Como, Italy, October 2022

DIGRAPHS IV Chemical Networks The Matrix Tree Theorem

Based on various sources, among which:
J. J. P. Veerman, T. Whalen-Wagner, E. Kummel Chemical Reaction Networks in a Laplacian Framework, Chaos, Solitons, and Fractals, accepted, 2022.

J. J. P. Veerman, Math/Stat, Portland State Univ., Portland, OR 97201, USA. email: veerman@pdx.edu

SUMMARY:

* We differential equations governing the behavior of chemical reaction networks can be built up using the boundary operators. This gives rise, very naturally, to a Laplacian formulation of the dynamics.

* These differential equations are *nonlinear*. In spite of that, in many cases, the Laplacian approach can be used to describe the global dynamics of the network.

* Matrix tree theorems connect different branches of mathematics (combinatorics, linear algebra, probability) in unexpected ways. For this reason, they play an important role in the graph theory literature.

* We give a detailed description of various matrix tree theorems. These theorems relate the determinant of certain submatrices of the usual Laplacian to the number of spanning trees rooted at each vertex.

* We give a simple, short, combinatorial proof loosely inspired by [1].

* We include a discussion that relates the number of spanning trees at each vertex to the stable probability measure of random walk on a strongly connected graph.

OUTLINE: The headings of this talk are color-coded as follows:

Boundary Operators

Chemical Reaction Networks

The Zero Deficiency Theorem

Example and Further Developments

Matrix Tree Theorems

Proof of Matrix Tree Theorems

Trees and Unicycles

BOUNDARY OPERATORS

Definition: Given a digraph *G*, define matrices *B* (for Begin) and *E* (for End), as maps Edges \rightarrow Vertices.

Edges are columns. Vertices are rows.

Consistent with **definition** of boundary operator in topology: $\partial := E - B$

From Boundary to Adjacency

Let *v* number of vertices. Want an operator mapping \mathbb{C}^{v} to itself. Thus EE^{T} , EB^{T} , BE^{T} , and BB^{T} are natural candidates. We investigate these operators.

FACT 1:

$$(\mathbf{E}\mathbf{E}^{\mathbf{T}})_{ij} = \sum_{k} E_{ik} E_{jk}$$

is the # edges that end in *i* and in *j*. Thus it is the **diagonal** <u>in</u>-degree matrix. Similarly, **BB**^T is the **diagonal** out-degree matrix.

FACT 2:

$$(\mathbf{EB^{T}})_{ij} = \sum_{k} E_{ik} B_{jk}$$

is the # edges that start in j and end in i. It is the **comb.** <u>in</u>-degree adj. matrix Q (as in DI). And **BE**^T is the **comb.** <u>out</u>-degree adj. matrix or Q^{T} .

Lemma: In the notation of DI, we have:

$$D = EE^T$$
 and $Q = EB^T$

Exercise: Check the facts as well as the ones mentioned for BB^T and BE^T .

Exercise: Interpret as operators $\mathbb{C}^e \to \mathbb{C}^e$ (*e* number of edges).

... and on to Laplacians

The Lemma immediately implies:

Theorem 1: In the notation of DI, we have:

 $L = E(E^T - B^T)$ and $L_{out} = -B(E^T - B^T)$

where L_{out} is the Laplacian of the graph G with all orientations reversed.

The example in the next pages illustrate the following two remarks.

Remark1: Be careful to note that $L_{out} \neq L^T !!$

Remark 2: Note that the sum of L and L_{out} is the Lapl. of the underlying graph <u>G</u>. Thus:

Corollary: We have:

$$\underline{L} = L + L_{\text{out}} = (E - B)(E^T - B^T) = \partial \partial^T$$

Remark: This is the traditional definition of the Laplacian in topology.

Re-Definition: *L* is the standard comb. Lapl. of the previous lectures. Better notation in this context: From now on, replace L by L_{in} ,

And $\underline{L} = L_{in} + L_{out}$ is symmetric. (Note that the edge between vertices 6 and 7 doubles or acquires weight 2 in this process.)

Exercise: Find these Laplacians from Theorem 1.

Linegraphs

 $E^T B - 2I$ and $B^T E - 2I$ give versions of the adjacency matrix of the linegraph of *G*. This needs working out. See the Graph Theory handbook page 679.

