Como, Italy, December 2022

DIGRAPHS I
Mathematical Background:
Perron-Frobenius, Spectral Theorem, Jordan Normal Form, Cauchy-Binet, Jacobi's Formula

Based on various sources.

J. J. P. Veerman,

Math/Stat, Portland State Univ., Portland, OR 97201, USA.
email: veerman@pdx.edu

SUMMARY:

* This is a review of four theorems from linear algebra that are important for the development of the algebraic theory of directed graphs. These theorems are the Perron-Frobenius theorem, the Cauchy-Binet formula, the Jordan Normal Form, and Jacobi's Formula.

OUTLINE:

The headings of this talk are color-coded as follows:

Graph Theory Definitions

Perron-Frobenius

The Spectral Theorem

Jordan Normal Form

Cauchy-Binet

ELEMENTARY GRAPH THEORY

smbc-comics.com

Definitions: Digraphs

Definition: A directed graph (or digraph) is a set $V=$ $\{1, \cdots n\}$ of vertices together with set of ordered pairs $E \subseteq$ $V \times V$ (the edges).

A directed edge $j \rightarrow i$, also written as $j i$.
A directed path from j to i is written as $j \rightsquigarrow i$.
Digraphs are everywhere: models of the internet [7], social networks [8], food webs [12], epidemics [11], chemical reaction networks [13], databases [6], communication networks [5], and networks of autonomous agents in control theory [9], to name but a few.

A BIG topic: Much of mathematics can be translated into graph theory (discretization, triangulation, etc). In addition, many topics in graph theory that do not translate back to continuous mathematics.

Definitions: Connectedness of digraphs

Undirected graphs are connected or not. But...

Definition: A digraph G is

* strongly connected or SC if for every ordered pair of vertices (i, j), there is a path $i \rightsquigarrow j$.
* unilaterally connected if for every ordered pair of vertices (i, j), there is a path $i \rightsquigarrow j$ or a path $j \rightsquigarrow i$.
* weakly connected if the underlying UNdirected graph is connected.
* not connected if it is not weakly connected. * componentwise strongly connected or CSC if each weak component is strongly connected.
* Multilaterally connected weakly connected but not unilaterally connected.

Exercise: Find a graph of each type.
Exercise: Find examples of digraphs and classify conn.ness. Try: the graph of the Figure and the largest strict subset relation of subsets of $\{1,2,3\}(A \rightarrow B$ if A is a maximal strict subset of B). The latter gives a 3 -dimensional cube.

The Adjacency Matrix

Definition: The combinatorial adjacency matrix Q of the graph G is the matrix whose entry $Q_{i j}=1$ if there is an edge $j i$ and equals 0 otherwise.

Interpretation: We think of $Q_{i j}=1$ as information going from j to i. Or: i "sees" j. In the graph below, both 2 and 6 "see" 1. So $Q_{21}=Q_{61}=1$.

$$
Q=\left(\begin{array}{cc|ccc|cc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Exercise: Find the combinatorial adjacency matrices of examples of previous page.

THE
 PERRON
 FROBENIUS
 THEOREM

Non-Negative Matrices

Definition: A non-negative matrix Q is irreducible if for every i, j, there is a k such that $\left(Q^{k}\right)_{i j}>0$.

Exercise: Q is irreducible if for all i, j, there is path from j to $i: j \rightsquigarrow i$. (Hint: $\left(Q^{2}\right)_{i j}>0$ iff there is k such that $Q_{i k}>0$ and $Q_{k j}>0$.)
So: Q adjacency matrix of graph G : Q irreducible iff G is SC.
Definition: A non-negative matrix Q is primitive if there is a k such that for every i, j, we have $\left(Q^{k}\right)_{i j}>0$.

Exercise: Q is primitive if $\exists k$ such that for all i, j, there is $j \rightsquigarrow i$ of length k.

Irreducible but not primitive: any cyclic permutation.

$$
Q=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Perron-Frobenius

The single most important theorem in algebraic graph theory!! Gives leading eigenpair of many important matrices.
1st order description of dynamical processes on graphs. More details in [1] and [14].

