Como, Italy, October 2022

DIGRAPHS IV
Chemical Networks
The Matrix Tree Theorem
Based on various sources, among which:
J. J. P. Veerman, T. Whalen-Wagner, E. Kummel

Chemical Reaction Networks in a Laplacian Framework, Chaos, Solitons, and Fractals, accepted, 2022.
J. J. P. Veerman,

Math/Stat, Portland State Univ., Portland, OR 97201, USA.
email: veerman@pdx.edu

SUMMARY:

* We differential equations governing the behavior of chemical reaction networks can be built up using the boundary operators. This gives rise, very naturally, to a Laplacian formulation of the dynamics.
* These differential equations are nonlinear. In spite of that, in many cases, the Laplacian approach can be used to describe the global dynamics of the network.
* Matrix tree theorems connect different branches of mathematics (combinatorics, linear algebra, probability) in unexpected ways. For this reason, they play an important role in the graph theory literature.
* We give a detailed description of various matrix tree theorems. These theorems relate the determinant of certain submatrices of the usual Laplacian to the number of spanning trees rooted at each vertex.
* We give a simple, short, combinatorial proof loosely inspired by [1].
* We include a discussion that relates the number of spanning trees at each vertex to the stable probability measure of random walk on a strongly connected graph.

OUTLINE:

The headings of this talk are color-coded as follows:

Boundary Operators

Chemical Reaction Networks

 Example and Further Develeopments

 Example and Further Develeopments}Matrix Tree Theorems

Proof of Matrix Tree Theorems

Trees and Unicycles

BOUNDARY OPERATORS

The Boundary Matrices

Definition: Given a digraph G, define matrices B (for Begin) and E (for End), as maps Edges \rightarrow Vertices.

$$
\begin{gathered}
E_{i j}= \begin{cases}1 & \text { if vertex } i \text { ends edge } j \\
0 & \text { else }\end{cases} \\
B_{i j}=\left\{\begin{array}{lllll}
1 & \text { if vertex } i \text { starts edge } j \\
0 & \text { else }
\end{array}\right. \\
E=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0
\end{array}\right) \quad B=\left(\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Edges are columns. Vertices are rows.
Consistent with definition of boundary operator in topology:

$$
\partial:=\boldsymbol{E}-\boldsymbol{B}
$$

From Boundary to Adjacency

Let v number of vertices. Want an operator mapping \mathbb{C}^{v} to itself. Thus $E E^{T}, E B^{T}, B E^{T}$, and $B B^{T}$ are natural candidates. We investigate these operators.

FACT 1:

$$
\left(\mathbf{E E}^{\mathrm{T}}\right)_{i j}=\sum_{k} E_{i k} E_{j k}
$$

is the \# edges that end in i and in j.
Thus it is the diagonal in-degree matrix.
Similarly, $\mathbf{B B}^{\mathbf{T}}$ is the diagonal out-degree matrix.
FACT 2:

$$
\left(\mathbf{E B}^{\mathrm{T}}\right)_{i j}=\sum_{k} E_{i k} B_{j k}
$$

is the \# edges that start in j and end in i.
It is the comb. in-degree adj. matrix Q (as in DI).
And BE^{T} is the comb. out-degree adj. matrix or Q^{T}.
Lemma: In the notation of DI, we have:

$$
D=E E^{T} \quad \text { and } Q=E B^{T}
$$

Exercise: Check the facts as well as the ones mentioned for $B B^{T}$ and $B E^{T}$.

Exercise: Interpret as operators $\mathbb{C}^{e} \rightarrow \mathbb{C}^{e}$ (e number of edges).

... and on to Laplacians

The Lemma immediately implies:
Theorem 1: In the notation of DI, we have:

$$
L=E\left(E^{T}-B^{T}\right) \quad \text { and } \quad L_{\text {out }}=-B\left(E^{T}-B^{T}\right)
$$

where $L_{\text {out }}$ is the Laplacian of the graph G with all orientations reversed.

The example in the next pages illustrate the following two remarks.

Remark1: Be careful to note that $L_{\text {out }} \neq L^{T}$!!
Remark 2: Note that the sum of L and $L_{\text {out }}$ is the Lapl. of the underlying graph \underline{G}. Thus:

Corollary: We have:

$$
\underline{L}=L+L_{\mathrm{out}}=(E-B)\left(E^{T}-B^{T}\right)=\partial \partial^{T}
$$

Remark: This is the traditional definition of the Laplacian in topology.

