

Supply and Demand in Minerals and Fuels

*first Arab oil embargo **End of USSR

Soviet/Russian political history v oil price

Brent crude* oil price per barrel, \$, 2013

Economist.com

Consumption & Price of Iron 1880-1998

FOURTH EDITION by Robert S. Pindyck and Daniel L. Rubinfeld © 1998 by Prentice-Hall, Inc. A Simon & Schuster Company Upper Saddle River, NJ 07458

Consumption & Price of Copper 1880-1998

Price of Gold 1978-2013

*first Arab oil embargo **End of USSR

Adam Smith

Alfred Marshall

Demand Curve

Shows amount purchased as a function of price

Depends on:

- income
- tastes
- prices of competitive products
- prices of complementary products

Supply Curve

Amount offered for sale as a function of price Depends on costs of production, which in turn depend on

- costs of inputs
- technology

- Characteristics of the equilibrium or market clearing price:
 - $\square Q_{\rm D} = Q_{\rm S}$
 - No shortage
 - No excess supply
 - No pressure on the price to change

Demand Curve -Income or Population Rises

A Surplus

The market price is above equilibrium
There is excess supply
Producers reduce prices
Quantity demanded increases and quantity supplied decreases
The market continues to adjust until the equilibrium price is reached.

Shortage

The market price is below equilibrium:
There is a shortage
Producers raise prices
Quantity demanded decreases and quantity supplied increases
The market continues to adjust until the new equilibrium price is reached.

- Market Mechanism Summary:
 - 1) Supply and demand interact to determine the market-clearing price.

2) When not in equilibrium, the market will adjust to alleviate a shortage or surplus and return the market to equilibrium.

3) Markets must be competitive for the mechanism to be efficient.

Competitive Market

A competitive market is one in which a large numbers of producers compete with each other to satisfy the wants and needs of a large number of consumers. In a competitive market no single producer, or group of producers, and no single consumer, or group of consumers, can dictate how the market operates. Nor can they individually determine the price of goods and services, and how much will be exchanged.

Consumption & Price of Copper 1880-1998

Supply and Demand for Copper 1900-1950-1995

The Long-Run Behavior of Natural Resource Prices

Observations

Consumption of copper has increased about a hundred fold from 1880 through 1998 indicating a large increase in demand.
 The real price for copper has remained

The real price for copper has remained relatively constant.

Changes In Market Equilibrium

Modified from Geoffrey Heal 2004

Changes In Market Equilibrium

Conclusion

Decreases in the costs of production have increased the supply by more than enough to offset the increase in demand.

Price elasticity of demand: Measures responsiveness of demand to price. Defined as $E = (\Delta Q/Q)/(\Delta P/P) = (\Delta Q/\Delta P)^*(P/Q)$ Why is it defined in proportional terms? - Unit free. - Scale sensitive.

A negative number.

Demand Elasticity

Supply Elasticity

- The responsiveness of supply to price changes.
- (ΔS/S)/(ΔP/P), proportional change in supply divided by proportional change in price.
- Usually positive.

Short-run vs. long-run elasticities

Critical in understanding oil market, energy markets, metal markets

Responding to a price movement takes time - possibly many years

Long-run elasticity measures **total** response Short-run elasticity measures **immediate** response

Why is Supply Inelastic in the Short Term?

Why is Supply Inelastic in the Short Term?

Why is Supply Inelastic in the Short Term?

Why is Supply Inelastic in the Short Term?

Why is Demand Inelastic in the Short Term?

Why is Demand Inelastic in the Short Term?