Weighted Laplacians

Definition: We can "weight" the edges. Let W be a diagonal weight matrix.

$$L_{\text{in},W} = (EW)(E^T - B^T)$$

We drop the subscript "W". In particular

$$\mathcal{L}_{\rm in} = (ED^{-1})(E^T - B^T)$$

where $D_{ii} = 1$ if the in-degree in 0. (see DI)

Remark: Note that

$$\left[(EW)B^T\right]_{ij} = \sum_k E_{ik}W_{kk}B_{jk}$$

which means the weights go to the edges (not the vertices).

Be careful: The symbol \mathcal{L}_{out} is reserved for the out-degree rw Laplacian. The edges have a weight different from that of \mathcal{L}_{in} . See example.

Example with Weights

Notice that the sum of these two is NOT symmetric. Edge 6 $(\mathcal{L}_{in,4,3} \text{ and } \mathcal{L}_{out,3,4})$ received two different weights in each case.

From a presentation by David Angeli, Univ of Firenze, Italy. Chemical networks can have thousands of vertices. A Simple Example

Reaction 1: $2H_2 + O_2 \rightarrow 2H_2O$ Reaction 2: $C + O_2 \rightarrow CO_2$

Concentrations of $C + O_2$ is an ambiguous concept. Can measure only concentrations of molecules: H_2O , H_2 etc.

Set *x_i* equal to concentration of following molecules:

 $x_1 \leftrightarrow H_2 \,, \; x_2 \leftrightarrow O_2 \,, \; x_3 \leftrightarrow H_2 O \,, \; x_4 \leftrightarrow C \,, \; x_5 \leftrightarrow C O_2$

Assume all molecules are unif. distr. in the mix.

Observation 1. Reaction 1 says: for every 2 molecules H_2 and 1 molecule O_2 that react we get 2 molecules H_2O back. **Observation 2.** Reaction rate is proportional to the chance that that the reacting molecules "meet". For reaction 1 that is $x_1^2x_2$. The constant of the proportionality is called k_1 .

The same for reaction 2. So:

$$\dot{x}_{1} = -2k_{1}x_{1}^{2}x_{2}$$

$$\dot{x}_{2} = -2k_{1}x_{1}^{2}x_{2} - k_{2}x_{2}x_{4}$$

$$\dot{x}_{3} = 2k_{1}x_{1}^{2}x_{2}$$

$$\dot{x}_{4} = -k_{2}x_{2}x_{4}$$

$$\dot{x}_{5} = k_{2}x_{2}x_{4}$$

Observation 2 is called the mass action principle.

The Basic Idea ...

Definition: (conc. means concentration)

\mathbb{R}^{c}	"conc.s of molecules"	variables x_i
\mathbb{R}^{v}	"conc.s of reacting mixtures"	variables v_i
\mathbb{R}^{e}	"reactions"	denoted by e_i

Relevant Operators:

$$\begin{split} \psi \text{ (non-linear)} &: \mathbb{R}^c \to \mathbb{R}^v \\ E, B \text{ (linear)} &: \mathbb{R}^e \to \mathbb{R}^v \text{ and } E^T, B^T : \mathbb{R}^v \to \mathbb{R}^e \\ S \text{ (linear)} &: \mathbb{R}^v \to \mathbb{R}^c \end{split}$$

Key Idea 1. Use mass action to give ode for conc.s of $\{x_i\}_{i=1}^{c}$.

$$\mathbb{R}^{c} \stackrel{S}{\leftarrow} \mathbb{R}^{v} \stackrel{\partial = E - B}{\leftarrow} \mathbb{R}^{e} \stackrel{W}{\leftarrow} \mathbb{R}^{e} \stackrel{B^{T}}{\leftarrow} \mathbb{R}^{v} \stackrel{\psi}{\leftarrow} \mathbb{R}^{c}$$

Key Idea 2. Form a **network** by putting together the reactions $v_i \xrightarrow{e_\ell} v_i$ with the v_i as its vertices. Our example:

$$\begin{array}{cccc} v_1 & \stackrel{e_1}{\to} & v_2 \\ v_3 & \stackrel{e_2}{\to} & v_4 \end{array}$$

 v_1 is the conc. of the reacting mixture, i.e. $2H_2 + O_2$, etc. Look at the associated Laplacian !!!

