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SUMMARY:

* We differential equations governing the behavior of chemical
reaction networks can be built up using the boundary operators.
This gives rise, very naturally, to a Laplacian formulation of
the dynamics.

* These differential equations are nonlinear. In spite of that,
in many cases, the Laplacian approach can be used to describe
the global dynamics of the network.

* Matrix tree theorems connect different branches of math-
ematics (combinatorics, linear algebra, probability) in unex-
pected ways. For this reason, they play an important role in
the graph theory literature.

* We give a detailed description of various matrix tree theo-
rems. These theorems relate the determinant of certain subma-
trices of the usual Laplacian to the number of spanning trees
rooted at each vertex.

* We give a simple, short, combinatorial proof loosely inspired
by [1].

* We include a discussion that relates the number of spanning
trees at each vertex to the stable probability measure of random
walk on a strongly connected graph.



OUTLINE:
The headings of this talk are color-coded as follows:

Boundary Operators
Chemical Reaction Networks
Example and Further Develeopments

Proof of Matrix Tree Theorems
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The Boundary Matrices
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Definition: Given a digraph G, define matrices B (for Begin)
and E (for End), as maps Edges — Vertices.

I 1if vertex i ends edge j
E.. =
g 0 else
1 if vertex i starts edge j
B.. =
g 0 else
(00000000) (11000000)
10000000 00000000O0
00000001 00001100
E=100000100 B=]100000010
00000010O0 00000001
01100000 00010000
00011000 00100000

\ \

N

Edges are columns. Vertices are rows.

Consistent with definition of boundary operator in topology:
o.:=FE—-B



From Boundary to Adjacency

Let v number of vertices. Want an operator mapping C" to it-
self. Thus EET, EBT, BE", and BB" are natural candidates.
We investigate these operators.

FACT 1:
Ty _—
(EE"); = ) EEj
k

1s the # edges that end in i and 1n j.
Thus it is the diagonal in-degree matrix.
Similarly, BB! is the diagonal out-degree matrix.

FACT 2:
Ty —
(EB"); = )’ Ey By
k

1s the # edges that start in j and end in i.
It is the comb. in-degree adj. matrix Q (as in DI).
And BE! is the comb. out-degree adj. matrix or Q7.

Lemma: In the notation of DI, we have:
D=EE" andQ = EB’
Exercise: Check the facts as well as the ones mentioned for

BBT and BE".

Exercise: Interpret as operators C¢ — C¢ (e number of edges).



... and on to Laplacians

The Lemma immediately implies:

Theorem 1: In the notation of DI, we have:
L=EE"-B"Y and L, =-BE"-B"

where L is the Laplacian of the graph G with all orien-
tations reversed.

The example in the next pages illustrate the following two re-
marks.

Remarkl: Be careful to note that L, # L' !!

Remark 2: Note that the sum of L and L 1s the Lapl. of the
underlying graph G. Thus:

Corollary: We have:
L=L+L,,=(E-B)E"-B")=00"

Remark: This is the traditional definition of the Laplacian in
topology.

Re-Definition: L is the standard comb. Lapl. of the previous
lectures. Better notation in this context: From now on, replace
LbylL,,
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(0 00 0 0 0 0)
-11 0 0 O O O
O 01 0 -1 0 O
L. =l00-11 0 0 0
O 00 -11 0 O
-10 0 0 O 2 -1
L0 0-10 0 -1 2
(2 -1 0 0 0 -1 0
OO0 0 O O O O
00 2 -1 0 0 -1
L,=|l00 0 1 -10 0
O 0 -1 0 1 0 O
OO0 0 0 0 1 -1
00 0 0 0 —1 1

And L = L, + L, 1s symmetric. (Note that the edge between
vertices 6 and 7 doubles or acquires weight 2 in this process.)

Exercise: Find these Laplacians from Theorem 1.



ETB — 21 and BT E — 21 give versions of the adjacency
matrix of the linegraph of G. This needs working out. See the

Graph Theory handbook page 679.



Definition: We can “weight" the edges. Let W be a diagonal
weight matrix.

L.y =(EW)E" - B")
We drop the subscript “W". In particular
L. =(ED"WET - BT)
where D;; = 1 if the in-degree in 0. (see DI)
Remark: Note that
(EW)BT|, = ) E,W,B,
k

ij
which means the weights go to the edges (not the vertices).