Re-Definition: L is the standard comb. Lapl. of the previous lectures. Better notation in this context: From now on, replace L by $L_{\text {in }}$,

Example

And $\underline{L}=L_{\text {in }}+L_{\text {out }}$ is symmetric. (Note that the edge between vertices 6 and 7 doubles or acquires weight 2 in this process.)

Exercise: Find these Laplacians from Theorem 1.

Linegraphs

$E^{T} B-2 I$ and $B^{T} E-2 I$ give versions of the adjacency matrix of the linegraph of G. This needs working out. See the Graph Theory handbook page 679.

Weighted Laplacians

Definition: We can "weight" the edges. Let W be a diagonal weight matrix.

$$
L_{\mathrm{in}, W}=(E W)\left(E^{T}-B^{T}\right)
$$

We drop the subscript " W ". In particular

$$
\mathcal{L}_{\mathrm{in}}=\left(E D^{-1}\right)\left(E^{T}-B^{T}\right)
$$

where $D_{i i}=1$ if the in-degree in 0 . (see DI)
Remark: Note that

$$
\left[(E W) B^{T}\right]_{i j}=\sum_{k} E_{i k} W_{k k} B_{j k}
$$

which means the weights go to the edges (not the vertices).
Be careful: The symbol $\mathcal{L}_{\text {out }}$ is reserved for the out-degree rw Laplacian. The edges have a weight different from that of $\mathcal{L}_{\text {in }}$. See example.

Example with Weights

$$
\mathcal{L}_{\text {out }}=\left(\begin{array}{ccccccc}
\mathbf{1} & -\mathbf{1} / \mathbf{2} & 0 & 0 & 0 & -\mathbf{1} / \mathbf{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \mathbf{1} & -\mathbf{1} / \mathbf{2} & 0 & 0 & -\mathbf{1} / \mathbf{2} \\
0 & 0 & 0 & \mathbf{1} & -\mathbf{1} & 0 & 0 \\
0 & 0 & 0 & \mathbf{- 1} & \mathbf{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \mathbf{1} & -\mathbf{1} \\
0 & 0 & 0 & 0 & 0 & -\mathbf{1} & \mathbf{1}
\end{array}\right)
$$

Notice that the sum of these two is NOT symmetric. Edge 6 ($\mathcal{L}_{\text {in }, 4,3}$ and $\mathcal{L}_{\text {out }, 3,4}$) received two different weights in each case.

From a presentation by David Angeli, Univ of Firenze, Italy. Chemical networks can have thousands of vertices.

Reaction 1: $\quad 2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
Reaction 2: $\quad \mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
Concentrations of $\mathrm{C}+\mathrm{O}_{2}$ is an ambiguous concept.
Can measure only concentrations of molecules: $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}$ etc.
Set x_{i} equal to concentration of following molecules:

$$
x_{1} \leftrightarrow H_{2}, x_{2} \leftrightarrow O_{2}, x_{3} \leftrightarrow H_{2} O, x_{4} \leftrightarrow C, x_{5} \leftrightarrow C O_{2}
$$

Assume all molecules are unif. distr. in the mix.
Observation 1. Reaction 1 says: for every 2 molecules H_{2} and 1 molecule O_{2} that react we get 2 molecules $\mathrm{H}_{2} \mathrm{O}$ back. Observation 2. Reaction rate is proportional to the chance that that the reacting molecules "meet". For reaction 1 that is $x_{1}^{2} x_{2}$. The constant of the proportionality is called k_{1}.

The same for reaction 2 . So:

$$
\begin{aligned}
\dot{x}_{1} & =-2 k_{1} x_{1}^{2} x_{2} \\
\dot{x}_{2} & =-2 k_{1} x_{1}^{2} x_{2}-k_{2} x_{2} x_{4} \\
\dot{x}_{3} & =2 k_{1} x_{1}^{2} x_{2} \\
\dot{x}_{4} & =-k_{2} x_{2} x_{4} \\
\dot{x}_{5} & =k_{2} x_{2} x_{4}
\end{aligned}
$$

Observation 2 is called the mass action principle.