... and Some Details

$$\begin{array}{cccc} v_1 & \stackrel{e_1}{\rightarrow} & v_2 \\ v_3 & \stackrel{e_2}{\rightarrow} & v_4 & \text{where} \end{array}$$

$$\begin{array}{cccc} e_1 : & 2H_2 + O_2 \rightarrow 2H_2O \\ e_2 : & C + O_2 \rightarrow CO_2 & \text{with} \end{array}$$

$$x_1 \leftrightarrow H_2, \ x_2 \leftrightarrow O_2, \ x_3 \leftrightarrow H_2O, \ x_4 \leftrightarrow C, \ x_5 \leftrightarrow CO_2 \end{array}$$

Definition: The count of *i*-molecules (belonging x_i) in the *j*th vertex v_j equals S_{ij} . *S* has no zero rows. Rate of change \dot{x}_i equals the sum of rates of change of those mixtures in which that molecule occurs.

$$\dot{x} = S\dot{v}$$
 or $\dot{x}_j = \sum_i S_{ji}\dot{v}_i$.

Exercise: Show that for our example

$$S = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

and Apply Mass Action

Mass Action Lemma. The probability ψ_i that all molecules in v_i "meet" is

$$\psi_i(x) \equiv \prod_j x_j^{S_{ji}}$$

Exercise: Show that if x > 0, then $\operatorname{Ln} \psi(x) = S^T \operatorname{Ln} x$. **Exercise:** Show that for this example

$$\psi_1 = x_1^2 x_2$$
, $\psi_2 = x_3^2$, $\psi_3 = x_2 x_4$, $\psi_4 = x_5$

Putting the Equations Together

Prescription 1: Form the diff eqns as follows:

 $\mathbb{R}^{c} \to \mathbb{R}^{v}; \text{ convert conc.s to mass action terms; } \psi$ $\mathbb{R}^{v} \to \mathbb{R}^{e}; \text{ assign initial m.a. term to each edge; } B^{T}$ $\mathbb{R}^{e} \to \mathbb{R}^{e}; \text{ weight each } e_{i} \text{ by its reaction rate; } W$ $\mathbb{R}^{e} \to \mathbb{R}^{v}; \text{ add @endvertex, subtr. @startvertex; } E - B$ $\mathbb{R}^{v} \to \mathbb{R}^{c}; \text{ convert to conc. of molecules; } S$

$$\mathbb{R}^{c} \stackrel{S}{\leftarrow} \mathbb{R}^{v} \stackrel{\partial = E - B}{\leftarrow} \mathbb{R}^{e} \stackrel{W}{\leftarrow} \mathbb{R}^{e} \stackrel{B^{T}}{\leftarrow} \mathbb{R}^{v} \stackrel{\psi}{\leftarrow} \mathbb{R}^{c}$$
$$-L_{\text{out}}^{T}$$

Prescription 2: Recall out-degree Lapl. (Thm 1), so that $\dot{x} = -SL_{out}^T \psi(x)$

Exercise: Compute B, E, and W for this example.

Exercise: Use *B*, *E*, and *W* to compute L_{out} and L_{out}^T .

Exercise: Use S, ψ , and L_{out}^T to show that for the example:

$$\dot{x}_{1} = -2k_{1}x_{1}^{2}x_{2}$$

$$\dot{x}_{2} = -k_{1}x_{1}^{2}x_{2} - k_{2}x_{2}x_{4}$$

$$\dot{x}_{3} = 2k_{1}x_{1}^{2}x_{2}$$

$$\dot{x}_{4} = -k_{2}x_{2}x_{4}$$

$$\dot{x}_{5} = k_{2}x_{2}x_{4}$$

DIFFERENCE WITH EARLIER WORK

٠

Later is Better?

Since pioneering work by Horn, Jackson, and Feinberg in the 1970's [2, 3, 4], the split into nonlinear and linear parts has been different from what we propose.

Below the proposed split (blue) and the classical split (green).

The matrix W contains the reaction rates which are (a) difficult to measure, and (b) may strongly influence the result (zero deficiency). If you want conclusions independent from reaction rates, then put W in "nonlinear".

	advantage	disadvantage
Blue	stronger results	results may depend on W
Green	weaker results	no dependence on W

To get stronger results, need kernels of directed Laplacians, not (well)-known in the 70's.