Be careful: The symbol L is reserved for the out-degree rw
Laplacian. The edges have a weight different from that of L. .
See example.
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Example with Weights
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(0 0 O 0O O 0 0 )
11 0 00 0 O
0O 0 1 O -1 O 0
.= 0 0 -1 1.0 0 0
O 0 0 -11 0 0
~1/20 0 0 0 1 -1/2
L 0 0-1/20 0 -1/2 1 |
(1 -1/20 0 0 -1/2 0 )
O 0 O O 0 0 0
0 0 1-1/20 0 -1/2
c.=]0 0 0 1 -1 0 0
O 0 0 -1 1 0 0
O 0 O O 0 1 -1
o000 0 -1 1

Notice that the sum of these two is NOT symmetric. Edge 6
(L;,45and L, 5 4) received two different weights in each case.
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From a presentation by David Angeli, Univ of Firenze, Italy.
Chemical networks can have thousands of vertices.
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Reaction 1: 2H,+0, - 2H,0
Reaction 2: C+0, - CO,

Concentrations of C + O, is an ambiguous concept.
Can measure only concentrations of molecules: H,O, H, etc.

Set x; equal to concentration of following molecules:
X, Hy, x,0,, x30 HO, x,C, xs CO,
Assume all molecules are unif. distr. in the mix.

Observation 1. Reaction 1 says: for every 2 molecules H,
and 1 molecule O, that react we get 2 molecules H,O back.

Observation 2. Reaction rate is proportional to the chance that

2
1

that the reacting molecules “meet". For reaction 1 thatis x
The constant of the proportionality is called k.

Xy.

The same for reaction 2. So:
<, = —2k,x>
xl = — 1x1x2
. _ 2

Observation 2 1s called the mass action principle.

13



Definition: (conc. means concentration)

R* “conc.s of molecules" variables x;
IR® “conc.s of reacting mixtures" variables v,
R® “reactions" denoted by e,

Relevant Operators:
w (non-linear) : R - RR”
E,B(linear) : R*->RY and ET,B" : R" > R¢
S (linear) : R" - IR

Key Idea 1. Use mass action to give ode for conc.s of {x;}{.

S 0=E—B /4 BT w
R —« R «— R°® «— R°® «— R’ « IR

Key Idea 2. Form a network by putting together the reactions

2 . . .
v; = v; with the v; as its vertices. Our example:

€1
€2
vy — Uy
v, 1s the conc. of the reacting mixture, i.e. 2H, + O,, etc.
Look at the associated Laplacian !!!

14



|
Ul — 1)2

€2
v; — v,  Wwhere

e, . C+0, - CO, with

X, Hy, x,0,, x30 H,O, x,<C, xs CO,

Definition: The count of i-molecules (belonging x;) in the jth
vertex v; equals .S;;. S has no zero rows. Rate of change x;
equals the sum of rates of change of those mixtures in which
that molecule occurs.

x =S50 or xj=z S;i0; .
i

Exercise: Show that for our example

(200

S = O =

15



Mass Action Lemma. The probability y; that all molecules
in v; “meet" 1s
S
ZOES X
J

Exercise: Show that if x > 0, then Ln w(x) = S”Ln x.
Exercise: Show that for this example

_ 2 _ 2 _ _
Vi =Xy X2, Wp = X5, W3 = XoXy s Wy = Xs

16



Prescription 1: Form the diff eqns as follows:

IR - R", convert conc.s to mass action terms; 174
IR’ — IR®; assign initial m.a. term to each edge; B!
IR® — R  weight each e, by its reaction rate; |14
R¢ - IR"; add @endvertex, subtr. @startvertex; E — B
RY - RS convert to conc. of molecules; S
S o0=E—B 14 BT v
]RC «— ]Rv «— ]Re «— ]Re «— ]Rv «— ]RC
\\ _J/
i

Prescription 2: Recall out-degree Lapl. (Thm 1), so that
X = —SLOTutq/(x)

Exercise: Compute B, E, and W for this example.
Exercise: Use B, E, and W to compute L, and L .

Exercise: Use S, v, and LOTut to show that for the example:
X| = —2k1x%x2
Xy = —klx%x2 — kyXyxy
Xy = 2k1x%x2

—k,Xx,x,

><.
N
I
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DIFFERENCE
WITH
EARLIER WORK
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Later is Better?