Definition: (conc. means concentration)
$\mathbb{R}^{c} \quad$ "conc.s of molecules" variables x_{i}
\mathbb{R}^{v} "conc.s of reacting mixtures" variables v_{i}
$\mathbb{R}^{e} \quad$ "reactions" denoted by e_{i}
Relevant Operators:

$$
\psi \text { (non-linear) }: \mathbb{R}^{c} \rightarrow \mathbb{R}^{v}
$$

E, B (linear) $: \mathbb{R}^{e} \rightarrow \mathbb{R}^{v} \quad$ and $\quad E^{T}, B^{T}: \mathbb{R}^{v} \rightarrow \mathbb{R}^{e}$
S (linear) : $\mathbb{R}^{v} \rightarrow \mathbb{R}^{c}$
Key Idea 1. Use mass action to give ode for conc.s of $\left\{x_{i}\right\}_{1}^{c}$.

$$
\mathbb{R}^{c} \stackrel{S}{\leftarrow} \mathbb{R}^{v} \stackrel{\partial=E-B}{\leftarrow} \mathbb{R}^{e} \stackrel{W}{\leftarrow} \mathbb{R}^{e} \stackrel{B^{T}}{\leftarrow} \mathbb{R}^{v} \stackrel{\psi}{\leftarrow} \mathbb{R}^{c}
$$

Key Idea 2. Form a network by putting together the reactions $v_{i} \xrightarrow{e_{e}} v_{j}$ with the v_{i} as its vertices. Our example:

$$
\begin{aligned}
& v_{1} \xrightarrow{e_{1}} v_{2} \\
& v_{3} \xrightarrow{e_{2}} v_{4}
\end{aligned}
$$

v_{1} is the conc. of the reacting mixture, i.e. $2 \mathrm{H}_{2}+\mathrm{O}_{2}$, etc. Look at the associated Laplacian !!!

$$
\begin{gathered}
\text {... and Some Details } \\
v_{1} \xrightarrow{v_{1}} v_{2} \\
v_{3} \xrightarrow{e_{2}} v_{4} \quad \text { where } \\
e_{1}: \quad 2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
e_{2}: \quad \mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}
\end{gathered} \quad \text { with } .
$$

Definition: The count of i-molecules (belonging x_{i}) in the j th vertex v_{j} equals $S_{i j}$. S has no zero rows. Rate of change \dot{x}_{i} equals the sum of rates of change of those mixtures in which that molecule occurs.

$$
\dot{x}=S \dot{v} \quad \text { or } \quad \dot{x}_{j}=\sum_{i} S_{j i} \dot{v}_{i}
$$

Exercise: Show that for our example

$$
S=\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Mass Action Lemma. The probability ψ_{i} that all molecules in v_{i} "meet" is

$$
\psi_{i}(x) \equiv \prod_{j} x_{j}^{S_{j i}}
$$

Exercise: Show that if $x>0$, then $\operatorname{Ln} \psi(x)=S^{T} \operatorname{Ln} x$. Exercise: Show that for this example

$$
\psi_{1}=x_{1}^{2} x_{2}, \quad \psi_{2}=x_{3}^{2}, \quad \psi_{3}=x_{2} x_{4}, \quad \psi_{4}=x_{5}
$$

Prescription 1: Form the diff eqns as follows:
$\mathbb{R}^{c} \rightarrow \mathbb{R}^{v} ; \quad$ convert conc.s to mass action terms; ψ $\mathbb{R}^{v} \rightarrow \mathbb{R}^{e} ;$ assign initial m.a. term to each edge; $\quad B^{T}$ $\mathbb{R}^{e} \rightarrow \mathbb{R}^{e} ; \quad$ weight each e_{i} by its reaction rate; $\quad W$ $\mathbb{R}^{e} \rightarrow \mathbb{R}^{v} ;$ add @endvertex, subtr. @ startvertex; $E-B$ $\mathbb{R}^{v} \rightarrow \mathbb{R}^{c} ; \quad$ convert to conc. of molecules; $\quad S$

