733 / 100$. If we enter the numbers as quotients of integers in MAPLE, then MAPLE will actually perform integer arithmetic to calculate the eigenvalues. It indeed verifies that the eigenvalues are $\{0, \pm 5, \pm 13\}$.

4 Commensurability of M_{7} and M_{9}

Now we turn our attention to the real, symmetric, nearest neighbor interaction with left-right symmetry acting on \mathbb{R}^{7} and \mathbb{R}^{7}. It is my understanding that these cases are new to the literature. We will see in the calculations below that the sign of the a_{i} is irrelevant. So we will assume without loss of generality that $a_{i} \geq 0$ from hereon out.

We start with M_{7} :

$$
M_{7}\left(a_{1}, a_{2}, a_{3}\right) \equiv\left[\begin{array}{ccccccc}
0 & a_{1} & 0 & 0 & 0 & 0 & 0 \\
a_{1} & 0 & a_{2} & 0 & 0 & 0 & 0 \\
0 & a_{2} & 0 & a_{3} & 0 & 0 & 0 \\
0 & 0 & a_{3} & 0 & a_{3} & 0 & 0 \\
0 & 0 & 0 & a_{3} & 0 & a_{2} & 0 \\
0 & 0 & 0 & 0 & a_{2} & 0 & a_{1} \\
0 & 0 & 0 & 0 & 0 & a_{1} & 0
\end{array}\right]
$$

We calculate the eigenvalues using MAPLE and obtain:

We can simplify this a bit by writing

$$
\begin{align*}
& x^{2} \equiv a_{1}^{2}+a_{2}^{2} \\
& y^{2} \equiv a_{1}^{2}+a_{2}^{2}+2 a_{3}^{2} \tag{4.1}\\
& u^{2} \equiv \\
& \hline
\end{align*} a_{1} a_{3}
$$

And this gives for the eigenvalues:

$$
\left[\begin{array}{c}
0 \tag{4.2}\\
\pm x \\
\pm \frac{1}{2} \sqrt{2 y^{2} \pm 2 \sqrt{y^{4}-8 u^{4}}}
\end{array}\right]
$$

Lemma 4.1 If $a_{3} \neq 0$, then the a_{i}^{2} can be calculated from x^{2}, y^{2}, and u^{2} as follows:

$$
\begin{aligned}
a_{1}^{2} & =\frac{2 u^{4}}{y^{2}-x^{2}} \\
a_{2}^{2} & =x^{2}-\frac{2 u^{4}}{y^{2}-x^{2}} \\
a_{3}^{2} & =\frac{y^{2}-x^{2}}{2}
\end{aligned}
$$

If $a_{3}=0$ then $u=0$ and $x^{2}=y^{2}$.
Proof: This proof consists of simply substituting these relations back into Equation 4.1.

Theorem 4.2 The system given by $M_{7}\left(a_{1}, a_{2}, a_{3}\right)$ (a_{i} real) is commensurate if and only if: If $a_{3} \neq 0$: there are integers n_{1}, n_{2}, and n_{3} with $G C D$ equal to 1 such that the a_{i} satisfy:

$$
\begin{gathered}
a_{1}^{2}=q^{2}\left(\frac{n_{2}^{2} n_{3}^{2}}{n_{2}^{2}+n_{3}^{2}-n_{1}^{2}}\right) \\
a_{2}^{2}=q^{2}\left(n_{1}^{2}-\frac{n_{2}^{2} n_{3}^{2}}{n_{2}^{2}+n_{3}^{2}-n_{1}^{2}}\right) \\
a_{3}^{2}=q^{2}\left(\frac{n_{2}^{2}+n_{3}^{2}-n_{1}^{2}}{2}\right)
\end{gathered}
$$

where q is an arbitrary (strictly) positive real. In this case the the eigenvalues relate to another as $\left(0, \pm n_{1}, \pm n_{2}, \pm n_{3}\right)$ and the period T is given by $\frac{2 \pi}{q}$.
If $a_{3}=0$: In this case the system is always periodic with period $T=\frac{2 \pi}{\sqrt{a_{1}^{2}+a_{2}^{2}}}$.
Proof: We assume that not all coefficients are zero.
The system is commensurate if and only if there are 3 non-negative integers n_{i} with GCD equal to 1 such that there is a positive T with

$$
\begin{aligned}
& T x \quad=2 \pi n_{1} \\
& \frac{T}{2} \sqrt{2 y^{2}+2 \sqrt{y^{4}-8 u^{4}}}=2 \pi n_{2} \\
& \frac{T}{2} \sqrt{2 y^{2}-2 \sqrt{y^{4}-8 u^{4}}}=2 \pi n_{3}
\end{aligned}
$$