Theorem 1A: Let $A \geq 0$ be irreducible. Then: (a) Its spectral radius $\rho(A)$ is a simple eval of A. (b) Its associated evec is the only strictly positive evec.

Thus its largest eval is simple, real, and positive. But there may be other evals of the same modulus.

Theorem 1B: Let $A \geq 0$ be primitive. Then also: All other evals have modulus strictly smaller than $\rho(A)$.
(Note 3-fold rotational symmetry in irreducible case.)

Irreducible Has Period p

In the irreducible case, the matrix A has a period $p \geq 1$. That is: after permutation of vertices, A is block cyclic. Example: $p=3$:

$$
A=\left(\begin{array}{ccc}
0 & A_{1} & 0 \\
0 & 0 & A_{2} \\
A_{3} & 0 & 0
\end{array}\right)
$$

In this cyclic block form, the A_{i} are rectangular!
Exercise: Show that

$$
A^{3}=\left(\begin{array}{ccc}
A_{1} A_{2} A_{3} & 0 & 0 \\
0 & A_{2} A_{3} A_{1} & \\
0 & 0 & A_{3} A_{1} A_{2}
\end{array}\right)
$$

Now, the diagonal blocks are primitive.
By Cauchy-Binet (later):
each diagonal block D of A^{3} has same non-zero spectrum. Suppose non-zero spectrum D is: $\left\{\lambda_{i}\right\}_{i=1}^{s}$.

The non-zero spectrum of A consists of all 3 rd roots of these.

Earlier Example

To check irreducibility, need check paths of length at most 6 . Then must repeat.

$$
\sum_{i=1}^{6} Q^{i}=\left(\begin{array}{c|c|ccc|c}
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

So, Q is block-triangular and thus not irreducible. But:
The two non-trivial (dim >1) diagonal blocks are irreducible but not primitive. Notice the grouping of the evals.
The spectrum of Q is $\left\{0,0, \quad 1, e^{2 \pi i / 3}, e^{-2 \pi i / 3}, \quad 1,-1\right\}$.
Exercise: Prove all statements (use [1], [14], or others). Find examples.

Other Eigenvectors

Theorem 1C: Let A be irreducible. Any other evec but the leading cannot be real and non-negative.

This is clear if the eigenvalue is non-real. So only needs proof for real evecs.

This is the beginning of the study of Nodal Domains. A classical problem in analysis (since Courant): count the number of nodal domains of e.fns to the Laplace operator. See Figure.

Lowest Three Natural Frequencies of a Guitar String

$$
f_{1}^{L=\frac{1}{2} x}
$$

$$
\lambda=\frac{2}{1} \mathrm{~L}
$$

$\mathrm{L}=\frac{2}{2} \lambda$

$\lambda=\frac{2}{2} L$

For undirected graphs there are many results. But for digraphs very little is known. (After all, evecs may not be real!)

THESPECTRAL THEOREM

Spectral Theorem

From now: A is $n \times n$ matrix with real or complex coeff's: real symmetric \subset self-adjoint \subset normal. (A is normal if $A^{*} A=A A^{*} . A^{*}$ is conjugate transpose \bar{A}^{T}.)

Theorem 2 (Spectral Theorem): A has orthonormal basis of evecs $\left\{v_{i}\right\}_{i=1}^{n}$ iff A normal.

These evals are real, if A is self-adjoint.
Definition: Standard (Hermitian) inner product on \mathbb{C}^{n} is

$$
(x, y)=x_{1} \bar{y}_{1}+\cdots+x_{n} \bar{y}_{n},
$$

\bar{z} indicates complex conjugate of z.
Normal is common in physics and engineering. Makes life easy, because computations simplify:

Let A a (normal) matrix with e.pairs $\left\{\lambda_{i}, v_{i}\right\}$.
Suppose $\dot{x}=A x$ with initial condition $x(0)=x_{0}$. Then:

$$
x(t)=\sum_{i} \frac{\left(x_{0}, v_{i}\right)}{\left(v_{i}, v_{i}\right)} e^{\lambda_{i} t} v_{i}
$$

where (., .) is real or Hermitian inner product and $|v|=\sqrt{(v, v)}$. $\left(x_{0}, v_{i}\right) v_{i} /\left|v_{i}\right|^{2}$ is the orthogonal projection of x_{0} onto v_{i}.