Prescription 2: Recall out-degree Lapl. (Thm 1), so that

$$
\dot{x}=-S L_{\mathrm{out}}^{T} \Psi(x)
$$

Exercise: Compute B, E, and W for this example.
Exercise: Use B, E, and W to compute $L_{\text {out }}$ and $L_{\text {out }}^{T}$.
Exercise: Use S, ψ, and $L_{\text {out }}^{T}$ to show that for the example:

$$
\begin{aligned}
& \dot{x}_{1}=-2 k_{1} x_{1}^{2} x_{2} \\
& \dot{x}_{2}=-k_{1} x_{1}^{2} x_{2}-k_{2} x_{2} x_{4} \\
& \dot{x}_{3}=2 k_{1} x_{1}^{2} x_{2} \\
& \dot{x}_{4}=-k_{2} x_{2} x_{4} \\
& \dot{x}_{5}=k_{2} x_{2} x_{4}
\end{aligned}
$$

DIFFERENCE WITH EARLIER WORK

Later is Better?

Since pioneering work by Horn, Jackson, and Feinberg in the 1970's [2, 3, 4], the split into nonlinear and linear parts has been different from what we propose.
Below the proposed split (blue) and the classical split (green).

LINEAR

$$
\mathbb{R}^{c} \stackrel{S}{\leftarrow} \mathbb{R}^{v} \stackrel{\partial=E-B}{\leftarrow} \mathbb{R}^{e} \stackrel{W}{\leftarrow} \mathbb{R}^{e} \stackrel{B^{T}}{\leftarrow} \mathbb{R}^{v} \stackrel{\psi}{\leftarrow} \mathbb{R}^{c}
$$

The matrix W contains the reaction rates which are (a) difficult to measure, and (b) may strongly influence the result (zero deficiency). If you want conclusions independent from reaction rates, then put W in "nonlinear".

	advantage	disadvantage
Blue	stronger results	results may depend on W
Green	weaker results	no dependence on W

To get stronger results, need kernels of directed Laplacians, not (well)-known in the 70's.

"I'm sorry, there's no such thing as a chocolate deficiency."

Definition. The Laplacian deficiency is given by

$$
\delta:=\operatorname{dim} \operatorname{Ker} S L_{0}^{T}-\operatorname{dim} \operatorname{Ker} L_{0}^{T}
$$

Figure: dim of $\operatorname{Im} L_{\mathrm{o}}^{T}$ equals that of $\operatorname{Im} S L_{\mathrm{o}}^{T}$. So $\delta=0$ and None of the dynamics is hidden by S !

Recall:

(i) Graph G is componentwise strongly connected (CSC) if each weak component is strongly connected (see DI).
(ii) The algebraic and geometric multiplicity of the eigenvalue

0 of L equals k, the number of reaches (see DII).
(iii) Left kernel of L is spanned by row vectors $\bar{\gamma}_{i}$ (see DII):

$$
\left\{\begin{array}{cl}
\bar{\gamma}_{m}(j)>0 & \text { if } j \in B_{m} \text { (cabal) } \\
\bar{\gamma}_{m}(j)=0 & \text { if } j \notin B_{m} \\
\sum_{j=1}^{k} \bar{\gamma}_{m}(j)=1 & \\
\left\{\bar{\gamma}_{m}\right\}_{m=1}^{k} \text { are orthogonal } &
\end{array}\right.
$$

Definition. (i) For x, y in $\mathbb{R}^{n}: x>y$ if true componentwise. (ii) For $x>0$ in \mathbb{R}^{n}, define $\operatorname{Ln} x$ as $\left(\ln x_{1}, \cdots, \ln x_{n}\right)$.

The theorem that inititated the mathematical study of CRNs was proved in 1972 [2]. We give a modern version due to [5]. Exercise: Recall that if $x>0$, then $\operatorname{Ln} \psi(x)=S^{T} \operatorname{Ln} x$.

Zero Laplacian Deficiency Theorem. Suppose a CRN has $\delta=0$. Then

$$
\dot{x}=-S L_{\mathrm{out}}^{T} \psi(x)
$$

has a (strictly) pos. equil. \Longleftrightarrow its graph is CSC.
In what follows, x denotes a vector in \mathbb{R}^{v}, a a real number, and $\mathbf{1}_{\mathrm{S}}$ a vector in \mathbb{R}^{v} that is 1 on S and 0 else.