We now solve for x^{2}, y^{2}, and u^{2}. The first is easy. The solution for y^{2} is obtained by first squaring the last two equations and then adding them. Finally the solution for u^{2} is obtained by first squaring the last two equations and then subtracting them, and then squaring the result again. After that we need to use the solution for y^{2} to find the solution for u^{2} :

$$
\begin{aligned}
x^{2} & =q^{2} n_{1}^{2} \\
y^{2} & =q^{2}\left(n_{2}^{2}+n_{3}^{2}\right) \\
u^{2} & =q^{2} \frac{n_{2} n_{3}}{\sqrt{2}}
\end{aligned}
$$

where $q \equiv 2 \pi / T$. Now if $a_{3} \neq 0$ we just apply Lemma 4.1 to obtain the result.
If $a_{3}=0$ the matrix M_{7} is in fact block diagonal, with two blocks equal to $A_{3}\left(a_{1}, a_{2}\right)$ and one block equal to 0 . It follows from Lemma 2.1 that the eigenvalues are 0 (with multiplicity 3), $\pm \sqrt{a_{1}^{2}+a_{2}^{2}}$ (each with multiplicity 2). The conclusion follows immediately.

Remark: The method we employ (squaring repeatedly) does not work for M_{11}. Those eigenvalues have cubic roots in them. But it just might work for M_{9} with a little more effort.

Examples: One of the eigenvalues of M_{7} must be zero (because its determinant is zero). We choose $\left\{n_{1}, n_{2}, n_{3}\right\}=\{1,2,3\}$. This means that the absolute values of the eigenvalues have ratios $0: 1: 2: 3$. To make sure that all a_{i}^{2} in the theorem are positive we must choose $n_{1}=2$. The expressions are invariant under $n_{2} \leftrightarrow n_{3}$, so we choose $\left(n_{1}, n_{2}, n_{3}\right)=(2,1,3)$. This gives $\left(a_{1}^{2}, a_{2}^{2}, a_{3}^{2}\right)=q^{2}\left(\frac{3}{2}, \frac{5}{2}, 3\right)$. Direct verification (using MAPLE) indeed shows that the eigenvalues of the resulting matrix have the required ratio. Notice that the period is given by $2 \pi / q$.

We try another example, namely all ratios n_{i} are equal to 1 . Now we get from the theorem that $\left(a_{1}^{2}, a_{2}^{2}, a_{3}^{2}\right)=q^{2}\left(1,0, \frac{1}{2}\right)$ and the period is $2 \pi / q$. Again checking independently by MAPLE bears this out.

Here is an unusual example. We choose the eigenvalue ratios $\left(n_{1}, n_{2}, n_{3}\right)=(10,1,100)$. The theorem gives that we have to set $\left(a_{1}^{2}, a_{2}^{2}, a_{3}^{2}\right)=q^{2}\left(\frac{10000}{9901}, 100-\frac{10000}{9901}, \frac{9901}{2}\right)$ to get these ratios. We now set $q=10$. The theorem also gives that the period for these values of the period T is $2 \pi / 10$. Again, a quick MAPLE calculation confirms both conclusions.

Let us look at the real, symmetric, nearest neighbor interaction with left-right symmetry acting on \mathbb{R}^{9} :

$$
M_{9}\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \equiv\left[\begin{array}{ccccccccc}
0 & a_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a_{1} & 0 & a_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{2} & 0 & a_{3} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a_{3} & 0 & a_{4} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a_{4} & 0 & a_{4} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a_{4} & 0 & a_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & a_{3} & 0 & a_{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & a_{2} & 0 & a_{1} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{1} & 0
\end{array}\right]
$$

We need some notation to write the eigenvalues is a meaningful way:

$$
\begin{array}{rlc}
x^{2} & \equiv & a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \\
y^{2} & \equiv a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+2 a_{4}^{2} \\
u^{4} & \equiv & a_{1}^{2} a_{3}^{2} \tag{4.3}\\
v^{4} & \equiv a_{1}^{2} a_{3}^{2}+2 a_{1}^{2} a_{4}^{2}+2 a_{2}^{2} a_{4}^{2}
\end{array}
$$

We will need the following lemma.