Since pioneering work by Horn, Jackson, and Feinberg in the
1970’s [2, 3, 4], the split into nonlinear and linear parts has
been different from what we propose.

Below the proposed split (blue) and the classical split (green).

LINEAR NONLINEAR
' ! [r—
. S , 0=E-B . W . BT ’ v .
R* «—< IR — R «— R <R — R
L <~ _J
_gT
out
LINEAR NONLINEAR

r 1 I 1
S 0=E—B 114 BT v
R¢ —« RY «— R¢ « R «— R"Y «— R¢

The matrix W contains the reaction rates which are (a) difficult
to measure, and (b) may strongly influence the result (zero de-
ficiency). If you want conclusions independent from reaction
rates, then put W in “nonlinear".

advantage disadvantage

Blue | stronger results | results may depend on W

Green | weaker results no dependence on W

To get stronger results, need kernels of directed Laplacians,
not (well)-known 1n the 70’s.

19



“I’'m sorvy, there’s no such thing
as a chocolate deficiency.”
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Definition. The Laplacian deficiency is given by
6 .= dim Ker SLOT — dim Ker LOT

Figure: dim of Im L equals that of Im.SL!. So 6 = 0 and
None of the dynamics is hidden by 5!

Recall:

(1) Graph G is componentwise strongly connected (CSC) if
each weak component is strongly connected (see DI).

(ii) The algebraic and geometric multiplicity of the eigenvalue
0 of L equals k, the number of reaches (see DII).

(i) Left kernel of L is spanned by row vectors ¥, (see DII):

Ym(j) >0 if j € B, (cabal)
Ym() =0 if j¢&B,
Y ) =1
{7,,}%_, are orthogonal

"

Definition. (i) For x, y in R": x > y if true componentwise.
(ii) For x > 0 in IR”, define Ln x as (In x, -+ ,In x,).

21



The theorem that inititated the mathematical study of CRNs
was proved in 1972 [2]. We give a modern version due to [5].

Exercise: Recall that if x > 0, then Ln y(x) = S”Ln x.

Zero Laplacian Deficiency Theorem. Suppose a CRN has
6 = 0. Then
X = —SLOTuty/(x)

has a (strictly) pos. equil. < its graph is CSC.

In what follows, x denotes a vector in R”, a a real number, and
15 a vector in IR” that is 1 on .S and O else.

Exercise: Show that if a > 0 and x > 0, then

ILnax=Ina - 1+Lnx

Lemma. The condition 6 = 0O is equivalent to

ImS’ + Ker L, = R"

Proof. 6 = 0 is equivalent to Ker S nIm L = {0}.
Take orthogonal complement of both sides to get

(Ker $)' +Im(L))" =R”
The LHS equals Im S” + Ker L, by linear algebra. Done.

22



Assume
x=-SL! w(x)

has pos. equil. x* and prove CSC.

Existence of pos. equil. x* > 0 shows that, since there is
x* > 0 with x* = 0,

w(x*) >0 suchthat SL! w(x*)=0

No hidden dynamics (or 6 = 0) then gives
LOTutt//(x*) =0 or w(&x*'L,=0

By theorems on left kernels (see DII), we may therefore write
k

w(x*! = Z a,y, and Va, >0

i=m

But w(x*) > 0 and y,, are positive on cabals only. So every
vertex is in a cabal. Therefore the graph is CSC.

Done.

23



Assume CSC, then show that

k
3 x* > 0 such that y(x*) = Z amyz and Va, >0

i=m

Exercise: Use the two exercises on pg 22 to deduce that the
blue equation can be rewritten as

k k
S"Lnx* = ) (Ina,)1g_+Ln ) 7L
m=1 m=1
where 1, is the characteristic vector of the mth reach (com-
ponent in this case).
Proof continued:Then re-arrange this as

k k
Ln Z 7l =8"Lnx* — Z(ln a,) g _
m=1

m=1

1st term of RHS ranges over Im S’ and 2nd over Ker L.

This has a solution if
ImST + Ker L = R".

Guaranteed by zero deficiency condition (use the Lemma).

Done.