Exercise: Show that if $a>0$ and $x>0$, then

$$
\operatorname{Ln} a x=\ln a \cdot \mathbf{1}+\operatorname{Ln} x
$$

Lemma. The condition $\delta=0$ is equivalent to

$$
\operatorname{Im} S^{T}+\operatorname{Ker} L_{o}=\mathbb{R}^{v}
$$

Proof. $\delta=0$ is equivalent to $\operatorname{Ker} S \cap \operatorname{Im} L_{o}^{T}=\{0\}$.
Take orthogonal complement of both sides to get

$$
(\operatorname{Ker} S)^{T}+\operatorname{Im}\left(L_{o}^{T}\right)^{T}=\mathbb{R}^{v}
$$

The LHS equals $\operatorname{Im} S^{T}+\operatorname{Ker} L_{o}$ by linear algebra. Done.

Assume

$$
\dot{x}=-S L_{\text {out }}^{T} \Psi(x)
$$

has pos. equil. x^{*} and prove CSC.
Existence of pos. equil. $x^{*}>0$ shows that, since there is $x^{*}>0$ with $\dot{x}^{*}=0$,

$$
\psi\left(x^{*}\right)>0 \quad \text { such that } S L_{\text {out }}^{T} \psi\left(x^{*}\right)=0
$$

No hidden dynamics (or $\delta=0$) then gives

$$
L_{\mathrm{out}}^{T} \psi\left(x^{*}\right)=0 \quad \text { or } \quad \psi\left(x^{*}\right)^{T} L_{\mathrm{out}}=0
$$

By theorems on left kernels (see DII), we may therefore write

$$
\psi\left(x^{*}\right)^{T}=\sum_{i=m}^{k} a_{m} \bar{\gamma}_{m} \quad \text { and } \quad \forall a_{m}>0
$$

But $\psi\left(x^{*}\right)>0$ and γ_{m} are positive on cabals only. So every vertex is in a cabal. Therefore the graph is CSC.

Done.

Assume CSC, then show that

 $\exists x^{*}>0$ such that $\psi\left(x^{*}\right)=\sum_{i=m}^{k} a_{m} \bar{\gamma}_{m}^{T}$ and $\forall a_{m}>0$Exercise: Use the two exercises on pg 22 to deduce that the blue equation can be rewritten as

$$
S^{T} \operatorname{Ln} x^{*}=\sum_{m=1}^{k}\left(\ln a_{m}\right) \mathbf{1}_{\mathbf{R}_{\mathrm{m}}}+\operatorname{Ln} \sum_{m=1}^{k} \bar{\gamma}_{m}^{T}
$$

where $\mathbf{1}_{\mathbf{R}_{\mathrm{m}}}$ is the characteristic vector of the m th reach (component in this case).

Proof continued:Then re-arrange this as

$$
\operatorname{Ln} \sum_{m=1}^{k} \bar{\gamma}_{m}^{T}=S^{T} \operatorname{Ln} x^{*}-\sum_{m=1}^{k}\left(\ln a_{m}\right) \mathbf{1}_{\mathbf{R}_{\mathrm{m}}}
$$

1st term of RHS ranges over $\operatorname{Im} S^{T}$ and 2nd over Ker L.
This has a solution if

$$
\operatorname{Im} S^{T}+\operatorname{Ker} L=\mathbb{R}^{v}
$$

Guaranteed by zero deficiency condition (use the Lemma).
Done.

$$
\begin{aligned}
& v_{1} \xrightarrow{e_{1}} v_{2} \\
& v_{3} \xrightarrow{e_{2}} v_{4}
\end{aligned}
$$

This graph has two weak components, neither of which is SC.

$$
S=\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \text { and } L_{o}^{T}=\left(\begin{array}{cccc}
k_{1} & 0 & 0 & 0 \\
-k_{1} & 0 & 0 & 0 \\
0 & 0 & k_{2} & 0 \\
0 & 0 & -k_{2} & 0
\end{array}\right)
$$

Exercise: Find the span of $\operatorname{Im} L_{o}^{T}$ and of $\operatorname{Ker} S$.
Conclude from the exercise that $\delta=0$.
Conclude from 0-def thm that there is no strictly pos equil.
Confirm that conclusion from the equations:

$$
\begin{aligned}
& \dot{x}_{1}=-2 k_{1} x_{1}^{2} x_{2} \\
& \dot{x}_{2}=-k_{1} x_{1}^{2} x_{2}-k_{2} x_{2} x_{4} \\
& \dot{x}_{3}=2 k_{1} x_{1}^{2} x_{2} \\
& \dot{x}_{4}=-k_{2} x_{2} x_{4} \\
& \dot{x}_{5}=k_{2} x_{2} x_{4}
\end{aligned}
$$

FURTHER

DEVELOPMENTS

Sorry Professor, you're right: I DID skip a line of the instructions...