Orthogonal Basis of Evecs Implies Normal

A is an $n \times n$ matrix. ASSUME $\left\{v_{i}\right\}_{i=1}^{n}$ orthonormal basis of e.vecs. Set

$$
H:=\left(v_{1}, v_{2}, \cdots, v_{n}\right)
$$

so that its columns are the e.vecs of A.
Exercise: Show that $A=H D H^{-1}$, where D is diagonal.
Exercise: Show that the i th row of H^{*} equals \bar{v}_{i}, or

$$
H^{*}=\left(\begin{array}{c}
\bar{v}_{1}^{T} \\
\bar{v}_{2}^{T} \\
\vdots \\
\bar{v}_{n}^{T}
\end{array}\right)
$$

Exercise: Show that $H^{*} H=I$, and so $H^{*}=H^{-1}$.
Exercise: Show that $A^{*}=H \bar{D} H^{-1}$.
Exercise: Show that $A^{*} A=A A^{*}$.
Observe that these exercises prove one direction of the spectral theorem!

Normal Implies Orthogonal Basis of Evecs

A is an $n \times n$ matrix. ASSUME A is normal.
Exercise: Show that $A v=\lambda v$ iff $A^{*} v=\bar{\lambda} v$.
Hint: Show that $(A-\lambda I)\left(A^{*}-\bar{\lambda} I\right)=\left(A^{*}-\bar{\lambda} I\right)(A-\lambda I)$. Then use normality to show that

$$
((A-\lambda I) v,(A-\lambda I) v)=\left(\left(A^{*}-\bar{\lambda} I\right) v,\left(A^{*}-\bar{\lambda} I\right) v\right)
$$

where (,) is (Hermitian) inner product. So, if one is zero, then the other is too.

Exercise: If A has two e.pairs (λ, v) and (μ, w) and $\lambda \neq \mu$, then $(v, w)=0$.
Hint: $(\lambda-\mu)(v, w)=(A v, w)-\left(v, A^{*} w\right)$ by the previous and defition of Hermitian inner product.

Exercise: Show that A has no non-trivial (dim >1) Jordan blocks.
Hint: If A has Jordan block, then there is λ and v such that

$$
(A-\lambda I) v \neq 0 \quad \text { and } \quad(A-\lambda I)^{2} v=0
$$

But then by normality and first exercise
$0 \neq((A-\lambda I) v,(A-\lambda I) v)=\left(\left(A^{*}-\bar{\lambda} I\right)(A-\lambda I) v, v\right)=0$

Observe that this proves the other direction of the spectral theorem!

Life in a Non-normal Universe

Let $\dot{x}=A x$. Sps evecs v_{1} and v_{2} nearly parallel.

$$
x(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}
$$

Example: $\lambda_{i}=\{-0.1,-1.0\}$ and init. condn $x(0)$ as indicated.

Large transient! Stable system may initially "look" unstable. Below we plot $|x(t)|$.

Exercise: Define a 2-dim. system of ODE plus initial condition that exhibits this type of behavior.

Another Convenience of Normality

Exercise: Matrix norm $\|A\| \equiv \sup _{x}\{|A x|:|x|=1\}$ equals norm of its largest eval if A is normal.
Hint: $W L O G\left|v_{i}\right|=1,|x|=1$.
a) Show $\sum\left(v_{i}, x\right)^{2}=1$;
b) Show that $A x=\sum \lambda_{i}\left(v_{i}, x\right) v_{i}$;
c) Showthat $(A x, A x)$ is a weighted mean of λ_{i}^{2}.

This may fail in particular for matrices that have a non-trivial Jordan block.