Lemma 4.3 If a_{4} and a_{3} are not zero, then the a_{i}^{2} can be calculated from x^{2}, y^{2}, u^{2}, and v^{2} as follows:

$$
\begin{aligned}
a_{1}^{2} & =\frac{u^{4}\left(y^{2}-x^{2}\right)}{x^{2}\left(y^{2}-x^{2}\right)-\left(v^{4}-u^{4}\right)} \\
a_{2}^{2} & =\frac{v^{4}-u^{4}}{y^{2}-x^{2}}-\frac{u^{4}\left(y^{2}-x^{2}\right)}{x^{2}\left(y^{2}-x^{2}\right)-\left(v^{4}-u^{4}\right)} \\
a_{3}^{2} & =\frac{x^{2}\left(y^{2}-x^{2}\right)-\left(v^{4}-u^{4}\right)}{\left(y^{2}-x^{2}\right)} \\
a_{4}^{2} & =\frac{y^{2}-x^{2}}{2}
\end{aligned}
$$

If $a_{3}=0$ then $u=0$. On the other hand if $a_{4}=0$, then $x^{2}=y^{2}$ and $u^{2}=v^{2}$.
Proof: This proof consists mostly of simply substituting the relations back into Equation 4.3, which is easy to do. The first step is to obtain a_{4} from the difference of y^{2} and x^{2}. Then we express v^{4} as $u^{4}+2\left(a_{1}^{2}+a_{2}^{2}\right) a_{4}^{2}$. This gives a relation for $a_{1}^{2}+a_{2}^{2}$ provided $a_{4} \neq 0$. Using the relation for x^{2} again, this gives an equation for a_{3}^{2}. Then a_{1}^{2} is obtained from the relation for u^{4} provided $a_{4} \neq 0$. Subtracting this from the relation we obtained earlier for $a_{1}^{2}+a_{2}^{2}$. Notice that this inversion works iff a_{4} and a_{3} are not zero (both).

Using MAPLE one verifies that the 9 eigenvalues of M_{9} are given by:

$$
\begin{align*}
& 0 \tag{4.4}\\
& \pm \frac{1}{2} \sqrt{2 x^{2} \pm 2 \sqrt{x^{4}-4 u^{4}}} \\
& \pm \frac{1}{2} \sqrt{2 y^{2} \pm 2 \sqrt{y^{4}-4 v^{4}}}
\end{align*}
$$

Theorem 4.4 The system given by $M_{9}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\left(a_{i}\right.$ real) is commensurate if and only if: 1. If $a_{3} \neq 0$ and $a_{4} \neq 0$: there are integers n_{1}, n_{2}, n_{3}, and n_{4} with $G C D$ equal to 1 such that the a_{i} satisfy:

$$
\begin{gathered}
a_{1}^{2}=q^{2}\left(\frac{n_{1}^{2} n_{2}^{2}\left(n_{3}^{2}+n_{4}^{2}-n_{1}^{2}-n_{2}^{2}\right)}{\left(n_{1}^{2}+n_{2}^{2}\right)\left(n_{3}^{2}+n_{4}^{2}-n_{1}^{2}-n_{2}^{2}\right)-\left(n_{3}^{2} n_{4}^{2}-n_{1}^{2} n_{2}^{2}\right)}\right) \\
a_{2}^{2}=q^{2}\left(\frac{n_{3}^{2} n_{4}^{2}-n_{1}^{2} n_{2}^{2}}{n_{3}^{2}+n_{4}^{2}-n_{1}^{2}-n_{2}^{2}}-\frac{n_{1}^{2} n_{2}^{2}\left(n_{3}^{2}+n_{4}^{2}-n_{1}^{2}-n_{2}^{2}\right)}{\left(n_{1}^{2}+n_{2}^{2}\right)\left(n_{3}^{2}+n_{4}^{2}-n_{1}^{2}-n_{2}^{2}\right)-\left(n_{3}^{2} n_{4}^{2}-n_{1}^{2} n_{2}^{2}\right)}\right) \\
a_{3}^{2}=q^{2}\left(\frac{\left(n_{1}^{2}+n_{2}^{2}\right)\left(n_{3}^{2}+n_{4}^{2}-n_{1}^{2}-n_{2}^{2}\right)-\left(n_{3}^{2} n_{4}^{2}-n_{1}^{2} n_{2}^{2}\right)}{\left(n_{3}^{2}+n_{4}^{2}-n_{1}^{2}-n_{2}^{2}\right)}\right) \\
a_{4}^{2}=q^{2}\left(\frac{n_{3}^{2}+n_{4}^{2}-n_{1}^{2}-n_{2}^{2}}{2}\right)
\end{gathered}
$$