Bounded Orbits

Theorem [5]. Suppose $\delta=0$. Then

$$
\dot{x}=-S L_{\text {out }}^{T} \psi(x)
$$

has pos. orbit $x(t)$ with $\operatorname{Ln} x(t)$ bdd \Longleftrightarrow graph is CSC.
Note: \Leftarrow follows from 0-def. But \Rightarrow strengthens it.

The 0-def thm says: CSC implies existence of equilibrium. So: Corollary. A 0 -def system with an orbit $x(t)$ whose Log is bounded (see figure) must have a fixed point.

Constants of the Motion and Stability

Exercise: Show that $(\operatorname{Im} A)^{\perp}=\operatorname{Ker} A^{T}$.
Thus the orbit $x(t)$ of

$$
\dot{x}=-S L_{\text {out }}^{T} \psi(x)
$$

\dot{x} is parallel to $\operatorname{Im} S L_{o}^{T}$ and $x(t)=z+y(t), z$ constant. z is the orthogonal proj onto $\operatorname{Ker} L_{o} S^{T}$.

Theorem [5]. Suppose $\delta=0$ and CSC. Then:
(i) For every $z \in \operatorname{Ker} L S^{T}$, there is a unique $y \in \operatorname{Im} S L^{T}$ such that $y+z$ is a positive equilibrium.
(ii) The ω-limit set of any positive initial condition either equals that equilibrium or is a bounded set contained in the boundary of the positive orthant.

FORMULATION OF THE MATRIX TREE THEOREM

Lots of Trees

Definition: For the purpose of this section, we write:

$$
\begin{aligned}
L_{\text {in }} & =(E W)\left(E^{T}-B^{T}\right) \\
L_{\text {out }} & =(-B W)\left(E^{T}-B^{T}\right) \\
\underline{L} & =(E W-B W)\left(E^{T}-B^{T}\right) \\
& =(E-B) W\left(E^{T}-B^{T}\right)
\end{aligned}
$$

Definition: A spanning out-tree rooted at vertex r (SOTR) is a graph such that

- if $i \neq r$, then in-degree at i equals 1 .
- in-degree at r equals 0 .
- no directed cycles.

For a SITR: swap "out" and "in".
Figure: Left: out-tree rooted at r, and right: in-tree.

Definition: A spanning undirected tree rooted at r (SUTR) is a connected graph with no cycles. (No loose vertices.)

And To Each Their Tree

$$
\begin{aligned}
L_{\mathrm{in}} & =(E W)\left(E^{T}-B^{T}\right) \\
L_{\mathrm{out}} & =(-B W)\left(E^{T}-B^{T}\right) \\
\underline{L} & =(E W-B W)\left(E^{T}-B^{T}\right) \\
& (E W)_{i j}=\sum_{k} E_{i k} W_{k j}
\end{aligned}
$$

So the effect of the diagonal matrix W is to multiply the i th edge (column) by the i th entry $W_{i i}$.
Definition: The weight $W(T)$ of a tree T is the product of the weights of all its edges. Allow arbitrary (positive) weights. The weighted adjacency matrix is $\overline{\text { denoted }}$ by S and the diagonal row-sum matrix of S is denoted by D.

Definition: For a Laplacian L, let \mathcal{T}_{r} be the appropriate set of spanning trees rooted at r. By this we mean:

- For L_{in}, it is the SOTR's
- For $L_{\text {out }}$, it is the SITR's
- For \underline{L}, it is the SUTR's.

Matrix Tree Theorems

Definition: Assume G has n vertices. Let I_{r} be the set V of all vertices except r.