THE JORDAN NORMAL FORM

Case I: n Lin. Indep. Eigenvectors

Let A be $n \times n$ matrix, but not necessarily normal!
In general, it may have real and/or complex e.pairs.
Evals are the solutions $\left\{\lambda_{i}\right\}_{i=1}^{k}$ (with $k \leq n$) of

$$
\operatorname{det}(A-\lambda I)=0
$$

Case I: n linearly independent evecs $\left\{v_{i}\right\}_{i=1}^{n}$.
Given λ_{i}, then $\left\{v_{i}\right\}$ is a solution of

$$
\left(A-\lambda_{i} I\right) v=0
$$

Let H the matrix whose i th column equals v_{i}. Then A is diagonalizable, or:

$$
D=\boldsymbol{H}^{-1} \boldsymbol{A} \boldsymbol{H}
$$

with D diagonal with $D_{i i}=\lambda_{i}$ (real if A is self-adjoint).
Application: Suppose $\dot{x}=A x$ with init. cond. x_{0}. Then:

$$
x(t)=\sum_{i} \alpha_{i} e^{-\lambda_{i} t} v_{i}
$$

But the α_{i} are less simple to calculate. Set $t=0$, you get:

$$
H \alpha=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}=x_{0}
$$

Exercise: Check the statements on this page.

Case II: Less than n LI Eigenvectors

Let A be $n \times n$ matrix.
Case II: less than n linearly independent evecs $\left\{v_{i}\right\}_{i=1}^{n}$.
This happens when for some i, λ_{i} is a root of order $\underline{k>1}$ of

$$
\operatorname{det}(A-\lambda I)=0
$$

but

$$
\left(A-\lambda_{i} I\right) v=0
$$

has less than k linearly independent solutions for v.
Definition: The algebraic multiplicity of an eigenvalue λ_{i} of A is the order of the root λ_{i} of $\operatorname{det}(A-\lambda I)$.
The geometric multiplicity of λ_{i} is the number of linearly independent evecs associated with λ_{i}.

In this case A is not diagonalizable but block diagonalizable. There is matrix H so that

$$
\boldsymbol{J}=\boldsymbol{H}^{-1} \boldsymbol{A} \boldsymbol{H}
$$

Exercise: J has diagonal Jordan blocks (or JB), all of the form:

$$
B_{i}=\left(\begin{array}{cccc}
\lambda_{i} & 1 & 0 & . . \\
0 & \lambda_{i} & 1 & . . \\
. . & . . & . . & 1 \\
. . & . . & 0 & \lambda_{i}
\end{array}\right)
$$

Case II: Not Enough LI Eigenvectors

Find all evals λ satisfying

$$
\operatorname{det}(A-\lambda I)=0
$$

For each eval λ_{i}, find its evecs:

$$
\left(A-\lambda_{i} I\right) v=0
$$

These vectors span the eigenspace of λ_{i}.
For simplicity: assume there is only one: v_{i}.
If geom mult $\left(\lambda_{i}\right)<\operatorname{alg} \operatorname{mult}\left(\lambda_{i}\right)$, do this:
Start with evec v_{i}.
Find vector $w_{i 1}$ such that $\left\{w_{i 1}, v_{1}\right\} \mathrm{LI}$ and

$$
\left(A-\lambda_{i} I\right) w_{i 1}=v_{i} \text { and }
$$

Find $w_{i 2}$ such that $\left\{w_{i 2}, w_{i 1}, v_{1}\right\}$ LI and

$$
\left(A-\lambda_{i} I\right) w_{i 2}=w_{i 1}
$$

Etc. The v_{i} together with $w_{i j}$ are generalized eigenvectors. They span the generalized eigenspace of λ_{i}.

Thus there are exactly n linearly independent generalized eigenvectors.

Exercise: Check the statements on this page.