ISS009E18788

Demand and Supply

- demand and supply curves provide tools for analyzing how various shocks (input costs, customers' income, competitors' prices, etc.) affect sales and prices.
- Elasticities provide summary numbers
- Short Run ≠ Long Run. Use numbers appropriate to the time scale of the decision

AIRTEL - HELLO TUNE - TYPE SET<SPACE>591752 & SEND IT TO 543211
VODAFONE - CALLER TUNE - TYPE CT<SPACE>10023864 & SEND IT TO 56789
IDEA - DIALER TUNE - TYPE DT<SPACE>0212149 & SEND IT TO 55456
BSNL NORTH - BSNL TUNE - TYPE BT<SPACE>55641 & SEND IT TO 56700
BSNL SOUTH - BSNL TUNE - TYPE BT<SPACE>116931 & SEND IT TO 56700
LOOP - TYPE SET<SPACE>200000381 & SEND IT TO 55666 /
FOR RELIANCE CALLERTUNES DIAL 51234848
FOR TATA WELCOME TUNES DIAL 12800

VALENTINE SPECIAL "If U Break My Heart..." | Will Break UR Bones...!

GRGAUN MAMOAN

Gordon Terminal, Port of New Jersey, Bayonne, NJ

http://www.gordonterminal.com/images/fullscreen/b-loc-b-b.jpg

Houston Ship Channel

http://farm3.static.flickr.com/2324/2054441122_d28cb993bb.jpg

http://www.cnsm.csulb.edu/departments/geology/people/bperry/GrantPhotos/CatalinaFeb06/040Pier400TermIslandFishHarborFeb06L.jpg

Rotterdam, NL

Singapore

http://oregoneconomicanalysis.files.wordpress.com/2010/08/export_industries.jpg

Iron Ore Imports: EU Japan South Korea China Thousands of tonnes

http://google.brand.edgar-online.com/EFX_dll/EDGARpro.dll?FetchFilingHtmlSection1 ?SectionID=7572776-269841-343688&SessionID=cXRfHqQv68-PZ27

Coal Imports: EU Japan South Korea China Thousands of tonnes 18,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 Jan-10 EU-15 South Korea China Japan

http://google.brand.edgar-online.com/EFX_dll/EDGARpro.dll?FetchFilingHtmlSection1 ?SectionID=7572776-269841-343688&SessionID=cXRfHqQv68-PZ27

World Uranium Production by Country

Principle Copper Producing Countries.

Figure 1. U.S. net energy imports continue to decline in the near term, reflecting increased oil and natural gas production coupled with slow demand growth