Theorem 2 (Matrix Tree): L a Laplacian. Then

$$
q_{r}:=\operatorname{det} L\left[I_{r}, I_{r}\right]=\sum_{T_{r} \in \mathcal{T}_{r}} W\left(T_{r}\right)
$$

Observation 1: If G has $k>1$ reaches, then no SORTs. DII Thm 9: L has eval 0 with mult. $k>1$. Reducing L by 1 column and row will give det $L\left[I_{r}, I_{r}\right]=0$.

Exercise: Show that for a digraph G with one reach, if r is not in a cabal, then det $L\left[I_{r}, I_{r}\right]=0$.

The proofs of the cases where $L=L_{\text {in }}$ or $L=L_{\text {out }}$ are almost identical (just swap "in" and "out"). In the undirected case: reaches are connected components.

Theorem 3: Furthermore

$$
\sum_{r} q_{r} L_{r i}=0
$$

Observation 2: Thus the weight of rooted trees at vertex r has a probabilistic interpretation. (Gives stationary probability measure under rw.)

Exercises Using Path Graph

Exercise: For the graph above write out $L_{\text {in }}$.
Exercise: Let q_{k} the weight of out-trees rooted in vertex k. Show that $q_{k}=\prod_{k+1}^{n} a_{i} \prod_{i=1}^{k-1} b_{i}$.

Denote by q the row-vector $\left(q_{1}, q_{2}, \cdots q_{n}\right)$.
Exercise: Show that $q L_{\text {in }}=0$.
Exercise: Repeat exercises on this page, but now for $L_{\text {out }}$ and \underline{L}.

PROOF OF MATRIX TREE FOR $L_{\text {in }}$

First Use Cauchy-Binet

Definition (DI): $I(K)$ subset of the row (column) labels of matrix A. $A[I, K]$ consists of the entries of A in $I \times K$.

Exercise: $L=A B$ where A and B matrices as depicted above. Show that matrix multiplication implies

$$
L[I, J]=A[I, \text { all }] B[\text { all }, J]
$$

Now let $|I|=|J|=k$. By Cauchy-Binet (Thm 3 of DI):

$$
\operatorname{det}((A B)[I, J])=\sum_{K,|K|=k} \operatorname{det}(A[I, K]) \operatorname{det}(B[K, J])
$$

Since $L_{\text {in }}=(E W)\left(E^{T}-B^{T}\right)$, we have
Proposition: $I_{r}:=V \backslash\{r\}$. Then $\operatorname{det}\left(L_{\mathrm{in}}\left[I_{r}, I_{r}\right]\right)$ equals

$$
\sum_{K,|K|=n-1} \operatorname{det}\left((E W)\left[I_{r}, K\right]\right) \operatorname{det}\left(\left(E^{T}-B^{T}\right)\left[K, I_{r}\right]\right)
$$

Assume K Not a Tree

Recall: SOTR is a graph such that

1. if $i \neq r$, then in-degree at i equals 1 .
2. in-degree at r equals 0 .
3. no directed cycles.
$\operatorname{det}\left(L_{\mathrm{in}}\left[I_{r}, I_{r}\right]\right)=\sum_{K} \operatorname{det}\left((E W)\left[I_{r}, K\right]\right) \operatorname{det}\left(\left(E^{T}-B^{T}\right)\left[K, I_{r}\right]\right)$
In RHS, each choice of K selects $n-1$ edges.
If the $n-1$ edges K do not form a SOTR:
Fail $1 \Rightarrow \exists i \neq r$ with in-degree $0 \Rightarrow E$ has zero row, or
Fail $2 \Rightarrow$ in-degree at r not $0 \Rightarrow$ same as fail 1 , or
Fail $3 \Rightarrow \partial($ cycle $)=0 \Rightarrow \operatorname{ker}\left(E^{T}-B^{T}\right)$ has $\operatorname{dim}>0$.
Example w. 6 vertices and 5 edges: Left: column 5 of

$E\left[I_{r}, K\right]$ is 0. Right: $\left(E^{T}-B^{T}\right)[\{2,3,4,5\},\{2,3,4,5\}]$ has row sum 0 .

Total contribution: zero!