•

٠

"I'm sorry, there's no such thing as a chocolate deficiency."

Some Definitions ...

Definition. The Laplacian deficiency is given by

 $\delta := \dim \operatorname{Ker} SL_0^T - \dim \operatorname{Ker} L_0^T$

Figure: dim of Im L_o^T equals that of Im SL_o^T . So $\delta = 0$ and None of the dynamics is hidden by *S* !

Recall:

(

(i) Graph G is componentwise strongly connected (CSC) if each weak component is strongly connected (see DI).

(ii) The algebraic and geometric multiplicity of the eigenvalue 0 of L equals k, the number of reaches (see DII).

(iii) Left kernel of L is spanned by row vectors $\bar{\gamma}_i$ (see DII):

$$\begin{cases} \bar{\gamma}_{m}(j) > 0 & \text{if } j \in B_{m} \text{ (cabal)} \\ \bar{\gamma}_{m}(j) = 0 & \text{if } j \notin B_{m} \\ \sum_{j=1}^{k} \bar{\gamma}_{m}(j) = 1 \\ \{\bar{\gamma}_{m}\}_{m=1}^{k} \text{ are orthogonal} \end{cases}$$

Definition. (i) For x, y in \mathbb{R}^n : x > y if true componentwise. (ii) For x > 0 in \mathbb{R}^n , define $\operatorname{Ln} x$ as $(\ln x_1, \dots, \ln x_n)$.

... and the Theorem

The theorem that initiated the mathematical study of CRNs was proved in 1972 [2]. We give a modern version due to [5].

Exercise: Recall that if x > 0, then $\operatorname{Ln} \psi(x) = S^T \operatorname{Ln} x$.

Zero Laplacian Deficiency Theorem. Suppose a CRN has $\delta = 0$. Then

$$\dot{x} = -SL_{\text{out}}^T\psi(x)$$

has a (strictly) pos. equil. \iff its graph is CSC.

In what follows, x denotes a vector in \mathbb{R}^{v} , a a real number, and $\mathbf{1}_{S}$ a vector in \mathbb{R}^{v} that is 1 on S and 0 else.

Exercise: Show that if a > 0 and x > 0, then

$$\operatorname{Ln} ax = \ln a \cdot \mathbf{1} + \operatorname{Ln} x$$

Lemma. The condition $\delta = 0$ is equivalent to

 $\operatorname{Im} S^T + \operatorname{Ker} L_o = \mathbb{R}^v$

Proof. $\delta = 0$ is equivalent to Ker $S \cap \text{Im } L_o^T = \{0\}$. Take orthogonal complement of both sides to get

$$(\operatorname{Ker} S)^T + \operatorname{Im} (L_o^T)^T = \mathbb{R}^v$$

The LHS equals Im S^T + Ker L_o by linear algebra. **Done.**

Proof of \Rightarrow

Assume

$$\dot{x} = -SL_{\rm out}^T\psi(x)$$

has pos. equil. x^* and prove CSC.

Existence of pos. equil. $x^* > 0$ shows that, since there is $x^* > 0$ with $\dot{x}^* = 0$,

 $\psi(x^*) > 0$ such that $SL_{out}^T \psi(x^*) = 0$

No hidden dynamics (or $\delta = 0$) then gives

$$L_{\text{out}}^T \psi(x^*) = 0$$
 or $\psi(x^*)^T L_{\text{out}} = 0$

By theorems on left kernels (see DII), we may therefore write

$$\psi(x^*)^T = \sum_{i=m}^k a_m \bar{\gamma}_m \text{ and } \forall a_m > 0$$

But $\psi(x^*) > 0$ and γ_m are positive on cabals only. So every vertex is in a cabal. Therefore the graph is CSC.

Done.

Proof of ⇐

Assume CSC, then show that

 $\exists x^* > 0$ such that $\psi(x^*) = \sum_{i=m}^k a_m \bar{\gamma}_m^T$ and $\forall a_m > 0$

Exercise: Use the two exercises on pg 22 to deduce that the **blue** equation can be rewritten as

$$S^T \operatorname{Ln} x^* = \sum_{m=1}^k (\ln a_m) \, \mathbf{1}_{\mathbf{R}_{\mathbf{m}}} + \operatorname{Ln} \, \sum_{m=1}^k \bar{\gamma}_m^T.$$

where $\mathbf{1}_{\mathbf{R}_{\mathbf{m}}}$ is the characteristic vector of the *m*th reach (component in this case).