U.S. net energy imports quadrillion Btu

SELECTED NONFUEL MINERAL MATERIALS

Commodity P	Percent	Major Sources (1995-98) ¹
ARSENIC TRIOXIDE	100	China, Chile, Mexico
BAUXITE and ALUMINA	100	Australia, Guinea, Jamaica, Brazil
BISMUTH	100	Belgium, Mexico, United Kinodom, China
COLUMBIUM (nioblum)	100	Brazil, Canada, Germany, Russia
FLUORSPAR	100	China, South Africa, Mexico
GRAPHITE (natural)	100	Mexico, Canada, China, Madagascar
MANGANESE	100	South Africa, Gabon, Australia, France
MICA, sheet (natural)	100	India, Belgium, Germany, China
STRONTIUM	100	Mexico, Germany
THALLIUM	100	Belglum, Mexico, Germany, United Kingdom
THORIUM	100	France
YTTRIUM	100	 China, France, United Kingdom, Japan
GEMSTONES	99	 Israel, Belgium, India
ANTIMONY	85	China, Bolivia, Mexico, South Africa
TIN	85	Brazil, Indonesia, Bolivia, China
TUNGSTEN	81	China, Russia, Bolivia, Germany
CHROMIUM	80	South Africa, Russia, Turkey, Zimbabwe
POTASH	80	Canada, Russia, Belarus
TANTALUM	80	Australia, Thalland, China, Germany
STONE (dimension)		italy, India, Canada, Spain
TITANIUM CONCENTRATE:	S 77	South Africa, Australia, Canada, India
COBALT	73	Norway, Finland, Canada, Zambia
RARE EARTHS	72	China, France, Japan, United Kingdom
DADINE	68	Chile, Japan, Russia
DARITE	07	Crima, India, Mexico, Morocco
NICKEL	63	Canada, Russia, Norway, Australia
PEAI TITANII IM (menee)	57	Canada Bursia, Japan Karakhetan Obian
DIAMOND (dust ant and not	44 11 Jack 44	Rubbid, Jdpan, NazaMibian, Grina
MANUTER AND	wueij 41	 China Canada Avaida Canada
INVIGE	5 40	Crinia, Canada, Austra, Greece
ALLIMINEM	30	Canada Russia Venezuela Mexico
SILICON	30	Nonvov Russia, Venezuela, Mexico
ZINC	30	Canada Mevico Deni
CVDSLIM	20	Canada Mexico, Peru
MACNESILIM METAL	20	Canada Russia China Israel
COPPER	27	Canada Chile Mexico
NITROGEN (fixed) AMMON	IA 26	Trinidad and Tobaco, Canada, Mexico, Venezuela
CEMENT	23	Canada, Spain, Venezuela, Greece
MICA, scrap and flake (natur	al) 23	Canada India Finland Japan
IRON and STEEL	22	European Union, Canada, Japan, Russia
LEAD	20	Canada, Mexico, Peru, Australia
CADMIUM	19	Canada, Belgium, Germany, Australia
IRON ORE	17	Canada, Brazil, Venezuela, Australia
SULFUR	17	Canada, Mexico, Venezuela
SALT	16	Canada, Chile, Mexico, The Bahamas
SILVER	14	Mexico, Canada, Peru, Chile
PERLITE	13	Greece
ASBESTOS	7	Canada
PHOSPHATE ROCK	7	Morocco
TALC	6	China, Canada, Japan
IRON and STEEL SCRAP	3	Canada, United Kingdom, Venezuela, Mexico
BERYLLIUM	2	Kazakhstan, Russia, Canada, Germany

¹In descending order of import share.

Additional mineral commodities for which there is some import dependency include:

Gallium Germanium Indium Mercury Platinum France, Russla, Canada, Kazakhstan Russla, Belgium, China, United Kingdom Canada, China, Russla, France Russla, Canada, Kyrgyzstan, Spain South Africa, United Kingdom, Russla, Germany Rhenium Selenium Vanadium Vermicuite Zirconium Chile, Germany, Kazakhstan, Russia Canada, Philippines, Belgium, Japan South Africa, China South Africa, China South Africa, Australia

Figure 1. U.S. net energy imports continue to decline in the near term, reflecting increased oil and natural gas production coupled with slow demand growth

U.S. net energy imports quadrillion Btu

Ricardo's Comparative Advantage

Easy to Use Version

Comparative Advantage depends on Productivity Ratios

Units per day for two countries:

Product	Country A	Country B
Copper	1 per day	3 per day
Silver	2 per day	4 per day

Autarchy:

economic policy of national independence

Recent Critiques of Trade: 1999 Seattle Protests

- Abuse of Child Labor
- Dupont, ADM, etc genetically modified seeds and pesticides
- Globalization's impacts on national sovereignty

Continuing Critiques

- Mercantile Exchange Rate Policies
- Copyright Infringement
- Professional Services
- Corporate Accounting Practices
- NAFTA
- Loss of jobs to other countries

Globalization

- Trade in resources and labor is one thing
- Do these arguments apply to trade in financial instruments?
- Do they apply to "free capital" investments?
- Do they apply to pollution?

Almost the final word:

"The prinicple of comparative advantage restated: Whether or not of two regions is absolutely more efficient in the production of every good than is the other, if each specializes in the products in which it has a *comparative advantage* (*greatest relative efficiency*), trade will be mutually profitable to both regions. Real wages of the productive factors will rise in both places.

An ill-desigined prohibitive tariff, far from helping the protected factor of production, will instead reduce its real wage by making imports expensive and by making the whole world less productive through eliminating efficiency inherent in the best pattern of specialization and division of labor" Samuelson 1964

Whenever Trade Increases Someone's ox may be gored...

Whenever someone's ox is gored . . . Trade might be blamed.