where q is an arbitrary (strictly) positive real. In this case the the eigenvalues relate to another as ($0, \pm n_{1}, \pm n_{2}, \pm n_{3}, \pm n_{4}$) and the period T is given by $\frac{2 \pi}{q}$.
2. If $a_{4}=0$: The matrix consists of three diagonal blocks: two are equal to $A_{4}\left(a_{1}, a_{2}, a_{3}\right)$ (see Theorem 3.2 and the third block is the number 0.
3. If $a_{3}=0$: Also here there are three diagonal blocks, namely $A_{3}\left(a_{1}, a_{2}\right), A_{3}\left(a_{4}, a_{4}\right)$, and $A_{3}\left(a_{2}, a_{1}\right)$

Proof: We assume that not all coefficients are zero.
As before, the system is commensurate if and only if there are 4 non-negative integers n_{i} with GCD equal to 1 such that there is a positive T with

$$
\begin{aligned}
& \frac{T}{2} \sqrt{2 x^{2}+2 \sqrt{x^{4}-4 u^{4}}}=2 \pi n_{1} \\
& \frac{T}{2} \sqrt{2 x^{2}-2 \sqrt{x^{4}-4 u^{4}}}=2 \pi n_{2} \\
& \frac{T}{2} \sqrt{2 y^{2}+2 \sqrt{y^{4}-4 v^{4}}}=2 \pi n_{3} \\
& \frac{T}{2} \sqrt{2 y^{2}-2 \sqrt{y^{4}-4 v^{4}}}=2 \pi n_{4}
\end{aligned}
$$

Using the same strategy as in the proof of Theorem 4.2, we can easily solve for x, y, u, and v :

$$
\begin{gathered}
x^{2}=q^{2}\left(n_{1}^{2}+n_{2}^{2}\right) \\
y^{2}=q^{2}\left(n_{3}^{2}+n_{4}^{2}\right) \\
u^{2}=q^{2} n_{1} n_{2} \\
v^{2}=q^{2} n_{3} n_{4}
\end{gathered}
$$

where q equals $2 \pi / T$. If $a_{3} \neq 0$ and $a_{4} \neq 0$, the stament follows directly from substituting these relations into Lemma 4.3.

When $a_{4}=0, M_{9}$ is block-diagonal, and this case thus follows from the results in Section 3. In this case it has two blocks of the form A_{4}. Similarly when $a_{3}=0$, the matrix M_{9} has three diagonal block of the form A_{3} and again the results of Section 3 apply.

Examples: One of the eigenvalues of M_{9} must be zero. Suppose for the others we desire the Fibonacci ratios $\{5,8,13,21\}$. Substitute all permutations of these values into the Theorem until a permutation gives positive values for the $a_{i}^{2}:\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=(5,13,8,21)$. The values given by the theorem for a_{i}^{2} are, respectively : $q^{2}\left(\frac{1555}{43}, \frac{548352}{13373}, \frac{36335}{311}, \frac{311}{2}\right)$. Furthermore if we choose $q=1$, the period T equals 2π. Both conclusions are of course easily verified using MAPLE.

Now we try $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=(1,1,1,1)$. Interestingly we find that a_{1}, a_{2}, are a_{3} undefined. The reason becomes clear as we calculate a_{4} : it is zero! So in this case the second part of the theorem applies. In the examples pertaining to $A_{4}\left(\left(a_{1}, a_{2}, a_{3}\right)\right.$ we see that it is indeed possible to get the eigenvalue ratios ± 1. So it turns out we need to choose $a_{4}=a_{2}=0$ and $a_{1}=a_{3} \neq 0$ to obtain four eigenvalues equal in modulus.

References

[1] J. Petrovic, J. J. P. Veerman, A New Method for Multi-Bit and Qudit Transfer Based on Commensurate Waveguide Arrays, Submitted.

[^0]: *Fariborz Maseeh Dept. of Math. and Stat., Portland State Univ., Portland, OR, USA, and CCQCN, Dept of Physics, University of Crete, 71003 Heraklion, Greece; e-mail: veerman@pdx.edu
 ${ }^{\dagger}$ Vinca Institute of Nuclear Sciences, University of Belgrade, 12-14 Mike Alasa, 11000 Belgrade, Serbia