Assume K a Tree

If the $n-1$ edges of K do form a SOTR:
Relabel vertices and edges so that:

1. If $j>i$, then path from $r \rightsquigarrow i$ does not pass through j.
2. And then so that edge i ends in vertex i.

For each K, same permutations are done in two factors:

$$
\sum_{K,|K|=n-1} \operatorname{det}\left((E W)\left[I_{r}, K\right]\right) \operatorname{det}\left(\left(E^{T}-B^{T}\right)\left[K, I_{r}\right]\right)
$$

Thus the permutations have no net effect: $(-1)^{\text {even }}$!
Result: $E\left[I_{r}, K\right]$ is the identity, and $B\left[I_{r}, K\right]$ is upper tridiag with 0 on diag.

Example of SOTR w. 6 vertices and 5 edges: Left: Before

permutations. Right: After.
Total contribution: The weight of the tree!
Exercise: Repeat proof for $L_{\text {out }}$ (trivial) and \underline{L} (needs minor adaptation).
TREES,
UNICYCLES,
PROBABILITY

(c) Unicycle.com

Lots of Unicycles, and to Each ...

Definition: An augmented spanning out-tree rooted at vertex r (ASOTR) is a
SOTR plus 1 extra edge $k \rightarrow r$ such that $\left(L_{\text {in }}\right)_{r k}>0$.
Similarly, an ASITR is a
SITR plus 1 extra edge $r \rightarrow k$ such that $\left(L_{\text {out }}\right)_{r k}>0$.
Left: Augmented out-tree. Right: Augmented in-tree.

Definition: An augm. spanning undirected tree rooted at r (ASUTR) is a SUTR with 1 extra edge from r to a neighbor.

Remark: These graphs contain 1 cycle! They are most commonly called cycle-rooted trees or unicycles.

Definition: For a Laplacian L, let \mathcal{A}_{r} be the appropriate set of augm. spanning trees rooted at r. By this we mean:

- For $L_{\text {in }}$, it is the ASOTR's
- For $L_{\text {out }}$, it is the ASITR's
- For \underline{L}, it is the ASUTR's.

Counting Unicycles at Vertex r

Exercise: Show that a unicycle contains exactly 1 cycle. (Hint: contract along the spanning tree. The cycles are the remaining edges.)

Two ways to compute the weight of the $L_{\text {in }}$-appropriate r-rooted unicycles (ASOTR's) for a given graph G (see figure).

RECALL: S is the weighted (by W) adjacency matrix. The diagonal row-sum matrix is D.

Left(1): To SOTR at r, add edge from parent k of r to r. Right(2): To SORT at child j of r, add edge from r to j.

Total weight of unicycles rooted at r is denoted by u_{r}.
From 1: $\quad \mathbf{u}_{\mathbf{r}}=\sum_{\mathbf{k}} \mathbf{q}_{\mathbf{r}} \mathbf{S}_{\mathbf{r k}}=\mathbf{q}_{\mathbf{r}} \mathbf{D}_{\mathbf{r r}}$
(Proof: The row-sum of S is given by D.)
From 2: $\quad \mathbf{u}_{\mathbf{r}}=\sum_{\mathbf{j}} \mathbf{q}_{\mathbf{j}} \mathbf{S}_{\mathbf{j} \mathbf{r}}$

Proof of Theorem 3

EASY! Equate the two expressions:

$$
0=q_{r} D_{r r}-\sum_{j} q_{j} S_{j r}=[q(D-S)]_{r}=\left[q L_{\mathrm{in}}\right]_{r}
$$

which proves Thm 3 for L_{in}.
DONE!
Remark: If S is a rw walk matrix, then D is identity and q is the stationary probability measure.

Exercise: Prove Theorem 3 for $L_{\text {out }}$ and \underline{L}.

References

[1] P. De Leenheer, An Elementary Proof of a Matrix Tree Theorem for Directed Graphs, https://arxiv.org/abs/1904.12221.
[2] M. Feinberg. Complex balancing in general kinetic systems, Archive for Rational Mechanics and Analysis, 49(3):187-194, 1972.
[3] F. J. M. Horn, Necessary and Sufficient Conditions for Complex Balancing in Chemical Kinetics, Archive for Rational Mechanics and Analysis, 49(3):172-186, 1972.
[4] F. J. M. Horn and R. Jackson, General mass action kinetics, Archive for Rational Mechanics and Analysis, 47(2):81-116, 1972.
[5] J. J. P. Veerman, T. Whalen-Wagner, E. Kummel Chemical Reaction Networks in a Laplacian Framework, Chaos, Solitons, and Fractals, accepted.