Case II: Construction of the Matrix H

H is the matrix whose columns are:

$$
\left\{\mathrm{v}_{1}, \mathrm{w}_{11}, \cdots \mathrm{w}_{1 \mathrm{n}_{1}}, \mathrm{v}_{2}, \mathrm{w}_{21}, \cdots \mathrm{w}_{2 \mathrm{n}_{2}}, \cdot \cdot, \mathrm{v}_{\mathrm{k}}, \mathrm{w}_{\mathrm{k} 1}, \cdots \mathrm{w}_{\mathrm{kn}_{\mathrm{k}}}\right\}
$$ equals v_{i}. Then

$$
\boldsymbol{J}=\boldsymbol{H}^{-1} \boldsymbol{A} \boldsymbol{H}
$$

and J consists of non-trivial Jordan blocks.
Example: If 1 st block has $\operatorname{dim} \geq 3\left(\right.$ or $\left.n_{1} \geq 2\right)$:

$$
\begin{gathered}
\lambda_{1} e_{1} \stackrel{H^{-1}}{\leftarrow} \lambda_{1} v_{1} \stackrel{A}{\longleftarrow} v_{1} \stackrel{H}{\longleftarrow} e_{1} \\
\lambda_{1} e_{2}+e_{1} \stackrel{H^{-1}}{\leftarrow} \lambda_{1} w_{11}+v_{1} \stackrel{A}{\longleftarrow} w_{11} \stackrel{H}{\longleftarrow} e_{2} \\
\lambda_{1} e_{3}+e_{2} \stackrel{H^{-1}}{\leftarrow} \lambda_{1} w_{12}+w_{11} \stackrel{A}{\leftarrow} w_{12} \stackrel{H}{\longleftarrow} e_{3}
\end{gathered}
$$

Definition: Thus the first diagonal block of J becomes:

$$
\left(\begin{array}{ccccc}
\lambda_{1} & 1 & 0 & \cdots & \cdots \\
0 & \lambda_{1} & 1 & \cdots & \cdots \\
0 & 0 & \lambda_{1} & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

This is called Jordan normal form.
Exercise: Check the statements on this page.

$\dot{x}=A x$, General Case

Exercise: Let I be the identity and

$$
N=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \text { and } \quad J=\lambda I+N=\left(\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right)
$$

a) Compute $e^{J t}$ via the usual expansion.
(Hint: $e^{\lambda t}\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$.)
b) Use a) to give solutions of $\dot{x}=J x$, where $x(0)=\left(a_{1}, a_{2}\right)^{T}$.
(Hint: $e^{\lambda t}\binom{a_{1}+a_{2} t}{a_{2}}$.)
The expansion of $e^{J t}$ in the exercise

$$
e^{J t}=I+J t+\frac{J^{2} t^{2}}{2}+\frac{J^{3} t^{3}}{3!}+\cdots
$$

simplifies because $J=\lambda I+N$ and $N^{2}=0$.
Exercise: Solve general problem $\dot{x}=A x, x(0)=x_{0}$. Step 1: Write init. cond as sum of gener. evecs.

$$
x_{0}=\sum \alpha_{i} v_{i} \quad \text { where } \quad H \alpha=x_{0}
$$

Step 2: Suppose $x_{0}=\alpha_{12} w_{12}$. Then

$$
x(t)=\alpha_{12} e^{\lambda t}\left(\frac{t^{2}}{2} v_{1}+t w_{11}+w_{12}\right)
$$

Step 3: Sum those contributions.

Two Examples

Exercise: Check that the first graph has adjacency matrix

$$
Q=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

with spectrum $\{1.68,-1.03 \pm 0.74 i, 0.37\}$ (approximately). Exercise: The second graph has adjacency matrix

$$
Q=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

with spectrum $\left\{0^{(2)}, \pm \sqrt{2}\right\}$. The eigenvalue 0 has an associated 2-dimensional Jordan block.

Additional Exercises

Exercise: Show that the matrix

$$
\left(\begin{array}{cc}
a-b & c \\
-c d & a+b
\end{array}\right)
$$

has a non-trivial Jordan block (JB) if $b^{2}=c^{2} d$ and $c \neq 0$ and $d \neq 0$.

Exercise: So you may think JB's are rare (co-dimension one). But symmetries can change that. Show that
a) Newton's equation $\ddot{x}=0$ gives rise to a JB.
b) That JB explains why two bodies without forcing separate linearly in time (Newton's first law).