Proof continued:Then re-arrange this as

$$\operatorname{Ln} \sum_{m=1}^{k} \bar{\gamma}_{m}^{T} = S^{T} \operatorname{Ln} x^{*} - \sum_{m=1}^{k} (\ln a_{m}) \mathbf{1}_{\mathbf{R}_{m}}$$

1st term of RHS ranges over $\text{Im } S^T$ and 2nd over Ker L.

This has a solution if

$$\operatorname{Im} S^T + \operatorname{Ker} L = \mathbb{R}^v.$$

Guaranteed by zero deficiency condition (use the Lemma).

Done.

Returning to the Example:

This graph has two weak components, neither of which is SC.

$$S = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ and } L_o^T = \begin{pmatrix} k_1 & 0 & 0 & 0 \\ -k_1 & 0 & 0 & 0 \\ 0 & 0 & k_2 & 0 \\ 0 & 0 & -k_2 & 0 \end{pmatrix}$$

Exercise: Find the span of $\text{Im } L_o^T$ and of Ker S.

Conclude from the exercise that $\delta = 0$.

Conclude from 0-def thm that there is no strictly pos equil.

Confirm that conclusion from the equations:

$$\dot{x}_{1} = -2k_{1}x_{1}^{2}x_{2}$$

$$\dot{x}_{2} = -k_{1}x_{1}^{2}x_{2} - k_{2}x_{2}x_{4}$$

$$\dot{x}_{3} = 2k_{1}x_{1}^{2}x_{2}$$

$$\dot{x}_{4} = -k_{2}x_{2}x_{4}$$

$$\dot{x}_{5} = k_{2}x_{2}x_{4}$$

٠

•

Sorry Professor, you're right: I DID skip a line of the instructions...

Bounded Orbits

Theorem [5]. Suppose $\delta = 0$. Then

 $\dot{x} = -SL_{\rm out}^T\psi(x)$

has pos. orbit x(t) with $\operatorname{Ln} x(t)$ bdd \iff graph is CSC.

Note: \Leftarrow follows from 0-def. But \Rightarrow strengthens it.

The 0-def thm says: CSC implies existence of equilibrium. So:

Corollary. A 0-def system with an orbit x(t) whose Log is bounded (see figure) must have a fixed point.

Constants of the Motion and Stability

Exercise: Show that $(\operatorname{Im} A)^{\perp} = \operatorname{Ker} A^{T}$.

Thus the orbit x(t) of

$$\dot{x} = -SL_{\rm out}^T\psi(x)$$

 \dot{x} is parallel to Im SL_o^T and x(t) = z + y(t), z constant. z is the orthogonal proj onto Ker $L_o S^T$.

Theorem [5]. Suppose $\delta = 0$ and CSC. Then:

(i) For every $z \in \text{Ker } LS^T$, there is a unique $y \in \text{Im } SL^T$ such that y + z is a positive equilibrium.

(ii) The ω -limit set of any positive initial condition either equals that equilibrium or is a bounded set contained in the boundary of the positive orthant.

Lots of Trees

Definition: For the purpose of this section, we write:

$$L_{in} = (EW)(E^T - B^T)$$

$$L_{out} = (-BW)(E^T - B^T)$$

$$\underline{L} = (EW - BW)(E^T - B^T)$$

$$= (E - B)W(E^T - B^T)$$

Definition: A spanning **out**-tree rooted at vertex *r* (**SOTR**) is a graph such that

- if $i \neq r$, then **in**-degree at *i* equals 1.
- in-degree at *r* equals 0.
- no directed cycles.

For a **SITR**: swap "out" and "in".

Figure: Left: **out**-tree rooted at *r*, and right: **in**-tree.

Definition: A spanning **undirected** tree rooted at r (**SUTR**) is a connected graph with no cycles. (No loose vertices.)

And To Each Their Tree

$$L_{in} = (EW)(E^T - B^T)$$

$$L_{out} = (-BW)(E^T - B^T)$$

$$\underline{L} = (EW - BW)(E^T - B^T)$$

$$(EW)_{ij} = \sum_{k} E_{ik} W_{kj}$$

So the effect of the diagonal matrix W is to multiply the *i*th edge (column) by the *i*th entry W_{ii} .