24
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€
U3 — U4

This graph has two weak components, neither of which is SC.
( \

2000 (k0 0 0)

1010 40 0 0
S=10200]| and L' = 1

0 0 0 k, 0

0010 0 0 -1 0

0001 \ 2 %)

\ /

Exercise: Find the span of Im LZ and of Ker .S
Conclude from the exercise that 6 = 0.
Conclude from 0-def thm that there is no strictly pos equil.

Confirm that conclusion from the equations:
X| = —2klx%x2
Xy = —klx%xz — kyX5Xy
Xy = 2k1x%x2
Xy = —kyXpxy
Xs = kyXoxy

25



FURTHER
DEVELOPMENTS

HAGEN@ 2013

Sorry Professor, you're right:
I DID skip a line of the instructions...

26



Bounded Orbits

Theorem [S]. Suppose 6 = 0. Then
X = —SLOTutq/(x)
has pos. orbit x(¢) with Ln x(¢) bdd <= graph is CSC.

Note: < follows from 0-def. But = strengthens it.

______________________________________

X2

The 0-def thm says: CSC implies existence of equilibrium. So:

Corollary. A 0-def system with an orbit x(¢#) whose Log is
bounded (see figure) must have a fixed point.

27



Constants of the Motion and Stability

Exercise: Show that (Im A)* = Ker A7,
Thus the orbit x(¢) of
X = —SLOTuty/(x)

x 1s parallel to Im SLZ and x(¢) = z + y(¢), z constant.
z is the orthogonal proj onto Ker L, S7.

Theorem [5]. Suppose 6 = 0 and CSC. Then:

(i) For every z € Ker LS”, there is a unique y € Im .S L such
that y + z 1s a positive equilibrium.

(i) The w-limit set of any positive initial condition either equals
that equilibrium or is a bounded set contained in the boundary
of the positive orthant.

28
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Definition: For the purpose of this section, we write:

L. = (EW)E" - B")
L, = (-BW)E" - B"
L = (EW - BW)E" - B")
= (E-BW(E" - B")

Definition: A spanning out-tree rooted at vertex r (SOTR) is
a graph such that

-if i # r, then in-degree at i equals 1.

- in-degree at r equals O.

- no directed cycles.

For a SITR: swap “out" and “in".

Figure: Left: out-tree rooted at r, and right: in-tree.

Definition: A spanning undirected tree rooted at r (SUTR) is
a connected graph with no cycles. (No loose vertices.)

30



L. = (EW)E" - B")
L, = (-BW)E" - B"
L = (EW - BW)E" - B")

(EW),; =) E,W,
k

So the effect of the diagonal matrix W is to multiply the ith
edge (column) by the ith entry W,,.

Definition: The weight W (T) of a tree T is the product of
the weights of all its edges. Allow arbitrary (positive) weights.
The weighted adjacency matrix is denoted by .S and the diag-
onal row-sum matrix of .S’ is denoted by D.

Definition: For a Laplacian L, let 7. be the appropriate set
of spanning trees rooted at ». By this we mean:

- For L, , 1t 1s the SOTR’s

- For L, 1t is the SITR’s

- For L, it is the SUTR’s.

31



Definition: Assume G has n vertices. Let I, be the set V' of
all vertices except r.

Theorem 2 (Matrix Tree): L a Laplacian. Then

q, i=det L[I,,I]= ) W(T,)
T, €T,

Observation 1: If G has k > 1 reaches, then no SORTs. DII
Thm 9: L has eval 0 with mult. & > 1. Reducing L by 1
column and row will give det L[I,, ] = 0.

Exercise: Show that for a digraph G with one reach, if r is not
in a cabal, then det L[I,, I.] = 0.

r

The proofs of the cases where L = L, or L = L_, are almost
identical (Just swap “in" and “out"). In the undirected case:
reaches are connected components.

Theorem 3: Furthermore

Z quri =0

Observation 2: Thus the weight of rooted trees at vertex r
has a probabilistic interpretation. (Gives stationary probability
measure under rw.)

32
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Exercise: For the graph above write out L, .

Exercise: Let g, the weight of out-trees rooted in vertex k.
n k—1
Show that g, =[], a; [1._; b

Denote by g the row-vector (q;, g, *** q,,) -

Exercise: Show that gL, = 0.

Exercise: Repeat exercises on this page, but now for L_, and
L.
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PROOF OF
MATRIX TREE
FOR L,
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First Use Cauchy-Binet

Definition (DI): I (K) subset of the row (column) labels of
matrix A. A[I, K] consists of the entriesof Ain I X K.