Generalized Cauchy-Binet

A is a $n \times e$ matrix and B is a $e \times m$ matrix.

Notation: $k \leq n, m \leq e$. (See figure). Let $I \subseteq\{1, \cdots n\}$, $J \subseteq\{1, \cdots m\}$, and $K \subseteq\{1, \cdots e\}$. All subsets have the same cardinality k.

Definition: The matrix consisting of the entries of A in $I \times K$ is called a minor of A. Principal minor if $I=K$. It is denoted by $A[I, K]$.

Theorem 3 (generalized Cauchy-Binet):

$$
\operatorname{det}((A B)[I, J])=\sum_{K} \operatorname{det}(A[I, K]) \operatorname{det}(B[K, J])
$$

where the sum is over all $K \subseteq\{1, \cdots e\}$ with $|K|=k$.

Corollaries

A and B as depicted, where $n \leq e$. Now $I=J=\{1, \cdots n\}$

Corollary (Cauchy-Binet): We have

$$
\operatorname{det}(A B)=\sum \operatorname{det}(A[J, K]) \operatorname{det}(B[K, J])
$$

where the sum is over all $K \subseteq\{1, \cdots e\}$ with $|K|=n$.
If X is $n \times n$, by standard matrix computation

$$
\operatorname{det}(X+z I d)=\cdots+z^{n-k} \sum_{|K|=k} \operatorname{det} X[K, K]+\cdots
$$

By generalized $\mathbf{C}-\mathrm{B}$, we also have for $k \leq n$:

$$
\sum_{|K|=k} \sum_{|L|=k} \operatorname{det} A[K, L] \operatorname{det} B[L, K]
$$

equals $\sum_{|K|=k} \operatorname{det}(A B)[K, K]$ and $\sum_{|L|=k} \operatorname{det}(B A)[L, L]$.
Corollary: We have

$$
\operatorname{det}(B A+z I d)=z^{e-n} \operatorname{det}(A B+z I d)
$$

Exercise: Prove this. (Write both determinants (green). Use blue equality.)

Sketch of Proof of Cauchy-Binet

Inspired by Gessel-Viennot [10]. ($n=4$ in this example.)

$I=J=\{1, \cdots n\}$ and $E=\{1, \cdots e\}$ with $n \leq e$.

$$
\begin{aligned}
\operatorname{det} A B & =\sum_{\sigma} \operatorname{sgn} \sigma \prod_{i \in I}(A B)_{i \sigma(i)} \\
& =\sum_{\sigma} \operatorname{sgn} \sigma \prod_{i \in I} \sum_{\ell \in E} A_{i \ell} B_{\ell \sigma(i)}
\end{aligned}
$$

Fix σ. What is the meaning of $\prod_{i \in I} \sum_{\ell \in E} A_{i \ell} B_{\ell \sigma(i)}$? For all $i \in I$, fix endpoints of paths $i \rightsquigarrow \sigma(i)$. For any $\left(\ell_{1}, \cdots \ell_{n}\right) \in E^{n}$ form the product of the paths (left figure).

$$
\prod_{i \in I} A_{i \ell_{i}} B_{\ell_{i} \sigma(i)}
$$

and sum over all possible $\vec{\ell}=\left(\ell_{1}, \cdots \ell_{n}\right)$ (see also pg 33):

$$
\sum_{\vec{\ell} \in E^{n}} \prod_{i \in I} A_{i \ell_{i}} B_{\ell_{i} \sigma(i)}
$$

This includes $\vec{\ell}$'s with "crossing" paths, e.g. $\vec{\ell}=(5,5, \cdots)$.