Definition: The weight W(T) of a tree T is the product of the weights of all its edges. Allow arbitrary (positive) weights. The weighted adjacency matrix is denoted by S and the diagonal row-sum matrix of S is denoted by D.

Definition: For a Laplacian *L*, let \mathcal{T}_r be the **appropriate** set of spanning trees rooted at *r*. By this we mean:

- For L_{in} , it is the SOTR's
- For L_{out} , it is the SITR's
- For \underline{L} , it is the SUTR's.

Matrix Tree Theorems

Definition: Assume G has n vertices. Let I_r be the set V of all vertices except r.

Theorem 2 (Matrix Tree): *L* a Laplacian. Then

$$q_r := \det L[I_r, I_r] = \sum_{T_r \in \mathcal{T}_r} W(T_r)$$

Observation 1: If *G* has k > 1 reaches, then no SORTs. DII Thm 9: *L* has eval 0 with mult. k > 1. Reducing *L* by 1 column and row will give det $L[I_r, I_r] = 0$.

Exercise: Show that for a digraph *G* with one reach, if *r* is not in a cabal, then det $L[I_r, I_r] = 0$.

The proofs of the cases where $L = L_{in}$ or $L = L_{out}$ are almost identical (just swap "in" and "out"). In the undirected case: reaches are connected components.

Theorem 3: Furthermore

$$\sum_{r} q_{r}L_{ri} = 0$$

Observation 2: Thus the **weight** of rooted trees at vertex *r* has a probabilistic interpretation. (Gives stationary probability measure under rw.)

Exercises Using Path Graph $q_1 \qquad q_2 \qquad q_3 \qquad q_3 \qquad q_{n-1} \qquad q_{n-1} \qquad q_n \qquad q_n$

Exercise: For the graph above write out L_{in} .

Exercise: Let q_k the weight of out-trees rooted in vertex k. Show that $q_k = \prod_{k=1}^n a_i \prod_{i=1}^{k-1} b_i$.

Denote by q the <u>row-vector</u> (q_1, q_2, \cdots, q_n) .

Exercise: Show that $qL_{in} = 0$.

Exercise: Repeat exercises on this page, but now for L_{out} and <u>L</u>.

PROOFOFMATRIXTREEFORLin

Definition (DI): I(K) subset of the row (column) labels of matrix A. A[I, K] consists of the entries of A in $I \times K$.

Exercise: L = AB where A and B matrices as depicted above. Show that matrix multiplication implies

$$L[I, J] = A[I, \text{all}]B[\text{all}, J]$$

Now let |I| = |J| = k. By Cauchy-Binet (Thm 3 of DI): $\det((AB)[I,J]) = \sum_{K,|K|=k} \det(A[I,K]) \det(B[K,J])$

Since $L_{in} = (EW)(E^T - B^T)$, we have

Proposition: $I_r := V \setminus \{r\}$. Then det $(L_{in}[I_r, I_r])$ equals

 $\sum_{K,|K|=n-1} \det((EW)[I_r,K]) \det((E^T - B^T)[K,I_r])$

Assume *K* Not a Tree

Recall: **SOTR** is a graph such that **1.** if $i \neq r$, then in-degree at *i* equals **1**.

- 2. in-degree at r equals 0.
- 3. no directed cycles.

$$\det \left(L_{\text{in}}[I_r, I_r] \right) = \sum_K \det((EW)[I_r, K]) \det((E^T - B^T)[K, I_r])$$

In RHS, each choice of K selects n - 1 edges.

If the n - 1 edges K do not form a SOTR: Fail $1 \Rightarrow \exists i \neq r$ with in-degree $0 \Rightarrow E$ has zero row, or Fail $2 \Rightarrow$ in-degree at r not $0 \Rightarrow$ same as fail 1, or Fail $3 \Rightarrow \partial(\text{cycle}) = 0 \Rightarrow \text{ker}(E^T - B^T)$ has dim > 0.

Example w. 6 vertices and 5 edges: Left: column 5 of

 $E[I_r, K]$ is 0. Right: $(E^T - B^T)[\{2, 3, 4, 5\}, \{2, 3, 4, 5\}]$ has row sum 0.