Exercise: L = AB where A and B matrices as depicted above.
Show that matrix multiplication implies

L[I,J] = A[l,all]Blall, J]

Now let |[I'| = |J| = k. By Cauchy-Binet (Thm 3 of DI):
det (AB)[1,J]) = Z det(A[I, K])det(B[K, J])
K, K|=k
Since L., = (EW)(E!" — B!), we have
Proposition: I, := V'\{r}. Then det (Lin[Ir, I,,]) equals
Y det(EW)II,, K]) det(E" — B")[K, I,])

K,|K|=n-1

35



Assume K Not a Tree

Recall: SOTR is a graph such that

1. if i # r, then in-degree at i equals 1.
2. in-degree at r equals 0.

3. no directed cycles.

det (Liy[1,,1,]) = ) det(EW)II,, K1) det((E"-B")[K, 1,])
K

In RHS, each choice of K selects n — 1 edges.

If the n — 1 edges K do not form a SOTR:
Fail 1 = 4 i # r with in-degree 0 = E has zero row, or

Fail 2 = in-degree at r not 0 = same as fail 1, or
Fail 3 = d(cycle)= 0 = ker(E! — B") has dim > 0.

Example w. 6 vertices and 5 edges: Left: column 5 of

10—>—0—>

E[I.,K]1s 0. Right: (ET — B)[{2,3,4,5},{2,3,4,5}] has
row sum 0.

Total contribution: zero!
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Assume K a Tree

If the n — 1 edges of K do form a SOTR:

Relabel vertices and edges so that:

1. If j > i, then path from r ~ i does not pass through ;.
2. And then so that edge i ends in vertex i.

For each K, same permutations are done in two factors:
Y. det((EW)[1,,K]) det(E" — B")[K, I,])
K,|K|=n-1

Thus the permutations have no net effect: (—1)°V°"!

Result: E[I,., K] 1s the identity, and B[I,, K] is upper tridiag
with O on diag.

Example of SOTR w. 6 vertices and 5 edges: Left: Before

permutations. Right: After.
Total contribution: The weight of the tree!

Exercise: Repeat proof for L, (trivial) and L (needs minor
adaptation).
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UNICYCLES,
PROBABILITY

@ Unicycle.com
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Lots of Unicycles, and to Each ...

Definition: An augmented spanning out-tree rooted at vertex
r (ASOTR) is a

SOTR plus 1 extra edge k — r such that (L,,),, > O.
Similarly, an ASITR is a

SITR plus 1 extra edge r — k such that (L_,),, > O.

Left: Augmented out-tree. Right: Augmented in-tree.

r I
SN A
Definition: An augm. spanning undirected tree rooted at r
(ASUTR) is a SUTR with 1 extra edge from r to a neighbor.

Remark: These graphs contain 1 cycle! They are most com-
monly called cycle-rooted trees or unicycles.

Definition: For a Laplacian L, let A, be the appropriate set
of augm. spanning trees rooted at r. By this we mean:

- For L, , 1t 1s the ASOTR’s

- For L, it is the ASITR’s

- For L, it1s the ASUTR’s.
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Counting Unicycles at Vertex r

Exercise: Show that a unicycle contains exactly 1 cycle. (Hint:
contract along the spanning tree. The cycles are the remaining
edges.)

Two ways to compute the weight of the L, -appropriate r-rooted
unicycles (ASOTR’s) for a given graph G (see figure).

RECALL: S is the weighted (by W) adjacency matrix. The
diagonal row-sum matrix is D.

Left(1): To SOTR at r, add edge from parent k of r to r.
Right(2): To SORT at child j of r, add edge from r to j.

j ©
7

AW ¥,
0O O

Total weight of unicycles rooted at r is denoted by u,..
From I: u, = Z 9.5,k = q,D,,
k
(Proof: The row-sum of .S is given by D.)
From2: wu, = 2 qujr
J

40



Proof of Theorem 3

EASY ! Equate the two expressions:
0=4,D,— ) 4;S;=1a(D =), = [qLy],
J

which proves Thm 3 for L.,.
DONE!

Remark: If .S 1s a rw walk matrix, then D i1s identity and q 1s
the stationary probability measure.

Exercise: Prove Theorem 3 for L, and L.
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