Sketch of Proof Continued

But crossing paths give canceling contributions. For the crossing as pictured (right figure), contributions are:

$$
A_{15} B_{51} A_{25} B_{52} A_{3 \ldots} \cdots \text { and } A_{15} B_{52} A_{25} B_{51} A_{3 \ldots} \cdots
$$

BUT with opposite sign: σ changes by 1 transpos.: $1 \leftrightarrow 2$. The next expression avoids crossing paths:

$$
\operatorname{det} A B=\sum_{\sigma} \operatorname{sgn} \sigma \sum_{K,|K|=n} \sum_{\vec{\ell} \in \operatorname{bij}(I, K)} \prod_{i \in I} A_{i \ell_{i}} B_{\ell_{i} \sigma(i)}
$$

where $\operatorname{bij}(I, K)$ is the set of bijections from I to K.
Re-introduce (canceling) crossing paths within K.

$$
\operatorname{det} A B=\sum_{\sigma} \operatorname{sgn} \sigma \sum_{K,|K|=n} \prod_{i \in I} \sum_{\ell \in K} A_{i \ell} B_{\ell \sigma(i)}
$$

Swap two summations, so that we get:

$$
\operatorname{det} A B=\sum_{K,|K|=n} \sum_{\sigma} \operatorname{sgn} \sigma \prod_{i \in I} \sum_{\ell \in K} A_{i \ell} B_{\ell \sigma(i)}
$$

For fixed $K, \sum_{\sigma} \operatorname{sgn} \sigma \prod_{i \in I} \sum_{\ell \in K} A_{i \ell} B_{\ell \sigma(i)}$ is the determinant of product of square matrices. This equals product of the determinants. So

$$
\operatorname{det} A B=\sum_{|K|=n} \operatorname{det}(A[\boldsymbol{I}, \boldsymbol{K}]) \operatorname{det}(B[K, J])
$$

Exercises

Helpful Exercise: To understand the exchange of \sum and \prod better, show that

$$
\prod_{i \in I} \sum_{\ell \in J} x_{i \ell}=\sum_{\vec{\ell} \in J^{m}} \prod_{i \in I} x_{i \ell_{i}}
$$

where $|I|=m$ and $|J|=n$.
Example:

$$
\left(x_{11}+x_{12}+x_{13}\right)\left(x_{21}+x_{22}+x_{23}\right)\left(x_{31}+x_{32}+x_{33}\right)
$$

is equal to

$$
x_{11} x_{21} x_{31}+x_{11} x_{21} x_{32}+x_{11} x_{21} x_{33}+x_{11} x_{22} x_{31}+\cdots
$$

The red indices range over all of J^{m}.
Exercise: Explicitly verify all steps of the previous if B is a 3×2 matrix and A is 2×3.

Exercise: Discuss application to Perron-Frobenius, page 11.

The Formula and Its Corollaries

A a square matrix, $\mathbf{a d j}(A)$ its adjugate: $\operatorname{adj}(A)$ is the transpose of the cofactor matrix and satisfies

$$
A \operatorname{adj}(A)=\operatorname{adj}(A) A=\operatorname{det}(A) I
$$

Suppose A depends (differentiably) on a parameter t.
Theorem 4: $\frac{d}{d t} \operatorname{det}(A)=\operatorname{Tr}\left(\operatorname{adj}(A) \frac{d A}{d t}\right)$.
We give some common corollaries as easy exercises.

Replace $\frac{d A}{d t}$ by B whose only non-zero entry is $B_{k \ell}=1$:
Exercise: Show that $\frac{d}{d A_{k \ell}} \operatorname{det}(A)=(\operatorname{adj}(A))_{\ell k}$.
Instead, replace A by $e^{B t}$ and so $\operatorname{adj}(A)$ by $e^{-B t} \operatorname{det}\left(e^{B t}\right)$:
Exercise: Show that $\frac{d}{d t} \operatorname{det}\left(e^{t B}\right)=\operatorname{Tr}(B) \operatorname{det}\left(e^{t B}\right)$.