Total contribution: zero!

Assume K a Tree

If the n - 1 edges of $K \underline{do}$ form a SOTR:

Relabel vertices and edges so that:

1. If j > i, then path from $r \rightsquigarrow i$ does not pass through j.

2. And then so that edge *i* ends in vertex *i*.

For each *K*, same permutations are done in two factors:

$$\sum_{K,|K|=n-1} \det((EW)[I_r,K]) \det((E^T - B^T)[K,I_r])$$

Thus the permutations have <u>no net effect</u>: $(-1)^{\text{even}}$!

Result: $E[I_r, K]$ is the identity, and $B[I_r, K]$ is upper tridiag with 0 on diag.

Example of SOTR w. 6 vertices and 5 edges: Left: Before

permutations. Right: After.

Total contribution: The weight of the tree!

Exercise: Repeat proof for L_{out} (trivial) and <u>L</u> (needs minor adaptation).

•

C Unicycle.com

Lots of Unicycles, and to Each ...

Definition: An **augmented** spanning **out**-tree rooted at vertex r (**ASOTR**) is a SOTR plus 1 extra edge $k \rightarrow r$ such that $(L_{in})_{rk} > 0$. Similarly, an **ASITR** is a SITR plus 1 extra edge $r \rightarrow k$ such that $(L_{out})_{rk} > 0$.

Left: Augmented out-tree. Right: Augmented in-tree.

Definition: An augm. spanning undirected tree rooted at r (**ASUTR**) is a SUTR with 1 extra edge from r to a neighbor.

Remark: These graphs contain **1 cycle**! They are most commonly called **cycle-rooted trees** or **unicycles**.

Definition: For a Laplacian *L*, let A_r be the **appropriate** set of augm. spanning trees rooted at *r*. By this we mean:

- For L_{in} , it is the ASOTR's
- For L_{out} , it is the ASITR's
- For \underline{L} , it is the ASUTR's.

Counting Unicycles at Vertex *r*

Exercise: Show that a unicycle contains exactly 1 cycle. (*Hint: contract along the spanning tree. The cycles are the remaining edges.*)

Two ways to compute the weight of the L_{in} -appropriate *r*-rooted unicycles (ASOTR's) for a given graph *G* (see figure).

RECALL: S is the weighted (by W) adjacency matrix. The diagonal row-sum matrix is D.

Left(1): To SOTR at r, add edge from *parent* k of r to r. Right(2): To SORT at *child* j of r, add edge from r to j.

Total weight of unicycles rooted at r is denoted by u_r .

From 1:
$$\mathbf{u}_{\mathbf{r}} = \sum_{\mathbf{k}} \mathbf{q}_{\mathbf{r}} \mathbf{S}_{\mathbf{rk}} = \mathbf{q}_{\mathbf{r}} \mathbf{D}_{\mathbf{rr}}$$

(Proof: The row-sum of S is given by D.)

From 2:
$$\mathbf{u_r} = \sum_{j} \mathbf{q_j} \mathbf{S_{jr}}$$

Proof of Theorem 3

EASY ! Equate the two expressions:

$$0 = q_r D_{rr} - \sum_j q_j S_{jr} = [q(D - S)]_r = [qL_{in}]_r$$

which proves Thm 3 for L_{in} .

DONE!

Remark: If *S* is a rw walk matrix, then *D* is identity and *q* is the stationary probability measure.

Exercise: Prove Theorem 3 for L_{out} and <u>L</u>.

References

- [1] P. De Leenheer, An Elementary Proof of a Matrix Tree Theorem for Directed Graphs, https://arxiv.org/abs/1904.12221.
- [2] M. Feinberg. Complex balancing in general kinetic systems, Archive for Rational Mechanics and Analysis, 49(3):187–194, 1972.
- [3] F. J. M. Horn, Necessary and Sufficient Conditions for Complex Balancing in Chemical Kinetics, Archive for Rational Mechanics and Analysis, 49(3):172–186, 1972.
- [4] F. J. M. Horn and R. Jackson, *General mass action kinetics*, Archive for Rational Mechanics and Analysis, 47(2):81–116, 1972.
- [5] J. J. P. Veerman, T. Whalen-Wagner, E. Kummel Chemical Reaction Networks in a Laplacian Framework, Chaos, Solitons, and Fractals, accepted.