The latter gives an ODE. Solve it:
Exercise: Show that the latter implies: $\operatorname{det}\left(e^{t B}\right)=e^{\operatorname{Tr}(B t)}$.
B has evals λ_{i} (with mult.). Then $I+\epsilon B$ has evals $1+\epsilon \lambda_{i}$:

$$
\operatorname{det}(I+\epsilon B)=\prod_{i}\left(1+\epsilon \lambda_{i}\right)
$$

Thus

$$
\lim _{\epsilon \rightarrow 0} \frac{\operatorname{det}(I+\epsilon B)-\operatorname{det}(I)}{\epsilon}=\sum_{i} \lambda_{i}=\operatorname{Tr}(B)
$$

For an invertible A :

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0} \frac{\operatorname{det}(A+\epsilon B)-\operatorname{det}(A)}{\epsilon}= \\
& \lim _{\epsilon \rightarrow 0} \frac{\operatorname{det}(A)\left[\operatorname{det}\left(I+\epsilon A^{-1} B\right)-\operatorname{det}(I)\right]}{\epsilon}=
\end{aligned}
$$

$$
\operatorname{det}(A) \operatorname{Tr}\left(A^{-1} B\right)=\operatorname{Tr}\left(\operatorname{det}(A) A^{-1} B\right)
$$

Extend to non-invertible: replace $\operatorname{det}(A) A^{-1}$ by $\operatorname{adj}(A)$:

$$
\cdots=\operatorname{Tr}(\operatorname{adj}(A) B)
$$

... And replace B by $\frac{d A}{d t}$:

$$
\cdots=\operatorname{Tr}\left(\operatorname{adj}(A) \frac{d A}{d t}\right)
$$

Exercise: Set $\partial_{B} A:=\lim _{\epsilon \rightarrow 0} \frac{\operatorname{det}(A+\epsilon B)-\operatorname{det}(A)}{\epsilon}$. Prove $\boldsymbol{\partial}_{\boldsymbol{B}} \operatorname{det} \boldsymbol{A}=\operatorname{Tr}(\operatorname{adj}(\boldsymbol{A}) \boldsymbol{B})$
[1] M. Boyle, Notes of the Perron-Frobenius Theory of Nonnegative Matrices, https://www.math.umd.edu/~mboyle/courses/475sp05
[2] J. S. Caughman, J. J. P. Veerman, Kernels of Directed Graph Laplacians, Electronic Journal of Combinatorics, 13, No 1, 2006.
[3] J. J. P. Veerman, E. Kummel, Diffusion and Consensus on Weakly Connected Directed Graphs, Linear Algebra and Its Applications, accepted, 2019.
[4] J. J. P. Veerman, R. Lyons, A Primer on Laplacian Dynamics in Directed Graphs, Nonlinear Phenomena in Complex Systems No. 2, Vol. 23, No. 2, pp. 196-206, 2020.
[5] R. Ahlswede et al., Network Information Flow, IEEE Transactions on Information Theory, Vol. 46, No. 4, pp. 1204-1216, 2000.
[6] R. Angles, C. Guiterrez, Survey of Graph Database Models, ACM Computing Surveys, Vol. 40, No. 1, pp. 1-39, 2008.
[7] A. Broder et al., Graph Structure of the Web, Computer Networks, 33, pp. 309-322, 2000.
[8] P. Carrington, J. Scott, S. Wasserman, Models and Methods in Social Network Analysis, Cambridge University Press, 2005.
[9] J. Fax, R Murray, Information Flow and Cooperative Control of Vehicle Formations, IEEE Transactions on Automatic Control, Vol. 49, No. 9, 2004.
[10] I. Gessel, X. Viennot, Binomial determinants, paths, and hook length formulae, Adv. Math., 58 (1985), pp. 300-321
[11] T. Jombert et al., Reconstructing disease outbreaks from genetic data: a graph approach, Heredity 106, 383-390, 2011.
[12] Robert M. May, Qualitative Stability in Model Ecosystems, Ecology, Vol. 54, No. 3. (May, 1973), pp. 638641.
[13] S. Rao, A. van der Schaft, B. Jayawardhana, A graphtheoretical approach for the analysis and model reduction of complex-balanced chemical reaction networks, J. Math. Chem., Vol. 51, No. 9, pp. 24012422, 2013.
[14] S. Sternberg, Dynamical Systems, Dover Publications, Mineola, NY, 2010, revised edition 2013.

